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Abstract
The Grassmann manifold of linear subspaces is important for the mathematical mod-
elling of a multitude of applications, ranging from problems in machine learning,
computer vision and image processing to low-rank matrix optimization problems,
dynamic low-rank decompositions and model reduction. With this mostly expository
work, we aim to provide a collection of the essential facts and formulae on the geom-
etry of the Grassmann manifold in a fashion that is fit for tackling the aforementioned
problems with matrix-based algorithms. Moreover, we expose the Grassmann geom-
etry both from the approach of representing subspaces with orthogonal projectors and
when viewed as a quotient space of the orthogonal group, where subspaces are identi-
fied as equivalence classes of (orthogonal) bases. This bridges the associated research
tracks and allows for an easy transition between these two approaches. Original con-
tributions include a modified algorithm for computing the Riemannian logarithm map
on the Grassmannian that is advantageous numerically but also allows for a more ele-
mentary, yet more complete description of the cut locus and the conjugate points. We
also derive a formula for parallel transport along geodesics in the orthogonal projector
perspective, formulae for the derivative of the exponential map, as well as a formula
for Jacobi fields vanishing at one point.
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Notation

Symbol Matrix Definition Name

Ip diag(1, . . . , 1) ∈ R
p×p Identity matrix

In,p

(
Ip
0

)
∈ R

n×p

Symn {X ∈ R
n×n | X = X T } Space of symmetric matrices

O(n)
{

Q ∈ R
n×n

∣∣QT Q = In = Q QT
}

Orthogonal group

TQO(n) {Q� ∈ R
n×n | �T = −�} Tangent space of O(n) at Q

St(n, p) {U ∈ R
n×p | U T U = Ip} Stiefel manifold

TUSt(n, p) {D ∈ R
n×p | U T D = −DT U } Tangent space of St(n, p) at U

Gr(n, p) {P ∈ Symn | P2 = P, rank(P) = p} Grassmann manifold
TPGr(n, p) {� ∈ Symn | � = P�+�P} Tangent space of Gr(n, p) at P
U⊥ (U U⊥) ∈ O(n) Orthogonal completion of U ∈

St(n, p)

gStU (D1, D2) tr(DT
1 (In − 1

2UU T )D2) (Quotient) metric in TUSt(n, p)

gGrP (�1, �2)
1
2 tr(�T

1 �2) Riemannian metric in TPGr(n, p)

πOS(Q) Q In,p Projection from O(n) to St(n, p)

πSG(U ) UU T Projection from St(n, p) to Gr(n, p)

πOG(Q) Q In,p I T
n,p QT Projection from O(n) to Gr(n, p)

VerU St(n, p) {U A ∈ R
n×p | AT = −A ∈ R

p×p} Vertical space w.r.t. πSG

HorU St(n, p) {U⊥B ∈ R
n×p | B ∈ R

(n−p)×p} Horizontal space w.r.t. πSG

�hor
U �U ∈ R

n×p Horizontal lift of � ∈ TPGr(n, p) to
HorU St(n, p)

[U ] {U R ∈ St(n, p) | R ∈ O(p)} Equivalence class representing a point
in Gr(n, p)

ExpGrP (t�) πSG(U V cos(t�)+ Q̂ sin(t�)) Riemannian exponential for �hor
U

SVD=
Q̂�V T ∈ HorU St(n, p)

LogGrP (F) � ∈ TPGr(n, p) s.t. ExpGrP (�) = F Riemannian logarithm in Gr(n, p)

K P (�1, �2) 4
tr
(
�2
1�

2
2

)
−tr

(
(�1�2)

2
)

tr(�2
1) tr(�

2
2)−(tr(�1�2))

