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Abstract
As in our previous work (SINUM 59(2):660–674, 2021) we consider space-time track-
ing optimal control problems for linear parabolic initial boundary value problems that
are given in the space-time cylinder Q 0 T , and that are controlled by
the right-hand side z from the Bochner space L2 0 T H 1 . So it is natural
to replace the usual L2 Q norm regularization by the energy regularization in the
L2 0 T H 1 norm.We derive new a priori estimates for the error u h u L2 Q
between the computed state u h and the desired state u in terms of the regularization
parameter and the space-time finite element mesh size h, and depending on the regu-
larity of the desired state u. These new estimates lead to the optimal choice h2. The
approximate state u h is computed by means of a space-time finite element method
using piecewise linear and continuous basis functions on completely unstructured sim-
plicial meshes for Q. The theoretical results are quantitatively illustrated by a series of
numerical examples in two and three space dimensions. We also provide performance
studies for different solvers.
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1 Introduction

As in [20], we consider the minimization of the space-time tracking cost functional

u z
1

2

T

0
u x t u x t 2 dx dt

1

2
z 2

L2 0 T H 1 (1.1)

with respect to the state u and the control z subject to the model parabolic initial
boundary value problem

t u x t xu x t z x t for x t Q 0 T

u x t 0 for x t 0 T

u x 0 0 for x 0 0

(1.2)

where u L2 Q is the given desired state (target), t denotes the partial time deriva-
tive, x is the spatial Laplace operator, n , n 1 2 3, is the spatial domain that
is assumed to be bounded and Lipschitz, T 0 is a given time horizon, and 0 is
a suitably chosen regularization parameter. The standard setting of such kind of opti-
mal control problems uses the regularization in L2 Q instead of L2 0 T H 1 ;
see, e.g., the books [5, 16, 35], and the references given therein. The energy regular-
ization, as the regularization in L2 0 T H 1 is also called, permits controls z
from the space L2 0 T H 1 that is larger than L2 Q , and admits more con-
centrated controls. Such kinds of controls that are concentrated around hypersurfaces
play an important role in electromagnetics in form of thinly wound coils and magnets.
Moreover, the space L2 0 T H 1 is the natural space for the source term in
the variational formulation of the initial boundary value problem (1.2), at least, in the
Hilbert space setting; see, e.g., [23] or [36] for solvability results. In the literature,
there are other regularization techniques aiming at specific properties of the control
such as sparsity and directional sparsity.We refer the reader to the recent survey article
[8] where a comprehensive overview of the literature on this topic is given.

There are not so many papers investigating parabolic optimal control problems
with energy regularization and using space-time methods for their numerical solu-
tion. We would like to mention the important contribution [15] to this topic, where
similar parabolic optimal control problems like (1.1)–(1.2) were solved by means of
a tensor-product wavelet approach. There are many contributions to different space-
time approaches for the numerical solution of distributed parabolic optimal control
problems with the standard L2 regularization, e.g., [14] for an early paper, and the
very recent papers [21] (unstructured space-time FEM on simplicial meshes), [19]
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(unstructured stabilized space-time FEM on simplicial meshes), [11, 13] (first-order
system least squares (FOSLS)), and [3] (tensor-product FEM). All of these papers con-
sider the case of a fixed, positive regularization (cost) parameter that is not related to
the mesh, and they provide discretization error estimates in different norms for fixed
.
Since the state equation (1.2) in its variational form has a unique solution u

X u Y L2 0 T H1
0 t u Y u 0 on 0 , for every given right-

hand side z Y L2 0 T H 1 , the corresponding optimal control problem
(1.1)–(1.2) also has a unique solution u z X Y that can be computed by
solving the first-order optimality system or the reduced first-order optimality system
where the control is eliminated by the gradient equation. The unique solvability of the
state equation can also be shown by the Banach–Nec̆as–Babus̆ka theorem as it was
done in [31]. This theorem can also be used to show well-posedness of the reduced
first-order optimality system as it was done in [20]. Now the optimal control problem
(1.1)–(1.2) can be approximately solved by discretizing the reduced optimality system.
Following [20], we discretize the reduced optimality system by means of a real space-
time finite element method working on fully unstructured, but shape regular simplicial
space-time meshes into which the space-time cylinder Q is decomposed. In [20], the
authors showed a discrete inf-sup condition for the bilinear form arising from the
variational formulation of the reduced optimality system. Once a discrete inf-sup
condition is proven, one can easily derive the corresponding estimates for the finite
element discretization error u u h and p p h in the corresponding norms, where
u h and p h are the finite element solutions to the reduced first-order optimality system
approximating the state u and the co-state (adjoint) p , respectively.

In this paper, we are investigating the error between the computed finite element
solution u h and the desired state u, where we use continuous, piecewise linear finite
element basis functions. This error is obviously of primary interest since one wants to
know how well u h approximates u in advance. More precisely, we derive estimates
for the L2 Q norm of this error in terms of and h, and depending on the smoothness
of the target u that is assumed to belong to Hs Q for some s 0 2 . In particular, we
admit discontinuous targets that are important in many practical applications. These
estimates lead to the optimal choice h2 in all cases. For elliptic optimal control
problemswith energy regularization, i.e., in H 1 , error estimates for u u L2

and u u h L2 were recently derived in [26] and [22], respectively. It is interesting
that, in the elliptic case, u solves the singularly perturbed reaction-diffusion equation

u u u in with homogeneous Dirichlet conditions on the boundary ,
also known as differential filter in fluid mechanics [17], whereas, in the parabolic case,
u solves a similar singularly perturbed problem, but with a more complicated space-
time operator of the form B A 1B replacing , where B X Y is nothing but
the state (parabolic) operator, and A Y Y represents the spatial Laplacian x ;
see Sections 2 and 3 for a more detailed discussion.

The remainder of this paper is organized as follows: Section 2 deals with the formu-
lation of an abstract optimal control problem, and the corresponding error estimates
between the desired state and the discrete state based on the exact state Schur comple-
ment equation. In Section 3, we consider a model parabolic distributed optimal control
problem with energy regularization, and derive estimates for the L2 Q error between
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the desired state u and the finally computed state u h from the perturbed state Schur
complement equation for the coupled optimality system. Several numerical tests in two
and three space dimensions are presented in Section 4. Here we discuss not only the
quantitative convergence behavior of the L2 Q error between the desired state u and
its computed finite element approximation u h for several benchmark problems with
different features, but we also make convergence studies of the solvers that we have
used in our numerical experiments. Finally, some conclusions are drawn in Section 5,
and we also discuss some future research topics.

