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Abstract

In this paper, a nonsmooth semilinear parabolic partial differential equation (PDE)
is considered. For a reduced basis (RB) approach, a space-time formulation is used
to develop a certified a-posteriori error estimator. This error estimator is adopted to
the presence of the discrete empirical interpolation method (DEIM) as approximation
technique for the nonsmoothness. The separability of the estimated error into an RB
and a DEIM part then guides the development of an adaptive RB-DEIM algorithm,
combining both offline phases into one. Numerical experiments show the capabilities
of this novel approach in comparison with classical RB and RB-DEIM approaches.

Keywords Nonsmooth parabolic equations - Space-time discretization -
Reduced basis - Discrete empirical interpolation - A-posteriori error estimation -
Semismooth Newton
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1 Introduction

The usual approach for the numerical solution of parabolic partial differential equations
(PDEs) is done by time-stepping schemes based upon variational semi-discretizations.
After a variational formulation in space and a discretization by, e.g., finite elements,
one derives an evolution problem in time. Then, a spatial problem needs to be solved
at each discrete time instance.
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Alternatively, in a space-time scheme one approximates the PDE by a simultaneous
discretization of the spatial and temporal domain. This leads to a single variational
problem with test functions depending on the spatial and the temporal variables x and
t, respectively.

In this paper, we consider a parameter dependent, nonsmooth parabolic PDE: For
a parameter u € P,q consider for almost all (f.a.a.) t € (0, T']:

y(t; 1) — c(u)Ay(t: p) + a(u) max{0, y(r; )} = f(z; ) in V',
. (LIVP)
y(O; ) =0 in H,

where y = % denotes the weak temporal derivative of y. Notice that the nonsmooth-

ness in (uIVP) is only Lipschitz continuous and not Fréchet-differentiable. Problem
(uIVP) can be seen as a model problem for a broader class of nonsmooth parabolic
PDEs, as shown in the first authors doctoral thesis [1], where the assumptions on
the nonsmoothness are chosen appropriately. Note that in this general setting, the
derivation of stability estimates, see Proposition 1 and Corollary 3 can be problem-
atic. Let us mention that some examples of problems related to the nonsmooth PDE
arise, for instance, in mechanics, plasma physics and the context of certain combustion
processes, cf. [2, 3].

Let us mention some of the related work. Space-time methods have been considered
by many authors. We refer, e.g., to the work [4—11] for (smooth) parabolic problems
but there is no error analysis done for nonsmooth PDEs. In the context of reduced basis
(RB) approaches space-time methods are discussed, e.g., in [12—15] and in particular
for optimal control problems in [16—18]. A-posteriori error estimates are derived and
efficient tensor-based solution methods are proposed. However, the authors do not
study empirical interpolation methods and adaptive basis update strategies in their
work. Empirical interpolation techniques are necessary to handle the nonsmooth term
in (uIVP) efficiently by the RB method, cf. [19-21]. Theoretical results for (uIVP)
can be found in [22, 23], where optimal control problems for more general parabolic
nonsmooth problems are considered. In the context of adaptive RB methods we refer
to [24], for instance. Let us also mention that the present paper extends results of the
elliptic case (cf. [25]) to the parabolic one, which further justifies the consideration of
the max-type nonsmoothness as a starting point.

The new contributions of the present paper are as follows: (i) We derive a-posteriori
error estimates for space-time approximations of a nonsmooth parabolic PDEs. (ii) We
incorporate the discrete emprirical interpolation method (DEIM) for the nonsmooth
term in our error analysis. (iii) A certified adaptive algorithm for the RB-DEIM
approximation is developed, which combines the typical two offline phases for the
computation of an RB and of a DEIM basis into one.

This paper is organized as follows: In Section 2, space-time formulations are intro-
duced for the continuous, finite element (FE) and RB formulations of («IVP). Section 3
covers the RB method, including basis generation and space-time a-posteriori error
estimation. In Section 4, DEIM is introduced to efficiently evaluate and approximate
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the nonsmoothness. The error estimator is adopted to the RB-DEIM setting and an
adaptive algorithm for the simultaneous generation of the RB and the DEIM basis is
presented. Numerical results illustrate the capabilities this novel approach in Section 5.
Finally, we draw some conclusions in Section 6.

2 Space-time formulation for (uIVP)

First we establish a space-time formulation for the continuous setting and existence
of a unique solution is proved. Then, an FE space-time discretization is introduced.
Further, it is shown that its space-time formulation corresponds to a Crank-Nicolson
(CN) scheme, which can be uniquely solved by a semismooth Newton method. Finally
the same is done for the RB space-time formulation. We also present stability estimates
for all formulations, that will be necessary to provide convergence rates for some of
the RB error estimators quantities.

2.1 Problem formulation

Let Q c R?,d € {1, 2, 3}, be a bounded domain with Lipschitz-continuous boundary
I' = 9Q2. We write x = (xq,...,xq) for an element in 2. For T > 0 we define
0=(0,T)xQand X = (0,T) x I'.Let H = L*(Q) and V = H/ (Q) be supplied
by the inner products

(o, )y = /Qw(x)¢(x) dx forp,¢ € H,
(@, d)y = /va(x) -V (x)dx forp,¢p €V,

respectively, and their corresponding induced norms. Moreover, their dual spaces are
denoted as H' and V'. Furthermore, we introduce the test space Y = L2(0, T;V).
We identify the dual Y’ with the space L2(0, T: V"). For more details on Sobolev and
Bochner spaces we refer the reader to [26], for instance.

Recall that V < H =~ H’' <> V'’ is a Gelfand triple and the function space
WO, T)=YnN H! (0, T; V') a Hilbert space with induced norm

leWvo.m) = el + Il fore € WO, T).
Moreover, the solution space is X = {¢ € W(0, T) | ¢(0) = 0 in H} with norm
ol = el + eI fore e X,
which is well-defined due to W(0,T) — C([0, T]; H), cf. [27]. Finally, we set
H = L*0,T; H) for brevity. For a function ¢ € J{ we write ¢(¢) for the function

x — @(t,x) for almost all (abbreviated “f.a.a.” in the following) # € [0, T']. The
precise assumptions on («IVP) are stated in the following assumption.
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Assumption1 a) P,q C R”, p € N\ {0}, is nonempty and compact,

b) c¢: Pag — R is Lipschitz-continuous, positive and uniformly bounded away from
zZero,

¢) a: Paq — Ris Lipschitz-continuous and nonnegative,

d) f:Pag — C([0, T]; H) is Lipschitz-continuous.

