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Abstract
This work proposes a methodology that combines distributed and lumped models to
simulate the current distribution within an indirect heat resistance furnace and, in
particular, to calculate the current to be supplied for achieving a desired power out-
put. The distributed model is a time-harmonic eddy current problem, which is solved
numerically using the finite element method. The lumped model relies on calculating
a reduced impedance associated with an equivalent circuit model. Numerical simu-
lations and plant measurements demonstrate the effectiveness of this approach. The
good correlation between the results indicates that this approximation is well-suited
to support the design and improve the efficiency of the furnace in a short time.
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1 Introduction

Numerical simulation is now a tool of paramount importance for engineering design.
This is particularly true in the field of electromagnetism, where the contribution of
Alain Bossavit has been fundamental in the introduction and analysis of numerical
methods for solving Maxwell’s equations (see, for instance, among his numerous
publications, the reference book [8]). The present paper deals with a good example of
the engineering application of thismethodology to simulate the behavior of a resistance
furnace.

In the last years, indirect resistance heating has found an increasing application
in different manufacturing processes, particularly in the metallurgical, ceramic, elec-
tronic, glass, and semiconductor industries ([14, 27]). In metallurgy, one of the main
advantages is that it allows the energy to be distributed uniformly over the workpiece,
which is essential for certain industrial processes.

This paper focuses on electric indirect heat resistance furnaces used for metal
purification. In these devices, heating essentially occurs because the current supplied
to the furnace passes through the resistance, where electric energy is transformed into
thermal energy. The heat is then transferred to the load by radiation, convection, and/or
conduction. For furnaces operating at high temperatures, radiation is the primarymode
of heat transfer. Typically, alternating current is used, and some heat is also generated,
but to a much lesser extent, due to the Joule effect resulting from the eddy currents
induced in the conducting parts of the domain.

This is an energy-intensive industrial process and considerable efforts are being
made to optimize its operation. In general, resistance heating is used when demand
patterns are not suitable for induction furnaces and therefore cannot be considered as a
competitive technique [1]. For instance, inmetalmelting processes, resistance furnaces
offer the advantage of enhanced temperature control achieved through feedback with
the power supply [11].

The global design requirements generally involve different and complex models, as
they are subject to several physical phenomena: electromagnetic, thermal, structural,
fluid dynamics... It is therefore interesting to address their study from a multiphysics
perspective. In recent years, numerical simulation has emerged as an important tool
for predicting the behavior of furnaces, since it allows changes to be made in silico,
thus avoiding trial and error in the operation of the plant and in particular those relating
to the feedback procedures with the power supply. This approach normally requires
the use of modelling methodologies aimed at finding a compromise between accurate
results and reasonable computation times. Although resistance furnaces are generally
designed for a specific application, it is quite common to modify an existing furnace
to operate in a different temperature range depending on the requirements. This can be
done by adjusting the power supplied to the furnace, which in turn requires estimation
of the input current. The need for fast models for control algorithms and real-time
simulation is therefore important.

The prediction of the current distribution inside the resistance is a non-trivial mat-
ter, which can only be properly performed by numerical solution of the underlying
electromagnetic models. This has already been done for other types of classical met-
allurgical furnaces (e.g.: induction furnaces [6, 28], arc furnaces [20, 30], or electron
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beam furnaces [22, 26]). In contrast to all these technologies, the bibliography onmath-
ematical modelling of industrial examples of indirect resistance furnaces is practically
non-existent, which is a handicap when evaluating a new product.

In most cases, the heater has no cylindrical symmetry and, as a result, three-
dimensional simulations are required, which are long and difficult. In addition, at
the design stage, it is generally mandatory to know the response to different inputs, so
a single simulation is not enough.

In this article, we present a methodology that requires a single numerical electro-
magnetic simulation to predict the response of the furnace to different current inputs.
More specifically, we show how, from this initial numerical simulation, it is possible to
obtain an equivalent lumped model for accurately estimating the current to be applied
to the system in order to obtain the desired power.

