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Abstract
High-dimensional/high-fidelity nonlinear dynamical systems appear naturally when
the goal is to accurately model real-world phenomena. Many physical properties are
thereby encoded in the internal differential structure of these resulting large-scale
nonlinear systems. The high dimensionality of the dynamics causes computational
bottlenecks, especially when these large-scale systems need to be simulated for a vari-
ety of situations such as different forcing terms. This motivates model reduction where
the goal is to replace the full-order dynamics with accurate reduced-order surrogates.
Interpolation-based model reduction has been proven to be an effective tool for the
construction of cheap-to-evaluate surrogate models that preserve the internal struc-
ture in the case of weak nonlinearities. In this paper, we consider the construction of
multivariate interpolants in frequency domain for structured quadratic-bilinear sys-
tems. We propose definitions for structured variants of the symmetric subsystem and
generalized transfer functions of quadratic-bilinear systems and provide conditions
for structure-preserving interpolation by projection. The theoretical results are illus-
trated using two numerical examples including the simulation of molecular dynamics
in crystal structures.
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1 Introduction

The accurate modeling of real-world phenomena and processes yields dynamical
systems typically including nonlinearities. Additionally, these systems often inherit
internal differential structures such as higher order time derivatives or time delays from
the underlying physical nature of the considered problem. A particular example for
such internal structures that usually arises in the modeling of mechanical structures is
the description of the system states by second-order time derivatives. Such nonlinear
mechanical systems take the form

˜Mq̈(t) = f
(

q(t), q̇(t), u(t)
)

,

y(t) = Cpq(t) + Cvq̇(t),
(1)

with internal states q(t) ∈ R
�, describing the system behavior, the external controls

u(t) ∈ R
m that allow the user to change the internal behavior, and the quantities of

interest y(t) ∈ R
p that can be observed from the outside, e.g., by sensormeasurements.

Thereby, the first equation in (1) is a second-order differential equation with mass
(descriptor) matrix ˜M ∈ R

�×� and the nonlinear time evolution function f : R� ×
R

� × R
m → R

�. The second, algebraic equation describes the quantities of interest
as linear combination of the states and their first-order derivatives. Throughout this
paper, we assume for any system to have homogeneous initial conditions.

In many applications, in particular those involving discretizations of partial differ-
ential equations, the number of differential equations � in (1), describing the internal
system behavior, is large and increases further with the demand for more accuracy.
However, an increasing amount of differential equations also leads to an increasing
demand for computational resources such as time and memory for simulations of the
models or their use in optimization. A remedy to this problem is model order reduc-
tion, which aims for the computation of cheap-to-evaluate surrogate models described
by significantly fewer differential equations, r � �, which approximate the input-to-
output behavior of the original system as

‖y − ŷ‖ ≤ τ · ‖u‖,

in some suitable norms for the output of the reduced model ŷ and all admissible inputs
u.

An established approach for model reduction of general (structured) nonlinear sys-
tems such as (1) is proper orthogonal decomposition (POD) [22, 26, 41], in which
time simulations are used to extract information about the system dynamics for the
construction of a basismatrix to project the system states. Other approaches aim for the
extension of balancing-related model reduction to nonlinear systems using Gramians
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defined via time simulations as in the empirical Gramian method [21, 27, 28] or by
new energy measures [24, 36] to construct suitable projection matrices. Nevertheless,
a problem arising in the general system case is the approximation of the nonlinear
time evolution function f in (1) that circumvents the computationally expensive lift-
ing and truncation of the low-dimensional state in every time step. A solution to that
are hyperreduction techniques such as the (discrete) empirical interpolation method
((D)EIM) [4, 12, 13, 30], which computes a selection operator to restrict the evaluation
of f to its most dominant rows. This introduces another layer of approximations and
needs explicit access to the implementation of the original time evolution function f .

An alternative to hyperreduction that gained significant popularity in model reduc-
tion in the last decade is quadratic-bilinearization [19]; in optimization also known
as McCormick relaxation [29]: For f smooth enough, general nonlinear systems
can be rewritten into quadratic-bilinear form by introducing auxiliary variables and
differential-algebraic equations, which then can be reduced directly using the classi-
cal projection-based model reduction approach. In the case of (1), the corresponding
quadratic-bilinear system retains the internal mechanical structure as

0 = Mq̈(t) + Dq̇(t) + Kq(t)

+ Hvv
(

q̇(t) ⊗ q̇(t)
) + Hvp

(

q̇(t) ⊗ q(t)
)

+ Hpv
(

q(t) ⊗ q̇(t)
) + Hpp

(

q(t) ⊗ q(t)
)

−
m

∑

j=1

Nv,jq̇(t)u j (t) −
m

∑

j=1

Np,jq(t)u j (t) − Buu(t),

y(t) = Cpq(t) + Cvq̇(t),

(2)

where M, D, K , Nv,j, Np,j ∈ R
n×n , for j = 1, . . . ,m, Hvv, Hvp, Hpv, Hpp ∈ R

n×n2 ,
Bu ∈ R

n×m ,Cp,Cv ∈ R
p×n , and⊗ denotes the Kronecker product. Due to the intro-

duction of auxiliary variables, we have that n ≥ �, which appears counter-intuitive
to the actual task of reducing the number of internal system states in model reduc-
tion. However, the new nonlinearity structure of (2) allows to apply well-established
model reduction techniques without the necessity of the hyperreduction step for the
nonlinearity.

In this paper,we extend the idea of quadratic-bilinear subsystem interpolation to sys-
tems with additional internal differential structures such as in the mechanical case (2).
We propose extensions for the definitions of the first three symmetric subsystem trans-
fer functions and the first three generalized transfer functions to the structured system
case and then present subspace conditions for structure-preserving interpolation of
these transfer functions. The effectiveness of the resulting model reduction methods
based on this interpolation theory is illustrated on two different structured examples. In
thismanuscript, we present a refined version of the theoretical results that were derived
in the course of writing the dissertation of the corresponding author [39]. In compari-
son to [39], we reformulated the results in Propositions 1, 2 and 3 to allow practitioners
an easy implementation of the proposed theory. Corollary 1 yields a special case of
the results of the theory in [39] adapted to the most common choice of interpolation
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point selection. We present new results on the implicit interpolation of multivariate
transfer functions in Theorem 1. Also, we provide new numerical experiments to test
the performance of the proposed approaches.

The rest of the paper is organized as follows: In Section 2, we recapitulate the
ideas of Volterra series expansions and unstructured quadratic-bilinear systems in
the frequency domain. We present the definitions of structured transfer functions of
quadratic-bilinear systems in Section 3 and the results on structure-preserving inter-
polation in Section 4. We employ the interpolation results for model reduction of two
structured numerical examples in Section 5. The paper is concluded in Section 6.

2 Mathematical preliminaries

In this section, we remind the reader of unstructured quadratic-bilinear systems and
summarize the concept of Volterra series as well as two resulting transfer function
formulations. Lastly, we recapitulate the concept of internal (differential) structures.

2.1 Volterra series expansions for unstructured quadratic-bilinear systems

Unstructured (first-order) quadratic-bilinear systems are dynamical systems of the
form

Eẋ(t) = Ax(t) + H
(

x(t) ⊗ x(t)
) +

m
∑

j=1

N j x(t)u j (t) + Bu(t),

y(t) = Cx(t),

(3)

with E, A, N j ∈ R
n×n , for j = 1, . . . ,m, H ∈ R

n×n2 , B ∈ R
n×m and C ∈ R

p×n .
Model reduction methods developed for (3) include the interpolation of multivariate
subsystem transfer functions [1, 2, 6, 19], Volterra series interpolation [2, 9], balanced
truncation [7], learning models from frequency domain data via the Loewner frame-
work [16], or learning models from time domain data by operator inference [31, 32].
The reformulation of general nonlinear systems into quadratic-bilinear form (3) has
also been proven to be an effective strategy for classical nonlinear model reduction
methods such as POD [25].

The development of frequency domain model reduction methods for nonlinear
systems of the form (3) is based on the Volterra series expansion. This allows to
describe the solution of nonlinear dynamical systems as a series of solutions of coupled
linear systems [34]. A common approach to derive the Volterra series expansion is by
variational analysis [19]. Let a scaled input signal αu(t), with α > 0, be given for
the quadratic-bilinear system (3) and assume the system state to have an analytic
representation of the form

x(t) =
∞
∑

k=1

αk xk(t), (4)

with a sequence of states xk(t). Inserting (4) into (3) and extracting the terms corre-
sponding to the same power of the coefficient α yields the states xk(t) to be described
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by cascaded subsystems, which are linear in their respective unknown state xk(t). For
example, the first three resulting linear subsystems for (4) are given by

Eẋ1(t) = Ax1(t) + Bu(t),

Eẋ2(t) = Ax2(t) + H
(

x1(t) ⊗ x1(t)
) +

m
∑

j=1

N j x1(t)u j (t),

Eẋ3(t) = Ax3(t) + H
(

x1(t) ⊗ x2(t) + x2(t) ⊗ x1(t)
) +

m
∑

j=1

N j x2(t)u j (t).