Remark 1 Assumption 1-d) canberelaxedto f: P,g — H. However, we suppose that
t — f(t; u) € H is continuous to simplify our presentation regarding the temporal
discretization carried out later. O

Fory € X, ¢ € Y and u € P,q we define the operators

By, ¢; 1) = Bi(y, ¢) + c(u)Ba(y. ¢),  Bi(y, ) = (3, d)y vy,

AQy. ¢ ) =By, ¢: ) + Ny, s ), Ba(y. ¢) = (v, d)y. )
Ny, ¢: ) = a(u) (max{0, y}, ¢)qg¢. F(ps ) = (f (), )

For i € P44 the function y = y(u) € X is called a weak solution to (uIVP) if

Ay, ¢ n) = Flpy ) forallg €Y. @)

Existence and uniqueness of the solution to (2) follows e.g. from [28, Theo-
rem 30.A].

2.2 FE space-time formulation

Analogously to the continuous setting we introduce a discretized space-time formula-
tion. Therefore let X5 C X and Y5 C Y be finite dimensional subspaces. For ;1 € Paq
we call ys = ys(u) € X a discretized weak solution to (IVP) if

A(ys, ¢s: 1) = Fps; ) for all ¢s € Ys. 3)
In the remainder of this paper we will focus on the case
Xs =Sat ® Vi, Ys = 0ar ® Vi,
where ® denotes the tensor product and Qar, Sa; are piecewise constant, respective
piecewise linear finite elements in time and V}, are piecewise linear finite elements in
space. As § = (At, h) we summarize the temporal and spatial discretization parame-

ters. The solutions for this particular choice of spaces will be also called FE solutions
to the PDE. For the FE spaces we denote the standard bases (see [14]) by

Oar =span{ty, ..., 17}, Sar =span{oy, ..., ok}, Vp =span{¢, ..., ¢n},

where K € Nand N € N denote the sizes of the temporal and the spatial discretization,
respectively. We set I = [0, T') and introduce the intervals Iy = [fx—_1, #) of length
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Aty for the time instances 0 =) < ... <tg =T,i.e., I =11 U...U Ig. From

K N

K N
=) D Vi@®u)ekXs,  d=> > di(u®s)els
k=1i=1

k=1 i=1

we infer that

B(ys. b5 1) = Z Z Yook (61 7 200 (€5 60

kl=11i,j=1

+ c(w)or, ) 20,1y (85 fi)v> =VYs B(M)‘b

with ys = [yll...lyKl € RVK yb — ok . y5)T for 1 < k < K,
b = [b']...10K] € RNK oF = (bf,...,d{)T for I < k < K and B(p) =
Bi ++ c(1)Ba. Here we have introduced spatio-temporal matrices B = N{™® @ M;"*
and By = M{i™® ® V,P*° with

M, (((Ejsfz‘)H))lgi,jgN’ Vi :((@j’fi)‘/))lfi,jiN’
M = ((on ) 20m)1ceiex N0 = (00 W) 20.1)) 1 <p <k

Let §; x denote the Kronecker delta, then we obtain the explicit forms

. 1
(61, ) 20,1y = 81k — Si+1.ks (01, k) 12(0.7) = 3 (An8 x4+ Atiy18141k) -
Furthermore we denote the lumped version of the spatial mass matrix MSpace as
cspace . 1
Mh dlag §[|Supp(é‘1)|]1§jSN ’

cf., e.g. [29, Chapter 15]. This leads to

_ c(u)At
Blys, 1 ® s 1) = [ M (v =95 ) + S5V (v v 1)}
1

Aty ~ space
N(ys, o ® &is ) ~ [W M ( x {0, y5} + max {0, y;~ 1})i|

Aty _
Fa® i~ = (o +F' o)
forl <k < Kandl <i < N, where we have used the trapezoidal quadrature rule for
the approximation of the integrals in A'and Fand denote F (i) = (FO()] ... IFX(w)] e

RYVKH with FE () = (Fi(), ... Fiy(w) T and F{ (W) = (f (& w), &i)yr,v. where
we have utilized that Assumption 1-d) holds. Furthermore we set yg =0 e RY due
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to the homogeneous initial condition. Now we can express (3) as a sequence of root
finding problems fork =1, ..., K:

Gs(ys; ) =0 inRY

with

1 _ 1 _
GhOR: 1) = M = ) 4 3 eV O 44

+ a(uyM (max {0,y§} + max {0, ylg_l}) — (F* o + F 1))

and initial condition yg = 0. This problem can be interpreted as a Crank-Nicolson (CN)
scheme for a spatially discretized parabolic PDE. To solve this problem, a semismooth
Newton method (see [30]), where the k-th iteration matrix is given by

1 1 .
HEOK: 10 = M+ 5 [0V +aGom ™ o ) | « RN

is applied. The function ®: RY — RN*N maps a vector to the diagonal matrix that
takes the Heaviside function with value O evaluated for each entry of the vector as its
diagonal entries.

Remark 2 For every parameter & € P,q the problem Glg (ylg; w)=0fork=1,..., K
with initial condition yg = 0 admits a unique sequence of roots y]g. This is a conse-

quence of the monotonicity of Glg (-; u), which follows since szace, Vzpace and M;pace
are symmetric and positive definite (s.p.d.) matrices and the max-function is mono-
tone. Furthermore for every y’g the matrix ng (ylg; W) is s.p.d., which implies that every
Newton iteration is uniquely solvable. O

We finish our considerations with a stability estimate for the FE solution. This is
based on the linear case shown in [4, Corollary 4.3].

Proposition 1 Let Assumption 1 hold. Then, for every (1 € Pqq, the FE solution ys(u)
to (3) satisfies the estimate

Vs llg¢ =< I1LF ) llg- “

Proof Let ys = ys(u) be an FE solution to (3). Since ys € Ys holds, we can choose
¢s = ys as test function. This implies

(Y3, ys)g¢ + () (ys, ¥s)y + a(w) (max{0, ys}, vs)g¢ = (f (1), Ys)gq-
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Note that

c(p)
2

T 2
e ys. 3ahy = L (s — Iys 1) = LBV o

5 >
(Lf GG + 119s13)-

N =

(f(u), ys)ge <
Thus we obtain

13515 + 2a(w) (max{0, ys}, ys)g¢ < If ()13

Now for almost all ¢ € (0, T) we introduce the set QT (1) = {x € Q| ys(t, x) >
0f.a.a.r € [0, T]}. Since max{0, -}: R — R is Lipschitz continuous, we infer from
[26, Chapter 5.8.2.b] that max{0, ys ()} belongs to V f.a.a. t € (0, T) and thus

// ygygdxdtsz max{0, ys}ys dxdr
1JQ+(0) 1JQ

Z/QmaX{O, ys(T)}ys(T) dx —/QmaX{O, y5(0)}ys(0) dx

—// max’'{0, ys}ysys dxdz
1Ja

_ / max {0, y5(T)}ys(T) dx — / / Vas dxdr,
Q 1JQ+ (1)

since for the weak derivative max’{0, ys} = 1 almost everywhere (abbreviated “a.e.”
in the following) on Q% (¢) and max’{0, ys} = 0 a.e. on Q \ Q7 (¢) are satisfied; cf.
[31] for a derivation based on generalized derivatives. This implies

1
(max{O, yﬁ}’ 5’6)}( = E(max{ov y(S(T)}v yé(T)>H > 0

and thus (4) holds true. O

For an arbitrarily given ¢5 € X, which is piecewise linear in time, let us define the
piecewise constant in time version by averaging

K
@s(t,x) =Y 1,(1) ® @5 (x) € Ys )
k=1

with

1 e 1
o= — | o0 g = Pl o)

V. 6
Aty I 2 ©

In the next lemma we summarize useful properties of ¢5 € H. Recall that ¢5 € H
for g5 € Xs.
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Lemma2 For every s € Xs we have

and

(05 — @5, Ps)y = (9s — @s. Ps)g¢ = 0 forall g5 € Ys.

