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Abstract
We develop an elementary method to compute spaces of equivariant maps from a
homogeneous space G/H of a Lie group G to a module of this group. The Lie group
is not required to be compact. More generally, we study spaces of invariant sections in
homogeneous vector bundles, and take a special interest in the case where the fibres
are algebras. These latter cases have a natural global algebra structure. We classify
these automorphic algebras for the case where the homogeneous space has compact
stabilisers. This work has applications in the theoretical development of geometric
deep learning and also in the theory of automorphic Lie algebras.

Keywords Geometric deep learning · Equivariant convolutional kernels ·
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1 Introduction

Let G be a Lie group and X a homogeneous space of G, that is, a smoothmanifold with
transitive G-action: for any two points x0, x ∈ X , there exists g ∈ G with gx0 = x .
Let V be a representation of G and denote the space of G-equivariant maps X → V
by

MG(X , V ) = {K : X → V | K (gx) = gK (x) ∀g ∈ G, ∀x ∈ X}.
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We develop an elementary method to compute this space. More generally, for any
closed subgroup H of G and representation W of H , we compute the G-invariant
sections of the homogeneous vector bundle G ×H W over G/H , as we explain in
detail in Section 2. In Section 3, we replace V by an algebra a with compatible G-
module structure, and study the algebra MG(X , a) of G-equivariant maps X → a.

This investigation is motivated on one hand by recent developments of geometric
deep learning, and on the other hand by the expanding horizons of research on auto-
morphic Lie algebras. The connection between these two topics has not been studied
so far, but they are dealing with closely related problems.

This paper can be read without knowledge of deep learning and automorphic Lie
algebras, because we only tackle the differential geometric problem described above.
Nonetheless, we give a brief description of the two areas in this introduction and
explain why they motivate our objective. One can skip to Section 2 from here.

Artificial intelligence is currently developing at a rapid pace, and there is a great
need for mathematics in this field, as is explained in the recent survey article by
Kutyniok [1]. A particular challenge where researchers are looking to mathematics
for answers is the search for good architectures of deep neural networks. One approach
to this problem is the highly active field of geometric deep learning.

Two survey articles on geometric deep learning appeared inMay 2021, byBronstein
et al. [2] and Gerken et al. [3] and another by Weiler et al. [4] appeared only a month
later. We will not attempt to provide an overview of the literature but simply refer to
the combined literature reviews in these three works, which we would not be able to
improve. We do mention however the paper of Cohen et al. [5] and Cheng et al. [6],
which highlight the importance of convolution with equivariant kernels. These papers
inspired this research: we compute spaces of equivariant kernels.

We start our slightly longer summary of the geometric deep learning that motivated
this paper with Cohen et al.’s description of equivariant convolutional networks on
homogeneous spaces [7]. The features of such convolutional networks are sections of
homogeneous vector bundles G ×H V , which can be presented as maps f : G → V
such that f (gh) = h−1 f (g) for all h ∈ H (see Section 2 for more details). The
authors use the fact that cross-correlation on the group

(κ� f )(g) =
∫

G
κ(g−1h) f (h)dh (1)

is equivariant under the group G in the sense that

κ�(u · f ) = u · (κ� f ), ∀u ∈ G,

granted that dh is a left-invariant measure on G.1 The map κ : G → Hom(V , Vout) is
called the kernel, or the filter, and the group acts as u · f = f ◦ u−1. The main result
of [7] shows that κ� takes sections of G ×H Vin to sections of G ×H Vout if and only if
κ descends to a section of the homogeneous vector bundle G ×H×H Hom(Vin, Vout)

1 Cross-correlation is sometimes called convolution in the literature, although the term convolution is
classically reserved for the operation (κ ∗ f )(g) = ∫G κ(gh−1) f (h)dh, which is not G-equivariant.
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defined by the right action of H×H onG×Hom(Vin, Vout) given by (g, m)·(h1, h2) =
(h−1

2 g h1, ρout(h2)
−1 m ρin(h1)).

Geometric deep learning developed further in the papers by Cohen et al. [5] and
Cheng et al. [6] where one considers convolutional networks on manifolds M in
general, rather than homogeneous spaces specifically. This adds another level of
abstraction that we briefly describe. For a comprehensive treatment, we refer to [4].

Lacking a transitive group action on a manifold M , one has to find another way
to move a filter over the manifold. The solution proposed in [5, 6] is to use parallel
transport.

The i-th feature space is the space of sections �i of a vector bundle πi : Ei → M .
Features fi are elements of �i . The kernel is defined by a map

K : Tx∗ M → Hom(π−1
in (x∗), π−1

out (x∗))

on the tangent space of M at the point x∗, and the convolution is then defined by an
integral of the form

(K ∗ fin)(x) =
∫

B⊂Tx∗ M
K (v) fin|expx v(x) ddv (2)

where fin|expx v(x) is the parallel transport of fin(expx v) along the geodesic from
expx v to x , and d the dimension of M .

The tangent space Tx∗ M is isomorphic to R
d . A family of such isomorphisms

parametrised by M is called a gauge. A choice of gauge allows us to consider the
kernel as a map

K : Rd → Hom(Vin, Vout)

where we keep notation light by using the same letter K , and renaming the fibres.
Because the choice of gauge is arbitrary, convolution has to be invariant under any

gauge transformation in the structure group G ⊂ GL(d,R). The action of the structure
group on the feature spaces is denoted ρin : G → GL(Vin) and ρout : G → GL(Vout).
Weiler et al. [4] show that the convolution is invariant under gauge transformations if
an only if

K (gv) = det(g)−1 ρout(g)K (v)ρin(g)−1, g ∈ G, v ∈ R
d . (3)

Cheng et al. [6] show that if the maps �in → �out between feature spaces satisfy some
reasonable conditions, then they are of the form (2).

The kernel constraint (3) is solved for subgroups G of O(2) byWeiler and Cesa [8]
and for G = SO(3) by Weiler et al. [9]. For compact groups in general, the solution
can be expressed in terms of harmonic basis functions, as Lang and Weiler explain
[10]. This leaves the constraint still to be solved for noncompact groups and for those
compact groups for which we do not have harmonic basis functions readily available.

We propose to compute the space of G-equivariant kernels K onRd by considering
the G-orbits in R

d separately. Although it is not always a trivial task to combine the
results on these orbits in order to describe the kernels on R

d (see Appendix B for
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worked out examples), the advantage is that the computation of equivariant kernels
on the orbits, homogeneous spaces X , can be done with simple methods that work
equally well for noncompact groups as for compact ones.

Therefore, we will be looking for the G-equivariant maps X → V where V =
det∗ ⊗Vout ⊗ V ∗

in. The special case det⊗Vin = Vout comes with an associative algebra
structure (matrix multiplication) and is therefore most interesting to us (the case Vin =
Vout also allows the use of biases in neural networks, and this case is highlighted in
the discussion of [6] due to interesting analogies in physics).

To ensure the integrals (1) and (2) are finite, the kernels are often required to have
compact support. We want to study equivariant kernels for noncompact groups G,
which do not have compact support, so we do not impose this condition. The reader
interested in convolution is advised to keep this in mind.

Automorphic Lie algebras were introduced in relation to integrable systems in
mathematical physics by Lombardo and Mikhailov [11, 12]. They are Lie algebras of
meromorphic maps from a Riemann surface X into a finite-dimensional Lie algebra
g which are equivariant with respect to a group � acting discretely on X and on g by
automorphisms, and have some restriction on the poles. The best-known examples are
the twisted loop algebras

L(g, σ, m) =
{

f : C∗ → g Laurent polynomial | f
(

e
2π i
m z
)

= σ f (z)
}

where σ is an automorphism of order m of the Lie algebra g. Twisted loop algebras
are used in concrete realisations of affine Kac-Moody algebras. These are however
somewhat misleading examples because they are the only simple automorphic Lie
algebras due to the landmark papers by Kac and Mathieu [13, 14]: loop algebras are
highly exceptional.