2 Abstract optimal control problems

Let X H X and Y H Y be Gelfand triples of Hilbert spaces, where
X Y are the duals of X Y with respect to H , with z H z Y Y being the
dual pairing for z Y , Y . Let A Y Y and B X Y be bounded linear
operators, i.e.,

A Y cA2 Y Y Bu Y cB2 u X u X (2.1)

We assume that A is self-adjoint and elliptic in Y , and that B satisfies an inf-sup
condition, i.e., there exist positive constants cA1 and cB1 such that

A H cA1
2
Y Y sup

0 Y

Bu H

Y
cB1 u X u X (2.2)

In addition, we assume that the dual to B operator B Y X is injective. Then,
due to Lax–Milgram’s and Banach–Nečas–Babuška’s theorems (see, e.g., [10]), A
Y Y and B X Y are isomorphisms. Therefore,

z Y A 1z z H for z Y (2.3)

defines a norm in Y that is equivalent to the standard supremum norm.
Wenowconsider the abstractminimizationproblem tofind theminimizer u z

X Y of the functional

u z
1

2
u u 2

H
1

2
z 2

Y subject to Bu z (2.4)

when u H is given, and is some regularization parameter. For the time
being, our particular interest is focused on the behavior of u u H as 0.
The minimizer u z of (2.4) is determined as the unique solution of the optimality
system, see, e.g., [20],

Bu z B p u u p A 1z 0 (2.5)
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Eliminating the control z Y and the adjoint variable p Y results in the
operator equation to find u X such that

B A 1Bu u u in X (2.6)

Let us introduce the operator S B A 1B X X , for which we have the
following result:

Lemma 1 There hold the inequalities

Su u H cS1 u 2
X and Su X cS2 u X for all u X

with constants

cS1 cA1
cB1
cA2

2

and cS2
cB2

2

cA1

Proof For arbitrary, but fixed u X , we define p A 1Bu to obtain

Su u H A 1Bu Bu H Ap p H cA1 p 2
Y

From the inf-sup condition (2.2) we further conclude

cB1 u X sup
0 Y

Bu H

Y
sup

0 Y

Ap H

Y
Ap Y cA2 p Y

This gives

Su u H cA1 p 2
Y cA1

cB1
cA2

2

u 2
X cS1 u 2

X

To prove the second estimate, we consider

cA1 p 2
Y Ap p H Bu p H Bu Y p Y cB2 u X p Y

i.e.,

p Y
cB2
cA1

u X

With this we finally obtain

Su X sup
0 X

Su H

X
sup

0 X

A 1Bu B H

X

sup
0 X

p B H

X
sup

0 X

p Y B Y

X

cB2 p Y
cB2

2

cA1
u X cS2 u X
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As a consequence of Lemma 1 we also have

Su u H Su X u X cS2 u 2
X

i.e.,
u 2

S Su u H A 1Bu Bu H

defines an equivalent norm in X satisfying the norm equivalence inequalities

cS1 u 2
X u 2

S cS2 u 2
X for all u X (2.7)

Now we consider the abstract operator equation to find u X such that

Su u u in X (2.8)

and its equivalent variational formulation

Su H u H u H for all X (2.9)

Since S induces an equivalent norm in X , unique solvability of (2.9) follows.

Lemma 2 For the unique solution u X of the variational formulation (2.9), there
hold the estimates

u H u H and u 2
S u 2

H (2.10)

Proof For the particular choice u within the variational formulation (2.9), we
obtain

u 2
S u 2

H Su u H u u H u u H u H u H

from which we conclude
u H u H

as well as
u 2

S u H u H u 2
H

Analogously to [26, Theorem 3.2] we can state the following estimates, which depend
on the regularity of the given target u H .

Lemma 3 Let u X be the unique solution of the variational formulation (2.9). For
u H there holds

u u H u H (2.11)

while for u X the following estimates hold true:

u u H
1 2 u S (2.12)
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u u S u S (2.13)

If in addition Su H is satisfied for u X,

u u H Su H (2.14)

as well as
u u S

1 2 Su H (2.15)

follow.

Proof From the variational formulation (2.9) and for the particular test function
u , we obtain

u 2
S Su u H u u u H u u u H u u u u H

which gives

u 2
S u u 2

H u u u H u u H u H

i.e., (2.11) follows.
When assuming u X , we can choose u u X as test function in (2.9) to

conclude

u u 2
H u u u u H

Su u u H (2.16)

Su u u H S u u u u H

i.e.,
u u 2

S u u 2
H Su u u H u S u u S

In a first step this gives (2.13),

u u S u S

With this we further obtain

u u 2
H u S u u S u 2

S

i.e., (2.12) follows.
If, for u X , we have in addition Su H , from the estimate (2.16), we also

conclude

u u 2
S u u 2

H Su u u H Su H u u H

from which (2.14) follows. Finally, the estimates

u u 2
S Su H u u H

2 Su 2
H

imply (2.15).
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Based on the estimates as given in Lemma 3 and in the case of the particular application
wehave inmind,wecanderivemoregeneral estimateswhich are basedon interpolation
arguments in a scale of Sobolev spaces. This will be discussed later in more detail.

For some conforming approximation space Xh X , we now consider the Galerkin
variational formulation of (2.9), i.e., find u h Xh such that

Su h h H u h h H u h H h Xh (2.17)

Using again standard arguments, we conclude unique solvability of (2.17), and the
following Cea type a priori error estimate,

u u h H inf
h Xh

u h
2
S u h

2
H (2.18)

As a particular application of (2.18) we obtain, when choosing h 0, and using
(2.10),

u u h
2
H u 2

S u 2
H 2 u 2

H

Now, using (2.11), we conclude the abstract error estimate

u h u H u u H u u h H 1 2 u H (2.19)

when assuming u H only.