Proof Let g5 € Xs be chosen arbitrarily. Equation (7) follows from

+
(G5 G8)g¢ = Z/ <§0s(tk) o3 (t1) s (te) 2q)5(tk 1)> N
H

1 1
=3 Z (s @15 = llgs ()13) = S les (T,
k=1

where we have used that p5(0) = 0in H.
To show (8) let g5 € X5 and ¢ps € Y5 be chosen arbitrarily. Then, it follows that

1
@s(t) = Y ((tx — s (tk—1) + (& — tr—1)@s (1)) faa.t e I,

G5 () = (ﬂs(tk—l)2+ s (1)

bs(t) = s (1) =: P} faa el

faa.t € I,

forevery k =1, ..., K. Consequently,

2 2

@)

®)

(s, ds)y = — ; <[(tkt - %)wa(tk D+ (3 — - 1t><pa(tk) %] ::I>V

k=1

K 2
1 —
- Z A—<M((§08(fkl) + o(1)), ¢§>

Vv

K
Aty k

and

K
(@5, do)y :Z/I <¢5(tk—1)2+ <P5(fk)7¢§> dt
i %

K
Aty k
— Z (s (tk—1) + s (t), sy
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which implies (g5 — @5, qblg)g = 0. Analogously, we derive that (g5 — @5, ¢s)5 = 0.
This finishes the proof. O

2.3 RB space-time formulation

Analogously the space-time RB setting can be formulated and interpreted as a CN
scheme. This CN interpretation guides us in the numerical calculation of solutions to
the space-time formulation and in the derivation of an a-posteriori error estimator. For
a spatial RB space V, = span{y, ..., ¥} C V), of dimension £ € N, we introduce
the RB solution and test spaces

Xib = Sar @ Vo, Yo = 0ar @ Vi,

respectively, where rb = (At, £) stands for the temporal discretization and RB param-
eter. Note that it is also possible to consider RB spaces with respect to space and time,
cf. [7, 8] for the linear FE and [32] for the linear RB case, but an adoption of the
analysis presented in Chapter 3 is necessary.

For i € Paq we call yi, = yp (1) € Xyp an RB solution to (3) if

A, ¢ 1) = F; ) forall ¢ € Yrp. &)

As previously done in the case of the FE space-time formulation, we can also
reformulate (9) as a CN scheme, by using a trapezoidal quadrature rule. Therefore let

W, = [P, ..., Py] € RV*E denote the RB coefficient matrix whose columns are the
FE coefficient vectors of the reduced basis functions. Let szace = \IlgTMZpace\I/g €

R*¢ and Vzp e = \IIKTVZp "€y, e R denote the spatial RB mass matrix and spatial
RB stiffness matrix, respectively. This leads to a sequence of root finding problems
fork=1,...,K:

GlyWips W) =0 in R’

with
1 - 1 -
k gk . — space ¢ k k—1 space (. k k—1
GrpWrps 1) = A_tkM‘f (Vib = Yip ) + E[C(M)Vz (YVib +Yrp )
+aGow] W (max {0, Wyl } + max {0, eyl ')

— 0 (F o +Fw)]

with initial condition y?b = 0. Again this problem can be solved by applying a semis-
mooth Newton method, where the k-th iteration matrix is given by

L MEPace

k ok . _
H,b(yrb, n) = Al ¢

1 .
+ E(c(u)vzp“e + a(u)wJMZ"“e@(wy’r‘b)w) e R,
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Since W, has full rank, Remark 2 is applicable again, i.e. the sequence of roots y’r‘b
is unique and every Newton iteration is uniquely solvable. Furthermore we obtain a
stability estimate analogous to Proposition 1.

Corollary 3 Ler Assumption 1 hold. Then, for every v € Pgq, the RB solution yu, (1)
to (9) satisfies the estimate

IOl < I1LF )l

Proof The claim follows by similar arguments utilized to prove of Proposition 1. 0O

3 Reduced basis method

In this section a greedy procedure for the generation of the RB space V; will be
presented. Efficient error estimation is necessary and an error estimator is derived
based on the space-time formulations introduced in Section 2. Compared to the elliptic
case, cf. [25], the derived error estimator is composed of an additional term A.s. A
large part of this section is dedicated to its convergence analysis, ultimately proving
that A» = O(At), where an equidistant temporal discretization is assumed for
ease otﬁiresentation. To include a non-equidistant temporal discretization, we have
to modify our discrete function spaces, but the convergence results remain valid with
At = max=1, K tk — tk—1.

3.1 Generation of reduced basis

For the generation of the spatial RB space V; proper orthogonal decomposition (POD)
is used in a greedy procedure. For more details on POD we refer, e.g., to [33]. With
PY: V — V, the V-orthogonal projection onto the spatial RB space is denoted. By
A(p) we denote an error estimator for the RB solution corresponding to the parameter
w € P with respect to RB solution space X, and RB test space Y, generated by V.
Furthermore POD; denotes the extraction of a dominant POD mode with respect to
the inner product in V. The offline basis generation is summarized in Algorithm 1.

Algorithm 1 (POD-greedy RB method).

Require: Discrete training set Py C Pyg, error tolerance o) > 0;

I: Set £ =0, Vg =0, Vo = {0};

2: while gy := max{A(u) | & € Pirain} > 01 do

3: Compute 114 € arg max{A(u) | it € Piain):

Set e’2+1 = Y§(ILZ+1) - P‘yé‘(wﬂ) fork=1,...,K;

Define Ppy1 =Pe U {pe41};

Compute Y11 € POD;({ef, | }K_ )

o SetWopy =W Ui} Vel = Ve @ span(ypq ) and £ =€+ 1
8: end while

9: return Reduced basis Wy, spatial RB space V.

AN O
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It is possible to add more than just one POD mode per iteration to the reduced
basis. This usually results in faster convergence of the algorithm and thus lower offline
computational cost. But on the other hand it does not guarantee that the reduced basis
is of minimal size. Note that the initial condition, which is zero, is always perfectly
approximated.