The algebra of Onsager [15] gives a better impression of the nature of the topic. In
the original work of Onsager, it is not at all obvious that this Lie algebra O fits in the
framework of automorphic Lie algebras, but Roan showed that this is indeed the case
[16], with the construction of an isomorphism

O ∼=
{

f : C∗ → sl(2,C) Laurent polynomial | f
(

z−1
)

= σ f (z)
}

where sl(2,C) is the Lie algebra of traceless complex 2×2matrices and σ is an order 2
automorphism thereof. The Onsager algebra is not simple, the commutator subalgebra
[O,O] is a nontrivial ideal. The involved action of the 2 element group on C

∗ given
by z 
→ z−1 has nontrivial stabilisers at z = 1 and z = −1. The automorphic Lie
algebra evaluates to a lower dimensional algebra at these points than elsewhere. This
is the more typical situation. In fact, many automorphic Lie algebras with sl(2,C) as
target Lie algebra are isomorphic to the Onsager algebra, even if the involved group
actions are more complicated. Examples abound in [17–20].

Before the recentwork of Lombardo, Veselov and the author [19], the groups� used
in the construction of automorphic Lie algebras had been finite. The successful study
of algebras of SL(2,Z)-equivariant matrices shows that the infinite discrete groups
are in reach, and there is an optimism that we can start to understand automorphic Lie
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algebras in various geometries. A first step in this direction, studied in this paper, is to
simplify the situation to the case of continuous (Lie) groups (which contain the desired
discrete groups) and their homogeneous spaces. This enables us to obtain subalgebras
of the desired automorphic Lie algebras.

There are methods to compute invariants of discrete groups from other invariants,
such as transvection [21], Rankin-Cohen brackets and modular derivatives [22]. These
methods have been proven effective in the development of automorphic Lie algebras
by Lombardo, Sanders and the author [23] and Lombardo, Veselov and the author
[19], but they do have a weakness: you need an invariant to start with, before you
can compute more of them. The subalgebras of automorphic Lie algebras that can be
computed with the method of this paper provide a starting point for discrete methods
and further study of automorphic Lie algebras in new geometries.

Various examples have been selected to illustrate the theory and inspire further
development of geometric deep learning and automorphic Lie algebras.

2 Invariant sections of homogeneous vector bundles

Throughout this section, let X be a homogeneous space of a Lie group G, and V a
representation of G. Our main practical contribution is this:

Elementary method to compute all G-equivariant maps X → V .

1: Choose a base point x0 ∈ X .
2: Determine H := Gx0 = {g ∈ G | g x0 = x0}.
3: Find a map f : X → G such that f (x)x0 = x .
4: Compute a basis {v1, . . . , vn} for the invariants V H .

The maps x 
→ f (x)v1, . . . , x 
→ f (x)vn constitute a basis for MG(X , V ).
A few comments are in order. If f : X → G is such that f (x)x0 = x , then

x 
→ f (x)H is an isomorphism X → G/H . The existence of this map is equivalent
to the transitivity of the action of G on X . It is well known that such a map can be
chosen to be smooth near any point, but in general, there is no suchmap that is globally
smooth.2

It is not well known how to find a map like f and we are in fact not aware of a
generalmethod to tackle this problem. Luckily it is easy to do formany of the cases that
appear in geometric deep learning applications. It is for instance trivial for Euclidean
spaces En ∼= SE(n)/SO(n), and for spherical spaces Sn ∼= SO(n + 1)/SO(n), it can
be solved with the Gram-Schmidt process (cf. Appendix A). For hyperbolic spaces,
we did not find a general approach. The two-dimensional case is simple enough, and
for the three-dimensional case, we present an ad hoc solution in Example 3.8.

The computation of the invariants V H is simplified by moving to the Lie algebra
level. That is, one determines a basis B for the Lie algebra h of the Lie group H and

2 There is a smooth map f : X → G such that f (x)x0 = x if and only if the H -bundle G → X is
isomorphic to the trivial bundle X × H → X . Indeed, given such f , one can construct a map G → X × H
by g 
→ (gx0, f (gx0)

−1g). This is a bijection with inverse (x, h) 
→ f (x)h, and hence an isomorphism of
H -bundles. For the converse, suppose that φ : X × H → G is an isomorphism of H bundles, i.e. a smooth
bijection such that φ(x, h)x0 = x . Then, we can define a smooth map f : X → G is such that f (x)x0 = x
by f (x) = φ(x, 1).
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solves the system of linear equations hv = 0 for v ∈ V and h ∈ B. The complicating
factor of this step is that the dimension of V can be very large in deep learning applica-
tions. Finzi et al. [24] approached this problem using singular value decompositions,
and they made their software library publicly available.

Arriving at the solution, we can also see why we do not impose conditions on the
maps we consider. It is the action of G that determines the properties of equivariant
maps on homogeneous spaces. For example, if the action is smooth, so are the maps.

Before we prove that the method works, we give an example.

Example 2.1 (The hyperbolic plane H2). The hyperbolic plane H2 can be realised as
the space of complex numbers τ = x + iy with a positive imaginary part, y > 0. The
group SL(2,R) acts transitively on H2 by Möbius transformations

(
a b
c d

)
· τ = aτ + b

cτ + d
.

If we let SL(2,R) act on End(R2) by conjugation, then we can define the space of
SL(2,R)-equivariant maps H2 → End(R2). This example fits in the setting above
with X = H2, G = SL(2,R) and V = End(R2). To see this, we must check that
SL(2,R) can take one point in H2, say i , to an arbitrary point τ = x + iy ∈ H2. A
group element that does this is

f (τ ) =
(√

y x/
√

y
0 1/

√
y

)
.

To carry out our method, we pick a point i ∈ H2 to take on the role of x0, and
determine that the subgroup H of SL(2,R) fixing i is SO(2). The map f defined
above satisfies f (τ ) · i = τ , so the only part that is possibly challenging is already
taken care of. It remains to compute a basis for End(R2)SO(2). For instance, we can
take

v1 =
(
1 0
0 1

)
, v2 =

(
0 −1
1 0

)
.

We then arrive at a basis of the space of equivariant matrix-valued maps given by
τ 
→ f (τ )vi f (τ )−1, i = 1, 2. This first basis element is given by the identity matrix,
and the second reads

τ = x + iy 
→
⎛
⎝ x

y − x2+y2

y

1
y − x

y

⎞
⎠ .

As a bonus, we have in this case a real algebra structure, where the product is the
pointwise matrix multiplication. Identifying the above matrix with the imaginary unit
provides an isomorphism to the algebra of complex numbers.

Wewill now prove that this computational method gives the correct answers. Maps
X → V can be identified with sections of the trivial vector bundle X × V . We will
generalise this setup to homogeneous vector bundles, following Cohen et al. [7] and
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Aronsson [25], which are nontrivial bundles over X defined by a representation of H
rather than G, known for their role in the celebrated Borel-Weil theorem. The invariant
sections of homogeneous vector bundles are easily determined. These are thenmapped
onto the desired space of equivariant maps X → V .

The following is a standard construction of a homogeneous vector bundle (see for
instance [26, Section 7.4.1]). Let W be a H -module and define a right action of H on
G × W by (g, w)h = (gh, h−1w). The orbit space (G × W )/H is denoted

G ×H W .