The use of lumped models is something usual in industrial design (e.g., induc-
tion furnaces in [15, 18], electrochemical cells in [12] or power electronic converters
in [16]). In our case, the novelty lies in the type of furnace and also in the fact that
the proposed method can be applied to any resistance furnace powered by three-phase
alternating current, whatever the geometry of the resistance and the rest of the elements
that compose the device. In this context, it is worth mentioning that finding well-posed
coupling between field problems and external circuits relies upon algebraic topology
concepts as homology and cohomology spaces of the PDE domain, more specifically
on Hodge theory (see [8, 13, 17, 23]). Moreover, building a discrete Hodge decompo-
sition in the Whitney complex enables us to view the Galerkin finite element method
as a way to set up circuit equations.

The paper is organized as follows: Section2 presents the geometric configuration
and the electromagnetic mathematical model of the furnace. Section3 proposes an
equivalent lumped model for analyzing the electrical behavior of the furnace. This
model is based on the calculation of a reduced impedance associatedwith an equivalent
circuit model. Section4 presents numerical results from simulations performed on a
real industrial furnace. The validity of the lumpedmodel is demonstrated by comparing
simulated and measured data. Section5 discusses alternative methods for analyzing
the furnace electrical circuits, highlighting their limitations compared to the original
approach. The main conclusions are summarized in Section6.

2 Statement of the problem

2.1 Geometry of the furnace

We consider a resistance furnace as the one depicted in Fig. 1. It consists of a stainless
steel chamber that encloses a resistive heater and a workpiece placed over the heater.
The workpiece consists of a hemispherical crucible containing the metal to be heated.
Both the crucible and the resistance element are surrounded by air and insulating
materials. Additionally, the chamber is equipped with an internal insulating lining,
which helps to minimize heat losses.

The system is powered by a 3-phase alternating current (AC) for improved efficiency
(in someapplications, this ensures effective stirring of the loadonce it has beenmelted).
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Fig. 1 Furnace geometry. Isometric view (left), section (center), and detail (right)

The current is supplied to the resistance via three electrodes which pass through the
chamber to the power supply circuit. Each of these electrodes receives an alternating
current of the same amplitude but with different phases. These current parameters are
the known input data for the system.

2.2 Mathematical model

In this section, we will present the three-dimensional mathematical model that allows
us to calculate the current density distribution and the power dissipated in the different
parts of the furnace and, in particular, in the resistance which is the goal of the study.
For modelling purposes, we will introduce some notation. Let � be a simply con-
nected three-dimensional bounded domain consisting of two disjoint parts, �C and
�D, representing conductors and dielectrics media, respectively. We will denote by
�R the part of �C formed by the resistive heater and its terminals.

The computational domain � is assumed to have a Lipschitz-continuous boundary
denoted by �. Further, let �̄R := ∂�R ∩ � be the outer boundary of �R and �̄D :=
∂�D ∩� that of the dielectric domain. Finally, nwill represent any unit normal vector
to a given surface. The computational domain is sketched in Fig. 2 according to the
previous notations. Notice that �R consists of three separate components denoted by

Fig. 2 Computational domain and notations. Isometric (left) and section (right) views
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�k
R, k = 1, . . . , 3, corresponding to the top of the electrodes where the current (or the

voltage) will be prescribed.
The electromagnetic model is based on the well-known eddy current model and is

solved numerically using a finite element method. Since the current source is alternat-
ing and all materials are assumed to have a linear electromagnetic behavior, we can
use a time-harmonic approach. Thus, all of the fields involved in the Maxwell system
have the form

F(x, t) = Re[F(x)eiωt ], (1)

where t is the time, x ∈ R
3 is the space position, i is the imaginary unit, F(x) is the

complex amplitude (or phasor) of the fieldF and ω is the angular frequency, ω = 2π f,
f being the frequency of the alternating current. For industrial cases with low and
moderate frequencies, the quasi-static assumption applies and the term corresponding
to the displacement current in the Ampere’s law can be neglected (a discussion of the
parameter ranges inwhich thismodel is valid can be found inBossavit’swork [8]). Fur-
thermore, taking into account that the electric field is not required in non-conducting
materials, the time-harmonic eddy currentmodel leads to solve the following equations
defined in �:

curl H = J, (2)

iωB + curl E = 0, (3)

divB = 0, (4)

whereH, J, and E are the complex amplitudes associated with the magnetic field, the
current density, and the electric field, respectively. For more details about these equa-
tions see, for instance, [7] or [25]. To obtain a closed system, we add the constitutive
law B = μH, and the Ohm’s law J = σE, where μ is the magnetic permeability
and σ is the electric conductivity, which is greater than zero in conductors and null in
dielectrics.