3 Parabolic distributed optimal control problem

The parabolic optimal control problem (1.1)–(1.2) as given in the introduction is
obviously a special case of the abstract optimal control problem (2.4). Indeed, in view
of the abstract setting, we have H L2 Q , Y L2 0 T H1

0 , and

X u W 0 T u 0 on 0

with W 0 T u Y tu Y L2 0 T H 1 . The related norms in Y ,
X , and Y are given by

Y x L2 Q u X u 2
Y tu 2

Y and t u Y x u L2 Q

respectively, where u Y is the unique solution of the variational problem

x u x L2 Q tu Q Y

and where t u Q is the dual pairing for t u Y and Y . For later use, we will
prove the following embedding:
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Lemma 4 For u X H1 Q there holds

u X max cF 1 u H1 Q (3.1)

with the constant cF 0 from the spatial Friedrichs inequality in H1
0 ,

x 2 dx cF x x 2 dx H1
0 (3.2)

Proof Recall that we can write

u 2
X tu

2
Y xu

2
L2 Q

and since t u L2 Q for u H1 Q , we can bound t u Y as follows:

t u Y sup
0 Y

tu Q

Y
sup

0 Y

tu L2 Q L2 Q

x L2 Q
cF tu L2 Q

Here we have used the Friedrich’s inequality

2
L2 Q

T

0
t 2

L2 dt cF
T

0
x t 2

L2 dt cF x
2
L2 Q

that holds for all Y L2 0 T H1
0 due to (3.2). Hence, the estimates

u 2
X cF tu

2
L2 Q xu

2
L2 Q max cF 1 u 2

H1 Q

follow.

The variational formulation of the state equation (1.2) can now be written in the form:
Find u X such that

T

0
t u x t x t xu x t x x t dx dt

T

0
z x t x t dx dt

for all Y , where the first term in the bilinear form and the right-hand side must be
understood as duality pairing between Y and Y . This variational formulation can be
rewritten as operator equation Bu z in Y L2 0 T H 1 . The operator
B X Y is therefore defined by the variational identity

Bu Q

T

0
t u x t x t xu x t x x t dx dt (3.3)
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for all u X and Y , while A Y Y is given as

A Q

T

0
x x t x x t dx dt Y (3.4)

We obviously have cA1 cA2 1. Following [31, 32], the operator B X Y is
bounded,

Bu Q 2 u X Y u X Y

and satisfies the inf-sup condition

1

2
u X sup

0 Y

Bu Q

Y
u X

i.e., cB1 1 and cB2 2. Hence we obtain the statements of Lemma 1 with cS1 1
and cS2 2. With these definitions, the reduced first-order optimality system can be
written in the weak form: Find u p X Y such that

1
T

0
x p xq dx dt

T

0
t u q xu xq dx dt 0

T

0
p t x p x dx dt

T

0
u dx dt

T

0
u dx dt

for all q Y and X , which can now be rewritten in the equivalent operator form

1A B
B I

p
u

0
u

in Y X (3.5)

We note that the homogeneous initial condition for the state u is incorporated in the
state space X as essential condition in the same way as the homogeneous Dirichlet
boundary conditions for the state and the adjoint, whereas the homogeneous end
condition imposed on the adjoint p at t T is built into the weak form of the adjoint
equation as natural condition after integration by parts in time. Once (3.5) is solved,
we can compute the control z by the gradient equation z 1Ap ; cf. also (2.5)
and (2.6).

For the Galerkin formulation (2.17), we introduce the conforming finite element
space Xh S1h Q X X spanned by piecewise linear and continuous basis
functions which are defined with respect to some admissible decomposition of the
space-time domain Q into shape regular simplicial finite elements of mesh width h;
see, e.g., [7]. We note that the finite element functions from Xh vanish on 0.
Then the finite element approximation of (2.9) reads to find u h Xh such that

B A 1Bu h h Q u h h L2 Q u h L2 Q (3.6)

is satisfied for all h Xh .

123

24 Page 10 of 30



Robust space-time finite element...

As in [24, Definition 2.1, page 10] we make use of the intermediate spaces X Y s

for s 0 1 when X is dense in Y with continuous injection; see also [34].

Theorem 1 Assume u X L2 Q s Hs Q for s 0 1 or u X Hs Q for
s 1 2 . For the unique solution u h Xh of (3.6), the finite element error estimate

u h u L2 Q c hs u Hs Q (3.7)

holds provided that h2.

Proof For u L2 Q , we can write the error estimate (2.19) as

u h u L2 Q 1 2 u L2 Q

Due to X H1 Q , we now assume u X H1 Q for which we can write the
error estimate (2.18) as

u u h
2
L2 Q inf

h Xh
u h

2
S u h

2
L2 Q

2 u u 2
S u u 2

L2 Q inf
h Xh

u h
2
S u h

2
L2 Q

4 u 2
S 2 inf

h Xh
u h

2
S u h

2
L2 Q

8 u 2
X 2 inf

h Xh
2 u h

2
X u h

2
L2 Q

8 max cF 1 u 2
H1 Q

2 inf
h Xh

2 max cF 1 u h
2
H1 Q u h

2
L2 Q

when using (2.13) and (2.12), the upper norm equivalence inequality in (2.7) with
cS2 2, and u H1 Q as upper bound of u X , see (3.1). Now inserting a suitable
H1-stable quasi-interpolation h Phu Xh of the desired state u H1 Q , e.g.,
Scott–Zhang’s interpolation [7], we immediately obtain the estimate

u u h
2
L2 Q c h2 u 2

H1 Q

Combining this estimate with (2.12) and choosing h2 finally gives

u h u L2 Q c h u H1 Q
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Next we consider u X H2 Q which guarantees Su L2 Q . Similar as above,
but now using (2.14) and (2.15), we then obtain the estimates

u h u 2
L2 Q 2 u h u 2

L2 Q 2 u u 2
L2 Q

10 2 Su 2
L2 Q 4 inf

h Xh
u h

2
S u h

2
L2 Q

c 2 h2 h4 u H2 Q

Here we have used the estimate

Su L2 Q c u H2 Q

that can be shown by Fourier analysis; cf. [32]. Choosing h2 yields

u h u L2 Q c h2 u H2 Q

The general estimate for s 0 1 and s 1 2 now follows from a space interpo-
lation argument; see, e.g., [34].

