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Abstract
An essential tool in data-driven modeling of dynamical systems from frequency
responsemeasurements is the barycentric formof the underlying rational transfer func-
tion. In this work, we propose structured barycentric forms for modeling dynamical
systems with second-order time derivatives using their frequency domain input-output
data. By imposing a set of interpolation conditions, the systems’ transfer functions are
rewritten in different barycentric forms using different parametrizations. Loewner-like
algorithms are developed for the explicit computation of second-order systems from
data based on the developed barycentric forms. Numerical experiments show the per-
formance of these new structured data-driven modeling methods compared to other
interpolation-based data-driven modeling techniques from the literature.
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1 Introduction

Depending on the underlying physics, dynamical systems can inherit differential struc-
tures leading to specific physical interpretations. In this work, we concentrate on
systems that are described by differential equations with second-order time deriva-
tives of the form

Mẍ(t) + Dẋ(t) + Kx(t) = bu(t),

y(t) = cTx(t),
(1)

with M, D, K ∈ R
n×n and b, c ∈ R

n . Systems like (1) typically appear in the mod-
eling of mechanical, electrical, and related structures [1, 13, 27, 29]. In the frequency
domain (also known as the Laplace domain), the input-to-output behavior of (1) is
equivalently given by the corresponding transfer function

H(s) = cT(s2M + sD + K )−1b, (2)

which is a degree-2n rational function in s, where n is the state-space dimension of (1).
In recent years, several methods have been developed for learning reduced-order

state-space representations of dynamical systems from given data. However, most of
these approaches consider the classical, unstructured case of first-order systems of the
form

Eẋ(t) = Ax(t) + bu(t),

y(t) = cTx(t),
(3)

where E, A ∈ R
n×n and b, c ∈ R

n , with the transfer function

H(s) = cT(sE − A)−1b. (4)

Data-driven reduced-order modeling—the construction of models describing the
underlying dynamics of unknown systems from measurements—has become an
increasingly prominent discipline. It is an essential tool in situations when explicit
models in the form of state space formulations are not available, yet abundant
input/output data are. Examples of suchmethods for data-driven modeling are the sub-
space identification framework [24–26], dynamic mode decomposition [7, 39, 42, 48],
operator inference [33, 35, 40], the Loewner framework [28, 34], rational least-squares
methods such as vector fitting [19, 23] or RKFIT [10], or the transfer-function based
H2-optimal model reduction [9]. The importance of preserving internal system struc-
tures in the computation of reduced-order approximations of dynamical systems for
the case of second-order systems (1) has been observed in [41, 50], which allows in par-
ticular the reinterpretation of system quantities, the preservation of structure-inherent
properties and provides cheap-to-evaluate models with high accuracy. However, only
a few data-driven approaches have been recently extended to (1) such as the Loewner
framework [36, 43] and operator inference [20, 44, 45]. We note that in principle one
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can rewrite (1) into (3) by introducing auxiliary variables and then applying data-
driven methods for the construction of (3). However, this destroys the internal system
structure since the learned model will not have second-order form and converting it
into (1) is not always possible [18, 50].

In this work, we do not assume access to full-state trajectories, i.e., the samples of
x(t), and consider the cases in which only input-output measurements are available
in the frequency domain in terms of evaluations of the system’s transfer function (2).
For this type of data, the goal in data-driven reduced-order modeling is the construc-
tion of low-order rational functions ̂H(s) that approximate the given data well in an
appropriate measure. These rational functions can be interpreted as transfer functions
corresponding to dynamical systems. Typically, it is not possible to extract additional
differential structures from general rational functions. For example, even though one
can always convert the structured transfer function in (2) to an unstructured rational
function in (4), the reverse direction is not guaranteed [18, 50].Mostmethods for learn-
ing transfer functions from frequency domain data have been mainly developed for
the unstructured case (3). In particular, such methods include the barycentric Loewner
framework [2], the vector fitting algorithm [19, 23] and the AAA algorithm [30]. The
backbone of these methods is the barycentric form of rational functions, which allows
for computationally efficient constructions of rational interpolants and least-squares
fits [11]. Enforcing structures in the barycentric form allows the design of structured
data-driven modeling algorithms. In [52], this idea led to the extension of the vector
fitting algorithm towards mechanical systems with modal damping structure.

In this paper, we develop new structured barycentric forms associated with the
transfer functions of second-order systems (2). By enforcing interpolation conditions,
we show that the system matrices in (1) satisfy certain equality constraints. Using
different parametrizations of the matrices in (1), we derive corresponding structured
barycentric forms that allow an easy construction of the system matrices (1) and
enforce interpolation by construction. We are using free parameters in the barycentric
forms that are not bound in the derivation, in order to design several Loewner-like algo-
rithms, allowing the direct construction of second-order systems from given frequency
domain data with interpolating transfer functions. We also present several strategies
that allow the choice of free parameters in the structured barycentric forms to enforce
additional properties in the constructed system matrices such as positive definiteness.
Numerical examples are used to verify the developed theory and algorithms based on
these barycentric forms.

The rest of the paper is organized as follows: In Section 2, we include mathematical
preliminaries, needed for the theoretical derivations in this paper, and briefly review
the theory about the barycentric form of unstructured systems (3). Then, we develop
the structured barycentric forms in Section 3, followed by computational algorithms in
Section 4 for the explicit construction of second-order systems (1) from frequency data.
Section 5 illustrates the effectiveness of the presented methods for several numerical
examples, including the vibrational responses of an underwater drone and bone tissue.
The paper is concluded in Section 6.
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2 Mathematical preliminaries and first-order systems analysis

For our derivation of the (structured) barycentric forms, the Sherman-Morrison-
Woodbury formula for matrix inversion takes an essential role. Given an invertible
matrix X ∈ C

r×r and two vectors u, v ∈ C
r such that X + uvT is also invertible, the

Sherman-Morrison-Woodbury formula yields

(

X + uvT
)−1 = X−1 − X−1uvTX−1

1 + vTX−1u
; (5)

see, for example, [21]. In this work, we focus on transfer functions as in (2) and (4)
where the inverse in the middle is pre- and post-multiplied by two vectors. Thus we
consider the following adaption of (5).

Proposition 1 Let X ∈ C
r×r be an invertible matrix and let u, v ∈ C

r be column
vectors such that X + uvT is also invertible. Then, for any z ∈ C

r it holds

zT
(

X + uvT
)−1

u = zTX−1u

1 + vTX−1u
. (6)

Let H(s) denote the transfer function of an unknown dynamical system.We assume
that we have access to evaluations of the transfer function at distinct frequency points
λ1, . . . , λr ∈ C such that

H(λ1) = h1, H(λ2) = h2, . . . , H(λr ) = hr . (7)

We denote the complete data set of frequency points and transfer function values by
{(λi , hi )| 1 ≤ i ≤ r}.

Next, we consider the parameterization of first-order (unstructured) dynamical
systems of the form (3) with the transfer function ̂H(s) = ĉT(s ̂E − ̂A)−1

̂b that
interpolates the given data (7). In the following, the first-order dynamical system (3)
of order r is denoted by ̂ΣFO : (̂E, ̂A,̂b, ĉ). A slightly different proof of the next result
can be found in [3] for the case of multi-input/multi-output dynamical systems. For
thoroughness, we include a proof here as it will be the starting point for the structured
variants considered later on.