The model must be completed with suitable boundary conditions, and we consider
the following ones:

μH · n = 0 on �, (5)

E × n = 0 on �R. (6)

These boundary conditions were first proposed by Bossavit in [9]. The condition
Eq.5 implies that the magnetic field is tangential to the boundary of the chamber,
while Eq.6 means that the electric current enters the domain perpendicular to the cross
section of the electrodes. Furthermore, Eq. 6 implies that the tangential component
of the electric field E is a gradient of a scalar potential V on the boundary of �,
and this potential must be constant on each connected component of �R (see [5] for
formal calculations). The sources are introduced into the model either by imposing a
fixed potential drop between two connected components of �R or by applying a fixed
current across a connected component. In our case, the input current of the electrodes
is assumed to be known. In particular, we will prescribe the current in two of the
electrodes, i.e, ∫

�k
R

J · n dS = −Ik k = 1, 2, (7)
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and on the third one, we will impose a null potential representing the ground

V3 = 0 on �3
R. (8)

The complex functions Ik = Ikei ιk in Eq.7 are the phasors corresponding to the
harmonic time-dependent signals Ik(t) = Ikcos(ωt + ιk), k = 1, 2, 3, which are
the real measurements at the terminals (see Fig. 3). Similarly, the complex functions
Vk = Vkeiεk are the phasors corresponding to the signals Vk(t) = Vkcos(ωt + εk),
k = 1, 2, 3.

This model, which takes into account in the boundary conditions the interfaces
(ports) through which electromagnetic energy enters or leaves the system, is known in
the literature as the eddy current model with electric ports. It can be handled by using
different formulations [2, 7, 8]. In this work, we have considered the one based on
the magnetic vector potential/scalar electric potential, namely, the well-known A/V
formulation.We recall here that the magnetic vector potential is derived from equation
Eq.4, which states the existence of a vector fieldA such that B = curl A. Conversely,
the electric scalar potential Vwithin the conducting domain is obtained fromFaraday’s
law, curl (E + iωA) = 0, implying that E + iωA = − gradV. The gauge condition
divA = 0, along with appropriate boundary conditions, is imposed to ensure the
uniqueness of the magnetic vector potential (see [3]).

Summarizing, the problem reads as follows:
Given complex numbers Ik, k = 1, 2, find a vector field A defined in �, and a

scalar field V defined in �C and constant in �1
R, �2

R, such that

σ(iωA + gradV) + curl (
1

μ
curl A) = 0 in �,

divA = 0 in �,

A × n = 0 on �,

σ(iωA + gradV) · n = 0 on ∂�C \ �R,

V = 0 on �3
R,∫

�k
R

σ(iωA + gradV) · n dS = −Ik, k = 1, 2.

Fig. 3 Example of supplied intensity (Ik(t), k = 1, 2, 3)
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3 Equivalent lumpedmodel

As mentioned earlier, the furnace is connected to an external electric circuit that
provides the input currents to the electrodes.We assume that the heater has no external
contacts other than these three terminals. We also assume that it is perfectly insulated
inside the chamber and that there is no risk of leakage currents or ground faults. Under
these assumptions, the circuit sketched in Fig. 4 applies.

The geometry of the resistance, as well as its location near the workpiece, causes
different induction phenomena to occur. As a result, it is generally difficult to design
an equivalent circuit for the entire furnace. However, if we combine all the passive
elements of the circuit within the same block and forget about its particular topology,
it is possible to replace it by a multi-terminal connected network as shown in Fig. 5,
with six associated variables: Ik, Vk; k = 1, 2, 3. Ik is the current that enters through
the k-th terminal and Vk is the potential of this terminal with respect to any potential
reference. The terminal currents satisfy Kirchhoff’s current law, which states that the
algebraic sum of the currents at any node of the network is zero, i.e.,

3∑
k=1

Ik = 0. (9)

According to the general theory of electrical multi-terminal networks, described in
detail in the books of [4] and [10], and considering that the network has only passive
elements, the currents can be expressed as a linear combination of the terminal voltages
bymeans of the so-called indefinite admittancematrix. However, and as a consequence
of Eq.9, this is a singular matrix and, as it is shown in [19] or [29], it is not possible
to obtain an impedance matrix to express the absolute voltages as a function of the
currents.