(5)

Applying the variation-of-constants formula to the subsystems in (5) allows the
description of the input-to-output behavior of (3) via its Volterra series expansion:

y(t) =
∞
∑

k=1

t
∫

0

t1
∫

0

· · ·
tk−1
∫

0

gk(t1, . . . , tk)
(

u(t − t1) ⊗ · · · ⊗ u(t − tk)
)

d tk · · · d t1, (6)

where gk(t1, . . . , tk) are the Volterra kernels of the corresponding representation. The
kernels used in (6) are of the symmetric type [19, 34]. Applying the multivariate
Laplace transformation [34] to (6) results in an equivalent description of the quadratic-
bilinear system (3) in the frequency domain by multivariate transfer functions.

2.2 Subsystem transfer functions of quadratic-bilinear systems

In this work, we restrict ourselves to the presentation of the transfer functions corre-
sponding to thefirst three coupled linear subsystems for brevity andpractical relevance.
General formulas for arbitrarily high levels of multivariate transfer functions for (3)
have been developed in [39, Sec. 2.3.2].

2.2.1 Symmetric subsystem transfer functions

The symmetric subsystem transfer functions are based on the symmetric Volterra
kernels from [34]; cf. (6). Historically, this is the first transfer function type that has
been investigated for the model reduction of (3) in [19]. Here, the term “symmetric”
refers to the fact that the transfer functions are invariant with respect to the order of
their frequency arguments.

The first symmetric subsystem transfer function corresponds to the linear part of (3)
as it can be seen in (5) such that

Gsym,1(s1) = Cgsym,1(s1) = C(s1E − A)−1B, (7)

with s1 ∈ C. Thereby, the term gsym,1(s1) ∈ C
n×m is used in the following for

notational convenience and denotes the input-to-state transition of the first subsystem.
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The second symmetric subsystem transfer function depends on two complex frequency
arguments s1, s2 ∈ C and is given by

Gsym,2(s1, s2) = Cgsym,2(s1, s2), (8)

where the function describing the input-to-state transition on the right-hand side of (8)
is given by

gsym,2(s1, s2) = 1

2

(

(s1 + s2)E − A
)−1

×
(

H
(

gsym,1(s1) ⊗ gsym,1(s2) + gsym,1(s2) ⊗ gsym,1(s1)
)

+ N
(

Im ⊗ (

gsym,1(s1) + gsym,1(s2)
))

)

,

with gsym,1 from (7), Im denoting the m-dimensional identity matrix and the column
concatenation of the bilinear terms as

N = [

N1 N2 . . . Nm
]

. (9)

Last, the third symmetric subsystem transfer function is defined similarly to (8) by

Gsym,3(s1, s2, s3) = Cgsym,3(s1, s2, s3), (10)

with s1, s2, s3 ∈ C and the input-to-state transition given via

gsym,3(s1, s2, s3) = 1

6

(

(s1 + s2 + s3)E − A
)−1

×
(

H
(

gsym,1(s1) ⊗ gsym,2(s2, s3) + gsym,1(s2) ⊗ gsym,2(s1, s3)

+ gsym,1(s3) ⊗ gsym,2(s1, s2) + gsym,2(s1, s2) ⊗ gsym,1(s3)

+ gsym,2(s1, s3) ⊗ gsym,1(s2) + gsym,2(s2, s3) ⊗ gsym,1(s1)
)

+ N
(

Im ⊗ (

gsym,2(s1, s2) + gsym,2(s1, s3) + gsym,2(s2, s3)
))

)

,

using gsym,1 from (7) and gsym,2 from (8).

2.2.2 Generalized transfer functions

In contrast to the symmetric case, the generalized transfer functions do not directly
correspond to a Volterra kernel representation. They have been introduced in [16] for
the extension of the data-driven Loewner framework to quadratic-bilinear systems and
are inspired by the regular transfer functions of bilinear systems, which only consist
of products of the terms of the dynamical system; see, e.g., [3]. The formulation given
in [16] for the single-input/single-output (SISO) system case has been extended to
multi-input/multi-output systems in [39, Sec. 2.3.2].
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As in the symmetric case, the first regular transfer function corresponds to the linear
system components, with

G(B)
gen,1(s1) = C(s1E − A)−1B. (11)

Also the second regular transfer function is uniquely defined resulting from one mul-
tiplication with the bilinear terms:

G(N,(B))
gen,2 (s1, s2) = C(s2E − A)−1N

(

Im ⊗ (s1E − A)−1B
)

. (12)

For the third level however, two different generalized transfer functions exist. The first
one is identical to the third regular bilinear transfer function with

G(N,(N,(B)))
gen,3 (s1, s2, s3) = C(s3E − A)−1N

(

Im ⊗ (

(s2E − A)−1N

⊗ (Im ⊗ (s1E − A)−1B)
)

)

;
(13)

see also [10]. The second one involves the quadratic term and is given by

G(H,(B),(B))
gen,3 (s1, s2, s3) = C(s3E − A)−1H

(

(s2E − A)−1B ⊗ (s1E − A)−1B
)

. (14)

Note that the index levels of the generalized and symmetric transfer functions do not
coincide since the second symmetric subsystem transfer function does contain the
quadratic term in contrast to the second level generalized transfer function, which has
only the bilinear terms.

2.3 Structured linear systems

Before deriving structured quadratic-bilinear transfer functions, we briefly recall the
ideas from [5], which considered the structured transfer functions for linear dynamical
systems inwhich frequency-dependent equations are used for describing the dynamics.
First, consider linear first-order (unstructured) systems with the time domain repre-
sentation

Eẋ(t) − Ax(t) = Bu(t), y(t) = Cx(t). (15)

By taking the Laplace transform of (15), the dynamical system in (15) can be equiv-
alently described in the frequency domain as

(sE − A)X(s) = BU (s), Y (s) = CX(s), (16)

with s ∈ C, and whereU (s), X(s), Y (s) are the Laplace transforms of the inputs u(t),
states x(t), and outputs y(t), respectively. Now consider a linear dynamical system
with a second-order structure with the time domain representation

Mẍ(t) + Dẋ(t) + Kx(t) = Buu(t), y(t) = Cpx(t) + Cv ẋ(t). (17)
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As in the unstructured case, taking the Laplace transform of (17) yields the represen-
tation in the frequency domain

(s2M + sD + K )X(s) = BuU (s), Y (s) = (Cp + sCv)X(s). (18)

Observe that in both cases of (16) and (18), the system states in the frequency domain
can be described as solution of frequency-dependent linear systems of equations of
the form

K(s)X(s) = B(s)U (s), Y (s) = C(s), (19)

where the matrix-valued functions K : C → C
n×n , B : C → C

n×m and C : C →
C

p×m describe the linear dynamics, and the input and output behavior of the system.
In particular, we recover (16) by setting K(s) = sE − A, B(s) = B, and C(s) = B.
Similarly, we recover (18) by setting K(s) = s2M + sD + K , B(s) = Bu, and
C(s) = Cp + sCv. We refer the reader to [5] for further examples of structured
dynamics that fit into the general framework of (19). Then, for every s ∈ C for which
K(s) in (19) is invertible, the transfer function of the underlying linear dynamical
system is given by

G(s) = C(s)K(s)−1B(s).

3 Structured transfer functions of quadratic-bilinear systems

In this section, we extend the transfer function formulations from Section 2 to the set-
ting of structured quadratic-bilinear systems. We start with the illustrative example of
quadratic-bilinear mechanical systems (2). Based on this motivation, we introduce the
formulas for structured symmetric and generalized transfer functions before we con-
sider the case of quadratic-bilinear time-delay systems as another motivating example
for internal differential structures at the end of this section.

3.1 Transfer functions for mechanical systems

In general, any system in second-order form (2) can be rewritten in first-order form (3)

using the concatenated first-order state x(t) = [

q(t)T q̇(t)T
]T
. The first-order system

matrices are then, for example, given by

E =
[

In 0
0 M

]

, A =
[

0 In
−K −D

]

, B =
[

0
Bu

]

,

C = [

Cp Cv
]

, N j =
[

0 0
Np,j Nv,j

]

,

(20)

for j = 1, . . . ,m, with the quadratic term

H = −
[

0 0 . . . 0 0 0 0 . . . 0 0
Hpp,1 Hpv,1 . . . Hpp,n Hpv,n Hvp,1 Hvv,1 . . . Hvp,n Hvv,n

]

. (21)
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Thereby, the matrix blocks in (21) are n×nmatrix slices of the second-order quadratic
terms in (2), e.g., for Hpp modeling the multiplication of the state with itself we have

Hpp = [

Hpp,1 Hpp,2 . . . Hpp,n
]

,

with Hpp,j ∈ R
n×n for all j = 1, . . . , n.