Lemma 1 Given the data (7), define

Λ = diag(λ1, . . . , λr ) ∈ C
r×r and ĉ = [

h1 . . . hr
]T ∈ C

r ,

and let 1Tr = [

1 . . . 1
] ∈ C

1×r be the vector of ones. If the first-order model ̂ΣFO :
(̂E, ̂A,̂b, ĉ) is constructed such that

̂EΛ − ̂A = ̂b1Tr (8)
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holds, where ̂b = [

w1 . . . wr
]T ∈ C

r contains free parameters with wk �= 0, for
k = 1, . . . , r , and the matrix ̂E is invertible, then the transfer function

̂H(s) = ĉT(s ̂E − ̂A)−1̂b (9)

of ̂ΣFO interpolates the data in (7), i.e., it holds

̂H(λ1) = h1, ̂H(λ2) = h2, . . . , ̂H(λr ) = hr . (10)

Proof Without loss of generality, we show the proof tailored specifically to the case
̂E = Ir . This scenario is by no means restrictive since the matrix ̂E is considered to
be invertible, and thus, can be incorporated into the matrices ̂A and ̂b, accordingly.
Let ei denote the i-th unit vector of length r . By multiplying the constraint in (8) with
ei from the right, one obtains

(Λ − ̂A)ei = ̂b1Tr ei

and, therefore,
(λi Ir − ̂A)ei = ̂b. (11)

Due to the fact that the entries of̂b are nonzero, λi is not an eigenvalue of ̂A. We prove
this claim by contradiction. Let the entries of̂b be nonzero and assume that λi is an
eigenvalue of ̂A with the corresponding left eigenvector v. Thus, replacing ̂A using
the constraint in (8) and rearranging the eigenvalue equation then yields

vT
(

Λ −̂b1Tr − λi Ir
)

= 0,

and, therefore,
vT (Λ − λi Ir ) =

(

vT̂b
)

1Tr = [

vT̂b . . . vT̂b
]

.

Since the i-th entry of the row vector vT (Λ − λi Ir ) is zero, we consequently have
vT̂b = 0, and thus vT (Λ − λi Ir ) = 0. Let v = [

α1 . . . αr
]T. Using the fact that Λ is

a diagonal matrix, we obtain

vT(Λ − λi Ir )

= [

α1(λ1 − λi ) . . . αi−1(λi−1 − λi ) 0 αi+1(λi+1 − λi ) . . . αr (λr − λi )
]

= 0.

Recall that λk’s are assumed to be distinct, which implies α1 = . . . = αi−1 = αi+1 =
. . . = αr = 0. Moreover, using vT̂b = 0, one obtains αiwi = 0. But recall that
wi �= 0; thus αi = 0 and, in summary, v = 0. However, v is an eigenvector, which
leads to the contradiction. Therefore, λi is not an eigenvalue of ̂A. Because λi Ir − ̂A
is invertible, Equation (11) yields (λi Ir − ̂A)−1

̂b = ei . Then by multiplying this final
relation with ĉT from the left, it holds ĉT(λi Ir − ̂A)−1̂b = ĉTei , which proves the
interpolation conditions (10). ��
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In this work, we do not consider the case of systems ̂ΣFO with differential-algebraic
equations (descriptor systems), for which the matrix ̂E is allowed to be singular. Such
endeavors are kept for future research. Hence, in what follows we consider the matrix
̂E to be invertible. For the simplicity of exposition,we choosewithout loss of generality
the matrix ̂E to be the r×r identity matrix Ir , since any system ̂ΣFO with ̂E invertible
can be equivalently written as (Ir , ̂E−1

̂A, ̂E−1
̂b, ĉ). In this representation, one can

observe that in the construction of ̂ΣFO in (8), r parameters in ̂b remain free to be
chosen. They can, for example, be used to match further r interpolation conditions
additionally to (10).

Using ̂E = Ir , Equation (8) now readsΛ− ̂A = ̂b1Tr . Thus, substituting ̂A into Eq.
(9), the transfer function of ̂ΣFO can be rewritten as

̂H(s) = ĉT(s Ir− ̂A)−1̂b = ĉT
[

s Ir − (Λ −̂b1Tr )
]−1

̂b = ĉT
[

(s Ir − Λ) +̂b1Tr
]−1

̂b.
(12)

Define ̂Φ(s) = s Ir −Λ to be the diagonal matrix function depending on the frequency
parameter s ∈ C. Then, the transfer function in (12) can be formulated as

̂H(s) = ĉT(s Ir − ̂A)−1̂b = ĉT
(

̂Φ(s) +̂b1Tr
)−1

̂b. (13)

The form of the transfer function ̂H(s) in terms of ̂Φ(s) as given by (13) will play
a crucial role in later sections to extend the interpolation theory to the structured
case. The following result, which recovers the classical barycentric form of rational
interpolants, follows from applying Proposition 1 to (13).

Corollary 1 Given the interpolation data (7), the transfer function (13)of the first-order
model that yields the interpolation conditions (10) can be equivalently expressed as

̂H(s) = ĉT̂Φ(s)−1̂b

1 + 1Tr
̂Φ(s)−1̂b

, (14)

where ̂Φ(s) = s Ir −Λ, and Λ, ĉ, and̂b are defined as in Lemma 1. This formula can
be further represented as a barycentric rational interpolation form

̂H(s) =

r
∑

i=1

hiwi

s − λi

1 +
r

∑

i=1

wi

s − λi

. (15)

Proof Applying the identity (6) in Proposition 1 to ̂H (s) = ĉT
(

̂Φ(s) +̂b1Tr
)−1

̂b using

u = ̂b, v = 1r , z = ĉ, X = ̂Φ(s)
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yields (14). The fact that ̂Φ(s) is diagonal and the definitions of̂b and ĉ directly lead
to

ĉT̂Φ(s)−1̂b =
r

∑

i=1

hiwi

(s − λi )
and 1Tr

̂Φ(s)−1̂b =
r

∑

i=1

wi

(s − λi )
,

which then together result in the barycentric form (15). ��
As stated earlier, the expression (15) is known as the barycentric form of the rational

interpolant and is awell-studied object [11] as it forms the foundation formany rational
approximation techniques [2, 30]. The derivation of the barycentric form inCorollary 1
follows a perspective from systems and control theory that aligns well with the second-
order dynamics we study next. By construction, the form (14) interpolates the given
data in the points λi . These are classically referred to as support points [11], while the
wi ’s are called the weights of (14).

The additional value of one in the denominator of (14) appears as a result of the
Sherman-Morrison-Woodbury formula. Typically, in the classical theory of barycen-
tric (Lagrange) interpolation, such a term does not appear in the denominator of the
barycentric formula; see in particular [11, 30]. The rational function represented in
(14) is strictly proper since the degree of the denominator is greater than the one of
the numerator, which aligns with the setting of corresponding LTI systems. Although
this may seem restrictive, the proposed approach can also accommodate proper ratio-
nal functions corresponding to LTI systems with a nonzero feed-through term in the
state-output equation.

3 Structured barycentric forms

As in the previous section, we assume to have transfer function measurements of
the form (7) given and aim to construct models that fit the given data. However, in
contrast to Section 2, we aim, from now on, to construct structured models of the form
(1) denoted by ̂ΣSO : ( ̂M, ̂D, ̂K ,̂b, ĉ), with the model matrices ̂M, ̂D, ̂K ∈ R

r×r and
̂b, ĉ ∈ R

r . Before we present the main results of this work, we introduce the following
two sets of assumptions that will be needed later on.

Assumption 1 For the model matrices ̂ΣSO : ( ̂M, ̂D, ̂K ,̂b, ĉ) and given data in Eq. 7,
we assume that

(a) the matrix ̂M is invertible, and (A1.1)
(b) the interpolation points {λ1, . . . , λr } are all distinct. (A1.2)

The reasons for imposing Assumptions (A1.1) and (A1.2) are similar to those in
the case of first-order systems from the previous section. More specifically, Assump-
tion (A1.1) enforces the system (1) to be described by ordinary differential equations
rather than differential-algebraic ones, which require a singular ̂M. The modeling
of such descriptor systems is left for future research. As in the first-order case,
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Assumption (A1.2) is necessary to avoid inconsistencies in the interpolation condi-
tions. The case in which repeated interpolation points and derivative data are used for
Hermite interpolation will be considered in a separate work.