2 Sectional curvature of Gr(n, p)

1 Introduction

The collection of all linear subspaces of fixed dimension p of the Euclidean space Rn

forms the Grassmann manifold Gr(n, p), also termed the Grassmannian. Subspaces

123



A Grassmann manifold handbook Page 3 of 51 6

and thus Grassmannmanifolds play an important role in a large variety of applications.
These include, but are not limited to, data analysis and signal processing [24, 51, 52],
subspace estimation and subspace tracking [9, 16, 65], structured matrix optimization
problems [2, 3, 21], dynamic low-rank decompositions [28, 37], projection-based
parametric model reduction [8, 47, 48, 67, 68] and computer vision [45], see also the
collections [46, 57]. Moreover, Grassmannians are extensively studied for their purely
mathematical aspects [38, 42, 44, 54, 60–62] and often serve as illustrating examples
in the differential geometry literature [31, 36].

In thiswork,we approach theGrassmannian fromamatrix-analytic perspective.The
focus is on the computational aspects as well as on geometric concepts that directly
or indirectly feature in matrix-based algorithmic applications. The most prominent
approaches of representing points on Grassmann manifolds with matrices in compu-
tational algorithms are

• the basis perspective: A subspace U ∈ Gr(n, p) is identified with a (non-unique)
matrix U ∈ R

n×p whose columns form a basis of U . In this way, a subspace is
identified with the equivalence class of all rank-p matrices whose columns span
U . For an overview of this approach, see for example the survey [2]. A brief
introduction is given in [33].

• the ONB perspective: In analogy to the basis perspective above, a subspace U
may be identified with the equivalence class of matrices whose columns form an
orthonormal basis (ONB) of U . This is often advantageous in numerical compu-
tations. This approach is surveyed in [21].

• the projector perspective: A subspace U ∈ Gr(n, p) is identified with the (unique)
orthogonal projector P ∈ R

n×n onto U , which in turn is uniquely represented by
P = UU T , with U from the ONB perspective above. For an approach without
explicit matrices see [44], and for the approach with matrices see for example [10,
32, 33].

• the Lie group perspective: A subspace U ∈ Gr(n, p) is identified with an equiva-
lence class of orthogonal n × n matrices. This perspective is for example taken in
[24, 56].

These approaches are closely related and all of them rely on Lie group theory to some
extent. Yet, the research literature on the basis/ONB perspective and the projector per-
spective is rather disjoint. The recent preprint [39] proposes yet another perspective,
namely representing p-dimensional subspaces as symmetric orthogonal matrices of
trace 2p − n. This approach corresponds to a scaling and translation of the projec-
tor matrices in the vector space of symmetric matrices, hence it yields very similar
formulae.

There are at least two other important perspectives on the Grassmann manifold,
which are however not treated further in this work, as they are mainly connected to
the field of algebraic geometry. The first are Plücker embeddings, where Gr(n, p)

is embedded into the projective space P
(n

p)−1, which is done by representing every
point, i.e., subspace, in Gr(n, p) by the determinants of all p × p submatrices of a
matrix spanning that subspace. The second perspective are Schubert varieties, where
the Grassmannian is partitioned into so called Schubert cells. For details on both of
those approaches, see for example [25] and several references therein.
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The Grassmann manifold can also be defined for the complex case, which features
less often in applications, as far as the authors are aware. Here, complex p-dimensional
subspaces ofCn are studied. Most of the formulas in this handbook can be transferred
to the complex case with analogous derivations, by replacing the orthogonal group
O(n)with the unitary group U(n), and the transpose with the conjugate transpose. For
a study of complex Grasmannians, see for example [44, Section 5] and [11].