Now, we exploit the block structures of the matrices in (20) and (21) to derive the
symmetric and generalized transfer functions of (2). In both transfer function cases,
the first level transfer functions correspond to the linear system case and it can be
observed that for (2) it holds that

Gsym,1(s1) = G(B)
gen,1(s1) = (Cp + s1Cv)gsym,1(s1)

= (Cp + s1Cv)(s
2
1M + s1D + K )−1Bu,

(22)

where gsym,1(s1) denotes here the input-to-state transition of the second-order state q.
For the next two levels, we concentrate first on the symmetric transfer function

case. Inserting (20) and (21) into (8) yields the second symmetric subsystem transfer
function of (2) to be

Gsym,2(s1, s2) = (

Cp + (s1 + s2)Cv
)

gsym,2(s1, s2)

= 1

2

(

Cp + (s1 + s2)Cv
)(

(s1 + s2)
2M + (s1 + s2)D + K

)−1

×
(

− (Hpp + s2Hpv + s1Hvp + s1s2Hvv)
(

gsym,1(s1) ⊗ gsym,1(s2)
)

− (Hpp + s1Hpv + s2Hvp + s1s2Hvv)
(

gsym,1(s2) ⊗ gsym,1(s1)
)

+ (Np + s1Nv)
(

Im ⊗ gsym,1(s1)
)

+ (Np + s2Nv)
(

Im ⊗ gsym,1(s2)
)

)

,

(23)
where gsym,2 denotes the input-to-state transition of the second subsystem, gsym,1 is
the input-to-state transition from the first subsystem in (22), and the bilinear terms are
concatenated as

Np = [

Np,1 . . . Np,m
]

and Nv = [

Nv,1 . . . Nv,m
]

. (24)

Similarly, inserting the block matrices (20) and (21) into the unstructured third
symmetric subsystem transfer function (10) leads to the structured third symmetric
subsystem transfer function representation for (2). Due to the complexity of the result-
ing formula, wewill not write it out here explicitly but outline some of its features. The
third subsystem transfer function of (3) has a similar structure to (10) and (23) with
linear combinations of the quadratic and bilinear terms multiplied with the previous
input-to-state transition terms gsym,1 and gsym,2 from (22) and (23). Due to the occur-
rence of the sum of the frequency arguments in the first term of (23), this translates
into the frequency dependence of the second-order quadratic and bilinear terms such
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that terms of the forms

− (

Hpp + s3Hpv + (s1 + s2)Hvp + (s1 + s2)s3Hvv
)(

gsym,2(s1, s2) ⊗ gsym,1(s3)
)

and
(

Np + (s1 + s2)Nv
)(

Im ⊗ gsym,2(s1, s2)
)

(25)
appear. For more details, we refer the reader to the next section, which contains the
definitions of the transfer function formulas for general structures.

For the generalized transfer functions, one can observe that the second level transfer
function resembles the corresponding bilinear regular transfer function, for which the
structured system case has been developed in [10]. The resulting transfer function
for (2) is thereby given as

G(N,(B))
gen,2 (s1, s2) = (Cp + s2Cv)(s

2
2M + s2D + K )−1(Np + s1Nv)

× (

Im ⊗ (s21M + s1D + K )−1Bu
)

,
(26)

where the bilinear terms are concatenated as in (24). Similarly, the purely bilinear
third level generalized transfer function of (2) is given by

G(N,(N,(B)))
gen,3 = (Cp + s3Cv)(s

2
3M + s3D + K )−1(Np + s2Nv)

×
(

Im ⊗ (s22M + s2D + K )−1(Np + s1Nv)

× (

Im ⊗ (s21M + s1D + K )−1Bu
)

)

.

(27)

On the other hand, the third level generalized transfer function of (2) involving the
quadratic term can be derived by inserting (20) into (14), which yields

G(H,(B),(B))
gen,3 (s1, s2, s3) = −(Cp + s3Cv)(s

2
3M + s3D + K )−1

× (Hpp + s1Hpv + s2Hvp + s1s2Hvv)

× (

(s22M + s2D + K )−1Bu ⊗ (s21M + s1D + K )−1Bu
)

.

(28)
Overall, and similar to the linear and bilinear cases, we can observe the occurrence

of the same terms describing the linear, bilinear or quadratic dynamics in the different
transfer functions by means of the given system matrices and the complex variables
s1, s2, s3. This motivates the definitions for the general structured framework in the
upcoming section.

3.2 Structured transfer function formulas for quadratic-bilinear systems

Recently, an extension of structured transfer functions described in Section 2.3 to
bilinear systems has been proposed in [10]. For this extension, a new frequency-
dependent function N : C → C

n×nm was introduced, modeling the effect of the
bilinear terms, where

N (s) = [N1(s) . . . Nm(s)
]

,
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with N j : C → C
n×n for all j = 1, . . . ,m. In this manuscript, we further extend the

structured transfer function framework to the quadratic-bilinear case, which appears
ubiquitously in prominent applications as we briefly discussed in Section 1.

First, we consider the symmetric transfer function case. Inspired by (7), (8),
and (10), from the unstructured first-order case, and (22), (23), and (25), we introduce
the following definition for the structured symmetric subsystem transfer functions.

Definition 1 Given matrix-valued functions of the form C : C → C
p×m , K : C →

C
n×n , B : C → C

n×m , N : C → C
n×nm , H : C × C → C

n×n2 , for which there
exists an s ∈ C at which they can be evaluated and K(s) is invertible. The first three
structured symmetric subsystem transfer functions are defined as

Gsym,1(s1) = C(s1)gsym,1(s1),

Gsym,2(s1, s2) = C(s1 + s2)gsym,2(s1, s2),

Gsym,3(s1, s2, s3) = C(s1 + s2 + s3)gsym,3(s1, s2, s3),

where the input-to-state transitions are recursively given by

gsym,1(s1) = K(s1)
−1B(s1),

gsym,2(s1, s2) = 1

2
K(s1 + s2)

−1
(

H(s1, s2)
(

gsym,1(s1) ⊗ gsym,1(s2)
)

+ H(s2, s1)
(

gsym,1(s2) ⊗ gsym,1(s1)
) + N (s1)

(

Im ⊗ gsym,1(s1)
)

+ N (s2)
(

Im ⊗ gsym,1(s2)
)

)

,

gsym,3(s1, s2, s3)= 1

6
K(s1+s2 + s3)

−1
(

H(s1 + s2, s3)
(

gsym,2(s1, s2) ⊗ gsym,1(s3)
)

+ H(s1 + s3, s2)
(

gsym,2(s1, s3) ⊗ gsym,1(s2)
)

+ H(s2 + s3, s1)
(

gsym,2(s2, s3) ⊗ gsym,1(s1)
)

+ H(s1, s2 + s3)
(

gsym,1(s1) ⊗ gsym,2(s2, s3)
)

+ H(s2, s1 + s3)
(

gsym,1(s2) ⊗ gsym,2(s1, s3)
)

+ H(s3, s1 + s2)
(

gsym,1(s3) ⊗ gsym,2(s1, s2)
)

+ N (s1 + s2)
(

Im ⊗ gsym,2(s1, s2)
)

+ N (s1 + s3)
(

Im ⊗ gsym,2(s1, s3)
)

+ N (s2 + s3)
(

Im ⊗ gsym,2(s2, s3)
)

)

.

Similarly, we give a definition for the structured variant of the generalized trans-
fer functions inspired by the first-order case (11)–(14), and second-order case (22)
and (26)–(28) in the following.

Definition 2 Given matrix-valued functions of the form C : C → C
p×m , K : C →

C
n×n , B : C → C

n×m ,N : C → C
n×nm ,H : C×C → C

n×n2 , for which there exists
an s ∈ C at which they can be evaluated and K(s) is invertible. The first three levels
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of structured generalized transfer functions are defined as

G(B)
gen,1(s1) = C(s1)K(s1)

−1B(s1),

G(N,(B))
gen,2 (s1, s2) = C(s2)K(s2)

−1N (s1)
(

Im ⊗ K(s1)
−1B(s1)

)

,

G(N,(N,(B)))
gen,3 (s1, s2, s3) = C(s3)K(s3)

−1N (s2)
(

Im ⊗ K(s2)
−1N (s1)

× (

Im ⊗ K(s1)
−1B(s1)

)

)

,

G(H,(B),(B))
gen,3 (s1, s2, s3) = C(s3)K(s3)

−1H(s2, s1)
(K(s2)

−1B(s2) ⊗ K(s1)
−1B(s1)

)

.

Note that in both Definitions 1 and 2, the newmatrix-valued functionH : C×C →
C
n×n2 results from the quadratic terms in the time domain. In [8], a simplified variant

of the generalized transfer functions (11)–(14) has been extended to systems with
polynomial nonlinearities. Based on the structured definitions above, these simplified
generalized transfer functions have then been extended to the structured case in [18].