Corollary 1 Let us assume that u X Hs Q for some s 1 2 . Then there holds
the error estimate

u h u X c hs 1 u Hs Q (3.8)

Proof Let Phu Xh be again Scott–Zhang’s interpolation of u H1 Q . Using an
inverse inequality and standard arguments we obtain

u h u X u h u H1 Q

u h Phu H1 Q Phu u H1 Q

c h 1 u h Phu L2 Q c hs 1 u Hs Q

c h 1 u h u L2 Q u Phu L2 Q c hs 1 u Hs Q

c hs 1 u Hs Q

Since (3.6) requires, for any given X , the evaluation of S B A 1B , we
have to define a suitable computable approximation S . This can be done as follows.
For given X , we introduce p A 1B Y as the unique solution of the
variational formulation

Ap q Q B q Q q Y

Let p h Yh S1h Q Y Y be the continuous, piecewise linear space-time finite
element approximation to p Y , satisfying

Ap h qh Q B qh Q qh Yh (3.9)
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We note that the finite element functions from Yh are vanishing on , but neither at
the initial or final time. With this we define the approximate operator S B p h

of S B p . The boundedness of B X Y implies

S X B p h X cB2 p h X

while the ellipticity of A Y Y gives

cA1 p h
2
Y Ap h p h Q B p h Q cB2 X p h Y

i.e.,

p h Y
cB2
cA1

X

Hence, we conclude the boundedness of the approximate operator S X X ,

S X cS2 X X cS2
cB2

2

cA1
2 (3.10)

Moreover,

S Q B p h Q B p h Q Ap h p h Q 0

implies that S is non-negative. Instead of (3.6), we now consider the perturbed varia-
tional formulation to find u h Xh such that

Su h h Q u h h L2 Q u h L2 Q (3.11)

is satisfied for all h Xh . Unique solvability of (3.11) follows since the stiffness
matrix of the non-negative operator S is positive semi-definite, while the mass matrix,
which is related to the inner product in L2 Q , is positive definite.

Lemma 5 Let u h Xh and u h Xh be the unique solutions of the variational
formulations (3.6) and (3.11), respectively. Assume u X H1 Q . Then, there
holds the error estimate

u h u h L2 Q c h u H1 Q

Proof The difference of the variational formulations (3.6) and (3.11) first gives the
Galerkin orthogonality

Su h Su h h Q u h u h h L2 Q 0 h Xh

which can be written as

S u h u h h Q u h u h h L2 Q S S u h h Q h Xh
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In particular, choosing h u h u h Xh , using S Q 0 for all X ,
applying an inverse inequality in Xh , i.e., using the dual norm for t h Y and
Friedrich’s inequality (3.2), we arrive at the estimates

u h u h
2
L2 Q S S u h u h u h Q

S S u h X u h u h X

c h 1 S S u h X u h u h L2 Q

i.e.,
u h u h L2 Q c h 1 S S u h X

Since u X , we can further estimate

u h u h L2 Q c h 1 S S u h u X S S u X

c h 1 4 u h u X 2 pu puh Y

where we used the boundedness of S and S. We note that pu A 1Bu, and puh Yh
solves (3.9) with u. For u H1 Q , we can use standard arguments as well as
(3.1) to bound

pu puh Y pu Y A 1Bu Y
cB2
cA1

u X 2 max cF 1 u H1 Q

and using (3.8) for s 1 we finally obtain, using h2,

u h u h L2 Q c h u H1 Q

Theorem 2 Assume u X L2 Q s Hs Q for s 0 1 , and h2. Then,

u h u L2 Q c hs u Hs Q (3.12)

Proof For s 1 the assertion is an immediate consequence of Theorem 1 and
Lemma 5. Now we consider (3.11) for h u h ,

Su h u h Q u h u u h u L2 Q u u h u L2 Q

from which we immediately conclude

u h u L2 Q u L2 Q

The assertion then again follows by a space interpolation argument.
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The error estimate as given in (3.12) covers in particular the case when the target is
either discontinuous, or does not satisfy the required boundary or initial conditions. It
remains to consider the case when the target u is smooth. As in the proof of Lemma 5,
and using (3.8) for s 2, we now have, recall h2,

u h u h L2 Q c h 1 4 u h u X 2 pu puh Y

c1 h
2 u H2 Q c2 h pu puh Y

When using the approximation result as given in [31, Theorem 3.3] we have

pu puh Y c h pu H2 Q (3.13)

i.e., we obtain

u h u h L2 Q c h2 u H2 Q pu H2 Q (3.14)

While the error estimate (3.13) holds for any admissible decomposition of the space-
time domain Q into simplicial finite elements, in addition to u X H2 Q , we
have to assume pu A 1Bu H2 Q , i.e., u H2 3 Q . This additional regularity
requirement in time is due to the finite element error estimate (3.13) which does not
reflect the anisotropic behavior in space and timeof the norm inY L2 0 T H1

0 .
However, and as already discussed in [31, Corollary 4.2], we can improve the error
estimate (3.13) under additional assumptions on the underlying space-time finite ele-
ment mesh. In fact, when considering as in [31, Section 4] right-angled space-time
finite elements, or space-time tensor-product meshes, instead of (3.13) we obtain the
error estimate

pu puh Y c h x pu H1 Q (3.15)

when assuming x pu H1 Q for pu A 1Bu, i.e., there are no second-order time
derivatives yet. This is the reason to further conclude the bound

pu puh Y c h u H2 Q

and hence,
u h u h L2 Q c h2 u H2 Q (3.16)

follows, when assuming u X H2 Q . Now, interpolating (3.12) for s 1 and
(3.16), we conclude

u h u h L2 Q c hs u Hs Q for u X Hs Q s 1 2 (3.17)

that together with estimate (3.7) from Theorem 1 finally gives

u h u L2 Q c hs u Hs Q (3.18)
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While we can prove this result for some structured space-time finite element meshes
only, numerical experiments indicate that (3.18) remains true for any admissible
decomposition of the space-time domain into simplicial finite elements.