3.2 RB error estimation

An efficient error estimator is crucial not only for Algorithm 1, but also for quality
certification of the calculated RB solution in an online phase. Since ys, yip ¢ Y We
cannot test with the error ys — yyp, in the derivation of an error estimator. Therefore we
will use an additional projection operator 7 that satisfies the following hypotheses.

Assumption 2 Let P°: X5 — Ys be a bounded projection operator such that:
a) P satisfies

X 1
(@5, Pos)yc = 5 lgs(TY13; for all 5 € Xs.

b) P’ satisfies

(@5 — PP ps, ds)y = (o5 — Pps, ds)g¢ = 0 forall s € X5, 5 € Ys.

We have already seen an example of a suitable projection operator in the previous
section.

Example1 For 1 <k < K and ¢ € I; almost everywhere we introduce the projection
(P(SQOB)(Z‘) = (,5(13‘ for all s € Xs,

where gb§ is defined in (5). Due to Lemma 2, Assumption 2 is satisfied. O

Before stating the main theorem of this section, we summarize properties of the
projection operator 7° in the next lemma.

Lemma 4 Suppose that the projection operator P° satisfies Assumption 2-b). For
s € Xs it holds that

a) los — Posllgc < llgs — ¢sllgc for all ¢s € Ys.
b) |lgs — 738§05||g_c < At ||@sllge, where At = maxi<x<k Aty denotes the maximal
time step.

Proof a) For ¢s € Xs and ¢5 € Y5 Assumption 2-b) and 7?5@; € Ys imply that

s — 7’5%”2}( = (ps — P05, 05)3¢ — (05 — PPos. P0s) ¢
= (ps — P s, ®s) 9
= (s — PPws, 05 — bs)3¢ < llos — P osligcllps — sl
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which gives the claim.

b) Denote by IT%: Xs — Ys the piecewise constant interpolation operator defined
as (I"I‘S(p,g)(t) = @s(tr—1) for 1 <k < K such thatt € Iy. For e(t) = @s(t) —
(H‘S(p(;)(t) € V), we denote by e the restriction of e on the interval I;. Then ¢y is
affine linear w.r.t.  and belongs to H L(It; V). Thus, for ¢t € I; we estimate

t

e(t) = ex(t) = ex(ti_1) + / éx(s) ds
—;"O_’ fk—1

by the fundamental theorem of calculus. This implies

t
/ bs) ds| < / lee@)ly ds
fk—1 H Ik
172 172
= (/ 1 dS) (/ ||ék(s)||%1 dS) = VA lexll 2, my-
I I

Consequently,

lex(lly = ‘

lexl 3o, 1y = /1 lex (1 ds < (A)* NéxlFa . i
k
Since é; = ¢s on I this implies that

lekll L2, iy < Ate 1981l 201, by

We have Ha(pg € Ys and At = max;<x<x Atx. Hence, using part a) it follows
2 2 K 2
llos — PPosllge < llos — M oslge =D les — T oslli2c.m)
k=1
K
< D A2y < (DD llgs 113

k=1

This implies part b).

Next we define the RB residual as

Rip(@; ) = Fl¢: ) — Ay (), ¢ ) forall g € Ys. (10)

Now we are ready to state the RB error estimator.
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Theorem 5 Let Assumption 1 hold. Suppose that the projection operator P satisfies
Assumption 2. For i € Pqq denote the RB error as e (1) = ys(i) — v (1) satisfying
Plen(n) # 0. Then,

1P ey < Ap(w) + Ap (1), (11

with RB error estimator Ay, and projection error estimator Aps given by

1
Arp(p) = W IR (5 1lly:
0, — 0, yr
Ap(p) = CCZEZ; I maxt ya(ﬁ;)j}se bI(I:f));I{g LG lem (i) — PPen (1)l 3¢,
respectively.

Proof Let © € P,q be chosen arbitrarily. From e () € Xs we obtain by
Assumption 2-b), the monotonicity of max and Assumption 2-a) that

1P e (1Y = (Pew (). Pew(i)y = (e (). Pem )y,
a(p) (max{0, ys(n)} — max{0, yb ()}, erp())g¢ = 0,

. . 1
(), Pe () g = (1), e (1)) g = E”erb(T; wl3 = 0.
Thus we infer that

c(w) [PPews (Y = c(b) e (). PPew(1))y
< () (e (1), PP e ()y + a (i) (max{0, ys (1)} — max{0, yip (1)}, e (1)) ¢
< () (e (), Perp(10))y + (e (1), PPern (1)) g¢
+ a () ((max{0, ys (1)} — max{0, yio (1)}, Per (1)) ¢
+ (max{0, ys ()} — max{0, yr (10)}. e (1) — Pery (1)) g5¢).-

Utilizing (1) it follows that

) 1P eIy < () (max{0, ys (1)} — max{0, yio ()}, e (1) — PPew (1))
+ AQs(). Ple () 1) — Ay (1), PPerp (1) 10).

Moreover, we deduce from (3) that
A(ys(n), Pep(u): 1) = F(PPewm (1); ).

@ Springer



48  Page 14 0f 29 M. Bernreuther et al.

Consequently, by using (10)

() PP eIy = Rep(Pew(10); 1)
+ a(u) (max{0, ys (10)} — max{0. yo ()}, e (1) — Per (1) g¢
< IR (2 wlly 1P e () ly

+ a(w) | max{0, ys(u)} — max{0, y ()} g¢llem (1) — PPem (1)l

Thus we obtain

1
IPPennlly < oS IR i)l

a(u) || max{0, ys (1)} — max{0, yip (1)} llg¢
c(u) 1P e () lly

lew (1) — PPers () llg¢

which gives the claim. O
Finally we study the convergence of the projection error estimator Aps (w).

Proposition 6 Let Assumptions 1 and 2 hold. Denote At = maxi<k<g Aty. Then
Apa () — 0 for At — 0 and every . € Pqq. Especially for sufficiently small At
and every ju € Pyq the estimate

Ap(n) = CAt

with a constant C > 0 independent of u is satisfied.