Both examples of internal system structures considered so far can be represented
in the new structured transfer function framework. Unstructured first-order systems
of the form (3) are given by

C(s) = C, K(s) = sE − A, B(s) = B, N (s) = N , H(s1, s2) = H ,

where the bilinear terms are concatenated as in (9). For the second-order system of
the form (2), the symmetric and generalized transfer functions given in Section 3.1
can be recovered from Definitions 1 and 2 using

C(s) = Cp + sCv,

K(s) = s2M + sD + K ,

B(s) = Bu,

N (s) = Np + sNv,

H(s1, s2) = −(Hpp + s2Hpv + s1Hvp + s1s2Hvv),

with the bilinear terms concatenated as in (24). For the definition of higher level
structured transfer functions for quadratic-bilinear systems see [39, Sec. 6.3].

3.3 Quadratic-bilinear time-delay systems

A different, commonly occurring differential structure in the model process of real-
world phenomena are time delays. These are typically used to model the postponed
reactions of dynamics [14]. Quadratic-bilinear systems with constant time delays in
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the linear dynamic components can be written as

Eẋ(t) =
�

∑

k=1

Akx(t − τk) + H
(

x(t) ⊗ x(t)
) +

m
∑

j=1

N j x(t)u j (t) + Bu(t),

y(t) = Cx(t),

(29)

with the matrices Ak ∈ R
n×n describing the effect of state delayed by τk ∈ R≥0, for

all k = 1, . . . , �, and the remaining system matrices as defined in (3). Following the
variational analyses from (5), we observe that the time-delay structure only affects the
terms with the linear dynamics. Therefore, the structured transfer functions for (29)
are given by using the matrix-valued functions

C(s) = C, K(s) = sE −
�

∑

k=1

Ake
−τk s , B(s) = B, N (s) = N , H(s1, s2) = H

in Definitions 1 and 2. This is in accordance to the results for bilinear time-delay
systems obtained in [10, 17].

The structure as given in (29) is used in different application and research areas.
It appears in the design process of optoelectronic delayed feedback for the control
of lasers [35] or in the analysis of nonlinear delayed vibrational systems [23]. Time-
delay systems of the form (29) are also used in reaction-diffusion equations from
the engineering and chemical sciences [20]. We consider such a reaction-diffusion
example in our numerical experiments in Section 5.2.

4 Structured transfer function interpolation

In this section, we present results on the construction of structured interpolants for the
symmetric or generalized transfer functions from the previous section.

4.1 Structure-preservingmodel reduction via projection

For the construction of interpolating reduced-order models, we will use the projec-
tion approach in this work. Thereby, two constant basis matrices V ,W ∈ C

n×r

ware constructed, which allow the computation of the reduced-order quantities via
multiplication with the original system matrices. Given the full-order matrix-valued
functions C : C → C

p×n , K : C → C
n×n , B : C → C

n×m , N : C → C
n×nm and

H : C × C → C
n×n2 that describe a structured quadratic-bilinear system in the fre-

quency domain, reduced-order model quantities are computed by

̂C(s) = CV , ̂K(s) = WHK(s)V ,

̂B(s) = WHB(s), ̂N (s) = WHN (s)(Im ⊗ V )

and ̂H(s1, s2) = WHH(s1, s2)(V ⊗ V ),

(30)
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where WH := W
T
denotes the conjugate transpose of the matrix W . The Kronecker

product in the multiplication with the concatenation of the bilinear terms in (30) boils
down to the multiplication of each single bilinear term with the two basis matrices as

̂N (s) = [

̂N1(s) . . . ̂Nm(s)
] = [

WHN1(s)V . . . WHNm(s)V
]

.

Moreover, the Kronecker product of the basis matrix V for the reduction of the
quadratic term in (30) canbe implemented efficientlywithout explicitly formingV⊗V ,
using techniques from tensor algebra; see, e.g., [6, 7, 39].

Model reduction by projection preserves internal structures by construction. Any
matrix-valued function can be decomposed into frequency-affine form, e.g., in the
case of the term describing the linear dynamics, it can be written as

K(s) =
nK
∑

j=1

h j (s)K j , (31)

with nK ∈ N, some frequency-dependent scalar functions h j : C → C and constant
matricesK j ∈ C

n×n , for all j = 1, . . . , nK. The reduced-ordermatrix-valued function
is then given by

̂K(s) = WHK(s)V =
nK
∑

j=1

h j (s)W
HK j V =

nK
∑

j=1

h j (s)̂K j , (32)

with the reduced-order constant matrices ̂K j ∈ C
r×r , for all j = 1, . . . , nK. The

frequency-dependent scalar functions in (32) are the same as in (31), i.e., the internal
structure is preserved and the reduced-order matrices replace their high-dimensional
counterparts from the original system to describe the reduced-order model.

To illustrate the computation of reduced-order quadratic-bilinear systems via pro-
jection, we consider the two motivational differential structures from the previous
section. In the case of second-order quadratic-bilinear systems (2), reduced-order sys-
tems are computed as

̂C(s) = CpV + sCvV , ̂K(s) = s2WHMV + WHDV + WHKV ,

̂B(s) = WHBu, ̂N (s) = WHNp(Im ⊗ V ) + sWHNv(Im ⊗ V ),

with the reduced quadratic terms given by

̂H(s1, s2) = −(WHHpp(V ⊗ V ) + s2W
HHpv(V ⊗ V )

+ s1W
HHvp(V ⊗ V ) + s1s2W

HHvv(V ⊗ V )).

Evaluating the matrix products yields the reduced-order matrices that represent the
reduced-order system in the same structure as the original system (2). Similarly, for
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the quadratic-bilinear time-delay system (29), reduced-order systems are computed
via

̂C(s) = CV , ̂K(s) = sWHEV −
�

∑

k=1

WHAkV e−τk s,

̂B(s) = WHB, ̂N (s) = WHN (Im ⊗ V )

and ̂H(s1, s2) = WHH(V ⊗ V ).

As in the second-order system case, evaluating the matrix products allows to replace
the original, high-dimensional systemmatrices in (29) by the reduced ones to describe
the reduced-order system using the same structure.

The essential question of projection-based model order reduction is the construc-
tion of the basis matrices V andW . In the following, conditions are derived to enforce
interpolation of the original symmetric or generalized transfer functions by the corre-
sponding transfer functions given via the reduced matrix-valued functions (30).

4.2 Interpolating symmetric transfer functions

In this section, we consider the interpolation of the structured symmetric subsystem
transfer functions fromDefinition 1. The following proposition states some first results
for the general interpolation of the first two symmetric subsystem transfer functions
at different frequency points.

Proposition 1 ([39], Cor. 6.3) Let G be a quadratic-bilinear system, described by its
symmetric subsystem transfer functions Gsym,k from Definition 1, and ̂G the reduced-
order quadratic-bilinear system constructed by (30), with its reduced-order symmetric
subsystem transfer functions ̂Gsym,k . Also, let σ1, σ2 ∈ C be interpolation points such
that the matrix-valued functions C,K,B,N ,H andK(.)−1 are defined in these points
and their sum. Construct the basis matrix V by

V1,1 = K(σ1)
−1B(σ1),

V1,2 = K(σ2)
−1B(σ2),

V2 = K(σ1 + σ2)
−1(H(σ1, σ2)(V1,1 ⊗ V1,2) + H(σ2, σ1)(V1,2 ⊗ V1,1)

+ N (σ1)(Im ⊗ V1,1) + N (σ2)(Im ⊗ V1,2)
)

,

span(V ) ⊇ span
([

V1,1 V1,2 V2
])

,

and let W be an arbitrary full-rank matrix of appropriate dimensions. Then, the sym-
metric subsystem transfer functions of ̂G interpolate those of G in the following way:

Gsym,1(σ1) = ̂Gsym,1(σ1),

Gsym,1(σ2) = ̂Gsym,1(σ2),

Gsym,2(σ1, σ2) = ̂Gsym,1(σ1, σ2).
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Note that using [39, Thm. 6.2], the basis matrix V in Proposition 1 can be extended
such that the third symmetric subsystem transfer function is interpolated as well. In
practice however, this leads to an exponential increase in the number of terms to
evaluate for the construction of the projection space, which is typically undesired due
to its computational complexity. Therefore, this result is omitted here.

The next proposition considers a similar interpolation result as in Proposition 1 by
setting conditions on the second basis matrix as well.

Proposition 2 ([39], Lem. 6.4) Given the same assumptions as in Proposition 1, let
the matrices V1,1 and V1,2 be as in Proposition 1. Construct the two basis matrices
such that

span(V ) ⊇ span
([

V1,1 V1,2
])

,

span(W ) ⊇ span
(

K(σ1 + σ2)
−HC(σ1 + σ2)

H
)

,

and let V and W be of the same dimension. Then, the symmetric subsystem transfer
functions of ̂G interpolate those of G in the following way:

Gsym,1(σ1) = ̂Gsym,1(σ1),

Gsym,1(σ2) = ̂Gsym,1(σ2),

Gsym,1(σ1 + σ2) = ̂Gsym,1(σ1 + σ2),

Gsym,2(σ1, σ2) = ̂Gsym,2(σ1, σ2).

The result of Proposition 2 allows to enforce the same and more interpolation
conditions than in Proposition 1 in an implicit way using the second basis matrix. This
reduces the computational complexity of the construction of the basis matrices, since
no nonlinear terms are involved, and allows to match more interpolation conditions
with smaller reduced-order models.