4 Numerical results

In the numerical experiments, we choose the spatial domain 0 1 n with n 2
(Section 4.1) and n 3 (Section 4.2), and final time T 1, resulting in the n 1-
dimensional space-time cylinder Q 0 1 n 1. We follow the space-time finite
element method on fully unstructured simplicial meshes as considered in [20] for
the coupled optimality system of the parabolic distributed control problem (1.1). We
mention that the refinement of the tetrahedrons (n 2) is based onBey’s algorithm [4],
whereas the refinement of the pentatops (n 3) uses Stevenson’s bisection method
[33]. This finally leads to the solution of a saddle-point system that is nothing but the
discrete version of (3.5): Find the nodal parameter vectors p MY (MY dim Yh )

and u MX (MX dim Xh ) such that

1Ah Bh

Bh Mh

p
u

0
f

(4.1)

where the finite element matrices Ah , Bh , and Mh correspond to the bilinear forms
(3.4) and (3.3), and to the L2 Q inner product, respectively. The matrices Ah

MY MY and Mh
MX MX are symmetric and positive definite, while the matrix

Bh
MY MX is in general rectangular. The load vector f NX is computed from

the given target u as usual. We mention that the symmetric, but indefinite system (4.1)
is equivalent to solving the related Schur complement system

Bh A 1
h Bh Mh u f (4.2)

that corresponds to (3.11). Here, the symmetric but indefinite system (4.1) is simply
solved by the ILU(0) preconditioned GMRES method; see [20]. We stop the GMRES
iteration when the relative residual error of the preconditioned system is reduced
by a factor 107. Of course, the ILU(0) preconditioner does not produce a solver of
asymptotically optimal complexity; see also performance studies for Example 4.1.4
in Section 4.3. In the same subsection, we also present the theoretical foundation and
numerical results for solvers that are of asymptotically almost optimal complexity
with respect to both memory demand and arithmetical operations.

4.1 Two space dimensions

In the first example (Example 4.1.1), we consider the smooth target

u x t sin x1 sin x2 sin t (4.3)
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where we can apply the error estimate (3.14). As predicted, we observe a second-
order convergence with respect to the mesh size h when choosing h2; see also
the experimental order of convergence (eoc) in Table 1.

As a second example (Example 4.1.2), we consider a piecewise linear continuous
function u being one at the midpoint 1 2 1 2 1 2 , and zero in all corner points of
Q 0 1 3. In this case, we have u X H3 2 Q , 0, and we observe 1 5 as
the order of convergence, see Table 2, which corresponds to the error estimate (3.17).

As a third example (Example 4.1.3), we take a piecewise constant discontinuous
target u which is one in the inscribed cube 1

4
3
4

3, and zero elsewhere. In this case, we
have u H1 2 Q , 0. From the numerical results given in Table 3, we observe
0 5 for the order of convergence, as expected from the error estimate (3.12). In this
example, since the target u is discontinuous, we may apply an adaptive refinement
based on the residual type error indicator as used in [20]. We compare the errors
and number of degrees of freedom using both uniform and adaptive refinements in
Table 4, with respect to the regularization parameter . We clearly see that for each
regularization parameter , the adaptive refinement requires less degrees of freedom
to reach a similar accuracy as for uniform refinements. In Fig. 1, we plot the state u h ,
the adjoint state p h , and the control z h at time t 0 5, and the adaptive meshes
in space-time. For comparison of the results with different regularization terms, we
refer to the numerical results in [20]. From this, we can conclude that adaptivity is
especially important when the target is discontinuous in space and time. Using space-
time adaptivity, we can achieve the same accuracy with a much smaller number of
degrees of freedom.

The next example (Example 4.1.4) is taken from [21] with the target given by the
non-tensor-product function

u 1 0 exp
cos g t 70

3 70x1 sin g t 70
3 70x2

2

1

1 0 exp
cos g t 70x1 140

3 sin g t 70x2 140
3

2

1

1

Table 1 Error u h u L2 Q
in the case of a smooth target u
given by (4.3) (Example 4.1.1)

h h2 u h u L2 Q eoc

2 2 2 4 2 2380e 1

2 3 2 6 9 0449e 2 1 31

2 4 2 8 2 6491e 2 1 77

2 5 2 10 6 9335e 3 1 93

2 6 2 12 1 7613e 3 1 98

2 7 2 14 4 4352e 4 1 99

2 8 2 16 1 0600e 4 2 06

2 9 2 18 2 6836e 5 1 98
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Table 2 Error u h u L2 Q
in the case of a piecewise linear
continuous target
u X H3 2 Q , 0
(Example 4.1.2)

h h2 u h u L2 Q eoc

2 2 2 4 2 0231e 1

2 3 2 6 9 1319e 2 1 15

2 4 2 8 3 4303e 2 1 41

2 5 2 10 1 2428e 2 1 46

2 6 2 12 4 4443e 3 1 48

2 7 2 14 1 5797e 3 1 49

2 8 2 16 5 5868e 4 1 50

2 9 2 18 1 9786e 4 1 50

Table 3 Error u h u L2 Q
in the case of a discontinuous
target u H1 2 Q , 0
(Example 4.1.3)

h h2 u h u L2 Q eoc

2 2 2 4 2 8840e 1

2 3 2 6 2 0871e 1 0 47

2 4 2 8 1 4793e 1 0 50

2 5 2 10 1 0473e 1 0 50

2 6 2 12 7 4108e 2 0 50

2 7 2 14 5 2425e 2 0 50

2 8 2 16 3 7079e 2 0 50

2 9 2 18 2 6219e 2 0 50

Table 4 Comparison of the error u h u L2 Q and the number of degrees of freedoms in the case

of a discontinuous target u H1 2 Q , 0, when using both uniform and adaptive refinements
(Example 4.1.3)

Uniform refinement Adaptive refinement

h 1 2 #DOFs u h u L2 Q #DOFs u h u L2 Q

2 4 2 2 250 2 8840e 1 250 2 8840e 1

2 6 2 3 1 458 2 0871e 1 1 230 2 0873e 1

2 8 2 4 9 826 1 4793e 1 9 948 1 3999e 1

2 10 2 5 71 874 1 0473e 1 34 998 1 0153e 1

2 12 2 6 549 250 7 4108e 2 230 154 7 2804e 2

2 14 2 7 4 293 378 5 2425e 2 1 526 400 5 1838e 2

2 16 2 8 33 949 186 3 7079e 2 6 196 200 3 6609e 2

2 18 2 9 270 011 394 2 6219e 2 31 419 720 2 5824e 2
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Fig. 1 Visualization of the state u h , the adjoint state p h , the control z h , and the adaptive mesh on the
cutting plane at time t 0 5, where the total #DOFs in space-time is 3 328 617 at the 58th adaptive level
from 67 levels (last line in Table 4) corresponding to the regularization parameter 2 18 (Example 4.1.3)