Assumption 2 For the model matrices ̂ΣSO : ( ̂M, ̂D, ̂K ,̂b, ĉ) and given data in (7),
we assume for i, k = 1, . . . , r and i �= k that either

(a) −(λk + λi ) is not an eigenvalue of the matrix ̂M−1
̂D, or (A2.1)

(b) (λkλi ) is not an eigenvalue of the matrix ̂M−1
̂K . (A2.2)

In contrast to Assumptions (A1.1) and (A1.2), which need to hold both at the same
time, only one of Assumptions (A2.1) and (A2.2) will be imposed at once, since
these two assumptions are equivalent to each other for their corresponding structured
barycentric form, as it will become clearer later on. Although Assumptions (A2.1)
and (A2.2) may seem restrictive at first glance, we will show that they occur naturally
for practical choices of the parameters in the new structured barycentric forms. Amore
detailed discussion of this topic is provided in Section 4.3.

3.1 Interpolatory second-order transfer functions

The following result extends Lemma 1 to second-order systems establishing sufficient
conditions for the interpolation of given transfer function data (7).

Lemma 2 Given the interpolation data (7), define

Λ = diag(λ1, . . . , λr ) ∈ C
r×r and ĉ = [

h1 . . . hr
]T ∈ C

r ,

and let 1Tr = [

1 . . . 1
] ∈ C

1×r be the vector of ones. Let the second-order model
̂ΣSO : ( ̂M, ̂D, ̂K ,̂b, ĉ) be constructed such that

̂MΛ2 + ̂DΛ + ̂K = ̂b1Tr , (16)

holds, where ̂b = [

w1 . . . wr
]T ∈ C

r contains free parameters with wk �= 0 for
k = 1, . . . , r . If Assumptions (A1.1) and (A1.2) as well as either Assumption (A2.1)
or (A2.2) hold, then the transfer function

̂H(s) = ĉT(s2 ̂M + s ̂D + ̂K )−1
̂b (17)

of ̂ΣSO interpolates the data in (7), i.e., it holds

̂H(λ1) = h1, ̂H(λ2) = h2, . . . , ̂H(λr ) = hr . (18)

Proof Without loss of generality, we show the proof tailored specifically to the case
̂M = Ir . This scenario is by no means restrictive since the ̂M matrix is considered
to be invertible; see Assumption (A1.1). Thus, it can be incorporated into ̂D, ̂K ,
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and̂b, accordingly. For the consideration of eigenvalues of second-order systems, we
introduce the augmented matrices

E =
[

Ir 0
0 ̂M

]

= I2r , A =
[

0 Ir
− ̂K − ̂D

]

. (19)

As the entries of̂b are nonzero and with Assumption (A2.1) that −(λk + λi ) is not an
eigenvalue of matrix ̂D, the interpolation point λi is not a solution to the linearized
eigenvalue problemof thematrix pencil (A,E) in (19), i.e., it is not an eigenvalue of the
quadratic pencil involving ̂M, ̂D and ̂K .We prove this claim by contradiction. Assume
that λi is an eigenvalue of A with the corresponding left-eigenvector vT = [

vT1 vT2
]

.
Thus, it holds

[

vT1 vT2
]

(λiE − A) = 0.

Employing the blockmatrix structure from (19) yields the quadratic eigenvalue relation

λ2i v
T
2 Ir + λiv

T
2
̂D + vT2

̂K = 0. (20)

By multiplying the constraint in (16) with ei from the right, we obtain for 1 ≤ i ≤ k
that

(λ2i Ir + ̂Dλi + ̂K )ei = ̂b. (21)

Then, multiplication of this last equation (21) with vT2 from the left yields

λ2i v
T
2ei + λiv

T
2
̂Dei + vT2

̂Kei = vT2
̂b. (22)

It follows directly from (20) and (22) that vT2
̂b = 0. Let the eigenvector be given as

v2 = [

α1 . . . αr
]T. Without loss of generality assume that ̂D is a diagonal matrix with

̂D = diag(δ1, . . . , δr ). Now we use (16) to describe the stiffness matrix ̂K in terms of
the rest such that ̂K = ̂b1Tr − ̂DΛ − Λ2 and substitute this relation into (20) to obtain

0 = λ2i v
T
2 + λiv

T
2
̂D + vT2(

̂b1Tr − ̂DΛ − Λ2)

= vT2
̂D(λi Ir − Λ) + vT2(λ

2
i Ir − Λ2) + vT2

̂b
︸︷︷︸

= 0

1Tr

= vT2(
̂D + λi Ir + Λ)(λi Ir − Λ)

= [

α1(δ1 + λ1 + λi )(λ1 − λi ) . . . 0 . . . αr (δr + λr + λi )(λr − λi )
]

.

Since the λk’s are distinct (Assumption (A1.2)) and δk +λk +λi �= 0 for all 1 ≤ k ≤ r
due to Assumption (A2.1), it implies that α1 = . . . = αi−1 = αi+1 = . . . = αr = 0.
Moreover, using vT2

̂b = 0, it holds that αiwi = 0. Fromwi �= 0, it follows that αi = 0,
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yielding v2 = 0. However, v2 is an eigenvector, thus leading to the contradiction.
Therefore, λi is not a solution to the quadratic eigenvalue problem.

As a results, the matrix λ2i Ir + λi ̂D + ̂K is non-singular, and by multiplying (21)
with (Irλ2i + ̂Dλi + ̂K )−1 from the left, we get

(Irλ2i + ̂Dλi + ̂K )−1
̂b = ei

and, therefore,
ĉT(Irλ2i + ̂Dλi + ̂K )−1

̂b = ĉei = hi .

Hence, we have shown that ̂H(λi ) = hi for any 1 ≤ i ≤ r . Note that we only used
(A2.1) out of Assumption 2 in this proof, which allowed the description of the stiffness
matrix ̂K by the other terms in (16). An analogous proof relies on Assumption (A2.2),
which allows the reformulation of (16) for the dampingmatrix ̂D. Due to the similarity
to the presented proof, we omit this part. ��

Similar to the case of first-order systems in Section 2, we can eliminate one of the
unknownmatrices in the constraint (16) by usingAssumption (A1.1). Thereby, wewill
choose the mass matrix to be the r -dimensional identity matrix, ̂M = Ir . However, in
contrast to the case of first-order systems, this leaves us with three remaining unknown
matrices in (16) instead of two. Following diagonalization assumptions, which wewill
point out later in detail, this leaves us with 2r free parameters to choose for the explicit
realization of interpolating second-order systems.

Remark 1 Aside from this work, a data-driven method for the derivation of structured
models with interpolating transfer functions has been developed in [43]. Therein, the
authors use constraints similar to (16) to parametrize themodelmatrices as the solution
of large-scale linear systems of equations to enforce the interpolation conditions. The
unknowns in these linear systems correspond to the entries of the vectorized state-space
quantities. There is no discussion of or connection to structured barycentric forms
in [43] (which represents themain novelty of the currentwork) as [43] is directly related
to and based on the non-barycentric Loewner framework for interpolation [28] and
the projection-based interpolatory model reduction of structured systems [8]. Further
investigating [43] may provide future directions for extending the barycentric form to
other structures than those considered in the presented work.

In the following derivation of structured barycentric forms, we will make use of
the equality constraint in (16) that enforces r interpolation conditions. As mentioned
above, the remaining free 2r parameters are given in the input vector̂b and either in
the stiffness matrix ̂K or damping matrix ̂D. Therefore, different barycentric forms
result from the reformulation of (16) in terms of either stiffness (in Section 3.2) or
damping matrix (in Section 3.3).
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3.2 Parametrization with constrained stiffness matrix

3.2.1 General setup

In this section, we incorporate the remaining free parameters of the system ̂ΣSO into
the damping matrix ̂D and the input vector̂b. Therefore, from (16) it follows that the
stiffness matrix satisfies

̂K = ̂b1Tr − ̂MΛ2 − ̂DΛ. (23)

Substituting (23) into the transfer function ̂H(s) corresponding to the second-order
model ̂ΣSO : ( ̂M, ̂D, ̂K ,̂b, ĉ) yields

̂H(s) = ĉT(s2 ̂M + s ̂D + ̂K )−1
̂b

= ĉT(s2 ̂M + s ̂D +̂b1Tr − ̂MΛ2 − ̂DΛ)−1
̂b

= ĉT(̂Φ(s) +̂b1Tr )
−1̂b, (24)

where the matrix-valued function ̂Φ(s) is given by

̂Φ(s) = s2 ̂M + s ̂D − ̂MΛ2 − ̂DΛ

= ̂M(s2 Ir − Λ2) + ̂D(s Ir − Λ)

= (

̂M(s Ir + Λ) + ̂D
)

(s Ir − Λ).