The choice of interpolation points for the different subsystem levels is crucial
for the quality of the computed reduced-order model. Good or even optimal choices
of interpolation points are currently unknown. However, an advantageous choice to
minimize the amount of basis contributions necessary for the interpolation of higher
level subsystem transfer functions in the symmetric case is σ1 = σ2 = σ3 = σ .
The following theorem states the interpolation conditions for this particular selection
of interpolation points and also gives conditions for the interpolation of the third
subsystem transfer function.

Theorem 1 Let G be a quadratic-bilinear system, described by its symmetric sub-
system transfer functions Gsym,k as in Definition 1, and ̂G the reduced-order
quadratic-bilinear system constructed by (30), with its reduced-order symmetric sub-
system transfer functions ̂Gsym,k . Also, let σ ∈ C be an interpolation point such that
the matrix-valued functions C,K,B,N ,H and K(.)−1 are defined at σ as well as at
2σ and 3σ . Construct the matrices

V1 = K(σ )−1B(σ ),

V2 = K(2σ)−1(H(σ, σ )(V1 ⊗ V1) + N (σ )(Im ⊗ V1)
)

,

V3 = K(3σ)−1(H(2σ, σ )(V2 ⊗ V1) + H(σ, 2σ)(V1 ⊗ V2) + N (2σ)(Im ⊗ V2)
)

,
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and
W1 = K(2σ)−HC(2σ)H,

W2 = K(3σ)−HC(3σ)H.

Then, the following statements hold true:

(a) If the basis matrix V is such that

span(V ) ⊇ span
([

V1 V2 V3
])

,

and W is full-rank and of the same dimension as V , then the symmetric transfer
functions of ̂G interpolate those of G in the following way:

Gsym,1(σ ) = ̂Gsym,1(σ ),

Gsym,2(σ, σ ) = ̂Gsym,2(σ, σ ),

Gsym,3(σ, σ, σ ) = ̂Gsym,3(σ, σ, σ ).

(b) If the basis matrices V and W are such that

span(V ) ⊇ span (V1) and span(W ) ⊇ span (W1) ,

and have the same dimension, then the symmetric transfer functions of ̂G inter-
polate those of G in the following way:

Gsym,1(σ ) = ̂Gsym,1(σ ),

Gsym,1(2σ) = ̂Gsym,1(2σ),

Gsym,2(σ, σ ) = ̂Gsym,2(σ, σ ).

(c) If the basis matrices V and W are such that

span(V ) ⊇ span
([

V1 V2
])

and span(W ) ⊇ span (W2) ,

and both of appropriate dimensions, then the symmetric transfer functions of ̂G
interpolate those of G in the following way:

Gsym,1(σ ) = ̂Gsym,1(σ ),

Gsym,1(3σ) = ̂Gsym,1(3σ),

Gsym,2(σ, σ ) = ̂Gsym,2(σ, σ ),

Gsym,3(σ, σ, σ ) = ̂Gsym,3(σ, σ, σ ).

Proof Part (a) is an extensionofProposition1 to the third symmetric subsystem transfer
function with the special selection of interpolation points and follows immediately
from [39, Thm. 6.2]. Part (b) follows directly from Proposition 2 such that only Part (c)
is left to be proven. Thefirst three interpolation conditions follow fromprevious results,
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therefore we concentrate on the third symmetric subsystem transfer function. Inserting
the selection of interpolation points into Definition 1 yields

̂Gsym,3(σ, σ, σ ) = 1

2
̂C(3σ)̂K(3σ)−1(

̂H(2σ, σ )(̂V2 ⊗ ̂V1)

+ ̂H(σ, 2σ)(̂V1 ⊗ ̂V2) + ̂N (2σ)(Im ⊗ ̂V2)
)

,

where
̂V1 = ̂K(σ )−1

̂B(σ ) and

̂V2 = ̂K(2σ)−1(
̂H(σ, σ )(̂V1 ⊗ ̂V1) + ̂N (σ )(Im ⊗ ̂V1)

)

.

Using the projector PV = V (WHK(σ )V )−1WHK(σ ) onto the space spanned by the
columns of V , it follows that

V ̂V1 = V1 and V ̂V2 = V2

hold due to the construction of the space spanned by the columns of V via the columns
of V1 and V2. Using the projector PW = W (WHK(σ )V )−HV HK(σ )H onto the space
spanned by the columns of W , it also holds that

̂C(σ )̂K(σ )−1WH = C(σ )K(σ )−1,

such that the final result of the theorem holds via

̂Gsym,3(σ, σ, σ ) = 1

2
̂C(3σ)̂K(3σ)−1WH(H(2σ, σ )(V ̂V2 ⊗ V ̂V1)

+ H(σ, 2σ)(V ̂V1 ⊗ V ̂V2) + N (2σ)(Im ⊗ V ̂V2)
)

= 1

2
C(3σ)K(3σ)−1(H(2σ, σ )(V2 ⊗ V1)

+ H(σ, 2σ)(V1 ⊗ V2) + N (2σ)(Im ⊗ V2)
)

= Gsym,3(σ, σ, σ ).

4.3 Interpolating generalized transfer functions

In this section, we investigate conditions on the projection spaces for the interpola-
tion of the structured generalized transfer functions from Definition 2. The following
proposition can be seen as an analog to Proposition 1 for the generalized case.

Proposition 3 ([39], Thm. 6.13) Let G be a quadratic-bilinear system, described by
its generalized transfer functions G(.)

gen,k from Definition 2, and ̂G the reduced-order
quadratic-bilinear system constructed by (30), with its reduced-order generalized
transfer functions ̂G(.)

gen,k . Also, let σ1, σ2, σ3 ∈ C be interpolation points such that

the matrix-valued functions C,K,B,N ,H and K(.)−1 are defined at these points.
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Compute
V1,1 = K(σ1)

−1B(σ1),

V1,2 = K(σ2)
−1B(σ2),

V2 = K(σ2)
−1N (σ1)(Im ⊗ V1,1),

V3,1 = K(σ3)
−1N (σ2)(Im ⊗ V2),

V3,2 = K(σ3)
−1H(σ2, σ1)(V1,2 ⊗ V1,1),

and construct the basis matrix V such that

span(V ) ⊇ span
([

V1,1 V1,2 V2 V3,1 V3,2
])

.

Let W be an arbitrary full-rank matrix of appropriate dimensions. Then, the general-
ized transfer functions of ̂G interpolate those of G in the following way:

G(B)
gen,1(σ1) = ̂G(B)

gen,1(σ1),

G(B)
gen,1(σ2) = ̂G(B)

gen,1(σ2),

G(N,(B))
gen,2 (σ1, σ2) = ̂G(N,(B))

gen,2 (σ1, σ2),

G(N,(N,(B)))
gen,3 (σ1, σ2, σ3) = ̂G(N,(N,(B)))

gen,3 (σ1, σ2, σ3),

G(H,(B),(B))
gen,3 (σ1, σ2, σ3) = ̂G(H,(B),(B))

gen,3 (σ1, σ2, σ3).

Remark 1 As for the symmetric subsystem transfer functions, it is possible to reduce
the dimensions of the constructed projection space by choosing suitable interpolation
points and, also as in the symmetric subsystem transfer function case, this can be
achieved by choosing σ1 = σ2 = σ3. However, onlymarginal savings in terms of basis
contributions and computational costs can be achieved by this since in Proposition 3,
only the matrix V1,2 can be omitted.

Note that in Proposition 3, the basis contribution from V3,1 results in the interpo-
lation of the third generalized transfer function with two bilinear terms G(N,(N,(B)))

gen,3 .
It may happen that no interpolation conditions are imposed for this transfer function
such that the subspace dimensions can be reduced by omitting V3,1. As in the case
of symmetric subsystem transfer functions, the second basis matrix W can be used
to reduce the minimal dimension of the constructed subspaces and to simplify the
construction of the subspaces. These results are given in the following corollary.

Corollary 1 Let G be a quadratic-bilinear system, described by its generalized transfer
functions G(.)

gen,k fromDefinition 2, and ̂G the reduced-order quadratic-bilinear system

constructed by (30), with its reduced-order generalized transfer functions ̂G(.)
gen,k .

Also, let σ1, σ2 ∈ C be interpolation points such that the matrix-valued functions
C,K,B,N ,H and K(.)−1 are defined at these points. Let the basis matrices V and
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W be constructed by

span(V ) ⊇ span
(

K(σ1)
−1B(σ1)

)

,

span(W ) ⊇ span
(

K(σ2)
−HC(σ2)

H
)

,

and are of the same dimension. Then, the generalized transfer functions of ̂G interpo-
late those of G in the following way:

G(B)
gen,1(σ1) = ̂G(B)

gen,1(σ1),

G(B)
gen,1(σ2) = ̂G(B)

gen,1(σ2),

G(N,(B))
gen,2 (σ1, σ2) = ̂G(N,(B))

gen,2 (σ1, σ2),

G(H,(B),(B))
gen,3 (σ1, σ1, σ2) = ̂G(H,(B),(B))

gen,3 (σ1, σ1, σ2).