Proof Without loss of generality, we can assume that e,, (1) # O for the parameters p
under consideration, or there is nothing to show. Recall thate;, (1) = ys() — v (1) €
Xs holds true. By Lemma 4-b), Proposition 1 and Corollary 3 we obtain

lew (1) — PPem(Wllgg < Ivs() — PP ys ()¢ + Iy (1) — PP yen () llg¢
< (IFs (W llg¢ + 13 (W l4¢) A < 211 f (W) llg¢ At

for every u € Paq. Thus Plew () — ep(i) in H for At — 0. This implies that
there exists a (sufficiently small) constant 7, € (0, T'] satisfying

llew (1) 1l 3¢

3
< — "> < — forAr e (0,1, 13)
1PPew(w)llg — 2 ©.7] (

Here we have used that without loss of generality 778e,b (n) # Oforall At € (O, ‘L'M],
possibly after shrinking 7, because Pew(n) — ep(n) in K for At — 0 and
erp() # 0 holds. From Poincaré’s inequality we infer that there exists a constant
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cp > 0 so that

L e forall € Y\ {0}. (14)
||<P||y lellgc

Utilizing (12)-(14) we obtain for At € (0, é(/,L)]

a(w) lem ()l

A (1) = —
PO ) 1P ey
_a(w ep lle n)llg

T ) [ Poep ()l

ey (1) — Pep (10 llg¢

CIfuwlgar) < 3cp 2 ||f(M)||g{Af < C(w At

( )

where the nonnegative constant C‘(u) = da(u)cp || f (W)llgc/c(u) is uniformly
bounded w.r.t. u due to the Lipschitz continuity of a, ¢, f and the compactness of
fPad. O

4 Adaptive RB-DEIM method

The current model order reduction approach is unsatisfactory for two reasons. First,
the sequence of root finding problems G (yrb, @) is on spatial RB level ¢, but an
evaluation of the nonsmoothness on spatlal FE level N is necessary. Furthermore
the dual norm of the residual for the RB error estimator A, () cannot be efficiently
computed in an offline-online separable fashion. This is typical for RB error estimation
in the context of nonlinear PDEs, cf. [11, 25]. We will use the discrete empirical
interpolation method (DEIM) to approximate the nonsmoothness and overcome those
difficulties. For details on the efficient evaluation of the dual norm of the residual in
combination with (D)EIM, we refer to [34, Section 4.2.5].

In the first half of this section the classical DEIM framework is presented together
with a new approach for error estimation. Afterwards an adaptive DEIM framework
that combines RB and DEIM offline phases is presented.

4.1 Classical DEIM
We keep the presentation of the classical DEIM approach short and refer to [20, 21]
for more details on the general procedure and to [31] for an application to an elliptic

max-type PDE. For the remainder of this section we will assume that the right-hand
sides FX are parameter separable independently of the time instance, i.e.,

FE(w) = BeBr(i) e (k),
with

B e RV*P, Be: P > R, »:{0,...,K} —> R.
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If this should not be the case, a further DEIM approximation would be necessary.
The procedure can be easily generalized to this situation, cf. [20]. Now DEIM intro-
duces a projection matrix P = [e; |...]e;, ] € RV*L and an approximation matrix

= [¢1]...|¢r] € RN*L. We assume L < N and that PT @ € RE*L is invertible.
Then the max term in G]r(b can be approximated as

®(PT @)~ max {0, PTWyk ()]

This gives the RB-DEIM approximation of the RB root finding problem presented

in Section 2.3. For k = 1, ..., K solve the sequence of root finding problems:
Gt Whpp i) =0 inR (15)
with
G]:b,L(y]:b,L; W) = EMspace(ylrcb,L yrb DT [C(“) Vspace(yrb Lt yrb 1)
+a(w) WM o PTP) ! (max {0, PT Wy )

+ max {0, PTWeyly 1 1) = W/ F )+ P .

with initial condition yrb ;= 0. Again this problem can be solved by applying a
semismooth Newton method, where the k-th iteration matrix is given by

Hk (k u) = space
rb,L yrb,L M Atk 14

—_—

+ 5 (V™ +aGw/ My o PTo) (P wyk )P W) € RO

with ©(v) = max{0, v} € RZ for v e RL. Problem (15) is now independent of the
spatial FE dimension N. Note that we cannot guarantee the uniqueness of yrb ;, and the
unique solvability of the Newton iteration by the same arguments as for the FE and RB
problem. In practice, a sufficiently accurate DEIM approximation of the nonlinearity
will also restore the monotonicity of the max term and thus the monotonicity argument
from Remark 2 can be applied again, cf. [11] for an analogous argumentation in the
context of EIM. We will only briefly comment on how P and ® are generated:

1) A discrete DEIM training set Pk . C Pad is chosen;
2) Snapshots are generated as max{0, y; k) forp e PE. andk=1,...,L
3) The DEIM algorithm generates P and ® from the snapshots.
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4.2 RB-DEIM error estimation

Often the additional error to the solution due to DEIM is not included in the error
estimator. The problem is that DEIM approximates the nonlinearity on a discrete
level. Therefore working with the DEIM approximation in the variational formulation
is problematic. It is also problematic to efficiently incorporate the DEIM error later,
since this would mean that also a Riesz representative must be calculated for the
additional error quantity, which, to the best of our knowledge, is not possible in a
parameter separable fashion. Thus we want to present an idea on how to already
(partially) discretize the residual and incorporate the DEIM error early.

For an element ¢ € Y5 U Xs in the FE solution or test space, we denote the nodal
values at time ¢ € I by ¢(¢) € RY. Now we introduce the RB-DEIM residual:

Rib,1.(¢; 1) = Flo; 1) — AL (Vb1 (1), ¢; 1) forall g € Ys (16)
with
AL b, (1), @5 1) = B(yro, 2. (1), #5 10) + N7 (Veb, 1. (1), @3 1),

NG, (W), ¢ 1) = a(u) /1 (@PT @) max{0, PT 5,1 ()}, @) gvece dt

~ space

and < , .)M;pace = <Mh

N represents the approximation obtained by mass lumping and DEIM.

-, )2, where (-, -)» denotes the Euclidean norm. Moreover,

Remark 3 The sequence of root finding problems G]r(b, ;. can equivalently be derived
by working with Y, as test space in (16) and applying a trapezoidal quadrature rule
analogously to Section 2.2. This further justifies the idea of already incorporating
DEIM in the variational formulation. O

The idea is now to proceed analogously to Theorem 5. Before we state the

main result of this section, let us introduce the notations F = L2(I ; l\/IZp ace) and
~ space ~ space

= L2(I; M, ), where L2(1; M;P*) and L2(I; M,
(measurable) functions ¢: I — R satisfying

1/2
lollg = ( [ Ho e dt) < o0,

, 1/2
el = </1 ||</)(t)||,\~,‘;pace dl) < 00,

respectively. Note that

) denote the spaces of all

Il = 161%, < 1915 + (9. @),
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with the mass lumping error defined as
€gc(@. ) = lo, ¥)gg — (@ @)jfl forall ¢, ¥ € Y5 U Xs. a7

Proposition 7 Ler Assumption 1 hold. Suppose that the projection operator P° sat-
isfies Assumption 2. For u € DPgq denote the RB-DEIM error as ep (L) =

Y5 (1) — Yrb.1 (11) satisfying PPewp 1 (1) # 0. Then,
les, L () lly < A1) + A () + AL (W) + Ag (),

with DEIM approximated RB error estimator Ap, 1, projection error estimator Aps,
DEIM error estimator Ay and mass lumping error estimator Aj-( given by