Raison d’être and original contributions We treat the Lie group approach, the ONB
perspective and the projector perspective simultaneously. This may serve as a bridge
between the corresponding research tracks.Moreover,we collect the essential facts and
concepts that feature as generic tools and building blocks in Riemannian computing
problems on the Grassmann manifold in terms of matrix formulae, fit for algorithmic
calculations. This includes, among others, the Grassmannian’s quotient space struc-
ture Section 2.2, the Riemannian metric Section 3.1 and distance, the Riemannian
connection Section 3.2, the Riemannian exponential Section 3.4 and its inverse, the
Riemannian logarithm Section 5.2, as well as the associated Riemannian normal coor-
dinates Section 6, parallel transport of tangent vectors Section 3.6 and the sectional
curvature Section 4.2. Wherever possible, we provide self-contained and elementary
derivations of the sometimes classical results. Here, the term elementary is to be under-
stood as “via tools from linear algebra and matrix analysis” rather than “via tools from
abstract differential geometry”. Care has been taken that the quantities that are most
relevant for algorithmic applications are stated in a form that allows calculations that
scale in O(np2).

As novel research results, we provide a modified algorithm (Algorithm 1) for
computing the Riemannian logarithm map on the Grassmannian that has favorable
numerical features and additionally allows to (non-uniquely) map points from the cut
locus of a point to its tangent space. Therefore any set of points on the Grassmannian
can be mapped to a single tangent space Theorems 5.4 and 5.5. In particular, we give
explicit formulae for the (possibly multiple) shortest curves between any two points
on the Grassmannian as well as the corresponding tangent vectors. Furthermore, we
present a more elementary, yet more complete description of the conjugate locus of a
point on the Grassmannian, which is derived in terms of principal angles between sub-
spaces Theorem 7.2. We also derive a formula for parallel transport along geodesics
in the orthogonal projector perspective Proposition 3.5, formulae for the derivative of
the exponential map Section 3.5, as well as a formula for Jacobi fields vanishing at
one point Proposition 7.1.

Organization Section 2 introduces the manifold structure of the Grassmann manifold
and provides basic formulae for representingGrassmann points and tangent vectors via
matrices. Section 3 recaps the essential Riemann-geometric aspects of the Grassmann
manifold, including the Riemannian exponential, its derivative and parallel transport.
In Section 4, the Grassmannian’s symmetric space structure is established by elemen-
tary means and used to explore the sectional curvature and its bounds. In Section 5,
the (tangent) cut locus is described and a new algorithm is proposed to calculate the
pre-image of the exponential map, i.e. the Riemannian logarithm where the pre-image
is unique. Section 6 addresses normal coordinates and local parameterizations for the
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Grassmannian. In Section 7, questions on Jacobi fields and the conjugate locus of a
point are considered. Section 8 concludes the paper.

2 Themanifold structure of the Grassmannmanifold

In this section, we recap the definition of the Grassmann manifold and connect results
from [10, 21, 32, 44]. Tools fromLie group theory establish the quotient space structure
of the Grassmannian, which gives rise to efficient representations. The required Lie
group background can be found in the appendix and in [29], [40, Chapters 7 & 21].

The Grassmann manifold (also called Grassmannian) is defined as the set of all
p-dimensional subspaces of the Euclidean space Rn . This set can be identified with
the set of orthogonal rank-p projectors,

Gr(n, p) :=
{

P ∈ R
n×n

∣∣∣ PT = P, P2 = P, rank P = p
}

, (2.1)

as is for example done in [10, 32]. Note that a projector P is symmetric as a matrix
(namely, PT = P) if and only if it is orthogonal as a projection operation (its range
and null space are mutually orthogonal) [53, §3]. The identification in (2.1) associates
P with the subspace U := range(P). Every P ∈ Gr(n, p) can in turn be identified
with an equivalence class of orthonormal basis matrices spanning the same subspace;
an approach that is for example chosen in [21]. These ONB matrices are elements of
the so called Stiefel manifold

St(n, p) :=
{

U ∈ R
n×p

∣∣∣ U T U = Ip

}
.

The link between these two sets is via the projection

πSG : St(n, p) → Gr(n, p), U �→ UU T .