Fig. 4 Electrical three-phase supply via the furnace’s terminals
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Fig. 5 Equivalent circuit

Furthermore, fromTellegen’s theorem [24],we deduce that the total power absorbed
by the furnace network is the sum of the products VkIk at the three terminals. In
particular, for alternating current [21], it holds

S = 1

2

3∑
k=1

VkĪk, (10)

where S is the total complex power absorbed by the furnace and Īk is the conjugate
of Ik. The active power P (watts) is obtained from the real part of S. We note that P
coincides with the active power Ph dissipated in the heater, which can be computed
from the numerical simulation by using the usual formula

Ph =
∫

�

|J(x)|2
2σ

dV. (11)

Thus, we can write
Ph = Re(S). (12)

Then, for a given current data defined by two terminal currents I1 and I2, we obtain
the third one by applying Eq.9, i.e., I3 = −I2 − I1 and then complex power results

S = 1

2

3∑
k=1

VkĪk

= 1

2
((V1 − V3)Ī1 + (V2 − V3)Ī2).

Let us assume that the furnace operates with a balanced three-phase supply as the
one shown in Fig. 3, with 120◦ phase shift between the electrodes, I2 = I1e(2π/3)i .
Then, the complex power is

S = 1

2
((V1 − V3) + (V2 − V3)e

−(2π/3)i ) Ī1. (13)
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Fig. 6 Reduced equivalent circuit

Equation13 expresses the current supplied to one of the terminals as a function of
the voltage drops between the terminals and the total power. We now define a reduced
current and a reduced voltage drop as

IR = I1, (14)

VR = (V1 − V3) + (V2 − V3)e
−(2π/3)i . (15)

As this network is linear and passive, the relation between IR and VR is constant.
So we can define a reduced impedance as

ZR = VR

IR
, (16)

and use the reduced model from Fig. 6 to study the furnace in terms of energy. In fact,
the complex power corresponding to the impedance ZR is the same as that obtained
for the furnace in Eq.13. For simplicity, let us denote |IR| = I. Then, by replacing
Eq.16 in Eq.13, we have

S = 1

2
ZRI2. (17)

So, once we know the impedance value associated with the furnace, it is enough to
know the amplitude of the terminal currents I to estimate the heat dissipated in the
heater:

Ph = 1

2
Re(ZR)I2. (18)

It is worth noting that the value of the reduced impedance can be computed by
performing a single numerical simulation.

4 Numerical results and discussion

The numerical results presented in this section have been obtained using a real
industrial furnace, the main geometrical characteristics of which are detailed in
Tables 1 and 2, and in Fig. 7.
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Table 1 Material specifications
in the furnace

Id Color Type σ(�m) μr (-)

Material 1 Conductor 11.2e−6 1

Material 2 Dielectric − −
Material 3 Conductor 8.1e−7 1

In the following, we will use the term ‘standard’ to refer to the operating conditions
defined by |I1| = I, I2 = Ie(2π/3)i and I3 = Ie−(2π/3)i . The same operating conditions
were applied to the furnace working in the plant in order to assess the numerical
simulation and to calibrate all the parameters involved. From the numerical results, it
is possible to compute and represent the Joule effect in the heater (Fig. 8) or the current
density field (Figs. 9 and 10). As a post-processing result, we can also compute the
output voltage at each terminal. The results are summarized in Table 3. Finally, the
lumped model of the furnace is obtained by replacing the terminal voltages in Eq.15.
Thus, we obtain

VR = V1 + V2e
−(2π/3)i = 64.3238 e−1.4172i (V)

Table 2 Geometric data relating
to Fig. 7

Id Type Dimension (mm or
specified)

A1 Height 1380

A2 Height 980

A3 Height 400

B1 Diameter 1690

B2 Diameter 1380

B3 Height 350

C1 Arc 120◦
C2 Diameter 1300

C3 Diameter 580

C4 Diameter 950

C5 Diameter 1100

C6 Height 29

C7 Height 215

C8 Height 150

C9 Height 65

CH Height 2000

CR Radius 475

CA Area 0.7090 m2

CV Volume 0.1999 m3
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Fig. 7 Data related to different parts within the furnace geometry, as specified in Table 2

and then

ZR = VR

IR
= 0.2063 e−3.0975i .