An element of this space is of the form [g, w] = {(gh, h−1w) | h ∈ H}. Together with
the projection map

π : G ×H W → G/H , [g, w] 
→ gH

this is a W -bundle over G/H . It carries a G-action given by g1[g, w] = [g1g, w].
This action restricts to linear maps between fibres and descends to a transitive action
on G/H . The vector space �(G/H , G ×H W ) of sections s becomes a G-module by
the action

(g1s)(gH) = g1s(g−1
1 gH).

Notice that we have started with a representation W of H and ended up with a repre-
sentation of G.

These representations are commonly reformulated in the language of maps. Let
M(X) denote the maps X → F, where F is R or C, and M(X , V ) the maps X → V .
The sections of the homogeneous vector bundle G ×H W can be identified with the
maps

M(G, H , W ) = { f : G → W | f (gh) = h−1 f (g), ∀h ∈ H ,∀g ∈ G}

with G-action (g1 · f )(g) = f (g−1
1 g). This identification is realised by sending a map

f ∈ M(G, H , W ) to the section s f : gH 
→ [g, f (g)]. To write down the inverse of
this map, we must first relate the fibre at eH of the homogeneous vector bundle to W .
This is done with the H -intertwining bijection φ : π−1(eH) → W sending [h, w] to
hw. The inverse mapping from �(G/H , G ×H W ) to M(G, H , W ) is then given by
sending s to fs : g 
→ φ(g−1s(gH)). This identification intertwines the G-action.

The sections of the trivial vector bundle G/H × V can be identified with the maps

M(G, H ,F) ⊗ V ∼= { f : G → V | f (gh) = f (g), ∀h ∈ H ,∀g ∈ G}

with G-action (g1 · f )(g) = g1 f (g−1
1 g) (where the field F is considered the trivial

representation of H ). This group action corresponds to the standard action on the
tensor product M ⊗ V of two representations, given by g(m ⊗ v) = (gm) ⊗ (gv), on
the left-hand side of the isomorphism.

Remark 2.2 If G is compact, then M(G, H , W ) is known as the representation of G
induced by the representation W of H. For locally compact groups G such as the Lie
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groups we work with, induced representations have been defined as various subrep-
resentations of M(G, H , W ). Mackey required functions to be L2 (square integrable)
with respect to a well-chosen measure [27], and Moore worked with L1 functions [28].
For our simpler objective, it is neither desirable nor necessary to make any of these
restrictions.

The next result identifies the homogeneous vector bundles to the representation
spaces where we look for automorphic Lie algebras and convolutional kernels for
geometric deep learning.

Lemma 2.3 Let V be a representation of G and W a representation of H. Let F denote
the trivial representation of H. Then,


 : M(G, H , W ) → M(G, H ,F) ⊗ V , 
( f )(g) = g f (g)

is an isomorphism of G-representations if and only if W is the restriction of V to H.

Proof Let us denote the restriction of V to H by ResG
H (V ). Suppose that W =

ResG
H (V ). Then 
( f ) ∈ M(G, H ,F) ⊗ V whenever f ∈ M(G, H , W ) since


( f )(gh) = gh f (gh) = g f (g) = 
( f )(g), so that 
 is well defined. It has an
inverse given by 
−1( f̃ )(g) = g−1 f̃ (g), and the G-linearity follows from the com-
putation


(g1 · f )(g) = 
( f ◦ g−1
1 )(g)

= g f (g−1
1 g)

= g1g−1
1 g f (g−1

1 g)

= g1
( f )(g−1
1 g)

= (g1 · 
( f ))(g),

which completes the proof of one direction.
Suppose now that 
 is an isomorphism of G-modules. We show first that W = V

as vector spaces. Let G = �x∈X gx H , and for each w ∈ W , define the map gx h 
→
h−1w, which is an element of M(G, H , W ). Therefore, 
 sends it to an element
gx h 
→ gxw ∈ V . Taking gx = 1, we find that W ⊂ V . In the other direction,
we have an easier construction because for each v ∈ V , the constant map g 
→ v

is in M(G, H ,F) ⊗ V . The inverse of 
 sends this map to the map g 
→ g−1v in
M(G, H , W ). With g = 1, we see that V ⊂ W .

To see that the action of H on W is such that W = ResG
H (V ), we write out the

equivariance condition for g 
→ f (g) = g−1v in M(G, H , W ) while we keep track
of the actions we are using with subscripts:

h ·W (g−1 ·V v) = h ·W f (g) = f (gh−1) = (gh−1)−1 ·V v = h ·V (g−1 ·V v).

Putting g = 1, we get h ·W v = h ·V v and we conclude that W = ResG
H (V ). �
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Lemma 2.4 to follow is a special instance of geometric Frobenius reciprocity. It
can be found in the excellent but challenging book by C̆ap and Slovák, [29, Theorem
1.4.4],3 where they use it to understand G-invariant geometric structures on G/H .

Lemma 2.4 The space M(G, H , W )G corresponds to the space of constant maps
G → W H . This provides an isomorphism M(G, H , W )G ∼= W H .

Proof If f ∈ M(G, H , W )G , then f (g) = g · f (g) = f (1); hence, f is constant. If
f (g) = w, then hw = h f (g) = f (gh−1) = w; hence, w ∈ W H and f is a constant
map G → W H . Vice versa, any constant map G → W H is clearly contained in
M(G, H , W )G . �

We will use the isomorphisms M(G, H ,F) ∼= M(G/H) and M(G, H ,F) ⊗ V ∼=
M(G/H , V ) and the resulting isomorphism

(M(G, H ,F) ⊗ V )G ∼= MG(X , V ),

which is nothingmore than a change of perspective. To see this, notice that M(G, H ,F)

are the functions on G which are constant on H -cosets. These correspond to the
function on G/H and are denoted M(G/H). Likewise, elements of M(G, H ,F) ⊗
V can be considered maps G → V invariant on H -cosets, corresponding to maps
G/H → V and denoted M(G/H , V ). When we recall how G acts on M(G, H ,F)⊗
V , we see thatG-invariant elements of this space correspond toG-equivariant elements
of M(G/H , V ).

Using this reformulation, we can combine Lemmas 2.3 and 2.4 into the following
theorem.

Theorem 2.5 Let V be a representation of G. The space of equivariant maps
MG(G/H , V ) corresponds to the algebra of maps gH 
→ gv where v ∈ V H . This
provides an isomorphism MG(G/H , V ) ∼= V H .

Proof We map the constant maps G → V H that constitute M(G, H , W )G by
Lemma 2.4 onto MG(G/H , V ) using the isomorphism 
 of Lemma 2.3. �

Theorem2.5 reduces the infinite-dimensional problemof determining the invariants
in M(G/H , V ) to the finite-dimensional problem to determine V H . It finishes the
proof of our method to compute equivariant convolutional kernels.

We apply the method to a second common example.

Example 2.6 (The sphere S2). The sphere is compact, and the equivariant maps on
the sphere are therefore described in the existing literature of geometric deep learning
(cf. [9], [10, Appendix E.4] and [3, Section 6]). This makes it a good example to
illustrate our alternative approach to this problem.

For convenience, we will work with the homogeneous space

C ∼= PSU(2)/PSU(1)

3 In [29, Theorem 1.4.4], the notation of sections �(E) of a homogeneous bundle E → G/H is used in
place of M(G, H , W ), and the fibre Eo at the ‘base point’ o = H is used in place of W .

123

Page 9 of 27 27



V. Knibbeler

where PSU(2) = SU(2)/ ± Id acts on the Riemann sphere C = C ∪ {∞} by Möbius
transformations, rather than the more obvious S2 ∼= SO(3)/SO(2). Stereographic
projection S2 → C takes one description to the other.