1
Arb,L(l’«) = m ||Rrb,L(’ 5 M)H%s

a(e) 1 max(0. ys()) — max(0. yyp, ()} lgg

A = d — PS ,
(1) ) ||P89rb,L(M)”y llery, L (10) ey, L (1Nl g¢
8060 = LI 0 (PT 0 max(0,PT 5,140} maxi0. 5, G0 g

Age(w) = at) [65{ (max {0y, LW} PSerb,L(M))

I Per, L (W)lly
+ 1P PT ) max(0, PT 5, 1 (1)) — max{0, Fpp, ()}l

e (Perp 1), P 1 ()]

Proof Let ;v € P,q be fixed. Analogously to the proof of Theorem 5 we obtain

c(w) [P e, (0 Iy
< R, (Perp, L (1): 1)

+a(o)| = (max{0, yio,.. (), Pert, . (1)) 3¢
+ (max{0, ys (1)} — max{0. yb,L (1)}, erb.L (1) — Per, (1)) 3¢
+ (@ (P @)™ max(0, P i1 (0], Pérn, 1 () ¢
< R, )y 1P e, L () l1y
+a(u) ] max{0. ys (1)} — max{0. yuo. L (1} lg¢llern, (1) — Plerw, . (1)llg¢
+a(w|(@PT )™ max{0, PT 5, L (1)}, Pém, L (10)) ¢

— (max{0, yr, 1 (1), PPerp.1 (1)) |-
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Now we use the mass lumping error defined in (17) to estimate

a() (@ (PT )~ max{0, PT 5, (1)}, P e, 1 (10)) ¢
— (max{0, yo,2. (1) Perp, (1) g¢

(@(PT @)~ max{0, P Jip, . (1)}, P e, L (10)) g

— (max{0, Fuo, . (W)}, PPérb, 1. (1) + € (max{0, yio, . (W)}, Per.L (1)

< a1 PT®) ™ max{0, P 5o, (1)) = max{0, 3,1 (0} 5P e, (05

<a(w)

+ ege(max(0, yio, . ()}, Perw, 1. () |
1P @) ™" max{0, P 151 (1)} — max(0, o, .(0)} ¢

=a(w|
[ep 1P e, L )y + e (PPem, L (10). Pl 1(w) ]

+ ege(max(0, y L (W), Pe 1 () |

where we have used
1P, (Wl < 1P e, L (Wllgq + eqe (PPew, L (), Plerw, (W)

and Poincarés inequality with constant cp > 0 in the last estimate. All in all we obtain

1P e, L (0)lly < ﬁ IRip.L () ly;
0, - 0, yr
a(p) [Imax{0, y5 (1)} — max{0, ym, L (1} g¢ et (1) — Pews. (0 ¢

c(u) 1P e, (W)lly
LU T ) max(0, P o1 (1)) — max (O, I, 2 (Yl
c(p)
N T @) " max(0, PTG}~ maxl0, S0 G}l

()P erp, 1 (1) lly
. Eg“_((psez,L(M), PerL () + 69:(( max {0, yb.r. (W)}, Perb.L (M))]

All in all the desired estimate follows. O

Remark 4 a) Note that analogously to A also A, can be made small indepen-
dently of the chosen RB space, by choosmg a su}gcwntly rich spatial FE space.
This follows as as a consequence of [35, Lemma 1] adopted to the present PDE.
Therefore we will use Ay, 1 + A as error estimator in our numerical experiments.
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b) The computation of Ay, requires an evaluation of the nonsmoothness on FE level.
This cannot be avoided, but is computationally still cheap compared to the other
computations involved in the basis generation process, which especially include
the computation of FE solutions for basis updates and the application of POD. ¢

4.3 Adaptive DEIM

In Proposition 7 a decomposition of the total error into a temporal mesh-dependent
part A7)5 , aspatial mesh-dependent part Aj{’ an RB dependent part Ay, 7 and a DEIM
dependent part Ay has been proposed. As already discussed, we will neglect the mesh-
dependent parts, since they can be chosen arbitrarily small by sufficiently rich spatial
and temporal FE spaces. Now typically a DEIM basis would be generated in an offline
phase to efficiently approximate the nonsmoothness in a lower dimensional subspace
as described in Section 4.1. This process is decoupled from the RB basis generation
described in Section 3.1. More recently ideas have been presented on how to combine
RB and DEIM basis generation into one adaptive process, see e.g. [36, 37]. Advantages
of such ideas are control over the DEIM error in the offline phase and thus a DEIM
basis of suitable size. Also the combination of RB and DEIM basis generation leads to
fewer computational costs. The adaptive DEIM algorithm in [37] is tailored towards
optimization and updates the DEIM basis without increasing its size. This results in
only locally good approximation quality, which in optimization is sufficient. In [36]
the authors essentially calculate a completely new DEIM basis whenever it needs to
be updated. On one hand, this is cheap, since no additional snapshot generation is
necessary and the size of the singular value decomposition necessary for DEIM is
usually still small compared to classical offline DEIM. On the other hand, this usually
means that all preassembled DEIM data must be thrown away whenever the DEIM
basis is updated. Therefore we suggest a successive DEIM approach for the space-
time setting, which might result in a (slightly) larger DEIM basis, but allows to reuse
previous information. We summarize this approach in Algorithm 2.

To avoid stagnation at the end of the algorithm one should e.g. choose 5{(?1 = 0.1
and stLl = 0.01e). This ensures that the algorithm aims at individual tolerances 8{(?1
and g.;; well below o). Also it should be ensured that the DEIM basis is always at
least as large as the RB basis for numerical stability. This is the reason why there is the
possibility to start the algorithm with an initial DEIM basis. For more details we refer
to [36]. The algorithm performs best, if the construction of a RB and a DEIM basis
are of equal difficulty, i.e. if both RB and DEIM error estimator contribute equally to
the overall error estimator. This is often not the case and usually the construction of a
DEIM basis is more difficult, as also our numerical experiments in Section 5 suggest,
see the right plot in Figs. 2 and 3. Heuristics to let the DEIM basis grow faster exist,
e.g. log;, could be replaced by log, in line 11. This can be very problem specific and
is beyond the scope of this work. In our implementation a maximum of one element
is added to the RB basis per iteration. In [36] a logarithmic term analogue to the one
for the DEIM basis is used. In our opinion this might lead to too many elements being
added during the first iterations and wrong elements removed later on. But of course
the algorithm could also be extended in this fashion.
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Algorithm 2 (Adaptive POD-greedy RB-DEIM method).