Proof The result follows directly from [39, Lem. 6.15] by restriction to two interpo-
lation points.

Similar to Proposition 2, the result in Corollary 1 states that the interpolation of
higher level transfer functions is possible in an implicit way without evaluating any of
the nonlinear terms. Corollary 1 shows the version of the implicit interpolation result
with the smallest achievable minimal subspace dimensions for the interpolation of the
third level generalized transfer function with quadratic term. The choice of identical
interpolation points will not further reduce the dimensions of the projection spaces,
but allows to replace the interpolation of the first level generalized transfer function
in two points by matching the transfer function value and its derivative in one point;
see [5] and [39, Lem. 6.15].

5 Numerical experiments

Now, we employ the interpolation results from above for constructing structured
reduced-order quadratic-bilinear systems in two numerical examples. The experiments
were run on compute nodes of the TinkerCliffs high-performance computing
cluster of the Advanced Research Computing (ARC) facility at Virginia Tech using
16 processing cores of the AMD EPYC 7702 200W CPU at 2.0GHz and 32GB main
memory. We used MATLAB 9.13.0.2126072 (R2022b) running on Red Hat Enter-
prise Linux release 7.9 (Maipo). The source code, data and results of the numerical
experiments are open source/open access and available at [40].

5.1 Experimental setup

In both numerical examples, we compute reduced-order models via structure-
preserving interpolation of the symmetric subsystem transfer functions and the
generalized transfer functions, denoted by SymInt and GenInt, respectively. We

123

18 Page 20 of 35



Structured interpolation...

compute models using either (i) only the construction of the basis matrix V and a one-
sided projection by settingW = V , which we abbreviate further on by V, or (ii) by also
constructing the left basis matrixW for a two-sided projection following the results in
Theorem 1 and Corollary 1, which we abbreviate by VW. For simplicity, the interpola-
tion points are chosen logarithmically equidistant on the imaginary axis in all cases. If
we compute only the basis matrices for interpolation without additional information,
this is denoted by equi. On the other hand, if we oversampled the frequency range
of interest and compressed the resulting basis to a prescribed dimension, e.g., using
pivoted QR, this is denoted by avg; cf. [39, Rem. 3.3]. In all cases, we focus on the
interpolation of either (i) the first two symmetric subsystem transfer functions or (ii)
the first two levels of the generalized transfer functions and the third level generalized
transfer function containing the quadratic term. The following overview summarizes
the considered interpolation methods:

SymInt(V, equi) is the interpolation of symmetric subsystem transfer func-
tions via one-sided projection by constructing the basis
matrix V .

SymInt(VW, equi) is the interpolation of symmetric subsystem transfer func-
tions via two-sided projection. Additional interpolation
points are selected for the construction of W to match the
dimension of V .

SymInt(V, avg) is the approximation of an interpolation basis for symmet-
ric subsystem transfer functions using only samples for the
construction of V and one-sided projection.

SymInt(VW, avg) is the approximation of left and right interpolation bases for
symmetric subsystem transfer functions using samples for
the construction ofV andW and two-sidedprojection.Addi-
tional interpolation points are selected for the construction
of W to match the computational work to the construction
of V .

GenInt(V, equi) is the interpolation of generalized transfer functions via one-
sided projection by constructing the basismatrixV . Samples
from the second and third level transfer functions are taken
alternating.

GenInt(VW, equi) is the interpolation of generalized transfer functions via two-
sided projection. For the construction of V , samples from
the second and third level transfer functions are taken alter-
nating. Additional interpolation points are selected for the
construction of W to match the dimension of V .

GenInt(V, avg) is the approximation of an interpolation basis for generalized
transfer functions using only samples for the construction
of V and one-sided projection. At all interpolation points,
second and third level samples are taken.

SymInt(VW, avg) is the approximation of left and right interpolation bases for
generalized transfer functions using samples for the con-
struction of V and W and two-sided projection. For the
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construction of V , second and third level samples are taken
at all interpolation points. Additional interpolation points
are selected for the construction of W to equalize the com-
putational work to the construction of V .

As an additional comparison, we have computed reduced-order models via proper
orthogonal decomposition (POD). All POD models have been trained via simulations
of the unit step response to remove the correlation of the training and test input signals.
For a fair comparison, the trajectory lengths used for POD are chosen with respect to
comparable amounts of computational work to the interpolationmethods.We consider
therefore:

POD, which has a computational workload similar to SymInt(V, equi)
and GenInt(V, equi), and

POD(avg), which uses similar toSymInt(V, avg) and GenInt(V, avg) an
oversampling and computes the orthogonal basis via truncated singular
value decomposition.

For the comparison of the reduced-order models in time domain, we simulate the
models over finite time intervals using the implicit-explicit (IMEX) Euler scheme and
input signals taken from a Gaussian process GP(μ, K), with constant meanμ ∈ R and
the squared exponential kernel

K(x, y) = exp

(

−|x − y|2
2ς2

)

,

where ς ≥ 0 is a smoothing parameter. The parameters μ and ς are chosen indepen-
dently for the two examples and are given below. For visualization, we compute and
plot the maximum pointwise relative errors

relerr(t) := max
j

∣

∣

∣

∣

y j (t) − ŷ j (t)

y j (t)

∣

∣

∣

∣

.

Also, we compute discretized approximations of the relative L2 and L∞ errors via

relerrL2 := ‖vec(yh − ŷh)‖2
‖vec(yh)‖2 and relerrL∞ := ‖vec(yh − ŷh)‖∞

‖vec(yh)‖∞
,

where yh, ŷh ∈ R
p×nh are the discretized output signals of the original and reduced-

order model, respectively, in the time interval [0, tf ], and vec(.) is the vectorization
operator.

In frequency domain, we consider the pointwise relative spectral norm errors
defined as

relerr(ω) := ‖Gsym,1(ıω) − ̂Gsym,1(ıω)‖2
‖Gsym,1(ıω)‖2 and

relerr(ω1, ω2) := ‖Gsym,2(ıω1, ıω2) − ̂Gsym,2(ıω1, ıω2)‖2
‖Gsym,2(ıω1, ıω2)‖2 ,
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over the limited frequency intervals ω,ω1, ω2 ∈ [ωmin, ωmax]. Additionally, we com-
pute approximations to the relativeL∞-norm errors for the first and second symmetric
subsystem transfer functions via

relerr(1)L∞ :=
max

ω
‖Gsym,1(ıω) − ̂Gsym,1(ıω)‖2

max
ω

‖Gsym,1(ıω)‖2 and

relerr(2)L∞ :=
max
ω1, ω2

‖Gsym,2(ıω1, ıω2) − ̂Gsym,2(ıω1, ıω2)‖2
max
ω1, ω2

‖Gsym,2(ıω1, ıω2)‖2 ,

using 500 logarithmically equidistant sampling points in the frequency interval of
interest [ωmin, ωmax]. For further details on the experimental setup, we refer the reader
to the accompanying code package [40].

5.2 Quadratic-bilinear time-delayed reaction-diffusionmodel

As first example, we consider the time-delayed heated rod with bilinear feedback
from [11, 17], to which we append a quadratic reaction term to obtain

∂tν(ζ, t) = Δν(ζ, t) − 2 sin(ζ )ν(ζ, t) + 2 sin(ζ )ν(ζ, t − τ)

− 2 sin(ζ )ν(ζ, t)2 +
m

∑

j=1

b j (ζ )(ν(ζ, t) + 1)u j (t),

with (t, ζ ) ∈ (0, tf) × (0, π), boundary conditions ν(t, 0) = ν(t, π) = 0 for all
t ∈ [0, tf ], and the constant time delay τ = 1. After spatial discretization with central
finite differences, we obtain a quadratic-bilinear time-delay system of the form

Eẋ(t) = Ax(t) + Adx(t − τ) + H(x(t) ⊗ x(t)) +
m

∑

j=1

Nkx(t)u j (t) + Bu(t),

y(t) = Cx(t),

with E, A, Ad, N j ∈ R
n×n , for j = 1, . . . ,m, H ∈ R

n×n2 , B ∈ R
n×m andC ∈ R

p×n .
For our experiments, we have chosen n = 2 000,m = 2 and p = 2, where u1 controls
the temperature of the first third of the rod and u2 the rest, and y1 observes the
temperature of the first half of the rod and y2 of the second half. The system has zero
initial conditions x(t) = 0 for all t ≤ 0.