The complex irreducible representations (irreps) of SU(2) can be realised as

Vn = C〈xn, xn−1y, xn−2y2, . . . , yn〉

where an element of g ∈ SU(2) acts on a polynomial p ∈ Vn by (g · p)(x, y) =
p(g−1(x, y)). If p ∈ V2m, then p(−x,−y) = p(x, y) so that V2m is a representation
of SU(2)/ ± Id ∼= SO(3). All irreps of SO(3) are obtained this way. Any complex
representation of a compact group such as SU(2) and SO(3) is a direct sum of irreps.
See for instance [26] or another textbook on this topic.

We carry out our elementary method to compute MPSU(2)(C, V2m). As base point,
we choose x0 := 0 ∈ C. The subgroup of PSU(2) stabilising 0 is

H =
{
±
(

a 0
0 a

)
| a ∈ C, |a| = 1

}
.

We need a map f : C → PSU(2) such that f (Z) sends 0 to Z. For instance, we can
define4

f (Z) =

⎧⎪⎪⎨
⎪⎪⎩

± 1√
1+|Z |2

(
1 Z

−Z 1

)
if Z �= ∞,

±
(
0 −1
1 0

)
if Z = ∞.

Our next step is to determine V H . In this case, we quickly find that V H
2m = Cxm ym.

Thus, we find the solution: MSU(2)(C, V2m) is the one-dimensional space spanned by
the map Z 
→ f (Z)xm ym where

f (Z)xm ym =
⎧⎨
⎩

(x−Z y)m (Z x+y)m

1+|Z |2 if Z �= ∞,

(−1)m xm ym if Z = ∞.

It was explained in [9, 10] that this problem can be solved using knowledge of
spherical harmonics (see, e.g. [30]). With our approach, we do not need to know bases
of spherical harmonics a priori. Such bases appear automatically in the computa-
tion, because the coefficients of an equivariant vector form a basis for the spherical

4 The map f is not continuous at Z = ∞, but this poses no problem. A continuous solution does not exist
because PSU(2) and C × PSU(1) are topologically inequivalent.
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harmonics. To find these coefficients, we rewrite

(x−Z y)m(Z x+y)m

1+|Z |2 = 1

1 + |Z |2
( m∑

i=0

(
m

i

)
xm−i (−Z y)i

)( m∑
j=0

(
m

j

)
(Z x)m− j y j

)

= 1

1 + |Z |2
m∑

i=0

m∑
j=0

(
m

i

)(
m

j

)
x2m−i− j yi+ j (−Z)i Z

m− j

=
2m∑
�=0

x2m−�y�

⎡
⎣ 1

1 + |Z |2
∑

i+ j=�

(
m

i

)(
m

j

)
(−1)i Z i Z

m− j

⎤
⎦

and find in square brackets a basis for the spherical harmonics of degree m.

We end this section with the important specialisation to tangent vector fields. The
tangent bundle of a homogeneous space can be studied in the framework of homoge-
neous vector bundles, using the isomorphism

T (G/H) ∼= G ×H g/h (4)

of vector bundles over G/H described by Sharpe in [31, Chapter 4, Proposition 5.1].
The symbols g and h denote the Lie algebras of the groups G and H , respectively.
Combining Lemma 2.4 and (4), we obtain

Corollary 2.7 The space of G-invariant tangent vector fields on X is isomorphic to
(g/h)H . If H is connected, then one can write (g/h)H in purely Lie algebraic terms
as Ng(h)/h where Ng(h) is the normaliser {A ∈ g | [A, B] ∈ h∀B ∈ h} of h in g.

When H is the trivial group, Corollary 2.7 reduces to the well-known fact that the
space of left-invariant vector fields on a Lie group is isomorphic to its Lie algebra.

3 Fixed point subalgebras of homogeneous algebra bundles

In this section, we investigatewhat happenswhen the fibres of the homogeneous vector
bundles have the structure of an algebra.

Throughout this section, we assume that G is a Lie group and H a closed subgroup,
and that a is anF-algebra and H -representation and these two structures are compatible
in the sense that h(aa1) = (ha)(ha1) for all h ∈ H and a, a1 ∈ a.

Lemma 3.1 M(G, H , a) has an algebra structure defined by ( f f1)(g) = f (g) f1(g),
where f , f1 ∈ M(G, H , a) and g ∈ G. The invariants M(G, H , a)G form a subal-
gebra.

We will take the algebra structure of M(G, H , a) into account and write
M(G, H , a) to emphasise this. A subalgebra of invariants will be called an automor-
phic algebra. The automorphic algebra M(G, H , a)G will be denoted A(G, H , a).

The linear isomorphisms obtained in the previous section are algebra isomorphisms
in the setting of the current section.We state the results but omit the elementary proofs.
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Theorem 3.2 In the context of invariant sections of homogeneous bundles and equiv-
ariant maps, we have respectively the following results.

(a) The automorphic algebraA(G, H , a) corresponds to the algebra of constant maps
G → aH .

(b) If G acts on a by algebra isomorphisms, then the automorphic algebra
MG(G/H , a) corresponds to the algebra of maps gH 
→ ga where a ∈ aH .

This provides isomorphisms A(G, H , a) ∼= MG(G/H , a) ∼= aH of algebras.

Remark 3.3 The isomorphism class of A(G, H , a) does not depend on G. The full
group only plays a role in the realisation of the algebra.

Example 3.4 (Automorphic Lie algebras on the Riemann sphere). Lombardo and
Sanders classified automorphic Lie algebras on the Riemann sphere with target alge-
bra sl(2,C) [17] (elements of these Lie algebras are invariants of a finite group). Their
analysis starts with the observation that the map

C
2 → sl(2,C),

(
x
y

)

→
(

xy −x2

y2 −xy

)

is SL(2,C)-equivariant with respect to left multiplication onC2 and the adjoint action
(conjugation) on sl(2,C).

We recover this observation with the approach of this paper, where we consider

C
2 \ {0} as SL(2,C)-space. The stabiliser of x0 :=

(
1
0

)
is

A =
{(

1 b
0 1

)
| b ∈ C

}
= e

C

(
0 1
0 0

)

.

A map f : C2 \ {0} ∼= SL(2,C) with f (x)x0 = x is given by

(
x
y

)

→
(

x −y/r2

y x/r2

)
, r2 = x2 + y2.

and provides an isomorphism C
2 \ {0} ∼= SL(2,C)/A.

The space of A-invariants in sl(2,C) is spanned by

(
0 1
0 0

)
. Hence, byTheorem 3.2,

the space of SL(2,C)-equivariant maps C2 \ {0} → sl(2,C) is spanned by

(
x
y

)

→ Ad

((
x −y/r2

y x/r2

))(
0 1
0 0

)
=
(−xy x2

−y2 xy

)
.

Theorem 3.2 is not necessary to compute this example. For example, if Vn is the
irreducible representation of SL(2,C) with the highest weight n, then we know from
representation theory that we have the isomorphisms of SL(2,C)-modules

End(Vn) ∼= Vn ⊗ V ∗
n

∼= Vn ⊗ Vn ∼= V2n ⊕ V2n−2 ⊕ . . . ⊕ V0.
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With Schur’s lemma, we can then see that there is precisely one equivariant map
C
2 \ {0} → gl(Vn) of homogeneous order 0, 2, 4, . . . , 2n, up to a multiplicative

constant, and these can be computed by brute force. It is however difficult to say
anything about the algebra structure of this space based only on the representation
theory of SL(2,C). Here, we find the value of Theorem 3.2 for this example, as it
shows that the solution space is conjugate to the space of A-invariants.