Now, the thermal dissipation in the heater can be adjusted to operate under conditions
other than the standard ones through a simple procedure. Indeed, once the value of
ZR is obtained, the input current required to achieve the target power is immediately
determined using Eq.18. Thus, a characteristic curve representing the power dissipa-
tion as a function of the current amplitude can be generated, as the solid line in Fig. 11.
To validate the accuracy of this curve, the currents measured in-plant corresponding to
other desired power dissipation levels (110, 120, and 160 kW) have been added to the
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Fig. 8 Joule losses on the furnace heater under standard conditions (W/m3)

graph. To facilitate comparison, the corresponding values obtained directly from the
reduced lumped model have also been highlighted alongside the measured values in
the plant. As shown in Table 4, the errors are all less than 3%. In addition, the currents
and voltages obtained from the corresponding numerical simulations are summarized
in Table 5.

Fig. 9 Current density vector in the neighborhood of a terminal
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Fig. 10 Modulus of the current density (A/m2)

Table 3 Terminal voltages
(V, rad) and dissipated power
(kW) for the standard operating
conditions of current supplied
(A)

|IR| (V1, ε1) (V2, ε2) (V3, ε3) Ph(�)

3116.79 (37.14,−0.89) (37.13, 0.15) (0, 0) 100.15

Fig. 11 Characteristic curve of the furnace representing the power dissipation in the heater as a function of
the current amplitude.Markers show the comparison between plant-measured and lumpedmodel-calculated
values

Table 4 Current (A) measured
in plant and from the model
computations

Power (kW) In-plant measures Model results Relative error (%)

160 3998 3939 1.48

120 3405 3411 0.18

110 3339 3267 2.16
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Table 5 Terminal voltages
(V, rad) and dissipated power
(kW) as a function of current
supplied (A)

|IR| 3266.55 3411.80 3939.61

(V1, ε1) (38.92,−0.89) (40.65,−0.89) (46.94,−0.89)

(V2, ε2) (38.92, 0.15) (40.66, 0.15) (46.94, 0.15)

(V3, ε3) (0, 0) (0, 0) (0, 0)

Ph(�) 109.98 119.98 159.97

5 Some remarks

5.1 Reduced impedancemethod versus heater equivalent circuit

As an alternative to the reduced impedance method described in Section3, one could
consider replacing the furnace resistance with an equivalent electrical circuit (see
Fig. 12). This has two main drawbacks. The first one is that the geometry of the
resistance should be simple enough to do the calculation by hand. Note that this
would not be necessary when using the reduced impedance method. In fact, to use
this method, one should only make measurements at the terminals of the furnace to
know its voltages. This would not be possible at the design stage, but it is very easy
when the furnace is already operating in the plant. On the other hand, this equivalent
electrical circuit would not take into account possible induction phenomena between
the furnace parts. Although in the example shown in this paper this phenomenon has
little influence on the impedance calculation (it is almost 100% resistive), this may not
be the case when considering other types of furnaces operating at higher frequencies,
such as, for instance, induction furnaces. However, the methodology based on the
reduced impedance could also be easily adapted to this case: in the first step, an initial
numerical simulation has to be done, and then, in the second step and from the results
of the numerical simulation, the reduced impedance can be calculated.

Fig. 12 Heater equivalent circuit construction
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Fig. 13 Transforming a multi-terminal network into a two-port network
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5.2 Multi-terminal network versus two-port network