The following lemma states the structured barycentric form of (24) in terms of the
input and output vectors, and the matrix-valued function ̂Φ(s).

Lemma 3 Given the interpolation data (7), the transfer function (24) of the second-
order model that yields the interpolation conditions (18) can be equivalently expressed
as

̂H(s) = ĉT̂Φ(s)−1̂b

1 + 1Tr
̂Φ(s)−1̂b

,

where ̂Φ(s) = (

̂M(s Ir + Λ) + ̂D
)

(s Ir − Λ), and Λ, ĉ, and ̂b are as defined in
Lemma 1.

Proof Using Proposition 1 for the formulation of ̂H(s) in (24), with the following
choice of vectors and matrices

u = ̂b, v = 1r , z = ĉ, X = ̂Φ(s)

yields the result of the lemma. ��
Asmentioned in Section 3.1, we choose the mass matrix ̂M to be the identity due to

Assumption (A1.1). Under the assumption that ̂D has no higher-order Jordan blocks,
it can be diagonalized while preserving ̂M = Ir such that

̂D = diag(δ1, . . . , δr ) and ̂M = Ir = diag(1, . . . , 1).
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In this case, the matrix-valued function ̂Φ(s) is a diagonal matrix for all s ∈ C, which
allows us to write

̂Φ(s) = (

̂M(s Ir + Λ) + ̂D
)

(s Ir − Λ)

= diag
(

(s − λ1)(s + λ1 + δ1), . . . , (s − λr )(s + λr + δr )
)

. (25)

Using this diagonal form of the matrix-valued function in Lemma 3 yields the follow-
ing result: a structured barycentric formula for second-order transfer functions. The
terms in (25) involving the sum of the support points λi and damping parameters δi
can additionally be abbreviated by introducing σi = −(δi + λi ). These new param-
eters resemble the support points in the barycentric form but do not correspond to
interpolation conditions. Therefore, we refer to the σi ’s further on as quasi-support
points.

Theorem 1 Given interpolation points and measurements {(λi , hi )| 1 ≤ i ≤ r}
and let Assumptions (A1.1) and (A1.2) as well as Assumption (A2.1) hold. The
barycentric form of the transfer function ̂H(s) corresponding to second-order system
̂ΣSO : ( ̂M, ̂D, ̂K ,̂b, ĉ) is given by

̂H(s) =

r
∑

i=1

hiwi

(s − λi )(s − σi )

1 +
r

∑

i=1

wi

(s − λi )(s − σi )

, (26)

with the weights 0 �= wi ∈ C and quasi-support points σi = −(δi + λi ), where
δi ∈ C are damping parameters, for 1 ≤ i ≤ r . The barycentric form (26) satisfies the
interpolation conditions (18). The matrices of the corresponding second-order system
are given by

̂M = Ir , ̂D = − diag(λ1 + σ1, . . . , λr + σr ),

̂K = ̂b1Tr − Λ2 − ̂DΛ, ̂b = [

w1 . . . wr
]T

,

ĉ = [

h1 . . . hr
]T

.

(27)

Proof By making use of the diagonal structure of ̂Φ(s) in (25) and the other compo-
nents

1r = [

1 . . . 1
]T

, ̂b = [

w1 . . . wr
]T

, ĉ = [

h1 . . . hr
]T
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in the formulation of the transfer function in Lemma3, the transfer function is rewritten
in barycentric form by multiplying out the matrix-vector products as

̂H(s) = ĉT̂Φ(s)−1
̂b

1 + 1Tr
̂Φ(s)−1̂b

=

r
∑

i=1

hiwi

(s − λi )(s + λi + δi )

1 +
r

∑

i=1

wi

(s − λi )(s + λi + δi )

.

Setting the quasi-support points σi = −(δi + λi ), the result in (26) follows directly.
The realization (27) is then given by rearranging the different parameters into the
corresponding matrices and vectors. ��

Note that given the notation Σ = diag(σ1, . . . , σr ), the realization in (27) can
equivalently be written as

̂M = Ir , ̂D = −Λ − Σ,

̂K = ̂b1Tr + ΛΣ, ̂b = [

w1 . . . wr
]T

,

ĉ = [

h1 . . . hr
]T

.

The free parameters that explicitly appear above are 2r in total and are given by
the entries of the vector̂b and of the diagonal matrix Σ , i.e., the free parameters in
the structured barycentric form (26) are the weights {w1, . . . , wr } together with the
quasi-support points {σ1, · · · , σr }.

3.2.2 Systems with zero dampingmatrix

An important subclass of second-order systems (1) is given by a zero damping matrix,
i.e., D = 0. These occur, for example, in the case of “conservative” dynamics where
no dissipation/damping is considered. Hamiltonian systems belong to this category [1,
29]. Retaining this additional structure allows, for example, modeling the preservation
of energy in the system. Another problem class that can be modeled by a zero damping
matrix is the case of hysteretic damping, i.e., constant damping over the complete
frequency range [6, 16]. This is used, for example, to model the general influence of
physical structures on the damping behavior of systems. Thereby, the damping matrix
is considered to be frequency-dependent with D(s) = 1

s iηK . Inserting this damping
definition into the second-order transfer function (2) yields

H(s) = cT
(

s2M + s

s
iηK + K

)−1
b = cT(s2M + (1 + iη)K )−1b,

which can be seen as a system with a complex stiffness matrix and zero damping
matrix. The following corollary refines the results from Theorem 1 to the case of
system structure with zero damping matrix, ̂D = 0.
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Corollary 2 Given interpolation points and measurements {(λi , hi )| 1 ≤ i ≤ r}
and let Assumptions (A1.1) and (A1.2) as well as Assumption (A2.1) hold. The
barycentric form of the transfer function ̂H(s) corresponding to second-order system
̂ΣSO : ( ̂M, 0, ̂K ,̂b, ĉ) is given by

̂H(s) =

r
∑

i=1

hiwi

s2 − λ2i

1 +
r

∑

i=1

wi

s2 − λ2i

, (28)

with the weights 0 �= wi ∈ C, for 1 ≤ i ≤ r . The barycentric form (28) satisfies
the interpolation conditions (18) and it can be written as a second-order dynamical
systems with zero damping, i.e.,

̂H(s) = ĉT(s2 ̂M + ̂K )−1
̂b,

where

̂M = Ir , ̂K = ̂b1Tr − Λ2, ̂b = [

w1 . . . wr
]T

, ĉ = [

h1 . . . hr
]T

.

As in Theorem 1, Assumption (A2.1) needs to hold for (28) to satisfy the interpo-
lation conditions Eq. (18). However, in the special case of ̂D = 0, Assumption (A2.1)
simplifies to λi �= −λk , for all i �= k. In particular, if the interpolation points are
chosen on the imaginary axis, no complex conjugate pairs are allowed in the set of
interpolation points.