To obtain a manifold structure on Gr(n, p) and St(n, p), i.e., endow those sets with
coordinate patches that overlap smoothly, we recognize these matrix sets as quotients
of the orthogonal group

O(n) :=
{

Q ∈ R
n×n

∣∣∣ QT Q = In = Q QT
}

, (2.2)

which is a compact Lie group, i.e., a group that also is a compact manifold, for which
the multiplication and inversion operation are smooth maps, respectively. Quotients of
Lie groups identify sets of group elements as equivalent. It is a standard construction
that quotients of Lie groups are themselves manifolds under certain assumptions, c.f.
[40, Chapter 21], so called homogeneous spaces. When the Lie group is compact,
many constructions for homogeneous spaces simplify, as this guaranteesthe existence
of a bi-invariant Riemannian metric on the Lie group [41, Corollary 3.15], associating
the (manifold) curvature of the Lie group with its algebraic structure. For a brief
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introduction to Lie groups and their actions, see Appendix A. The link from O(n) to
St(n, p) and Gr(n, p) is given by the projections

πOS : O(n)→ St(n, p), Q �→ Q(:, 1 : p),

where Q(:, 1 : p) is the matrix formed by the p first columns of Q, and

πOG := πSG ◦ πOS : O(n) → Gr(n, p), Q �→ Q(:, 1 : p)Q(:, 1 : p)T ,

respectively. We can consider the following hierarchy of quotient structures:

Two square orthogonal matrices Q, Q̃ ∈ O(n) determine the same rectangular,
column-orthonormalmatrixU ∈ R

n×p, if both Q and Q̃ featureU as their first p
columns. Two column-orthonormal matrices U , Ũ ∈ R

n×p determine the same
subspace, if they differ by an orthogonal coordinate change.

This hierarchy is visualized in Fig. 1. In anticipation of the upcoming discussion,
the figure already indicates the lifting of tangent vectors according to the quotient
hierarchy.

2.1 The embeddedmanifold structure of the Grassmannian

In order to obtain a smooth manifold structure on the set of orthogonal projectors
Gr(n, p), we can advance as in [33, Proposition 2.1.1]. Define an isometric group
action of the orthogonal group O(n) on the symmetric n × n matrices Symn by

� : O(n)× Symn → Symn, (Q, S) �→ QSQT .

Introduce

P0 :=
(

Ip 0
0 0

)
∈ Gr(n, p),

which is the matrix representation of the canonical projection onto the first p coor-
dinates with respect to the Cartesian standard basis. The set of orthogonal projectors
Gr(n, p) is the orbit �(O(n), P0) of the element P0 under the group action �: Any
matrix Q P0QT obviously satisfies the defining properties of Gr(n, p) as stated in
(2.1). Conversely, if P ∈ Gr(n, p), then P is real, symmetric and positive semidefi-
nite with p eigenvalues equal to one and n − p eigenvalues equal to zero. Hence, the
eigenvalue decomposition (EVD) P = Q�QT = Q P0QT establishes P as a point
in the orbit of P0. In other words, we have confirmed that

πOG = �|O(n)×{P0} : O(n) → Gr(n, p), Q �→ Q P0QT , (2.3)

maps into Gr(n, p) and is surjective. Since O(n) is compact, the first part of
Proposition A.2 in the appendix shows that Gr(n, p) = �(O(n), P0) is an embed-
ded submanifold of Symn .

123



A Grassmann manifold handbook Page 7 of 51 6

Fig. 1 Conceptual visualization of the quotient structure of the Grassmann manifold. The double brackets
[[·]] denote an equivalence class with respect to πOG = πSG ◦ πOS, while the single brackets [·] denote
an equivalence class with respect πOS or πSG, depending on the element inside the brackets. The tangent
vectors along an equivalence class for a projection are vertical with respect to that projection, while the
directions orthogonal to the vertical space are horizontal. Correspondingly, the horizontal lift of a tangent
vector � ∈ TPGr(n, p) to TUSt(n, p) or TQO(n) is orthogonal to all vertical tangent vectors at that point.