If we define the nilpotent operator E for a representation ρn : SL(2,C) → GL(Vn)

by

E = dρn

(
0 1
0 0

)

then any power of E is fixed by A (because ρn(A) = eCE and Ad(ecE )En =
ec ad(E)En = En). Moreover, the minimal polynomial of E is λn+1, thus

gl(Vn)A = C[E] ∼= C[T ]/(T n+1),

and we have an isomorphism

C[T ]/(T n+1) → MSL(2,C)(C
2 \ {0}, gl(Vn))

of algebras given by

T 
→
[(

x
y

)

→ Ad

(
ρn

(
x −y/r2

y x/r2

))
E

]
.

This cyclic algebra is of course a subalgebra of any automorphic Lie algebra defined
by restricting the above actions of SL(2,C) to one of its subgroups.

If we replace Vn by a reducible representation U, then the algebra gl(U )A is no
longer abelian.

In the context of convolutional networks, the target representations are spaces of
real matrices. In the context of automorphic Lie algebras, we are interested in target
spaces with algebraic structures. For this reason, we will emphasise the intersection of
these special cases, where W = a = End(U ). When we involve the algebra structure,
we will write gl(U ) instead of End(U ).

Due to the Skolem-Noether theorem, we know that any automorphism of gl(U )

is inner, i.e. of the form m 
→ rmr−1 for some r ∈ GL(U ). Hence, any homomor-
phism ρ : H → Aut(gl(U )) is of the form ρ(h)m = σ(h)mσ(h)−1 where σ is a
homomorphism H → PGL(U ), that is, a projective representation of H .

Recall that the endomorphism ring of an irrep is a division ring due to Schur’s
lemma, and that a real division ring is isomorphic to either the real numbers R, the
complex numbers C or the quaternions H (this statement is known as the Frobenius
theorem). Real irreps are said to be of a real type, complex type or quaternionic type
accordingly. Combining these facts with the complete reducibility of representations
of compact groups, we obtain the following corollary of Lemma 2.4.

123

Page 13 of 27 27



V. Knibbeler

Theorem 3.5 Let K be a compact subgroup of G and let U be a real projective rep-
resentation of K . Then, there is an isomorphism of algebras

A(G, K , gl(U )) ∼=
⊕

r

gl(r ,R) ⊕
⊕

c

gl(c,C) ⊕
⊕

h

gl(h,H)

where r ranges over the multiplicities of projective K -irreps in UC of real type, c ranges
over the multiplicities of conjugate pairs of projective K -irreps in UC of complex
type, and h ranges over the multiplicities of pairs of projective K -irreps in UC of
quaternionic (or symplectic) type.

We refer to Bourbaki [32, Ch. VIII, §7, Proposition 12] for a general method to
determine the type of an irrep of a simple Lie algebra.

Example 3.6 (Common compact stabilisers). All two- and three-dimensional model
geometries in the sense of Thurston [33, §3.8] have compact stabilisers K with con-
nected component isomorphic to the trivial group or SO(2) or SO(3). The hyperbolic,
spherical and Euclidean geometries Hn, Sn and En have stabilisers O(n) in their
isometry groups and stabilisers SO(n) in their orientation preserving isometry groups.
These cases are therefore expected to be most common in applications and deserve
special attention.

The group SO(2) has only one irrep of real type: the trivial representation. All
nontrivial irreducible projective representations of SO(2) are of complex type. Hence,

A(G,SO(2), gl(U )) ∼= gl(r ,R) ⊕
⊕

c

gl(c,C)

where r = dimUSO(2), cf. Example 2.1.
The irreducible projective representations of SO(3) correspond to the irreps of its

double cover SU(2). There is precisely one irrep of SU(2) of any finite dimension.
It is of real type when the dimension is odd (and the representation descends to a
representation of SO(3)) and of quaternionic type if the dimension is even, so that

A(G,SO(3), gl(U )) ∼=
⊕

r

gl(r ,R) ⊕
⊕

h

gl(h,H).

Example 3.7 (Quaternions). Let V1 be the natural representation of SU(2) of 2
complex-dimensions. It is of quaternionic type. Hence, V1 ⊕ V1 has a basis in
which SU(2) is represented by matrices with real entries. Let U be the corre-
sponding (4 real-dimensional) representation. Then, gl(U ) is a real representation
of SU(2)/± Id ∼= SO(3) (and of its extensions). We write down a basis for gl(U )SO(3)

to confirm it is isomorphic to the quaternions.
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With the embedding C
∗ 
→ GL(2,C) given by a + bi 
→

(
a b

−b a

)
, we construct

real matrices

ρU

((
a + bi −c + di
c + di a − bi

))
=

⎛
⎜⎜⎝

a b −c d
−b a −d −c
c d a −b

−d c b a

⎞
⎟⎟⎠

for the representation ρU : SU(2) → GL(U ). The matrices that commute with the
image of this representation are spanned by the identity matrix and

I =

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ , J =

⎛
⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , K =

⎛
⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

These matrices satisfy I 2 = J 2 = K 2 = I J K = −Id and provide the isomorphism
gl(U )SO(3) ∼= H.

Weend this sectionwith a detailed description of an interesting automorphic algebra
illustrating Theorem 3.2. This example has a second goal of illustrating the fact that
we can hardwire Lorentz group-equivariance into a convolutional network even if the
group is not compact. This can be compared to the approach of Bogatskiy et al. [34]
where a Lorentz group-equivariant network is used for the study of particle physics.
The equivariance is incorporated as another learning task in this network, rather than
being hardwired.

Example 3.8 (Hyperbolic space). In this example, we will compute the algebra of maps
from hyperbolic 3-space to the algebra of matrices gl(U ) from Example 3.7, which are
equivariant under the Lorentz group, and exhibit its isomorphism to the quaternion
algebra.

Hyperbolic 3-space H3 will be identified with the hyperboloid model;

H3 = {(t, x, y, z) ∈ R≥1 × R
3 | − t2 + x2 + y2 + z2 = −1},

a component of a level set of the quadratic form

Q(t, x, y, z) = −t2 + x2 + y2 + z2.

The group of linear transformations preserving Q is denoted O(1, 3) and corresponds
to the group of automorphisms of H3. The connected component G := SO+(1, 3)
containing the identity acts transitively onH3 (as we will find below), and the stabiliser
subgroups are isomorphic to SO(3).

There is an isomorphism of real Lie groups between SO+(1, 3) and PSL(2,C),
which can be understood using the Weyl representation that we now describe. The
space of 2 × 2 hermitian matrices of determinant 1 has two connected components
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distinguished by the sign of the trace. Its component of matrices with positive trace is
in one-to-one correspondence with Hyperbolic space by the map

φ : (t, x, y, z) 
→ A =
(

t + z x − iy
x + iy t − z

)
.

The group PSL(2,C) acts on this space by

[g]A = g Ag∗

where g∗ is the conjugate transpose of g (it is easy to see that g Ag∗ is hermitian and
has determinant 1. To argue that its trace is positive, we can use the fact that SL(2,C)

is connected, so that g Ag∗ is in the same connected component as Id A Id∗ = A).
When this action of PSL(2,C) is translated to H3 using φ, one finds an isomorphism
PSL(2,C) → SO+(1, 3). We will continue this example using the Weyl representation.

We choose a base point x0 := (1, 0, 0, 0) ∈ H3. Its stabiliser is H := PSU(2). To
find a map f : H3 → PSL(2,C) such that f (x)x0 = x, we need to solve

gg∗ = A (5)

for g ∈ SL(2,C). Since A is hermitian, we can write it as

A = P D P∗

with D = diag(λ+, λ−) where

λ± = t ±
√

t2 − 1

are the eigenvalues of A and P ∈ SU(2) (uniquely defined up to right multiplication
by diag(ζ, ζ ∗), ζ ∈ U(1)). We then find a solution to (5) given by

g = P
√

D P∗

where
√

D is defined as diag(
√

λ+,
√

λ−), and hence an explicit isomorphism

H3 → PSL(2,C)/PSU(2), (t, x, y, z) 
→ ±gPSU(2).