3.3 Parametrization with constrained dampingmatrix

In this section, we incorporate the remaining free parameters of the system ̂ΣSO into
the stiffness matrix ̂K and the input vector̂b. Therefore, it follows from (16) that the
damping matrix satisfies

̂DΛ = ̂b1Tr − ̂MΛ2 − ̂K . (29)

Under the assumption that Λ is invertible, i.e., zero is not an interpolation point, one
can equivalently write (29) as

̂D = ̂b1TrΛ
−1 − ̂MΛ − ̂KΛ−1. (30)
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By substituting (30) into the formula of the transfer function ̂H(s) in (17), correspond-
ing to the second-order model ̂ΣSO : ( ̂M, ̂D, ̂K ,̂b, ĉ), it holds that

̂H(s) = ĉ(s2 ̂M + s ̂D + ̂K )−1̂b

= ĉT
(

s2 ̂M + s
(

̂b1TrΛ
−1 − ̂MΛ − ̂KΛ−1

)

+ ̂K
)−1

̂b

= ĉT
(

̂M(s2 Ir − sΛ) + ̂K (Ir − sΛ−1) + ŝb1TrΛ
−1

)−1
̂b

= ĉT
(

̂Ψ (s) + ŝb1TrΛ
−1

)−1
̂b, (31)

where the matrix-valued function ̂Ψ (s) is given by

̂Ψ (s) = ̂M(s2 Ir − sΛ) + ̂K (Ir − sΛ−1)

= (s ̂M − ̂KΛ−1)(s Ir − Λ).

Similar to Lemma 3, the following lemma states the structured barycentric form of
(31) in terms of the input and output vectors and the matrix-valued function ̂Φ(s).

Lemma 4 Given the interpolation data (7), the transfer function (31) of the second-
order model that yields the interpolation conditions (18) can be equivalently expressed
as

̂H(s) = ĉT̂Ψ (s)−1̂b

1 + ŝfT̂Ψ (s)−1̂b

where ̂Ψ (s) = (s ̂M − ̂KΛ−1)(s Ir − Λ), ̂f = Λ−11r and Λ, ĉ, and̂b are defined as
in Lemma 1.

Proof As previously done in the proof of Lemma 3, we apply Proposition 1 to the
formulation of ̂H(s) in (31), with the following choice of vectors and matrices

u = ̂b, v = ŝf = sΛ−11r , z = ĉ, X = ̂Ψ (s),

which yields the result of the lemma. ��
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As in Section 3.2, we can assume that the mass matrix ̂M to be the identity due to
Assumption (A1.1). However, this time, we additionally assume that ̂K has no higher
order Jordan blocks such that we can diagonalize the stiffness matrix while preserving
the identity mass matrix

̂K = diag(κ1, . . . , κr ) and ̂M = Ir = diag(1, . . . , 1).

Therefore, the matrix-valued function ̂Ψ (s) is a diagonal matrix for all s ∈ C, which
can be written as

̂Φ(s) = (s ̂M − ̂KΛ−1)(s Ir − Λ)

= diag
(

(s − λ1)(s − κ1λ
−1
1 ), . . . , (s − λr )(s − κrλ

−1
r )

)

. (32)

Using this diagonal form of thematrix-valued function in Lemma 4 yields the barycen-
tric form for the constrained damping case.

Theorem 2 Given interpolation points and measurements {(λi , hi )| 1 ≤ i ≤ r}, let
Assumptions (A1.1) and (A1.2) as well as Assumption (A2.2) hold. The barycen-
tric form of the transfer function ̂H(s) corresponding to second-order system ̂ΣSO :
( ̂M, ̂D, ̂K ,̂b, ĉ) is given by

̂H(s) =

r
∑

i=1

hiwi

(s − λi )(s − θi )

1 +
r

∑

i=1

swiλ
−1
i

(s − λi )(s − θi )

, (33)

with the weights 0 �= wi ∈ C and quasi-support points θi = κiλ
−1
i , where κi ∈ C

are stiffness parameters, for 1 ≤ i ≤ r . The barycentric form (33) satisfies the
interpolation conditions (18). Moreover, the matrices of the corresponding second-
order system are given as

̂M = Ir , ̂D = ̂b1TrΛ
−1 − Λ − ̂KΛ−1,

̂K = diag(θ1λ1, . . . , θrλr ), ̂b = [

w1 . . . wr
]T

,

ĉ = [

h1 . . . hr
]T

.

(34)

Proof By using the diagonal structure of ̂Ψ (s) in (32), and the structure of the other
components

̂f = Λ−11r = [

λ−1
1 . . . λ−1

r

]T
, ̂b = [

w1 . . . wr
]T

, ĉ = [

h1 . . . hr
]T

,
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in the formulation of the transfer function in Lemma4, the transfer function is rewritten
in barycentric form by multipliying out the matrix-vector products as

̂H(s) = ĉT̂Ψ (s)−1̂b

1 + ŝfT̂Ψ (s)−1̂b
=

r
∑

i=1

hiwi

(s − λi )(s − κiλ
−1
i )

1 +
r

∑

i=1

swiλ
−1
i

(s − λi )(s − κiλ
−1
i )

.

Setting the quasi-support points θi = κiλ
−1
i , the result in (33) follows directly. The

realization (34) is then given by rearranging the different parameters into the corre-
sponding matrices and vectors. ��

As for the realization of matrices in Theorem 1, the matrices in (34) can be refor-
mulated by introducing the notation Θ = diag(θ1, . . . , θr ) such that

̂M = Ir , ̂D = ̂b1TrΛ
−1 − Λ − Θ,

̂K = ΘΛ, ̂b = [

w1 . . . wr
]T

,

ĉ = [

h1 . . . hr
]T

.

The free parameters that explicitly appear above are 2r in total and are given by the
entries of the vector̂b and of the diagonal matrix Θ , i.e., the free parameters in the
structured barycentric form (33) are given by the weights {w1, . . . , wr } together with
the quasi-support points {θ1, · · · , θr }.

4 Computational aspects and procedures

In this section, we discuss the computational aspects of the construction of interpolat-
ing second-ordermodels from data based on the different barycentric forms introduced
in the previous section.

4.1 Linearized structured barycentric Loewner frameworks

The different barycentric forms presented in this paper are designed to interpolate, by
construction, given transfer function data {(λi , hi )| 1 ≤ i ≤ r}. However, in all three
structured forms, free parameters remain. In the first-order case (Corollary 1), these
can be used, for example, to interpolate additional transfer function data {(μi , gi )| 1 ≤
i ≤ r}, where it is assumed that the interpolation points of the two sets are distinct,
i.e.,

{λ1, . . . , λr } ∩ {μ1, . . . , μr } = ∅.

The resulting method can be seen as a barycentric transfer function version of the
unstructured (first-order) Loewner framework [28].
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Algorithm 1 Linearized K -constrained second-order barycentric Loewner frame-
work.
Input: Left and right interpolation data {(λi , hi )| 1 ≤ i ≤ r} and {(μi , gi )| 1 ≤ i ≤ r},

quasi-support points σ1, . . . , σr ∈ C.
Output: Second-order system matrices ̂M, ̂D, ̂K ,̂b, ĉ.

1 Construct the r -dimensional divided differences matrix

LK =

⎡

⎢

⎢

⎢

⎣

h1 − g1
(μ1 − λ1)(μ1 − σ1)

· · · hr − g1
(μ1 − λr )(μ1 − σr )

.

.

.
. . .

.

.

.
h1 − gr

(μr − λ1)(μr − σ1)
· · · hr − gr

(μr − λr )(μr − σr )

⎤

⎥

⎥

⎥

⎦

.

2 Solve the linear system of equations LKw = g, for the unknown weights w = [

w1 . . . wr
]T and the

given data g = [

g1 . . . gr
]T .

3 Construct the second-order system matrices

̂M = Ir , ̂D = −Λ − Σ, ̂K = ̂b1Tr + ΛΣ, ̂b = w, ĉ = [

h1 . . . hr
]T

,

with Λ = diag(λ1, . . . , λr ) and Σ = diag(σ1, . . . , σr ).

Here, we aim to derive similar algorithms for the interpolation of additional transfer
function data {(μi , gi )| 1 ≤ i ≤ r} via the new structured barycentric forms (26), (28)
and (33) by making use of the remaining free parameters. We can observe that (26)
and (33) have 2r free parameters left, which potentially allow the construction of
models thatmatch the same number of interpolation conditions. However, the resulting
systems of equations that need to be solved are nonlinear in the unknowns and, thus,
need thorough investigations in terms of solvability. For simplicity of exposition, we
consider in this work only linearized versions of the equations by choosing “suitable”
quasi-support pointsσi ’s in (26) and θi ’s in (33) a priori, leading to small linear systems
to solve to satisfy additional r interpolation conditions. A discussion of heuristic
choices for these quasi-support points is given in the upcoming Section 4.3.