Let us remember that the electric current is supplied to the furnace through 3 electrodes
that go from the resistance to the power supply traversing the furnace housing. In
general, this current is the only data, and neither the internal geometry of the furnace
nor the “upstream” circuit associated with the current supply is known. As explained
in previous sections, a voltage with respect to a random reference is associated with
each of the 3 terminals, so that the equivalent circuit is a multi-terminal network
like the one shown in Fig. 5. Remember also that the reduced impedance method
proposed in this paper is derived starting from this multi-terminal network. For this
type of circuit, it is possible to write an intensity-voltage relationship in terms of
the admittance matrix such that [I ] = [Y ] [V ]. Since [Y ] is a singular matrix, it is
not possible to express the absolute potentials of each terminal as a function of the
currents. Nevertheless, it would be possible to compute an impedance matrix for this
multi-terminal network, but first, it must be transformed into a two-port network (see
Fig. 13). This involves making a number of simplifications and assumptions about the
“upstream” source circuit, which results in a certain loss of generality. In particular,
the impedance and/or admittance matrices only make sense if any nonlinearity is
discarded. This restriction does not occur in the reduced impedance method explained
above, since only Tellegen’s theorem and Kirchhoff’s laws are used, and therefore the
two-port network option is not considered here.

6 Conclusions

This paper presents amethod combining a distributed and a lumpedmodel to determine
the electromagnetic behavior of a three-phase indirect resistance furnace. The method
proves to be particularly useful at the design stage of the installation. From an initial
single numerical simulation (taking into account induction phenomena), a reduced
impedance associated with the furnace is computed. From this value, it is possible to
construct a curve relating the intensity supplied to the thermal power dissipated by the
furnace, without having to carry out further numerical simulations and avoiding long
and costly trial-and-error procedures in the plant. Moreover, the method is general in
the sense that it is independent both of the upstream circuit and of the topology and
materials that may be present inside the furnace. Some numerical results for a real
industrial furnace are shown that assess the performance of the proposedmethodology.

Acknowledgements The authors acknowledge and appreciate the impact that Alain Bossavit’s work has
had on their research related to the mathematical analysis of numerical methods to solve electromagnetism
problems and to the application to the mathematical modeling of various industrial problems.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This
work has been partially supported by FEDER, Ministerio de Ciencia e Innovación through the research
project PID2021-122625OB-I00 and by Xunta de Galicia (Spain) research project GI-1563 ED431C
2021/15.

123

25 Page 16 of 18



Numerical simulation of resistance furnaces...

Declarations

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adachi, M., Yonemori, H.: Considerations of configurations on induction heating type indirect heating
system. In: Proceedings of the IEEE region 10 humanitarian technology conference 2014, vol. 2015–
Jan, pp. 88–93 (2015)

2. Alonso-Rodríguez,A.,Valli,A.: Eddy current approximation ofMaxwell equations: theory.Algorithms
and Applications. Springer, Milan (2010)

3. Amrouche, C., Bernardi, C., Dauge,M., Girault, V.: Vector potentials in three-dimensional non-smooth
domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

4. Balabanian, N., Bickart, T.: Electrical network theory. Wiley, New York (1969)
5. Bermúdez, A., Rodríguez R., Salgado, P.: Numerical solution of eddy current problems in bounded

domains using realistic boundary conditions. Comput. Methods Appl. Mech. Eng. 194(2), 411–426
(2005)

6. Bermúdez, A., Gómez, D., Muñiz, M.C., Salgado, P.: Transient numerical simulation of a thermoelec-
trical problem in cylindrical induction heating furnaces. Adv. Comput. Math. 26(1–3), 39–62 (2007)

7. Bermúdez, A., Gómez, D., Salgado, P.: Mathematical models and numerical simulation in electromag-
netism. Springer, New York (2014)

8. Bossavit, A.: Computational electromagnetism: variational formulations, complementarity. Edge Ele-
ments. Academic Press series in electromagnetism. Academic Press, San Diego, CA (1998)

9. Bossavit, A.: Most general “non-local” boundary conditions for the Maxwell equation in a bounded
region. COMPEL - Int. J. Comput. Math. Electr. Electron. Eng. 19(2), 239–245 (2000)

10. Callegaro, L.: Electrical impedance. Measurements and Applications. Taylor & Francis, Boca Raton,
Principles (2013)

11. Edgerley, C., Smith, L., Wilford, C.F.: Electric metal melting - a review. Power Eng. J. 2(2), 83–92
(1988)

12. Fletcher, S.: The two-terminal equivalent network of a three-terminal electrochemical cell. Elec-
trochem. Commun. 3, 692–696 (2001)

13. Gross, P.W., Kotiuga, P.R.: Electromagnetic theory and computation: a topological approach, 1st edn.
No. 48 in Mathematical Sciences Research Institute Publications. Cambridge University Press, Cam-
bridge (2004)