in Q 0 1 3, where g t 2
3 min 3

4 t . This target has the form of a turning
wave, and was originally considered in [9]. It is easy to see that this target does not
fulfill homogeneous boundary and initial conditions. The comparison of uniform and
adaptive refinements are illustrated in Tables 5 and 6, where we have used the adaptive
versions with a global constant regularization parameter h2min and locally varying
regularization parameters h2 for every finite element from themesh h , respec-
tively. Both lead to a considerable reduction in number of degrees of freedom to reach
similar accuracy as in the case of the uniform refinement. The adaptive refinement
shows much better convergence than the uniform one. We mention that, for the opti-
mal control of elliptic equations, the varying regularization has been studied in [18].
The analysis of varying regularization for parabolic optimal control problems will be
presented in another work.We have here used the simple error indicator u u h L2

for driving the adaptivity. In fact, u u h
2
L2 Q

u u h
2
L2 is considered

to be an a posteriori error estimator. This is indeed even an exact error representation.
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Table 5 Comparison of the error u h u L2 Q and the number of degrees of freedoms in the case

of the turning wave target u H1 2 Q , 0, when using both uniform and adaptive refinements
(Example 4.1.4)

Uniform refinement Adaptive refinement

h 1 2 #DOFs u h u L2 Q eoc #DOFs u h u L2 Q

2 4 2 2 250 4 8768e 1 250 4 8768e 1

2 6 2 3 1 458 3 3923e 1 0 52 1 448 2 4784e 1

2 8 2 4 9 826 2 1894e 1 0 63 6 316 1 5861e 1

2 10 2 5 71 874 1 4087e 1 0 64 21 646 1 0699e 1

2 12 2 6 549 250 9 4223e 2 0 58 32 942 8 0533e 2

2 14 2 7 4 293 378 6 5418e 2 0 53 117 568 5 6716e 2

2 16 2 8 33 949 186 4 6082e 2 0 51 1 202 496 3 6361e 2

2 18 2 9 270 011 394 3 2565e 2 0 50 1 868 602 2 7711e 2

In the adaptive refinement, we have used h2min over all tetrahedral elements

The computed state u h , adjoint state p h , and the corresponding control z h at
time t 0 5 are illustrated in Fig. 2. We also observe that the local refinements
are concentrated on that part of the boundary where the target does not fulfill the
homogeneous Dirichlet condition, and the interface inside the domain. From this
example, we can also confirm that adaptivity plays an important role when the target
is rotating in time or does not fulfill homogeneous initial and boundary conditions.
Similar accuracy is obtained with much fewer degrees of freedom using space-time
adaptivity in comparison with uniform refinement.

In the last example (Example 4.1.5) of this subsection, we consider the discontin-
uous target

u u 2 2 sin 10 x1 sin 10 x2 sin 10 t (4.4)

Table 6 Comparison of the error u h u L2 Q and the number of degrees of freedoms in the case

of the turning wave target u H1 2 Q , 0, when using both uniform and adaptive refinements
(Example 4.1.4)

Uniform refinement Adaptive refinement

h 1 2 #DOFs u h u L2 Q eoc #DOFs u h u L2 Q

2 4 2 2 250 4 8768e 1 250 4 8768e 1

2 6 2 3 1 458 3 3923e 1 0 52 1 954 2 7931e 1

2 8 2 4 9 826 2 1894e 1 0 63 9 286 1 8121e 1

2 10 2 5 71 874 1 4087e 1 0 64 32 540 1 3209e 1

2 12 2 6 549 250 9 4223e 2 0 58 98 348 8 9221e 2

2 14 2 7 4 293 378 6 5418e 2 0 53 442 082 5 6638e 2

2 16 2 8 33 949 186 4 6082e 2 0 51 1 276 384 4 2062e 2

2 18 2 9 270 011 394 3 2565e 2 0 50 4 410 618 2 9702e 2

In the adaptive refinement, we have used variable h2 on each tetrahedral element

123

24 Page 20 of 30



Robust space-time finite element...

Fig. 2 Visualization of the state u h , the adjoint state p h , the control z h , and the adaptive mesh on the
cutting plane at time t 0 5, where the total #DOFs in space-time is 117 568 at the 17th adaptive level
(see the sixth row in Table 5) corresponding to the regularization parameter h2min (Example 4.1.4)

that contains some noise in space and time. Here, u is one in the inscribed cube
1 4 3 4 3 0 1 3 and zero else, cf. Example 4.1.3, and 0 is the noise level.
For this polluted target, we easily see that u u L2 Q . To balance the two
error contributions we take h 16 2. This ensures an almost optimal convergence
with respect to the mesh size h, see Table 7.

4.2 Three space dimensions

Now we present some numerical results for the three-dimensional spatial domain
0 1 3, i.e., Q 0 1 4.

In the first example (Example 4.2.1), we look at the smooth target

u x t sin x1 sin x2 sin x3 sin t (4.5)
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Table 7 Error u h u L2 Q
in the case of a discontinuous
target u H1 2 Q
containing some noise level
(Example 4.1.5)

h 16 2 h2 u h u L2 Q eoc

2 3 2 2 2 4 2 8841e 1

2 3 5 2 3 2 6 2 0871e 1 0 47

2 4 2 4 2 8 1 4796e 1 0 50

2 4 5 2 5 2 10 1 0535e 1 0 49

2 5 2 6 2 12 7 6837e 2 0 46

2 5 5 2 7 2 14 5 5990e 2 0 46

As predicted by the error estimate (3.14), we observe a second-order convergence with
respect to the mesh size h when choosing h2; see Table 8 and Fig. 3.

In the second example (Example 4.2.2), we take a piecewise linear continuous target
function u being one in the midpoint 1 2 1 2 1 2 1 2 and zero in all corner points
of Q 0 1 4. In this case we have u X H3 2 , 0, and we observe 1 5 as
order of convergence which corresponds to the error estimate (3.17), see Table 9 and
Fig. 4.

In the third example (Example 4.2.3), we consider a piecewise constant discontin-
uous target u which is one in the inscribed cube 1

4
3
4

4, and zero else. In this case
we have u H1 2 Q , 0. From the numerical results as given in Table 10 we
observe 0 5 for the order of convergence, as expected from the error estimate (3.12),
see also Fig. 5.