The matrix g thus constructed reads

g = 1√
2
√

t + 1

(
t + 1 + z x − iy

x + iy t + 1 − z

)
. (6)

Let us write down a basis for the automorphic algebra MSO(1,3)+(H3, gl(U ))

where U is the representation defined in Example 3.7 in which we computed a basis
{1, I , J , K } for gl(U )SO(3).
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The group element (6) acts on U with the matrix

ρU (g) = 1√
2
√

t + 1

⎛
⎜⎜⎝

t + 1 + z 0 x −y
0 t + 1 + z y x
x y t + 1 − z 0

−y x 0 t + 1 − z

⎞
⎟⎟⎠

and on gl(U ) by conjugation with this matrix. Applying g to I , J and K respectively
yields

I =

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠

J =

⎛
⎜⎜⎝

x y −t − z 0
y −x 0 t + z

t − z 0 −x y
0 −t + z y x

⎞
⎟⎟⎠

K =

⎛
⎜⎜⎝

−y x 0 −t − z
x y −t − z 0
0 t − z −y −x

t − z 0 −x y

⎞
⎟⎟⎠

Together with the identity matrix, these form a basis for MSO(1,3)+(H3, gl(U )) due to
Theorem3.2. The quaternion algebra can thus be presented by matrix-valued functions
on hyperbolic space equivariant under the Lorentz group.

4 Discussion

We have described how the problem of computing all vector-valued equivariant maps
on a homogeneous space can be reduced to finite-dimensional linear algebra with a
geometric version of Frobenius reciprocity.

If G is compact, then one can take the alternative approach of Fourier analysis to
find the invariants. Representations of compact groups are completely reducible, so
that L2(X) and V decompose into irreps, and each pair of isomorphic irreps in these
respective modules gives rise to one invariant in L2(X) ⊗ V ∼= L2(X , V ). Such an
approach is presented by Lang andWeiler [10] and Lombardo, Sanders and the author
in [23]. The hard part of this approach is the determination of the decomposition of
L2(X). For important cases, the solution is readily available, e.g. the decomposition
of L2(SO(2)) is known from classical Fourier analysis and L2(SO(3)/SO(2)) from
harmonic analysis on the two-dimensional sphere.

The approach presented in this paper has the advantage that G can be noncompact,
Fourier analysis is not needed, irreps of G need not be determined and neither do
isotypical components of L2(X). This simple approach is possible because the domains
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X considered here areG-orbits; hence, any equivariantmap is determined byone value,
contrary to the situation of automorphic Lie algebraswhere X/G is a Riemann surface.
This also shows the disadvantage of our approach. If X is not a homogeneous space,
there is more work to be done (see Appendix B).

For the study of algebra structures, our construction has a second advantage: it
preserves the algebra structure. For this reason, there is no need to compute structure
constants and find normal forms after the invariants are determined, which is one of
the major challenges in the research on automorphic Lie algebras to date.

Another natural approach to solve a Lie group-invariance constraint is to start
with differentiation and reduce it to a linear problem defined by the generators of
the Lie algebra. Finzi et al. [24] used this approach in the context of geometric deep
learning. The authors show how the resulting linear system can be effectively solved
using the singular value decomposition in case the representation is finite-dimensional,
and they made their software library publicly available. For the infinite-dimensional
representation M(G, H , W ) considered in this paper, and commonly in geometric
deep learning, the linearised problem is a system of partial differential equations.
Solving this system is much harder than the method presented in this paper, and is
therefore no longer practical. However, our results reduce the problem of finding G-
invariants in the infinite-dimensional function space to finding H -invariants in the
finite-dimensional representation W of H . For high-dimensional representations W ,
the approach and software of [24] can be used to compute W H and complete the
computation of M(G, H , W )G .

We hope that the simplicity of the presented method, and its applicability to non-
compact groups, will make it useful to the designers of convolutional neural networks
with symmetries. Furthermore, we hope that this material shall serve as a starting point
for the study of automorphic Lie algebras in unexplored geometries such as hyperbolic
3-space or Siegel upper-half space, and uncover new Lie structures.

Appendix A: The Gram-Schmidt process and Sn ∼= SO(n + 1)/SO(n)

In order to compute the space of G-equivariant maps from a homogeneous space
X ∼= G/H to a representation V of G, we propose to find an explicit isomorphism
X ∼= G/H first. That is, obtain a map f : X → G such that f (x)x0 = x for any
x ∈ X , where x0 is a ‘base point’ of our choice. As we mentioned in Section 2, we are
not aware of a general method to construct such a map (in the mathematical literature,
one is usually satisfied knowing that it exists, and there is no need for a construction),
but for specific families of homogeneous spaces, there are constructions available. In
this section, we solve the question for the spheres

Sn
r = {(x1, . . . , xn+1) ∈ R

n+1 | x21 + . . .+ x2n+1 = r2} ∼= SO(n +1)/SO(n), r > 0,

using the Gram-Schmidt process.
To warm up, we consider S1r = {(x, y) ∈ R

2 | x2 + y2 = r2}. When we pick the
base point x0 = (r , 0), we need to find f1 : S1r → SO(2) (the subscript of f refers to
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the dimension of the sphere) such that f1(x, y)(r , 0)T = (x, y)T . That is,

f1(x, y) =
(

x/r ∗
y/r ∗

)
.

It remains to replace the ∗ by entries which ensure that f1(x, y) ∈ SO(2). In this case,
we quickly find the solution

f1(x, y) =
(

x/r −y/r
y/r x/r

)
.

Going one dimension higher, we consider S2r = {(x, y, z) ∈ R
3 | x2+y2+z2 = r2}

and pick the base point x0 = (r , 0, 0). Then, we need to construct an orthogonalmatrix
f2(x, y, z)with first column (x/r , y/r , z/r)T . This time, it is harder to find a solution.
We will return to this problem shortly.

The Gram-Schmidt process takes a set of linearly independent vectors {v1, . . . , vk}
in a vector space with inner product 〈·, ·〉 and returns a set of orthogonal vectors
{u1, . . . , uk} with the same linear span. If we write the projection of v on a nonzero
vector u as

Pu(v) = 〈u, v〉
〈u, u〉u,

then the orthogonal set of vectors is given by

u1 = v1

u2 = v2 − Pu1(v2)

u3 = v3 − Pu1(v3) − Pu2(v3)

...

uk = vk −
k−1∑
i=1

Pui (vk).

To transform this orthogonal set {u1, . . . , uk} into an orthonormal set {e1, . . . , ek},
one computes ei = ui/

√〈ui , ui 〉.
Let us return to the problem of constructing an orthogonal matrix f2(x, y, z) with

the first column (x/r , y/r , z/r)T . A solution to this problem is not unique. Indeed,
any solution can be multiplied on the right by a matrix of the form

⎛
⎝1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞
⎠
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because this multiplication preserves the first column, orthogonality and the determi-
nant. Using this wiggle room, we can ensure that f2 is of the form

f2(x, y, z) =
⎛
⎝x/r ∗ 0

y/r ∗ ∗
z/r ∗ ∗

⎞
⎠ .