14. Grzella, J., Sturm, P., Krüger, J., Reuter, M.A., Kögler, C., Probst, T.: Metallurgical furnaces. In:
Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA (2003)

15. Jankowski, T.A., Pawley, N.H., Gonzales, L.M., Ross, C.A., Jurney, J.D.: Approximate analytical
solution for induction heating of solid cylinders. Appl. Math. Model. 40(4), 2770–2782 (2016)

16. Kawashima, R., Mishima, T., Ide, C.: Three-phase to single-phase multiresonant direct AC-AC con-
verter for metal hardening high-frequency induction heating applications. IEEE Trans. Power Electron.
36(1), 639–653 (2021)

17. Kettunen, L.: Fields and circuits in computational electromagnetism. IEEE Trans. Magn. 37(5), 3393–
3396 (2001)

123

Page 17 of 18 25

http://creativecommons.org/licenses/by/4.0/


A. Bermúdez et al.

18. Nguyen, B.A., Phan, Q.D., Nguyen, D.M., Nguyen, K.L., Durrieu, O., Maussion, P.: Parameter identi-
fication method for a three-phase induction heating system. IEEE Trans. Ind. Appl. 51(6), 4853–4860
(2015)

19. Puckett, T.:Anote on the admittance and impedancematrices of a n-terminal network. IRETransactions
- Circuit Theory CT-3, 70–75 (1956)

20. Ramírez,M., Trapaga, G.:Mathematical modeling of a direct current electric arc: part I. Analysis of the
characteristics of a direct current arc. Metallurgical and Materials Transactions B: Process Metallurgy
and Materials Processing Science 35(2), 363–372 (2004)

21. Redondo, R.C., Melchor, N.R., Redondo, M., Quintela, F.R.: Electrical power and energy systems
instantaneous active and reactive powers in electrical network theory: a review of some properties. Int.
J. Electr. Power Energy Syst. 53, 548–552 (2013)

22. Tan,Y.,Wen, S., Shi, S., Jiang,D., Dong,W.,Guo,X.: Numerical simulation for parameter optimization
of silicon purification by electron beam melting. Vacuum 95, 18–24 (2013)

23. Tarhasaari, T., Kettunen, L., Bossavit, A.: Some realizations of a discrete Hodge operator: a reinter-
pretation of finite element techniques [for EM field analysis]. IEEE Trans. Magn. 35(3), 1494–1497
(1999)

24. Tellegen, B.: A general network theorem, with applications. Philips Res. Rep. 7, 259–269 (1952)
25. Touzani, R., Rappaz, J.: Mathematical models for eddy currents and magnetostatics. Scientific Com-

putation. Springer, Dordrecht (2014)
26. Vutova, K., Donchev, V.: Non-stationary heat model for electron beam melting and refining - an

economic and conservative numerical method. Appl. Math. Model. 40(2), 1565–1575 (2016)
27. Walton, R.R.: Furnaces, electric, resistance furnaces, p. 12. Wiley, Ltd, New Jersey (2000)
28. Yermekova, M., Galunin, S.A.: Numerical simulation and automatic optimization of the disk induction

heating system. In: Proceedings of the 2017 IEEE Russia section young researchers in electrical and
electronic engineering conference, ElConRus 2017, pp. 1085–1090 (2017)

29. Zadeh, L.A.: Multipole analysis of active networks. IRE Trans. Circ. Theory 4(3), 97–105 (1957)
30. Zhang, X.K., He, Y.L., Tang, S.Z., Wang, F.L., Xie, T.: An electromagnetics-temperature-component

multi-physical coupled model for electric furnace in calcium carbide smelting process. Appl. Therm.
Eng. 165, 114552 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

25 Page 18 of 18


	Numerical simulation of resistance furnaces by using distributed and lumped models
	Abstract
	1 Introduction
	2 Statement of the problem
	2.1 Geometry of the furnace
	2.2 Mathematical model

	3 Equivalent lumped model
	4 Numerical results and discussion
	5 Some remarks
	5.1 Reduced impedance method versus heater equivalent circuit
	5.2 Multi-terminal network versus two-port network

	6 Conclusions
	Acknowledgements
	References