4.3 Solver studies

We are now going to provide some first performance studies for the solvers that we
used to solve the corresponding systems of finite element equations. We solely present
numerical results for the turning wave example (Example 4.1.4) that is certainly the
most involved benchmark considered in this paper.

Table 8 Error u h u L2 Q
in the case of the smooth target u
given by (4.5) (Example 4.2.1)

N (#DOFs) h N 2 1 4 h2 u h u L2 Q

356 2 7378e 1 7 4953e 2 2 0985e 1

630 2 3737e 1 5 6344e 2 1 7263e 1

2 986 1 6087e 1 2 5880e 2 1 2166e 1

6 930 1 3034e 1 1 6988e 2 9 3733e 2

38 114 8 5111e 2 7 2439e 3 4 7198e 2

94 146 6 7890e 2 4 6091e 3 3 2098e 2

546 562 4 3737e 2 1 9129e 3 1 4088e 2

1 400 322 3 4570e 2 1 1951e 3 8 8652e 3

8 289 026 2 2163e 2 4 9121e 4 3 7164e 3

21 657 090 1 7432e 2 3 0389e 4 2 2967e 3

129 165 826 1 1155e 2 1 2444e 4 9 5061e 4
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Fig. 3 Error u h u L2 Q in the case of a smooth desired state u H1
0 Q H2 Q in three space

dimensions (Example 4.2.1)

We first look at the number of iterations (#GMRES Its) needed by the ILU(0)
preconditioned GMRES method for solving the coupled system (4.1) in the case of
both uniform and adaptive refinements; see Table 11. We observe growing iteration
numbers with decreasing mesh size, as expected. However, the growth of the iteration
numbers is moderate. So, the simple ILU(0) preconditioned GMRES solver can be
used for solving small and midsize systems.

To solve large-scale systems efficiently, the use of asymptotically optimal solvers
is inescapable. Surprisingly, for the optimal choice h2 of the regularization
parameter, we observe that the Schur complement Sh Bh A 1

h Bh Mh is spectrally
equivalent to themassmatrixMh and, therefore, to some diagonal replacement like the
lumped mass matrix lump Mh . More precisely, we can prove the spectral equivalent
inequalities

1

n 2
lump Mh Mh Sh c 1 Mh c 1 lump Mh (4.6)

Table 9 Error u h u L2 Q
in the case of a piecewise linear
continuous target
u X H3 2 Q , 0
(Example 4.2.2)

N (#DOFs) h N 2 1 4 h2 u h u L2 Q

356 2 7378e 1 7 4953e 2 2 1510e 1

630 2 3737e 1 5 6344e 2 1 7972e 1

2 986 1 6087e 1 2 5880e 2 1 3082e 1

6 930 1 3034e 1 1 6988e 2 1 0510e 1

38 114 8 5111e 2 7 2439e 3 6 1638e 2

94 146 6 7890e 2 4 6091e 3 4 5864e 2

546 562 4 3737e 2 1 9129e 3 2 4759e 2

1 400 322 3 4570e 2 1 1951e 3 1 7766e 2

8 289 026 2 2163e 2 4 9121e 4 9 2755e 3

21 657 090 1 7432e 2 3 0389e 4 6 5280e 3

129 165 826 1 1155e 2 1 2444e 4 3 3636e 3
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Fig. 4 Error u h u L2 Q in the case of a piecewise linear continuous target u X H3 2 Q ,
0 (Example 4.2.2)

with c cF 1 c2inv, where the positive constants cF and cinv are defined by the spatial
Friedrichs inequality (3.2) and the inverse inequality

uh L2 Q cinvh
1 uh L2 Q uh Xh (4.7)

respectively. Indeed, for all nodal vectors u MX , we have the estimates

Bh A 1
h Bhu u sup

q MY

Bhu q 2

Ahq q

sup
qh Yh

T
0 t uh qh xuh xqh dx dt

2

T
0 xqh xqh dx dt

Table 10 Error u h u L2 Q
in the case of a piecewise
constant and discontinuous
target u H1 2 Q , 0
(Example 4.2.3)

N (#DOFs) h N 2 1 4 h2 u h u L2 Q

356 2 7378e 1 7 4953e 2 2 5099e 1

630 2 3737e 1 5 6344e 2 1 9143e 1

2 986 1 6087e 1 2 5880e 2 1 8823e 1

6 930 1 3034e 1 1 6988e 2 1 7500e 1

38 114 8 5111e 2 7 2439e 3 1 4710e 1

94 146 6 7890e 2 4 6091e 3 1 3313e 1

546 562 4 3737e 2 1 9129e 3 1 0558e 1

1 400 322 3 4570e 2 1 1951e 3 9 6592e 2

8 289 026 2 2163e 2 4 9121e 4 7 7744e 2

21 657 090 1 7432e 2 3 0389e 4 6 8891e 2

129 165 826 1 1155e 2 1 2444e 4 5 5284e 2
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Fig. 5 Error u h u L2 Q in the case of a piecewise constant and discontinuous target u H1 2 Q ,
0 (Example 4.2.3)

sup
qh Yh

uh 2
L2 Q

qh 2
L2 Q xqh 2

L2 Q

xqh L2 Q

cF 1 uh
2
L2 Q cF 1 h 2c2inv uh

2
L2 Q

cF 1 c2inv Mhu u

which together with the spectral equivalence inequalities

n 2 1 lump Mh Mh lump Mh

complete the proof of the spectral equivalence inequalities (4.6).
The spectral equivalent inequalities (4.6) immediately yield that the Schur com-

plement system (4.2) can be solved by the Preconditioned Conjugate Gradient (PCG)

Table 11 Number of ILU(0) preconditioned GMRES method (#GR Its) for solving the coupled system
(4.1) on both the uniform and adaptive refinements

Uniform (h2) Adaptive (h2min) Adaptive (h2)
#DOFs #GR Its #DOFs #GR Its #DOFs #GR Its