Next, we construct orthogonal columns with the Gram-Schmidt process. Due to
the zero on the top right of the matrix f2(x, y, x), we can save ourselves some
work by computing columns from right to left. At the right, we start with a vec-
tor (0, 1, 0)T . Instead of computing its component orthogonal to (x/r , y/r , z/r),
we use (0, y/r , z/r) in order to preserve the first zero. That is, we compute

(0, 1, 0) − P(0,y/r ,z/r)(0, 1, 0) =
(
0, z2

y2+z2
,

−yz
y2+z2

)
(which is only defined when

y2 + z2 > 0). This vector normalises to

(
0, z√

y2+z2
,

−y√
y2+z2

)
and is used for the

right column of f2.
For themiddle column, we start with a vector (1, 0, 0)T which is already orthogonal

to the right column, leaving us only to compute its component orthonormal to the left

column: (1, 0, 0)− P(x/r ,y/r ,z/r)(1, 0, 0) =
(

y2+z2

r2
,− xy

r2
,− xz

r2

)
, which normalises to(√

y2+z2

r ,
−xy

r
√

y2+z2
, −xz

r
√

y2+z2

)
, resulting in the matrix

f2(x, y, z) =

⎛
⎜⎜⎜⎜⎝

x
r

√
y2+z2

r 0
y
r

−xy

r
√

y2+z2
z√

y2+z2
z
r

−xz

r
√

y2+z2
−y√
y2+z2

⎞
⎟⎟⎟⎟⎠ , y2 + z2 > 0.

By construction, we have f2(x, y, z) ∈ O(3), and we can check that the determi-
nant of f is 1 hence f2(x, y, z) ∈ SO(3). It remains to define f2 for the case
y2 + z2 = 0, i.e. x = ±r . Here, we can simply put f2(r , 0, 0) = Id and
f2(−r , 0, 0) = diag(−1,−1, 1).
In much the same way, we can construct a map fn : Sn

r → SO(n + 1) solv-
ing f (x)x0 = x , where x = (x1, x2, . . . , xn+1). Generally, the equation leaves
the freedom to multiply a solution f (x) by an element of the stabiliser subgroup
Gx0 = H on the right. In our particular case we choose x0 = (r , 0, 0, . . . , 0)T and
the stabiliser subgroup consists of block-diagonal matrices of the form diag(1, A)

where A ∈ SO(n). It can be used to ensure that the first row of fn(x1, . . . , xn+1)

has the form (x1/r , ∗, 0, 0, . . . , 0). Likewise, an element diag(1, 1, A) ∈ H where
A ∈ SO(n − 1) can be used to ensure the second row of fn(x1, . . . , xn+1) has the
form (x2/r , ∗, ∗, 0, 0, . . . , 0), without changing the first row. By continuing this argu-
ment for the whole sequence of subgroups SO(n) ⊃ SO(n − 1) ⊃ . . . ⊃ SO(2) of the
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stabiliser, we can assume without loss of generality that fn takes the form

fn(x1, . . . , xn+1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1/r ∗ 0 0 0 . . . . . . 0
x2/r ∗ ∗ 0 0 . . . . . . 0
x3/r ∗ ∗ ∗ 0 . . . . . . 0

...
...

...
...

. . .
. . .

...
...

...
...

...
. . .

. . .
...

xn−1/r ∗ ∗ ∗ . . . . . . ∗ 0
xn/r ∗ ∗ ∗ . . . . . . ∗ ∗

xn+1/r ∗ ∗ ∗ . . . . . . ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We will compute orthonormal columns for this matrix from right to left. For the
right-most column, we start with the vector (0, . . . , 0, 1, 0) and obtain a norm
1 vector orthogonal to (0, . . . , 0, xn/r , xn+1/r) by computing (0, . . . , 0, 1, 0) −
P(0,...,0,xn/r ,xn/r)(0, . . . , 0, 1, 0) and subsequently normalising to get(
0, . . . , 0, xn+1√

x2n+x2n+1

,− xn√
x2n+x2n+1

)
.

Consider now the column of fn(x) at position k + 1, and assume all columns
to its right fit the form above, and constitute an orthogonal set of vectors together
with the vector (0, . . . , 0, xk/r , . . . , xn+1/r). We can apply the Gram-Schmidt pro-
cess for this set of vectors together with the vector (0, . . . , 0, 1, 0, . . . , 0)T where
the nonzero entry is at position k, and see that all but one of the projections
to be computed are zero, leaving us only to compute (0, . . . , 0, 1, 0, . . . , 0) −
P(0,...,0,xk/r ,...,xn+1/r)((0, . . . , 0, 1, 0, . . . , 0)) which equals

1∑n+1
i=k x2i

(0, . . . , 0,
n+1∑

i=k+1

x2i ,−xk xk+1,−xk xk+2, . . . ,−xk xn+1).

It is convenient to introduce the notation

rk =
√√√√n+1∑

i=k

x2i , k = 1, . . . , n,

because the norm of the last vector is rk+1/rk , and its normalisation reads

(
0, . . . , 0,

rk+1

rk
,− xk xk+1

rkrk+1
, . . . ,− xk xn+1

rkrk+1

)
.

Notice that rn =
√

x2n + x2n+1 > 0 implies ri > 0 for i = 1, . . . , n; hence, all these

vectors are defined if and only if x2n + x2n+1 > 0.
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Using these vectors, for k = 1, . . . , n, as columns for fn(x), we obtain for x2n +
x2n+1 > 0

fn(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
r1

r2
r1

0 0 0 . . . . . . 0
x2
r1

− x1x2
r1r2

r3
r2

0 0 . . . . . . 0
x3
r1

− x1x3
r1r2

− x2x3
r2r3

r4
r3

0 . . . . . . 0

...
...

...
...

. . .
. . .

...

...
...

...
...

. . .
. . .

...

xn−1
r1

− x1xn−1
r1r2

− x2xn−1
r2r3

− x3xn−1
r3r4

. . . . . . rn
rn−1

0
xn
r1

− x1xn
r1r2

− x2xn
r2r3

− x3xn
r3r4

. . . . . . − xn−1xn
rn−1rn

(−1)n+1 xn+1
rn

xn+1
r1

− x1xn+1
r1r2

− x2xn+1
r2r3

− x3xn+1
r3r4

. . . . . . − xn−1xn+1
rn−1rn

(−1)n xn
rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the right column of this matrix, we added a factor (−1)n+1 in order to have deter-
minant 1. To see this, notice that the function det ◦ fn is continuous and takes values
in the discrete set {1,−1} due to orthonormality; hence, it is constant on the con-
nected domain {x2n + x2n+1 > 0} = Sn \ Sn−2, and we can compute the value of
det ◦ fn by evaluating in one point. For instance, det fn(0, . . . , 0, r) = 1. Thus, we
have fn(x) ∈ SO(n + 1) when x2n + x2n+1 > 0.

We conclude using induction. If x2n +x2n+1 = 0 then (x1, . . . , xn−1) ∈ Sn−2 and we
define fn(x) as the block-diagonal matrix diag( fn−2(x), 1, 1). Given that we already
defined f1 and f2, this provides fn for all n ≥ 1.

It is worth noting that fn is constant on lines emanating from the origin. That is,
fn(λx) = fn(x) for any λ ≥ 0 and any x �= 0. All values of fn are therefore achieved
on Sn

1.

Appendix B: From homogeneous space toR
d

This appendix concerns the application of this paper to geometric deep learning and
is intended as a starting point for future research.

In geometric deep learning, one encounters a group G ∈ GL(Rd) and is interested
in G equivariant maps from R

d to a representation V of G, as we explained in the
introduction. In the body of this paper, we restrict the problem to G-orbits in R

d .
Whether this can be extended to the whole space depends on the particular group and
particularly the quotient space Rd/G.

We solve the problem for the spheres inRd with Proposition B.1, where the quotient
space is a manifold (appearing as [0,∞) in the proposition). A similar result for the
case d = 3 can be found in [9]. Afterwards, we discuss the situation for hyperbolic
spaces in Rd , where the quotient space is not Hausdorff.