With respect to the projection πSG from the Stiefel to the Grassmann manifold, the green tangent vector
�hor

U is horizontal and the magenta tangent vector (along the equivalence class) is vertical. On the other

hand, the magenta tangent vectors in O(n) (pointing to the left) are horizontal with respect to πOS but
vertical with respect to πOG

This construction also shows that the Grassmannian is connected and even path-
connected, i.e., between any two points P1, P2 ∈ Gr(n, p), there is a path in Gr(n, p)

joining the two locations: Let P1 = Q1P0QT
1 and P2 = Q2P0QT

2 be the EVDs of P1
and P2. If Q1 or Q2 have determinant−1, multiply it from the right with the diagonal
matrix diag(1, . . . , 1,−1), which does not change the EVD. As the special orthogonal
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group SO(n) = {Q ∈ O(n) | det Q = 1} is path connected, there is a path between
P1 and P2 in Gr(n, p).

2.2 The quotient structure of the Grassmannian

To formally introduce the quotient structure of the Grassmannian, we make use of the
second part of Proposition A.2. The objects of interest are the orthogonal group O(n),
which is the domain of πOS and πOG, and the Cartesian product O(p) × O(n − p),
which can be identified with a subgroup of O(n).

The stabilizer of � at P0, i.e., the set of matrices Q ∈ O(n) leaving P0 invariant
under πOG, is given by H = { R1 0

0 R2
∈ O(n) | R1 ∈ O(p), R2 ∈ O(n − p)} ∼=

O(p)×O(n − p). This is readily seen by noticing that Q ∈ O(n) fulfills πOG(Q) =
Q P0QT = P0 if and only if Q = R1 0

0 R2
. An equivalence relation on O(n) is defined

by Q̃ ∼ Q if and only if πOG(Q̃) = πOG(Q). This equivalence relation collects all
orthogonal matrices whose first p columns span the same subspace into an equivalence
class. In other words, the equivalence classes of O(n)/H are

[[Q]] = (πOG)−1(πOG(Q))

=
{

Q̃ ∈ O(n)

∣∣∣∣ Q̃ = Q

(
R1 0
0 R2

)
,

(
R1 0
0 R2

)
∈ H

}
,

(2.4)

which corresponds to [21, Eq. (2.28)]. The manifold structure on O(n)/H ∼=
O(n)/(O(p) × O(n − p)) is by definition the unique one that makes the quotient
map

O(n) → O(n)/(O(p)× O(n − p)) : Q �→ [[Q]]
a smooth submersion, i.e., a smooth map with surjective differential at every point.
The second part of Proposition A.2 shows that, as Gr(n, p) is the orbit of P0 under �,
it holds that

Gr(n, p) ∼= O(n)/(O(p)× O(n − p)).

Therefore πOG is also a smooth submersion. Furthermore, we have the well known
result

dim(Gr(n, p)) = dim(O(n))− dim(O(p)× O(n − p)) = (n − p)p.

2.3 The tangent spaces of the Grassmannian

The quotient structure of the Grassmannian allows to split every tangent space of O(n)

into a vertical and (after choosing a Riemannianmetric) horizontal part, and to identify
every tangent space of Gr(n, p) with such a horizontal space as in [21].

As the Lie algebra of O(n) is the set of skew-symmetric matrices

so(n) := TIO(n) =
{
� ∈ R

n×n
∣∣∣ �T = −�

}
,
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the tangent space at an arbitrary Q ∈ O(n) is given by the left translates

TQO(n) = {Q� | � ∈ so(n)} .

Restricting the Euclidean matrix space metric 〈A, B〉0 = tr(AT B) to the tangent
spaces turns the manifold O(n) into a Riemannian manifold. We include a fac-
tor of 1

2 to obtain Riemannian metrics on the Stiefel and Grassmann manifold, in
Sections 2.4 and 3.1, respectively, that comply with common conventions. This yields
the Riemannian metric (termed here metric for short) gO

Q : TQO(n)× TQO(n) → R,

gO
Q(Q�, Q�̃) := 〈

Q�, Q�̃
〉
Q :=

1

2
tr
(
(Q�)T Q�̃

)
= 1

2
tr
(
�T �̃

)
.