The reduced-order models are computed as explained in Section 5.1. We have
computed reduced-order models of order r = 12 as well as r = 24 such that we can
investigate the error behavior as the reduced order increases. The computation times
for the construction of the reduced-order models and for the time simulations using
the full-order model or the reduced-order models are reported in Table 1. We can see
that the construction of the reduced-order models without oversampling takes only a
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Table 1 Computation times for the time-delay example in seconds: for both sizes of reduced-order mod-
els, we can observe that the models generated without oversampling can be constructed in a fraction of
the computation time needed for even a single full-order time simulation. Those models constructed via
oversampling are around 1 to 1.25 times as expensive as a single time simulation such that the construction
of these models immediately pays off when more than one or longer time simulations are needed

FOM simulation 28.4927
r = 12 r = 24

ROM construction SymInt(V, equi) 2.9955 10.2805

SymInt(V, avg) 26.9295 33.3453

SymInt(VW, equi) 2.8717 10.1273

SymInt(VW, avg) 28.3259 33.7421

GenInt(V, equi) 2.6775 9.7244

GenInt(V, avg) 28.2524 35.5631

GenInt(VW, equi) 2.7534 9.7989

GenInt(VW, avg) 31.6192 35.9506

POD 2.6153 9.8389

POD(avg) 22.7521 31.5421

ROM simulations 0.0502 0.1054

fraction of the computation time of a single simulation of the full-order model such
that the construction of the reduced-order models immediately pays off. For the mod-
els constructed from oversampled bases, the construction of the reduced-order models
pays off when more than a single time simulation is needed. In Tables 2 and 3, we
can see that all reduced-order models perform well. However, the interpolation-based
models provide smaller errors than those generated by POD for both chosen reduced

Table 2 Errors computed as shown in Section 5.1 for the r = 12 time-delay example: POD computes the
worst performing reduced-order model, while POD(avg) is at least one order of magnitude worse in error
than all the interpolation-based models. Here, all interpolation-based methods perform comparably well

relerrL2 relerrL∞ relerr(1)L∞ relerr(2)L∞

SymInt(V, equi) 2.7360e-06 1.1822e-05 2.2183e-05 2.7574e-05

SymInt(V, avg) 5.9357e-05 1.4497e-04 1.1200e-05 2.0584e-05

SymInt(VW, equi) 2.2676e-06 6.2992e-06 2.1285e-05 2.9037e-05

SymInt(VW, avg) 2.9262e-05 8.4803e-05 3.3123e-06 7.4927e-06

GenInt(V, equi) 2.0735e-06 6.3304e-06 1.0049e-05 2.0322e-06

GenInt(V, avg) 1.3227e-05 2.9398e-05 1.0850e-05 1.1291e-05

GenInt(VW, equi) 1.7310e-05 7.0273e-05 2.6421e-04 2.8641e-05

GenInt(VW, avg) 3.8794e-05 1.3094e-04 3.5969e-06 7.2201e-06

POD 1.3310e-01 2.1106e-01 1.6514e-01 8.5100e-02

POD(avg) 4.9905e-04 1.0262e-03 3.8593e-04 8.9527e-04
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Table 3 Errors computed as shown in Section 5.1 for the r = 24 time-delay example: POD computes
the worst performing reduced-order model, while POD(avg) is only as good as the worst interpolation-
based models. Here, SymInt(VW, avg) performs best w.r.t. three out of the four error measures, while

according to relerr(1)L∞ , the best reduced-order model is computed by GenInt(VW, avg)

relerrL2 relerrL∞ relerr(1)L∞ relerr(2)L∞

SymInt(V, equi) 8.1604e-07 1.8475e-06 2.5851e-06 3.4393e-06

SymInt(V, avg) 3.1414e-08 4.9411e-08 3.4598e-08 1.0957e-06

SymInt(VW, equi) 1.3522e-05 6.6301e-05 6.2129e-08 6.1247e-06

SymInt(VW, avg) 6.1324e-09 2.4509e-08 4.9776e-10 2.5239e-09

GenInt(V, equi) 3.2366e-06 4.3858e-06 1.1710e-05 5.3091e-06

GenInt(V, avg) 3.9579e-08 6.7805e-08 3.1402e-08 1.0562e-06

GenInt(VW, equi) 5.2035e-06 1.7040e-05 4.0332e-07 4.2761e-07

GenInt(VW, avg) 1.0280e-08 4.3505e-08 1.1418e-10 4.1712e-09

POD 5.1889e-04 1.0145e-03 5.8308e-04 2.6052e-04

POD(avg) 1.9453e-05 4.7931e-05 5.4489e-06 4.4316e-05

orders r = 12 and r = 24, where the better POD model computed by POD(avg)
performsmildlyworse than theworst interpolation-based reduced-ordermodels. Com-
paring the different interpolation approaches we cannot determine a superior choice
of transfer function as in most cases symmetric as well as generalized transfer func-
tions provide errors in the same order of magnitude. For the reduced-order models
constructed via exact interpolation (equi), the sampling of higher order terms in
the generalized transfer function needed to be restricted to match the reduced basis
dimension. This restriction is removed in avg such that more information about the
bilinear and quadratic terms can be obtained in sampling the generalized transfer
functions compared to the symmetric transfer function setting. However, this does not
seem to provide a significantly better approximation than using the symmetric transfer
functions.

Figure 1 shows the time simulation of the full-order model and the best performing
reduced-order models from each method for the two reduced orders r = 12 and
r = 24 over the time interval [0, 30] s. We restricted Fig. 1a and c to only the first
output signal for clarity, but the pointwise relative errors in Fig. 1b and d are computed
over both output entries. For the input signals, we have chosen the mean μ = 2
and the parameter ς = 0.25. The interpolation-based methods clearly outperform
POD(avg) for both reduced orders. For the smaller order r = 12, the interpolation-
based methods are around one order of magnitude better than POD(avg), while for
r = 24, this improves to around four orders of magnitude better approximation errors
by the interpolation-based methods. There is no significant difference between the
errors of SymInt(VW, avg) and GenInt(VW, avg).

Similar results can be observed in frequency domain. The first symmetric sub-
system transfer functions are shown in Fig. 2, while Fig. 3 illustrates the pointwise
relative errors of the second symmetric subsystem transfer functions. In both cases,
we only show the best performing methods in the frequency interval ω,ω1, ω2 ∈
[10−3, 103] rad/s. As in the time domain, the interpolation-based methods outperform
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Fig. 1 Time simulations of the time-delay example: the best reduced-order models from each generating
approach are shown. All reduced-order models can recover the system behavior for the given input signal,
but the interpolation-based reduced-order models perform around four orders of magnitude better in terms
of accuracy than the model generated by POD(avg)

POD(avg) by several orders of magnitude in terms of accuracy. Further plots of the
other methods in time and frequency domain can be found in the accompanying code
package [40].

5.3 Particle motion in one-dimensional crystal structures

As second example, we consider the motion of particles in a one-dimensional crystal
structure described by the Toda lattice model [37]; see Fig. 4. This model belongs
to the class of nonlinear mechanical systems of the form (1). The nonlinear time
evolution function contains exponential terms that describe the forces between the
different particles:

f
(

q(t), q̇(t), u(t)
) = −˜Dq̇(t) −

⎡

⎢

⎢

⎢

⎣

ek1(q1(t)−q2(t)) − 1
ek2(q2(t)−q3(t)) − ek1(q1(t)−q2(t))

...

ek�q�(t) − ek�−1(q�−1(t)−q�(t))

⎤

⎥

⎥

⎥

⎦

, (33)
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Fig. 2 Sigma plots showing ‖G(ıω))‖2 of the first symmetric subsystem transfer function of the time-
delay example: the best reduced-order models from each generating approach are shown. All reduced-order
models can recover the system behavior for the given input signal, but the interpolation-based reduced-order
models perform around six orders of magnitude better in terms of accuracy than the model generated by
POD(avg)

with the positive semidefinite diagonal damping matrix ˜D ∈ R
�×� and the positive

stiffness coefficients k1, . . . , k�. See [39, Sec. 1.3.3] for the derivation of the differ-
ential model from the underlying Hamiltonian. The original system with exponential
nonlinearities (33) can be rewritten into quadratic-bilinear form by introducing the
auxiliary variables

z j (t) =
{

ek j (q j (t)−q j+1(t)) − 1 for j < �,

ek�q�(t) − 1 for j = �.
(34)

By differentiating (34) twice, the Toda lattice model can be written as a system of
quadratic-bilinear ordinary differential equations of the form

0 = Mq̈(t) + Dq̇(t) + Kq(t) + Hvv
(

q̇(t) ⊗ q̇(t)
) + Hpv

(

q(t) ⊗ q̇(t)
)

+ Hpp
(

q(t) ⊗ q(t)
) − Npq(t)u(t) − Buu(t),

y(t) = Cvq̇(t),

(35)
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Fig. 3 Second symmetric subsystem transfer function relative approximation errors relerr(ω1, ω2) of the
time-delay example: the best reduced-order models from each generating approach are shown. The errors
of both interpolation-based reduced-order models are at least four orders of magnitude better than those of
the POD(avg) model

Fig. 4 Schematic illustration of the Toda lattice with � particles [39]. Atoms in a one-dimensional crystal
structure are represented as point masses and connected by exponential springsmodeling the forces between
the particles
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with the dimensions as in (2) and m = 1 input and p = 1 output. The exact parame-
terization of the matrices in (35) can be found in [39, Sec. 6.5]. For our experiments,
we use the same setup as in [39, Sec. 6.5] with � = 2 000 particles such that (35) has
the order n = 4 000.