Require: Initial DEIM data Py, &g, lo, discrete training set of parameters Piain C P, error tolerances

b L rb L.
tol’ £tol ~ 0and ego] > Eol T Erol’

&

1: Set£ =0,V =0, Vo ={0},P =Py, & = Ppand | = lp;

2: Compute it € arg max{App 7 (1) + Ap (W) | 14 € Pirain}:

3: Sete) = Agp (1) and &3 = Ay (fi);

4: while g1 + &2 > g do

5: % RB part;

6: ifey > s{g’l then

7: Setef | =y (1) = Py,yk() fork=1,..., K;

8: Compute Y41 € POD;({ef, | }K_)):

9: Set Wyy1 = Wy U{Ygy1}h, Vg1 = Ve @ span(Peyp) and £ = £+ 1;

10:  endif

11: % DEIM part;

12:  Set L = [logjo(e2/eL)
13:  if L =0 then

14: L =1 (avoid stagnation);

15:  endif

16:  Set E = [max{0, y{s1 (i}, ..., max{0, ySK (n}l; % snapshot matrix
17 PwE=E— ®d'E; % subtract previous DEIM information

18: Set L = min{L, rank(~E)}; ~
19:  Compute POD basis @ of length L w.r.t. identity matrix for E;
20:  if ® =[] (no initial DEIM basis) then

21: Compute i € arg maxg—y, N\(dgl)kl;
22: Set ® = [¢],1 =[i],P =[e;]and j = 2;
23: else

24: Setj=1;

25:  endif .

26 forj=j,...,Ldo _

27: Solve (PT<I>)y = PTqu;

28: Setr:q%—(by;

29: Compute i € arg maxg—1 __ nlrkls

30: Set & = [, @j],l:[l,i] and P =[P, ¢;];
31:  end for

32: % Error update;

33:  Compute i € arg max{Ay, 7 (1) + Ap () | 1 € Pirain}:

3 Sete; = A g (@) and e, = Ap():

35: end while

36: return Reduced basis Wy, spatial RB space V;, DEIM data P, ®, I.

5 Numerical experiments

In this section we present two numerical examples to investigate the performance of
the different space-time RB approaches. Parameter choices fixed for both examples
are summarized in Table 1.

The adaptive DEIM algorithm uses an initial DEIM basis of size two generated
from one snapshot. Regarding the settings of the examples, let us mention that the
discretization of the parameter space is going to be a trade-off between a sufficient fine-
ness and the necessary computational time. Furthermore the fineness of the discretized
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Table 1 Fixed parameters for the numerical examples

PDE (Section 2.1) Discretization (Section 2.2) Tolerances (Algorithm 2)
Q K 1/h £tol e ek,
(0, 1)2 400 {50, 100, 200} 1073 104 1073

Recall that K and % denote the number of time grid points and the spatial step-size, respectively

parameter spaces is 1/3 for both examples. The functions a and ¢ are chosen such
that the nonsmoothness is stronger for parameters with larger norm. Note that if the
nonsmoothness is too strong, its approximation becomes problematic, e.g. increasing
a by a factor of 100 will lead to the algorithms struggling, especially with the DEIM
approximation.

Our code is implemented in Python 3 and uses FEniCS (see [38]) for the matrix
assembly. Sparse memory management and computations are implemented with SciPy
(see [39]). All computations below were run on an Ubuntu 20.04 notebook with 32
GB main memory and an Intel Core 17-8565U CPU.

5.1 Example 1

We choose T = 20 for the maximal time horizon and set P4 = [—10, 10], a(n) =
14+ 2|u| and c(u) = 5/(5 + | ]). Furthermore the right-hand sides are

f(t; w)(x1, x2) = 10sin (%)«/1 +t (% — x1> sin(rr x1) sin( x2) \u’/

. parameter
time space

For the classical RB and RB-DEIM approach we fix a training set of 60 equidistant
parameters and a test set of 100 equidistant parameters. For DEIM we additionally
choose the same training set as for the RB offline phase and choose the same parameter
L we obtain from the adaptive RB-DEIM. Note that this means that already information
from the adaptive approach is used in the classical RB-DEIM approach, but it allows
for a better comparison of the result, which are shown in Table 2.

First of all, we can observe mesh independence in the average efficiency, which is
the arithmetic mean of the quotient of error estimator and true error, and the size of the
RB basis for the approaches without DEIM. If DEIM is used, the results are slightly
mesh dependent, due to the mesh dependency of DEIM. Also the average error and
error estimator are in the same regions and far below the tolerance of 10~ for all
approaches and independently of the mesh. We can observe that the RB error estima-
tor leads to slight decreases in offline computational time, but only the introduction
of DEIM allows for efficient evaluations of the estimator. Unfortunately the offline
computational cost of DEIM outweighs this advantage. Finally we can observe that the
adaptive RB-DEIM approach leads to the largest reduction in offline computational
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Table2 Example 1

1/h  Av. Time Av. Av. Av. proj. Av.  Size Size
sp.-up  offline error est. error eff. RB DEIM

RB (true error)

50 595  7.76-10% 273-107% 2.88-107% 4.73-107% 104 15 -
100 39.54  4.54.10° 5.14-107% 5.17-107% 1.72-107% 100 16 -
200 93.72  2.03-10* 562-107% 5.64-107% 144.107% 100 15 -
RB (estimator)

50 548 9.39 - 102 272-107% 2.88-107% 4.74.107% 104 15 -
100 39.66 3.54-103 6.62-107% 6.65-107% 1.51-107® 100 15 -
200 91.17 1.32-10* 621-107% 623-107% 134.107% 100 15 -

RB-DEIM (estimator)

50 806  3.07-10245.67-102 1.86-107% 3.22.107% 1.56-107° 159 18 72
100 9429 3.51-10°+1.86-10° 1.78-107% 3.80-107% 3.28.1077 337 27 66
200 87923 1.82-10%+6.29-10° 428-107% 6.19-107% 3.54.1077 145 19 87
RB-DEIM (estimator, adaptive)

50 7.68 6.43 - 102 1.66-107% 2.93.10% 8.90-107 1.84 20 72
100 96.84 1.67-103 265-107% 5.10-107% 1.11-107® 243 19 66
200 88292 6.62-103 272-107% 5.10-107% 9.77-1077 233 19 87

Comparison of RB and RB-DEIM approaches for different spatial discretizations 1/h. For RB-DEIM
(estimator) offline time is given as DEIM + RB time

cost, whilst simultaneously giving equivalent benefits as classical RB-DEIM in average
speed-up in the online phase. Especially on finer grids the advantages of an RB-DEIM
approach are evident. Last but not least, we want no mention two noticable entries in
Table 2. First, the RB basis basis without estimator contains one more element than
that with estimator for 1/4 = 100. This is atypical, but of course possible due to the
outstanding efficiency and the fact that the greedy procedure is only locally choosing
the best update in every iteration. Second, the RB-DEIM basis without adaptivity is
rather large and contains 27 elements for 1/h4 = 100. This comes from the fact that
the procedure struggles to reach the desired overall tolerance in this case.

To further investigate the error estimator, it is shown in Fig. 1 together with the
error on the test set.

We can see that the RB error estimator clearly mimics the behavior of the true error.
In the RB-DEIM approach, the additional DEIM error estimator is more volatile. Fur-
thermore the additional DEIM error estimator is necessary to avoid underestimation,
though this is hard to observe in the plot.