The differential of the projection πOG at Q ∈ O(n) is a linear map dπOG
Q : TQO(n) →

TπOG(Q)Gr(n, p), where TQO(n) and TπOG(Q)Gr(n, p) are the tangent spaces of O(n)

and Gr(n, p) at Q and πOG(Q), respectively. The directional derivative of πOG at

Q ∈ O(n) in the tangent direction Q� = Q
(

A −BT

B C

)
∈ TQO(n) is given by

dπOG
Q (Q�) = d

dt

∣∣∣
t=0(π

OG(γ (t))) = d

dt

∣∣∣
t=0(γ (t)P0γ (t)T ) = Q

(
0 BT

B 0

)
QT ,

(2.5)
where γ : t �→ γ (t) ∈ O(n) is an arbitrary differentiable curve with γ (0) = Q,
γ̇ (0) = Q�. Since πOG is a submersion, this spans the entire tangent space, i.e.,

TπOG(Q)Gr(n, p) =
{

Q

(
0 BT

B 0

)
QT

∣∣∣∣ B ∈ R
(n−p)×p

}
.

In combination with the metric gO
Q , the smooth submersion πOG allows to decom-

pose every tangent space TQO(n) into a vertical and horizontal part, c.f. [41, Chapter
2]. The vertical part is the kernel of the differential dπOG

Q , and the horizontal part is

the orthogonal complement with respect to the metric gO
Q . We therefore have

TQO(n) = Verπ
OG

Q O(n)⊕ Horπ
OG

Q O(n),

where

Verπ
OG

Q O(n) =
{

Q

(
A 0
0 C

) ∣∣∣∣ A ∈ so(p), C ∈ so(n − p)

}

and

Horπ
OG

Q O(n) =
{

Q

(
0 −BT

B 0

) ∣∣∣∣ B ∈ R
(n−p)×p

}
, (2.6)

c.f. [21, Eq. (2.29) and (2.30)]. The tangent space of the Grassmann manifold at
P = πOG(Q) can be identified with the horizontal space at any representative Q ∈
(πOG)−1(P) ⊂ O(n),

TPGr(n, p) ∼= Horπ
OG

Q O(n).
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In [10], the tangent space TPGr(n, p) is given by matrices of the form [�, P],
where [·, ·] denotes the matrix commutator, and � ∈ soP (n) fulfilling

soP (n) := {� ∈ so(n) | � = �P + P�} . (2.7)

Writing P = Q P0QT and making use of (2.5) shows that every � ∈ TPGr(n, p) is
of the form

� = Q

(
0 BT

B 0

)
QT =

[
Q

(
0 −BT

B 0

)
QT , P

]
. (2.8)

Since � ∈ soP (n) is equivalent to QT �Q ∈ soQT P Q(n) and QT P Q = P0 it follows
that every � ∈ soP (n) is of the form

� = Q

(
0 −BT

B 0

)
QT .

Note that for � ∈ TPGr(n, p), there is � ∈ soP (n) such that � = [�, P]. This �

can be calculated via � = [�, P] ∈ soP (n).

Proposition 2.1 (Tangent vector characterization) Let P ∈ Gr(n, p) be the orthogonal
projector onto the subspace U . For every symmetric � = �T ∈ R

n×n, the following
conditions are equivalent:

a) � ∈ TPGr(n, p),
b) �(U) ⊂ U⊥ and �(U⊥) ⊂ U ,
c) �P + P� = �,
d) � = [�, P], where � := [�, P] ∈ soP (n).

Here, �(U) := {�x ∈ R
n | x ∈ U} and the orthogonal complement U⊥ is taken with

respect to the Euclidean metric in R
n.