The resulting methods based on the barycentric forms (26) and (33) are given
in Algorithms 1 and 2. Both algorithms follow a similar structure. In Step 1 of
Algorithms 1 and 2, the given interpolation data and support points are used to set
up divided differences matrices. The realizations of these matrices are determined by
the underlying barycentric forms (26) and (33).

For example, consider the barycentric form in (26). The goal is to find the weights
w = [

w1 . . . wr
]T in this barycentric form (26) such that the additional interpolation

conditions (36) for {(μi , gi )| 1 ≤ i ≤ r} are satisfied. By inserting the form (26) into
the interpolation conditions (36) and by multiplying both sides with the denominator
of the barycentric form, we obtain the new relation

r
∑

i=1

hiwi

(μ j − λi )(μ j − σi )
= g j +

r
∑

i=1

g jwi

(μ j − λi )(μ j − σi )
,
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for j = 1, . . . , r . Bringing the terms with the unknowns w1, . . . , wr to the left-hand
side yields the relation

r
∑

i=1

(hi − g j )wi

(μ j − λi )(μ j − σi )
= g j , (35)

for j = 1, . . . , r . Rearranging all equations of the form (35) such that the unknowns
can be written as the vectorw = [

w1 . . . wr
]T results in the linear system of equations

LKw = g,

with the data vector g = [

g1 . . . gr
]T and the matrix of divided differences

LK =

⎡

⎢

⎢

⎢

⎣

h1 − g1
(μ1 − λ1)(μ1 − σ1)

· · · hr − g1
(μ1 − λr )(μ1 − σr )

...
. . .

...
h1 − gr

(μr − λ1)(μr − σ1)
· · · hr − gr

(μr − λr )(μr − σr )

⎤

⎥

⎥

⎥

⎦

.

This system of linear equations is then solved in Step 2 of Algorithm 1. A similar
derivation using (33) leads to the divided differences matrix in Step 1 of Algorithm 2
and the solve of an analogous linear system of equations in Step 2 of Algorithm 2.
Under the assumption that the number of given data points r is less than the min-
imal system dimension and suitable choices of support points {σi } and {θi } such
that Assumptions (A1.2), (A2.1) and (A2.2) are satisfied for all interpolation points
λ1, . . . , λr , μ1, . . . , μr , these linear systems of equations have unique solutions.

In Step 3 of Algorithms 1 and 2, the second-order systems are constructed following
the theory of Theorems 1 and 2. In both cases, the transfer functions of the constructed
systems satisfy the 2r imposed interpolation conditions

̂H(λ1) = h1, . . . , ̂H(λr ) = hr , ̂H(μ1) = g1, . . . , ̂H(μr ) = gr . (36)

Algorithm3 shows the barycentric Loewner framework for the case of zero damping
matrices based on Corollary 2. While the main computational steps are following the
same ideas as in Algorithms 1 and 2, the difference to these methods is the lack of the
set of quasi-support points {σi }i=1,...r and {θi }i=1,...r , which results from enforcing
the ̂D = 0 damping model. The corresponding barycentric form (28) has r remaining
free parameters that exactly allow the construction of an interpolating second-order
system satisfying (36).

4.2 Construction of systems with real-valuedmatrices

Inmany applications, a sought-after property of the constructed system is the character-
ization via real-valued matrices. This often allows the reinterpretation of the learned
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Algorithm 2 Linearized D-constrained second-order barycentric Loewner frame-
work.
Input: Left and right interpolation data {(λi , hi )| 1 ≤ i ≤ r} and {(μi , gi )| 1 ≤ i ≤ r},

quasi-support points θ1, . . . , θr ∈ C.
Output: Second-order system matrices ̂M, ̂D, ̂K ,̂b, ĉ.

1 Construct the r -dimensional divided differences matrix

LD =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

h1 − μ1g1λ
−1
1

(μ1 − λ1)(μ1 − θ1)
· · · hr − μ1g1λ

−1
r

(μ1 − λr )(μ1 − θr )
.
.
.

. . .
.
.
.

h1 − μr grλ
−1
1

(μr − λ1)(μr − θ1)
· · · hr − μr grλ

−1
r

(μr − λr )(μr − θr )

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

2 Solve the linear system of equations LDw = g, for the unknown weights w = [

w1 . . . wr
]T and the

given data g = [

g1 . . . gr
]T .

3 Construct the second-order system matrices

̂M = Ir , ̂D = ̂b̂fT − Λ − Θ, ̂K = ΘΛ, ̂b = w, ĉ = [

h1 . . . hr
]T

,

with ̂fT =
[

λ−1
1 . . . λ−1

r

]

, Λ = diag(λ1, . . . , λr ) and Θ = diag(θ1, . . . , θr ).

Algorithm 3 Second-order barycentric Loewner framework with zero damping.
Input: Left and right interpolation data {(λi , hi )| 1 ≤ i ≤ r} and {(μi , gi )| 1 ≤ i ≤ r}.
Output: Second-order system matrices ̂M, ̂D, ̂K ,̂b, ĉ.

1 Construct the r -dimensional divided difference matrix

LKD0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

h1 − g1
μ2
1 − λ21

· · · hr − g1
μ2
1 − λ2r

.

.

.
. . .

.

.

.
h1 − gr
μ2
r − λ21

· · · hr − gr
μ2
r − λ2r

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

2 Solve the linear system of equations LKD0w = g, for the unknown weights w = [

w1 . . . wr
]T and

the given data g = [

g1 . . . gr
]T .

3 Construct the second-order system matrices

̂M = Ir , ̂D = 0, ̂K = ̂b1Tr − Λ2, ̂b = w, ĉ = [

h1 . . . hr
]T

,

with Λ = diag(λ1, . . . , λr ).

quantities and the use of classical tools, established for real systems resulting, for
example, from finite element discretizations. The key feature of second-order systems
(1) with real matrices that needs to be exploited for the construction is that data at
complex conjugate frequency points are also complex conjugate:

H(s) = cT(s2M + sD + K )−1b = cT(s2M + sD + K )−1b = H(s).
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As in the classical Loewner framework, we assume the given data {(λi , hi )| 1 ≤ i ≤ r}
and {(μi , gi )| 1 ≤ i ≤ r} to be closed under conjugation in the respective sets. Addi-
tionally, for Algorithms 1 and 2, we need to assume that the support points {σi }i=1,...r
and {θi }i=1,...r are also closed under conjugation and that if λi , λi+1 are complex con-
jugate, then so are the quasi-support points σi , σi+1 or θi , θi+1, respectively. Let the
interpolation data and parameters be ordered such that complex conjugates are sorted
together, e.g., for the interpolation points in {(λi , hi )| 1 ≤ i ≤ r}, we have that

λ1, λ2 = λ1, λ3, λ4 = λ3, . . . .

Given the matrices ̂M, ̂D, ̂K ,̂b, ĉ computed by any of the Algorithms 1 to 3, a real-
valued realization of the described system is given by

P
T

̂MP, P
T
̂DP, P

T
̂K P, P

T
̂b, ĉP,

where the transformation matrix P is block diagonal with

P = diag(J1, J2, . . . , J�) ∈ C
r×r ,

and the block matrices are chosen according to the given interpolation data by

Jk =

⎧

⎪

⎨

⎪

⎩

1√
2

[

1 −i

1 i

]

for complex conjugate interpolation points,

1 for real interpolation points.

Remark 2 A special situation occurs in the case of Algorithm 3 for the construc-
tion of models with zero damping matrix. As discussed at the end of Section 3.2.2,
the collection of data on the imaginary axis iR in complex conjugate pairs violates
Assumption (A2.1). This is consistent with the observation that the corresponding
transfer function yields identical values for complex conjugate points on the imagi-
nary axis, i.e., for any M, K ∈ C

n×n , D = 0 and b, c ∈ C
n , it holds that

H(s) = cT(s2M + K )−1b = H(s),

for all s = iω ∈ iR. As a result, the collection of data fromcomplex conjugate points on
the imaginary axis yields no additional information due to the specific system structure
and leads to singular linear systems in Step 2 of Algorithm 3. A side effect is that
systems with zero damping and real matrices produce only real data on the imaginary
axis such that no additional enforcement of real-valued matrices is necessary.