It has been observed in [39] that the internal block structures of the matrices in (35)
resulting from the original and auxiliary variables should be preserved for stability of
the reduced-order models. Therefore, we follow the suggestion in [39, Sec. 6.5] and
use the split congruence transformation approach [15, 33, 38]. That is, given a basis

matrix V = [

V H
1 V H

2

]H ∈ C
2�×r , we construct the extended basis matrix

˜V =
[

V1 0
0 V2

]

∈ C
2�×2r ,

and similarly for a left basis matrix W . The extended basis matrices are then used for
model reduction by projection. We apply this approach in our experiments to modify
all projection basis matrices computed as described in Section 5.1. By construction,
it holds that

span(V ) ⊆ span(˜V ).

Therefore, if V was constructed to satisfy any subspace conditions in Section 4 for
interpolation, the basis matrix ˜V also satisfies these conditions such that interpolation
properties are preserved.

For the comparison in our experiments, we have chosen the reduced order of all
computed models to be 2r = 120. The computation times for the construction of
the reduced-order models, the time simulation of the full-order model and the time
simulations of the reduced-order models are shown in Table 4. The simulation of the
reduced-order models takes only a fraction of the time of the full-order simulation;
however, the construction of the reduced-order models takes approximately 10 times
as long as one time simulation of the full-order model. Therefore, the construction of
the reduced-order models pays off if more than 10 time simulations (or a simulation
around 10 times as long as shown here) are needed. The approximation errors are
shown in Table 5. The best performing model in terms of time simulation error is
SymInt(V, equi) followed by its counterpart for the generalized transfer func-
tionsGenInt(V, equi). None of themodels resulting from a two-sided projection
has a stable time-domain simulation, which appears to be a consequence of loosing
additional mechanical properties by V �= W . The numerical integration of the POD
generated models appears to be unstable in all situations. Here, the large frequency
domain errors indicate that the approximation quality is not sufficient to approximate
the system behavior well enough. In frequency domain, we observe similarly to the
previous numerical example that SymInt(VW, avg) and GenInt(VW, avg)
perform best in terms of approximating the first symmetric subsystem transfer func-
tion.

The time-domain simulations of the full- and the best performing reduced-order
models from each method are shown in Fig. 5 in the time interval [0, 100] s. For the
input signal, we have chosen the mean μ = 0 and the smoothing parameter ς = 2.
POD(avg) performs visibly stable only until around 60 s, while the other two models
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Table 4 Computation times for the Toda lattice example in seconds: the construction of any reduced-order
model is around 10 times as expensive as the time simulation of the Toda lattice model. In other words, the
reduced-order models pay off in terms of computation time if more than 10 time simulations or a simulation
with an at least 10 times longer time horizon are needed. Note that the computation times of the reduced-
order model construction is strongly dominated by the projection of the three quadratic tensors of the model
such that improvements on computing the tensor projections quickly result in faster computation times

FOM simulation 204.4126

ROM construction SymInt(V, equi) 2046.0838

SymInt(V, avg) 2079.8549

SymInt(VW, equi) 2012.4560

SymInt(VW, avg) 2037.2552

GenInt(V, equi) 2072.3530

GenInt(V, avg) 2205.1623

GenInt(VW, equi) 1973.3049

GenInt(VW, avg) 2041.2817

POD 2006.0416

POD(avg) 2043.2449

ROM simulations 12.2813

follow the system behavior over the complete time interval. The pointwise relative
errors in Fig. 5b reveal POD(avg) to be more accurate than SymInt(V, equi)
and GenInt(V, equi) for the first half of the time interval before it assumes the
same error level as the other two methods and finally becomes unstable. SymInt(V,
equi) and GenInt(V, equi) have overall a similar error behavior, with the
errors of GenInt(V, equi) being mildly larger.

Table 5 Error table of the Toda lattice example: The errors are computed as shown in Section 5.1. Only the
interpolation methods with one-sided projections provide reduced-order models that are stable in the time
simulation. The models with ∞ error are unstable. SymInt(V, equi) performs overall best with one
order of magnitude smaller time domain errors in comparison to GenInt(V, equi)

relerrL2 relerrL∞ relerr(1)L∞ relerr(2)L∞

SymInt(V, equi) 2.2445e-04 4.1691e-04 5.3358e-03 4.3541e-02

SymInt(V, avg) 1.4565e-02 1.7264e-02 1.4862e-02 9.4341e-02

SymInt(VW, equi) ∞ ∞ 4.4450e-03 5.2675e-02

SymInt(VW, avg) ∞ ∞ 2.3354e-05 2.3035e-01

GenInt(V, equi) 1.1059e-03 2.1774e-03 1.3737e-02 7.6595e-02

GenInt(V, avg) 4.2052e-03 8.5704e-03 1.8517e-03 2.6190e-02

GenInt(VW, equi) ∞ ∞ 1.6930e-03 7.9712e-02

GenInt(VW, avg) ∞ ∞ 8.2451e-06 4.5499e-02

POD ∞ ∞ 8.1769e-01 7.7696e-01

POD(avg) ∞ ∞ 4.6483e-01 6.2382e-01
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Fig. 5 Time simulation of the Toda lattice example: the best reduced-order models from each generating
approach are shown. Only the interpolation-based reduced-order models recover the system behavior over
the full time interval, while POD(avg) becomes unstable after about 60 s

On the other hand, in frequency domain, we can observe a similar behavior com-
pared to the previous numerical example. The results for the same reduced-order
models that performed best in time domain can be seen in Figs. 6 and 7, with the fre-
quency interval of interest ω,ω1, ω2 ∈ [10−3, 103] rad/s. The POD generated models
perform worst, with the exception of GenInt(VW, equi). The models based on
oversampling generalized transfer functions perform better than those based on over-
sampling the symmetric transfer functions due to the additional information obtained
from the nonlinear terms. However, in this example we can observe that the over-
sampling procedure may produce larger errors than exact interpolation. In particular,
models computed via avg provide worse approximation errors for larger frequencies,
where the transfer functions are converging to zero, while the models with equi pre-

Fig. 6 First symmetric transfer function of the Toda lattice example: only the best performing methods
from the time simulation are shown. All reduced-order models recover the transfer function behavior of
the original system. For low frequencies, POD(avg) performs two order of magnitude worse than the
interpolating methods
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Fig. 7 Second symmetric transfer function relative approximation errors relerr(ω1, ω2) of the Toda lattice
example: only the best performing methods from the time simulation are shown. For large frequencies,
SymInt(V, equi) and POD(avg) perform equally well and better than GenInt(V, equi), while
for low frequencies, POD(avg) is an order of magnitude worse than the interpolating methods

serve the system behavior due to the exact interpolation. Further plots of the other
methods in time and frequency domain can be found in the accompanying code pack-
age [40].

6 Conclusions

We have extended the structure-preserving interpolation framework to quadratic-
bilinear systems. Based on two motivating structured examples, we have introduced
the structured variants of the symmetric subsystem and generalized transfer functions
of quadratic-bilinear systems. For both transfer function types, we provided subspace
conditions enabling the computation of interpolating structured reduced-order models
by projection. The theoretical findings are then used to compute structured reduced-
order models in two numerical examples. The theory presented here can be applied to
a much broader class of structures than those used here for illustrations.

The numerical results suggest that the interpolation of symmetric transfer functions
provides more accurate reduced-order models than the generalized transfer functions
for the same reduced order. This is most certainly a consequence of the restriction
to only products of system terms in the generalized transfer functions. However, we
have seen that when the basis matrices are first constructed by oversampling and then
compressed, the generalized transfer function interpolation framework provides more
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accurate reduced-order models for the same computational costs as for the symmetric
transfer functions due to additional information obtained from the nonlinear terms.
The authors of [18] extend on this oversampling idea and the definition of structured
generalized transfer functions for quadratic-bilinear systems from this paper to pro-
pose structure-preserving model reduction for systems with polynomial nonlinearities
based on the interpolation of generalized transfer functions with at most one nonlin-
ear component. While this gives a first efficient approach to simulation-free model
reduction for polynomial systems, there are many open questions left. One related to
our observations in this work is the question whether exact interpolation of transfer
functions based on Volterra kernels may perform better than an oversampling proce-
dure. This needs a thorough investigation of interpolation conditions for polynomial
systems, which we will address in some future work.

Another transfer function type for quadratic-bilinear systems are regular subsystem
transfer functions. These have been omitted in this paper since for the choice of iden-
tical interpolation points, the projection spaces of regular and symmetric subsystem
transfer functions coincide. The formulas for structured variants of regular transfer
functions and results on interpolation conditions will be presented in a separate work.

For simplicity of exposition, we have restricted the numerical experiments to only
logarithmically equidistant interpolation points on the imaginary axis. While such a
procedure is often sufficient in practice, the question of good or even optimal interpola-
tion points remains open and crucial for the success of such model reduction methods.
This is still an unresolved issue even in the case of structured linear systems and needs
further investigation in the future.
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