This illustrates that future research should not aim for a general solution but rather
focus on the application. In geometric deep learning, the equivariant maps are used as
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convolution kernels in an integral. Hence, it is harmless to exclude a set of measure
zero, and one could restrict to a full measure subset of the quotient spaceRd/G which
is better behaved, allowing also solutions for hyperbolic spaces in Rd .

In the setting of this appendix, we can choose what class of functions we want
to study, unlike the situation for homogeneous spaces, where the function class is
determined by the group actions. This appendix is written for continuous maps, but
the proofs can be modified to work for other classes of maps.

Proposition B.1 Let V be a continuous representation of SO(d), H ⊂ SO(d) the
stabiliser of (1, 0, . . . , 0) ∈ R

d , and {v1, . . . , vm} a basis of V H , extending a basis
{v1, . . . , vm′ } of V SO(d). Then, the space of continuous SO(d)-equivariant maps from
R

d to V is given by

CSO(d)

(
R

d , V
)
=
{

x 
→
m∑

i=1

ci (r) fn(x)vi | ci ∈ C ([0,∞),R), ci (0)=0 if i > m′
}

where x = (x1, . . . , xd) ∈ R
d and r =

√
x21 + . . . + xd

2, and fn : Rd → SO(d) the
map defined in Appendix A with n = d − 1, extended to the origin by fn(0) = Id.

Proof The set on the right-hand side of the equation will be denoted RHS, that is

RHS =
{

x 
→
m∑

i=1

ci (r) fn(x)vi | ci ∈ C ([0,∞),R), ci (0) = 0 if i > m′
}

.

Wewill show first that RHS is contained in CSO(d)

(
R

d \ {0}, V
)
. To check that a map

x 
→∑m
i=1 ci (r) fn(x)vi in RHS is equivariant, we pick a generic element g ∈ SO(n)

and compute

m∑
i=1

ci (gr) fn(gx)vi =
m∑

i=1

ci (r) fn(gx)vi

=
m∑

i=1

ci (r)g fn(x)vi

= g
m∑

i=1

ci (r) fn(x)vi

where the second equality follows from Theorem 2.5.
The next thing to do is to check continuity (and wewill find that the discontinuity of

fn is irrelevant). First, pick a nonzero x ∈ R
d and restrict to the sphere Sn containing

x (and centred at the origin). There, fn(x)vi is continuous due to equivariance and
the properties of the group actions. Indeed, the limit limy→x fn(y)vi with y ∈ Sn

can be written as limg→1 fn(gx)vi with g ∈ SO(d) because the action of SO(d) on
Sn is continuous and transitive. Equivariance equates this to limg→1 (g fn(x)vi ), and
continuity of the action on V shows this limit is

(
limg→1 g

)
fn(x)vi = fn(x)vi .
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To see that ci (r) fn(x)vi depends continuously on x at any nonzero x , recall that
fn(λx) = fn(x) for any λ > 0, and ci is continuous.
For continuity at x = 0, we use the fact that vi ∈ V SO(d) when i ≤ m′ which

implies ci (r) fn(x)vi = ci (r)vi where continuity follows from continuity of ci . Let
now i > m′. Then, limx→0 ci (r) fn(x)vi = 0 since ci is continuous, ci (0) = 0 and all
entries of fn(x) ∈ SO(d) are absolutely bounded by 1. This limit corresponds to the
value ci (0) fn(0)vi . Thus, we see that the sum

∑m
i=1 ci (r) fn(x)vi is indeed continuous

on Rd , and RHS ⊂ CSO(d)

(
R

d , V
)
.

It remains to prove that the reverse inclusion CSO(d)

(
R

d , V
) ⊂ RHS holds. Let F

be an element of CSO(d)

(
R

d \ {0}, V
)
. Then, F(r , 0, . . . , 0) ∈ V H for any r ≥ 0,

since hF(r , 0, . . . , 0) = F(h(r , 0 . . . , 0)) = F(rh(1, 0 . . . , 0)) = F(r , 0 . . . , 0).
Hence, we can expand F(r , 0, . . . , 0) in a basis of V H , i.e. there exists functions ci

such that

F(r , 0, . . . , 0) =
m∑

i=1

ci (r)vi .

The functions ci must be continuous because F(r , 0, . . . , 0) depends continuously on
r . Moreover, ci (0) = 0 when i > m′ since F(0) ∈ V G due to equivariance. Define a

map by D(x) = F(x) −∑m
i=1 ci (

√
x21 + . . . + xd

2) fn(x)vi . This map is equivariant
by the first half of this proof, and it vanishes at (r , 0, . . . , 0) for any r ≥ 0, since

fn(r , 0 . . . , 0) = Id. Let x ∈ R
d \ {0} and r =

√
x21 + . . . + xd

2. Then, there exists
g ∈ SO(d) such that g(r , 0, . . . , 0) = x . Therefore, D(x) = D(g(r , 0 . . . , 0)) =
gD(r , 0, . . . , 0) = g0 = 0. That is, F(x) =∑m

i=1 ci (r) fn(x)vi and F ∈ RHS. �
Hyperbolic space of dimension n can be embedded in R

d , d = n + 1, as one
component of the level set at −1 of the quadratic form

Q(t, x1, . . . , xn) = −t2 + x21 + . . . + x2n .

This is an orbit of the connected group SO+(1, n) ⊂ GL(d,R) defined by the preser-
vation of Q.

We treated different realisations of two- and three-dimensional hyperbolic space in
Examples 2.1 and 3.8, respectively. Now, we start with the 1-dimensional example. In
that case, we have the quadratic form Q(t, x) = −t2 + x2 which is preserved by the
group

SO+(1, 1) =
{(

cosh θ sinh θ

sinh θ cosh θ

)
| θ ∈ R

}
.

Each nonzero point (t, 0) and (0, x) is contained in a unique orbit of this group.
This describes all but five of the orbits. The remaining orbits constitute the level set
{Q = 0} = {t2 = x2}: four diagonal rays and the origin. The latter five orbits cannot
be separated by open sets; hence, R2/SO+(1, 1) is not Hausdorff and therefore not
a manifold, and we cannot do calculus on this space. However, if we take away the
diagonals t2 = x2, the remaining quotient space (R2 \ {t2 = x2})/SO+(1, 1) is
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homeomorphic to the union of four open intervals, which is a manifold. Given that
the use of the equivariant maps in deep learning for this example is in an integral over
R
2, it is harmless to omit the set {t2 = x2} of measure zero in R2 from the domain of

these equivariant maps.
To describe continuous SO+(1, 1)-equivaiant maps R2 \ {Q �= 0} → V , for any

continuous representation V of SO+(1, 1), we can proceed as we did in Proposi-
tion B.1. The equivariant maps are given by the sums

m∑
i=1

ci (t, x) f (t, x)vi

where each ci is a continuous function, and each ci (t, x) depends only on the

SO+(1, 1)-orbit containing (t, x), and where f (t, x) is the matrix 1√−Q

(
t x
x t

)
when

Q < 0 and 1√
Q

(
x t
t x

)
when Q > 0.

In higher dimensions, the quotient space R
d/SO+(1, n) behaves similarly. The

level set {Q = 0} = {t2 = 〈x, x〉} consists of 3 orbits of SO+(1, n), with t = 0,
t > 0 and t < 0. These orbits cannot be separated by open sets, and R

d/SO+(1, n)

is not Hausdorff. At positive values of Q, the level set is one orbit of SO+(1, n), and
at negative values of Q, the level set consists of two orbits (hyperbolic spaces). The
quotient of the full measure subset (Rd \ {Q = 0}) by the action of SO+(1, n) is
homeomorphic to the union of three open intervals.
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