250 6 250 6 250 6

1 458 15 1 448 15 1 954 22

9 826 28 6 316 24 9 286 40

71 874 47 21 646 30 32 540 72

549 250 77 32 942 36 98 348 84

4 293 378 121 117 568 58 442 082 216

33 949 186 168 1 202 496 106 1 276 384 219

270 011 394 222 1 868 602 153 4 410 618 344

Here we use the 2D turning wave from (Example 4.1.4) as target
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method where the lumped mass matrix lump Mh provides an asymptotically optimal
preconditioner. This observation and the spectral equivalence of the Schur complement
Sh to the mass matrix Mh imply that the PCG iterates reach a fixed relative accuracy
in the Mh energy norm respectively in the L2 Q norm within a constant number of
iterations independent of the mesh size h. This theoretical result can be observed from
the first column of Table 12 (uniform refinement) where the number of PCG iterations
(#PCG Its) required to reduce the relative preconditioned residual error by a factor 107

is displayed. The same is true for the case of adaptive refinement with h2min and
h2. For simplicity, in the matrix-vector multiplication Sh uk , the inner inver-

sion A 1
h applied to a given vector r is realized by applying the standard Ruge-Stüben

Algebraic Multigrid (AMG) solver to Ahq r such that the relative residual error is

reduced by factor 1010 across all meshes considered. We refer the reader to [28] for
Ruge-Stüben’s AMG. This accuracy can be adapted to the discretization error, and the
PCG solver can be embedded in a nested iteration strategy across the discretization
levels. This nested iteration procedure should be stopped if the approximation of the
computed state to the desired state reaches a given accuracy or if the cost for the
control exceeds some threshold. In Table 13, the nested mass-lumped PCG iterations
(#NPCG), the corresponding errors u h u L2 Q , and the computational time in
seconds (s) on the uniform refinements are illustrated. Herein, on the coarsest level
l 1, we solve the linear system until the relative residual error is reduced by a factor
105. On the refined level l 1, we stop the iteration when the relative preconditioned

residual error is smaller than nl nl 1 3 , l 2 3 , with 0 5, 0 5, and
nl being the number of vertices on the level l. Herein, the inner AMG iteration stops
when the relative residual error is reduced by factor 102 on all levels. This requires
about 2 3 AMG iterations. The solution on the coarse level is used as the initial guess
for the solution on the fine level. We clearly observe that the number of PCG iterations
is significantly reduced without loss of accuracy of the numerical discretization, in
comparison with the errors and convergence for the uniform refinement in Tables 4
and 5, and number of PCG iterations for uniform refinement in Table 12.

Table 12 Number of PCG iterations (#PCG Its) for solving the Schur complement system (4.2) on both
the uniform and adaptive refinements, using the lumped mass as the preconditioner

Uniform (h2) Adaptive (h2min) Adaptive (h2)
#DOFs #PCG Its #DOFs #PCG Its #DOFs #PCG Its

125 13 125 13 125 13

729 24 724 32 977 29

4 913 30 3 158 39 4 643 34

35 937 32 10 823 41 16 270 34

274 625 32 16 471 36 49 174 35

2 146 689 31 58 784 34 221 041 37

16 974 593 30 601 248 41 638 192 35

135 005 697 29 934 301 33 2 205 309 32

Here we use the 2D turning wave from (Example 4.1.4) as target
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Table 13 The error u h u L2 Q , the number of nested mass-lumped preconditioned PCG iterations

(#NPCG), and the time in seconds in the case of the turning wave target u H1 2 Q , 0, for the
uniform refinements (Example 4.1.4)

h 1 2 #DOFs u h u L2 Q eoc #NPCG Its Time (s)

2 4 2 2 125 4 8801e 1 22 0 01

2 6 2 3 729 3 3837e 1 0 53 3 0 01

2 8 2 4 4 913 2 1748e 1 0 64 3 0 08

2 10 2 5 35 937 1 3948e 1 0 64 3 0 79

2 12 2 6 274 625 9 3125e 2 0 58 3 6 38

2 14 2 7 2 146 689 6 4684e 2 0 53 3 89 94

2 16 2 8 16 974 593 4 5587e 2 0 50 3 627 60

2 18 2 9 135 005 697 3 2221e 2 0 50 3 5 740 41

Herein, we have used adaptive stopping threshold in the nested iterations

We mention that the inner AMG iteration within the matrix-vector multiplication
can be avoidedwhen solving the symmetric, infinite system (4.1), e.g., by theBramble-
Pasciak PCG [6].

5 Conclusions and outlook

We have derived robust space-time finite element error estimates for distributed
parabolic optimal control problems with energy regularization. More precisely, we
have estimated the L2 Q norm of the error between the desired state u and the com-
puted state u h depending on the regularity of the desired state u. It has been shown
that the optimal convergence rate is achieved by the proper scaling h2 between the
regularization parameter and the mesh size h. The theoretical findings are confirmed
by several numerical examples in both two and three space dimensions.

The theoretical results are valid for uniform mesh refinement. However, for dis-
continuous targets u and targets that do not fulfill the boundary or initial conditions,
we can expect layers with steep gradients in the solutions as in Examples 4.1.3, 4.1.4
and 4.2.3. In these examples, we have observed that, for a fixed h2, the adaptive
version needs considerably less unknowns to achieve the same accuracy as the cor-
responding uniformly refined grid with the finest mesh size h. Since, for adaptively
refined grids, the local mesh sizes are very different, one may also think about a local-
ization of the regularization parameter , see [18] in the case of an elliptic distributed
optimal control problem. For simplicity, we use the ILU(0) preconditioned GMRES
as standard solver for the symmetric, but indefinite system (4.1). This solver is not
asymptotically optimal with respect to the arithmetical complexity. The construction
and investigation of fast and robust solvers for the symmetric and indefinite sys-
tems like (4.1) is still an interesting research topic in connection with optimal control
problems; see, e.g., [1, 2, 25, 27, 29, 30, 37] and the references therein. For the optimal
choice of h2, the first theoretical and numerical results presented in Section 4.3
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show that one can construct asymptotically optimal solvers for (4.1) or even for the
Schur complement system (4.2), in particular, when the solvers are embedded in a
nested iteration strategy. The analysis of solvers for variable (local) choice of the
regularity parameter as a function of x t is another future research topic.

Finally, the consideration of constraints imposed on the control z or the state u is
of practical interest; see, e.g., the monographs [23] and [35], and the very recent pub-
lication [12] in connection with energy regularization for elliptic distributed optimal
control problems.
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