4.3 Heuristics for choosing the quasi-support points

To discuss suitable choices for the quasi-support points σ1, . . . , σr and θ1, . . . , θr , we
consider their influence on the transfer functions (26) and (33). First, consider the case
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of the barycentric form (26) resulting from the constrained stiffness matrix. Assume
for the moment that σ1, . . . , σr are all distinct. Then, for the transfer function (26), it
holds that

̂H(σi ) = hiwi

wi
= hi , for all 1 ≤ i ≤ r ,

i.e., the transfer function assumes the same values at the quasi-support points as at the
interpolation points (or support points). Since the typical case will be H(λi ) �= H(σi ),
this introduces approximation errors at the chosen quasi-support points. In the case that
some of the quasi-support points are chosen to be identical, i.e., σi = σi1 = . . . = σi�
for some indices i1, . . . , i�, one can observe that

̂H(σi ) =

�
∑

k=1
hikwik (σi − λik )

�
∑

k=1
wik (σi − λik )

, for all 1 ≤ i ≤ r , (37)

holds. Similar to the case of distinct quasi-support points, approximation errors at σi
are introduced. However, choosing many quasi-support points to be identical, allows
us to cluster the introduced errors away from frequency ranges of interest.

Similarly, one can observe for the barycentric form (33) resulting from the con-
strained damping matrix that in the case of distinct quasi-support points θ1, . . . , θr , it
holds

̂H(θi ) = hiwi

wiθiλ
−1
i

= hiλi
θi

, for all 1 ≤ i ≤ r .

As before, typically H(θi ) �= hiλi
θi

will hold, indicating approximation errors intro-
duced at the chosen quasi-support points. In the case that some of the quasi-support
points are identical, i.e., θi = θi1 = . . . = θi� for some indices i1, . . . , i�, it holds that

̂H(θi ) =

�
∑

k=1
hikwik (θi − λik )

�
∑

k=1
θiwikλ

−1
ik

(θi − λik )

, for all 1 ≤ i ≤ r . (38)

To summarize, Equations (37) and (38) show that poorly chosen quasi-support
points introduce undesired approximation errors. The points σ1, . . . , σr and θ1, . . . , θr
do not need to be distinct (in contrast to the interpolation points; cf. Assumption (A1.2)),
and the undesired approximation errors are enforced at the quasi-support points them-
selves. The second observation motivates to choose σ1, . . . , σr and θ1, . . . , θr outside
the considered frequency region of interest, i.e.,

σk, θk /∈ convR{λ1, . . . , λr , μ1, . . . , μr },
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for k = 1, . . . , r and where

convR{a1, . . . , a�} :=
{

z ∈ C

∣

∣

∣

∣

∣

z =
�

∑

k=1

βkak,
�

∑

k=1

βk = 1, β1 ≥ 0, . . . , β� ≥ 0

}

denotes the convex hull of elements inC overR. This can be achieved, for example, by
taking large shifts or multiples of the given interpolation points for the quasi-support
points points.

Next, we revisit the construction of the final second-order system matrices in
Algorithms 1 and 2 and the influence of the quasi-support points on the properties
of these matrices. In both algorithms, the damping matrices take into account the
negatives of the interpolation points λ1, . . . , λr , which are subtracted by the chosen
quasi-support points σ1, . . . , σr or θ1, . . . , θr . Eigenvalues with positive real parts in
the damping matrix can be interpreted as dissipation of energy from the system. To
achieve this, a reasonable choice for σ1, . . . , σr and θ1, . . . , θr is to have negative
real parts, which pushes the eigenvalues of the resulting damping matrix toward the
right open half-plane. Especially, it is possible to construct real, symmetric positive
definite damping matrices via Algorithm 1 in the case that the interpolation data has
been obtained on the imaginary axis by choosing the quasi-support points σ1, . . . , σr
to yield

Re(σi ) < 0 and Im(σi ) = − Im(λi ), for all i = 1, . . . , r . (39)

On the other hand, we observe that the stiffness matrices in Algorithms 1 and 2
involve themultiplication of the interpolation points λ1, . . . , λr with the quasi-support
points σ1, . . . , σr and θ1, . . . , θr . Aiming for stiffness matrices that have eigenvalues
with positive real parts, which together with eigenvalues with positive real parts in
the damping matrix drives the system towards asymptotic stability, the quasi-support
points σ1, . . . , σr and θ1, . . . , θr should be chosen to have imaginary parts in the
opposite half-plane of the imaginary parts of λ1, . . . , λr , e.g., if the interpolation
points are chosen over the positive imaginary axis, then σ1, . . . , σr and θ1, . . . , θr
should have negative imaginary parts. In the case of Algorithm 2 and the interpolation
points λ1, . . . , λr to be on the imaginary axis, the quasi-support points θ1, . . . , θr can
be chosen such that ̂K can be realized as a real-valued, symmetric positive definite
matrix by

Im(θi ) = − (Im(λi ) + ci ) , for all i = 1, . . . , r ,

where ci ∈ R are real constants with the same sign as the imaginary part of λi such
that ci Im(λi )) > 0 holds.

Typically, enforcement of asymptotic stability is not straightforward to be attained
for interpolation-based methods. In the non-intrusive case, for methods that are based
on barycentric forms and matching transfer function values, there have been some
attempts to impose stability as a post-processing tool such as in [15, 22] for the
Loewner framework or in [17] for theAAAalgorithm.Moreover, for the samemethod,
the placing of stable poles was explored in [4], while optimization approaches were
applied in [14].
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5 Numerical experiments

In this section, we verify the proposed algorithms and barycentric forms numerically in
different examples. The experiments reported here have been executed on a machine
equipped with an AMD Ryzen 5 5500U processor running at 2.10GHz and with
16GB total main memory. The computer runs on Windows 10 Home version 21H2
(build 19044.2251) and, for all reported experiments, we useMATLAB9.9.0.1592791
(R2020b). Source codes, data, and numerical results are available at [51].

5.1 Computational setup

As setup of the subsequent comparative study, we consider the following data driven,
interpolation-based methods:

soBaryLoewK the linearized K -constrained second-order barycentric Loewner
framework from Algorithm 1,

soBaryLoewD the linearized D-constrained second-order barycentric Loewner
framework from Algorithm 2,

soBaryLoewKD0 the second-order barycentric Loewner framework with zero damp-
ing matrix from Algorithm 3,

soLoewRayleigh the second-order (matrix) Loewner framework for Rayleigh-
damped systems from [36],

BaryLoew the classical first-order barycentric Loewner framework based on
the results in Corollary 1; see also [2].

All models are constructed such that the transfer functions satisfy the same interpola-
tion conditions.

As interpolation points, we have chosen the local minima and maxima of the given
data samples on the positive part of the imaginary axis using the MATLAB func-
tions islocalmin and islocalmax supplemented by the limits of the considered
frequency intervals of interest [iωmin, iωmax] and, if necessary, some additional inter-
mediate points. The interpolation points are then split into the left and right sets by
alternating the ascending order of the positive imaginary parts, i.e.,

Im(λ1) < Im(μ1) < Im(λ2) < Im(μ2) < . . . < Im(λr ) < Im(μr ).

For soBaryLoewK and soBaryLoewD, the quasi-support points are chosen according
to the discussion in Section 4.3, more specifically as in (39). The individual choices are
outlined in the description of the examples below. The Rayleigh damping parameters
for soLoewRayleigh are either known from the originalmodel or inferred in an optimal
way. This means that we do not consider the optimization process of these additional
parameters here.
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Table 1 Dimensions and numbers of data samples for numerical examples. The amount of matched inter-
polation conditions for all constructed models is 2r , due to the partition into left and right data. The column
“c.c.d” denotes the use of complex conjugate interpolation points and data

Full order r c.c.d.