Finally we want to investigate the projection error and the evolution of the different
error quantities during the adaptive RB-DEIM basis generation. The average projection
error, on the previously introduced test set, is shown in Fig. 2 on the left and the
evolution of the errors during training is shown on the right.
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Fig. 1 Example 1. Error and RB error estimator (left) and error and RB-DEIM error estimator (right) with
1/h =100

In the left plot we observe that the projection error Apa decreases with increasing
time grid points as proposed in Proposition 6. However, a linear convergence can only
be expected asymptotically. In particular, the regime of linear convergence seems to
not be reached yet. This can be expected due to the quotient in the projection error
estimator, which is only asymptotically one. Nonetheless the values of the projection
error estimator are very small and can be neglected as suggested. In the right plot we
can see that the RB error tends to be lower than the DEIM error, but both decrease
sufficiently fast.

All in all this example clearly suggests the usage of the RB error estimator over
the calculation of the true error and the usage of the adaptive DEIM approach over
the classical DEIM approach. We also investigated the projection error estimator and
have shown that its small values justify neglection.

5.2 Example 2

In the second numerical example we choose 7 = 10 for the maximal time horizon
and use a two-dimensional parameter space with Py = [—2, 217, a(n) = 1 +5 ||ill2

le—6 10
ex < X x A
3.0 x X B
10! X D, + AL
2.5
10° x
x X i
x
52.0 5 * X
3 & 1071 X%
fis] x
X
1.5 x *EE
1072 % < % % % x
10 x x % : X x
X
T 102 * e Xy XX % ox
x . X
0 200 400 600 800 1000 1200 1400 1600 5 ; 3 12 16
Temporal grid size K Iterations

Fig. 2 Example 1. Left: Projection error A for varying temporal grid size K. Right: Evolution of the
total error Ay, 7 + Ay, and its individual components during training of the adaptive RB-DEIM. Both with

1/h = 100
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and c(u) = 3/(1 + |1]). Furthermore, the right-hand sides f(¢; w) are chosen to be

4t xixopy, forxp < -,
f(t,x;u):lOsin(T> R e =3
x{x3p2, otherwise.

time

space and parameter

This time we only present results for RB with error estimator and the adaptive
RB-DEIM approach, since based on the theoretical results and Example 1, these are
the most promising strategies. For RB we fix a training set of 144 equidistant param-
eters and a test set of 225 equidistant parameters. The results for the different spatial
discretizations are shown in Table 3

Again the RB results show mesh independence in the average error, error estimator
and efficiency and the size of the RB basis. This time the average efficiency for RB-
DEIM is significantly larger (approx. 10 compared to approx. 1.01) which is one of the
reasons for the increased DEIM basis. Note that the RB basis is also significantly larger
(approx. 30) than for the RB approach (13), but both bases are mesh independent in size.
This is a typical behavior that occurs since for the given example DEIM approximation
is more difficult than RB approximation. Thus the RB basis is chosen in a way that
a tolerance of 10™% is reached, so that the DEIM tolerance only needs to be below
sl = 1073, Furthermore the size of the DEIM basis is not mesh independent, but
slightly increases for finer meshes.

Again we want to investigate the projection error and the evolution of the different
error quantities during the adaptive RB-DEIM basis generation. The average projection
error is shown in Fig. 3 on the left and the evolution of the errors during training is
shown on the right.

Table 3 Example 2

1/h Av. Time Av. Av. Av. proj. Av. Size Size
Sp.-up offline error est. error eff. RB DEIM

RB (estimator)

50 540 2.08-10°  3.09-107% 3.14-100% 566-1077 1.0l 13 -

100 4579  598-10° 3.16-107% 322.-107% 6.03-1077 1.0l 13 -

200 96.04  2.82-10* 3.15-100% 321-100%  6.02-1077 101 13 -

RB-DEIM (estimator, adaptive)

50 7.58 323103 7.25-107°  1.04-1073  1.96-1077 1000 29 177
100 127.06 7.97-10% 7.04-107> 842.-107% 193-1077 963 30 212
200 85893  2.02-10* 578-107>  8.11-107% 225-1077 1070 29 222

Comparison of RB and RB-DEIM approaches for different spatial discretizations 1/h. For RB-DEIM
(estimator) offline time is given as DEIM + RB time

@ Springer



48  Page 26 of 29 M. Bernreuther et al.

le-7 X x A
gl = 0 X DA,
x X A, +AL
7
3 4
= X
6 107t %
xxy XX
55 5 XX x
g ; 107y xx XxX
=] x Xx x
i Xy Xy ¥ x i
3 107 x RO x T
XX x X
2 ! xXx | Xx X x
x 107 T x x < X .
1 x xTx x
x x
0 200 400 600 800 ) 10_00 1200 1400 1600 5 a M 5 16 20 24 28 32 36
Temporal grid size K Iterations

Fig. 3 Example 2. Left: Projection error A s for varying temporal grid size K. Right: Evolution of the
total error Ay, ; + Ag and its individual components during training of the adaptive RB-DEIM. Both with
1/h = 100

In the left plot, we can observe that the average projection error is again neglectable,

due to its small values and we can observe the same convergence behavior as discussed
in detail for the previous example. In the right plot, we can observe that in contrast
to Example 1, the slow convergence of the DEIM error slows down the overall con-
vergence and leads to an RB error below strgl = 10~*. Therefore the DEIM error in
essence only needs to be below g = 1073,
The second example again suggests the usage of the RB error estimator over the calcu-
lation of the true error, due to the excellent average efficiency. Again it is unproblematic
to neglect the projection error estimator. Note that we have also excluded the RB-DEIM
approach without adaptivity, since no convergene can be observed with the size L of
the DEIM basis taken from the adaptive approach. This suggests advantages of the
adaptive approach, but we can also observe that the adaptive algorithm begins to strug-
gle when the DEIM approximation is significantly harder than the RB approximation,
which is especially linked to the choices of the functions a and c.

6 Conclusion

We have introduced a novel space-time a-posteriori error estimator for a nonsmooth
parabolic PDE. The numerical results show promising speed-up and good efficiency.
Nonetheless the model order reduction is limited by the evaluation of the nonsmooth
max-term. To solve this problem we have introduced a novel adaptive RB-DEIM
approach based on a modified version of the space-time a-posteriori error estimator,
which suggests that the total error estimator can be decomposed into a RB and a DEIM
part. Again numerical results show the capabilities, but also possible limitations of this
approach. As long as the DEIM approximations complexity is in the same regime as the
RB approximations complexity, the novel approach works well. Especially the speed-
up compared to RB approaches can be significantly increased, whilst maintaining the
same approximation quality. Compared to classical RB-DEIM, this is only possible
due to the adaptive nature of our algorithm.
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