Proof The equivalence of a), b) and c) is from [44, Result 3.7]. To show c) implies d),
note that�P+P� = � implies P�P = 0 and therefore [[�, P], P] = �P+P�−
2P�P = �. On the other hand, if d) holds then � = �P + P� − 2P�P , which
also implies P�P = 0 by multiplication with P from one side. Inserting P�P = 0
into the equation shows that c) holds. The statement that � ∈ soP (n) is automatically
true. �

2.4 Horizontal lift to the Stiefel manifold

The elements of Gr(n, p) are n× n matrices (see the bottom level of Fig. 1). The map
πOG makes it possible to (non uniquely) represent elements of Gr(n, p) as elements of
O(n)—the top level of Fig. 1—which are alson×n matrices. In practical computations,
however, it is often not feasible to work with n × n matrices, especially if n is large
when compared to the subspace dimension p. A remedy is to resort to the middle
level of Fig. 1, namely the Stiefel manifold St(n, p) [21]. By making use of the map
πSG, elements of Gr(n, p) can be (non uniquely) represented as elements of St(n, p),
which are n × p matrices.
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The Stiefel manifold can be obtained analogously to the Grassmann manifold by
means of a group action of O(n) onRn×p, defined by left multiplication. It is the orbit
of

In,p :=
(

Ip

0

)
∈ R

n×p

under this group action with stabilizer O(n − p) ∼=
{(

Ip 0
0 R

) ∣∣∣ R ∈ O(n − p)
}
. By

Proposition A.2, St(n, p) ∼= O(n)/O(n − p) is an embedded submanifold of Rn×p

and the projection from the orthogonal group onto the Stiefel manifold is given by

πOS : O(n)→ St(n, p), Q �→ Q In,p,

the projection onto the first p columns. It defines an equivalence relation on O(n) by
collecting all orthogonal matrices that share the same first p column vectors into an
equivalence class. As above,

dim(St(n, p)) = dim(O(n))− dim(O(n − p)) = np − 1

2
p(p + 1),

and πOS is a smooth submersion, which admits a decomposition of every tangent
space TQO(n) into a vertical and horizontal part with respect to the metric gO

Q . We
therefore have

TQO(n) = Verπ
OS

Q O(n)⊕ Horπ
OS

Q O(n),

where

Verπ
OS

Q O(n) =
{

Q

(
0 0
0 C

) ∣∣∣∣ C ∈ so(n − p)

}

and

Horπ
OS

Q O(n) =
{

Q

(
A −BT

B 0

) ∣∣∣∣ A ∈ so(p), B ∈ R
(n−p)×p

}
.

By the identification

TUSt(n, p) ∼= Horπ
OS

Q O(n),

see [21], and orthogonal completion U⊥ ∈ R
n×(n−p) of U , i.e., such that

(
U U⊥

) ∈
O(n), the tangent spaces of the Stiefel manifold are explicitly given by either of the
following expressions

TUSt(n, p) =
{

U A +U⊥B ∈ R
n×p

∣∣∣ A ∈ so(p), B ∈ R
(n−p)×p

}

=
{

U A + (In −UU T )T
∣∣∣ A ∈ so(p), T ∈ R

n×p
}

= {�U | � ∈ so(n)}
=

{
D ∈ R

n×p
∣∣∣ U T D = −DT U

}
.

(2.9)

Note that U T U⊥ = 0 and U T⊥U⊥ = In−p, as well as In = UU T +U⊥U T⊥ .
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6 Page 12 of 51 T. Bendokat et al.

The canonical metric gSt
U (·, ·) on the Stiefel manifold is given via the horizontal

lift. That means that for any two tangent vectors in D1 = U A1 + U⊥B1, D2 =
U A2 + U⊥B2 ∈ TUSt(n, p), we take a total space representative Q ∈ O(n) of
U ∈ St(n, p) and ‘lift’ the tangent vectors D1, D2 ∈ TUSt(n, p) to tangent vectors
Dhor
1,Q, Dhor

2,Q ∈ Horπ
OS

Q O(n) ⊂ TQO(n), defined by d(πOS)Q(Dhor
i,Q) = Di , i = 1, 2.