Butterfly gyroscope 17 361 14 true

Artificial fishtail 779 232 6 true

Flexible aircraft — 52 true

Bone model 986 703 19 false

Hysteretic plate 201 900 52 false

For the comparison of the different methods, we consider the transfer function
magnitude, given as the absolute value |H(iωk)|, in the discrete frequency points iωk

given in the data sets, and the corresponding pointwise relative errors via

εrel(ωk) := |H(iωk) − ̂H(iωk)|
|H(iωk)| .

Anoverviewproviding the dimensions of the original full-order systems, the dimen-
sions of the learned (reduced-order) models and if complex conjugate data has been
used in the computations for the construction of real-valued system matrices can be
found in Table 1. The rows of the table are split into examples with and without
damping matrix.

Fig. 1 Butterfly gyroscope example: all methods recover reduced-order models with similar accuracy using
the same amount of given interpolation data. The model learned by soLoewRayleigh performs slightly
better for frequencies between 500 and 5 000 rad/s
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5.2 Examples with non-zero dampingmatrix

Wefirst consider the case ofmodelswith energydissipation,whichneed the presenceof
a dampingmatrix ̂D. Three examples are considered to test the proposedmethods. The
butterfly gyroscope models the behavior of a micro-mechanical vibrating gyroscope
structure for use in inertia-based navigation systems [12, 32]. The artificial fishtail
models the deformation of a silicon structure in the shape of a fishtail used in the
construction of underwater vehicles with fish-like locomotion [46, 47]. Lastly, we
have sampled data from a high-fidelity simulation of a flexible aircraft model used
in civil aeronautics to optimize lightweight structures [37, 38]. The dimensions of
the sampled models and the dimensions of the constructed second-order models are
shown in Table 1. Note that we consider here SISO versions of these examples, which
are originally single-input/multi-output.

The results computed by the different methods are shown in Figs. 1, 2, and 3, where
we have set the quasi-support points as

σ1 = . . . = σr = θ1 = . . . = θr = −(5 + 10−3i) · ωmax

for the butterfly gyroscope and flexible aircraft, and

σ1 = . . . = σr = θ1 = . . . = θr = −(5 + 10−5i) · ωmax

in the case of the fishtail example, where ωmax ∈ R is the upper limit of the con-
sidered frequency interval. The figures show the transfer function magnitudes of the
constructed models with the used interpolation data and the pointwise relative errors
computed for all given data samples. In the case of the butterfly and fishtail examples,
these are 1 000 samples in the frequency range of interest and 421 samples for the flexi-
ble aircraft example. For all three examples, the considered methods perform similarly

Fig. 2 Artificial fishtail example: all methods provide a similar approximation accuracy. Themodel inferred
by soBaryLoewD performs insignificantly worse for frequencies between 1 and 100 rad/s, while the model
from soLoewRayleigh keeps the accuracy level also for higher frequencies
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Fig. 3 Flexible aircraft example: all methods construct reduced-order models that recover the given data
set with sufficient accuracy. For higher frequencies, more interpolation data is used due to the presence of
many local maxima and minima

well in terms of the pointwise relative errors shown in Figs. 1 to 3. However, we can
note that the learned models assume different spectral properties. In the case of the
butterfly gyroscope, the proposed methods soBaryLoewK and soBaryLoewD produce
asymptotically stable reduced-order models due to the choice of quasi-support points,
in contrast to the classical BaryLoew, which has one unstable pole. The Rayleigh-
damped approach soLoewRayleigh gives one unstable and one infinite eigenvalue,
where the infinite one likely results from the finite arithmetic in the eigenvalue compu-
tations and the highly ill-conditioned learned systemmatrices. For the fishtail example,
all computed reduced-ordermodels are stable and for the aircraft example, no reduced-
order model is stable. In particular, soBaryLoewD, soLoewRayleigh and BaryLoew
have three pairs of unstable complex conjugate eigenvalues, while soBaryLoewK has
only two pairs.

In the first two examples, soLoewRayleigh performs a mildly better than the other
three approaches for some of the considered frequencies. This can be explained by the
fact that these two examples are Rayleigh-damped and, as described in Section 5.1,
the optimal damping coefficients has been used for soLoewRayleigh. In other words,
soLoewRayleigh recovers not only the internal system structure but also the damping
structure in an optimal way. On the other hand, the flexible aircraft is not known to
have Rayleigh damping such that even with optimal coefficients, soLoewRayleigh
does not outperform the other approaches. We are not fully exploiting the potential
of our proposed barycentric form since we are fixing the quasi-support points, which
hints that not-linearized versions of soBaryLoewK and soBaryLoewD are likely to
outperform soLoewRayleigh and BaryLoew in this example.
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Fig. 4 Bone model example: For lower frequencies, the second-order methods produce models with at
least one order of magnitude smaller relative errors than the classical Loewner framework. The curves of
soBaryLoewKD0 and soLoewRayleigh are identical up to numerical round-off errors

5.3 Examples with zero dampingmatrix

Now, we consider two examples with zero damping matrix, in order to test
soBaryLoewKD0. First, we have the bone model as a conservative system, which
is used to simulate the porous bone micro-architecture in studies of bone tissue under
different loads [31, 49]. As a second example, we consider the model of a vibrating
plate that is equipped with tuned vibration absorbers, which lead to hysteretic struc-
tural damping [5, 6]. The results of the different methods can be seen in Figs. 4 and 5.
In both examples, the second-order methods soBaryLoewKD0 and soLoewRayleigh
perform better in terms of the pointwise relative errors than the classical BaryLoew.
This comes from the additional preservation of the damping model in these methods.
In particular, we can observe that in the absence of any type of energy dissipation,

Fig. 5 Hysteretic plate example: for up to 50 rad/s, the second-order methods soBaryLoewKD0 and
soLoewRayleigh produce relative errors that are at least four orders of magnitude smaller than the classical
BaryLoew. The curves of soBaryLoewKD0 and soLoewRayleigh are identical up to numerical round-off
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the two methods that preserve the zero damping structure outperform the classical
Loewner framework by several orders of magnitude.

Additionally, we note that the curves of soBaryLoewKD0 and soLoewRayleigh are
in fact identical in both examples. This is a numerical verification that the barycen-
tric form in Corollary 2 describes exactly the same system that is recovered by
soLoewRayleigh with zero Rayleigh damping parameters, i.e., both methods con-
struct different realizations of exactly the same interpolatory second-order systems.

6 Conclusions

We have developed new structured barycentric forms for the transfer functions of
second-order systems for data-driven, interpolatory reduced-order modeling. Based
on these barycentric forms, we have proposed three Loewner-like algorithms for the
construction of second-order systems from data. Numerical experiments compared
these new methods to the classical, unstructured Loewner approach as well as to
another Loewner-like method for the construction of second-order systems from fre-
quency domain data. In all examples, the new structured approaches were able to
provide a similar, and in some cases significantly better, approximation accuracy as
the established methods from the literature some of which do not obey to preserve the
structure. Since the proposed algorithms rely on some fixed parameter choices to sim-
plify computations, we expect that including these additional “quasi-support points”
as parameters would significantly increase the approximation capabilities of methods
based on the presented structured barycentric forms. However, we leave these con-
siderations for future work. Additionally, we have observed that these support points
can be used to alter the properties of the constructed system matrices, allowing, for
example, the construction of asymptotically stable second-order systems.

At the heart of this work are the new structured barycentric forms that allow for
a large bandwidth of new algorithms for learning structured models from frequency
domain data. For the clarity of the presentation, we restricted the analysis in this work
to a purely interpolatory framework. However, the use of the free parameters in the
barycentric forms for least-squares fitting will allow the derivation of methods like
vector fitting [23] and AAA [30] for second-order systems. In particular, the presence
of more parameters than in the unstructured, first-order system case gives rise to a lot
more variety in resulting algorithms. We will consider these ideas in future work.
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