The inner product between Dhor
1,Q, Dhor

2,Q is now computed according to the metric of
O(n). In practice, this leads to

gSt
U (D1, D2) := gO

Q(Dhor
1,Q, Dhor

2,Q) = 1

2
tr(AT

1 A2)+ tr(BT
1 B2)

= tr

(
DT
1 (In − 1

2
UU T )D2

)
,

c.f. [21]. The last equality shows that it does not matter which base point Q ∈
(πOS)−1(U ) is chosen for the lift.

In order to make the transition from column-orthogonal matrices U to the associ-
ated subspaces U = span(U ), another equivalence relation, this time on the Stiefel
manifold, is required: Identify any matrices U ∈ St(n, p), whose column vectors
span the same subspace U . For any two Stiefel matrices U , Ũ that span the same
subspace, it holds that Ũ = UU T Ũ . As a consequence, Ip = (Ũ T U )(U T Ũ ), so
that R = (U T Ũ ) ∈ O(p). Hence, any two such Stiefel matrices differ by a rota-
tion/reflection R ∈ O(p). Define a smooth right action of O(p) on St(n, p) by
multiplication from the right. Every equivalence class

U ∼= [U ] := {
Ũ ∈ St(n, p)

∣∣ Ũ = U R, R ∈ O(p)
}

(2.10)

under this group action can be identified with a projector UU T and vice versa. There-
fore, according to [40, Thm 21.10, p. 544], the set of equivalence classes [U ], denoted
by St(n, p)/O(p), is a smooth manifold with a manifold structure for which the quo-
tient map is a smooth submersion. To show that the manifold structure is indeed the
same as the one on Gr(n, p) (which we can identify as a set with St(n, p)/O(p)), we
show directly that the projection from St(n, p) to Gr(n, p),

πSG : St(n, p) → Gr(n, p), U �→ UU T , (2.11)

is a smooth submersion. Indeed, the derivative d(πSG)U (D) = DU T + U DT is
surjective, since every tangent vector � ∈ TπOG(Q)Gr(n, p) can be written as

� = U⊥BU T +U BT U T⊥ , (2.12)

by making use of (2.8). This shows surjectivity, since for every � ∈ TπOG(Q)Gr(n, p)

we can choose U⊥B ∈ TUSt(n, p), such that d(πSG)U (U⊥B) = �.
Again, we split every tangent space TUSt(n, p) with respect to the projection πSG

and the metric gSt
U (·, ·) on the Stiefel manifold. Defining the kernel of d(πSG)U as the
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vertical space and its orthogonal complement (with respect to the metric gSt
U ) as the

horizontal space leads to the direct sum decomposition

TUSt(n, p) = VerU St(n, p)⊕ HorU St(n, p),

where
VerU St(n, p) = ker d(πSG)U = {U A | A ∈ so(p)}

and

HorU St(n, p) = (ker d(πSG)U )⊥ =
{

U⊥B
∣∣∣ B ∈ R

(n−p)×p
}
=

{
(In −UU T )T

∣∣∣ T ∈ R
n×p

}

=
{

D ∈ R
n×p

∣∣∣ U T D = 0
}

.

(2.13)

SinceπSG is the only projection that we use on the Stiefel manifold, the dependence
of the splitting on the projection is omitted in the notation.

The tangent space TPGr(n, p) of the Grassmannian can be identified with the
horizontal space HorU St(n, p). Therefore, for every tangent vector � ∈ TPGr(n, p),
there is a unique�hor

U ∈ HorU St(n, p), called the horizontal lift of � to U . By (2.13),
there are matrices T ∈ R

n×p and B ∈ R
(n−p)×p such that

�hor
U = U⊥B = (In −UU T )T ∈ HorU St(n, p).

Note that �hor
U depends only on the chosen representative U of P , while B depends

on the chosen orthogonal completion U⊥ as well.
Multiplication of (2.12) from the right with U shows that the horizontal lift of

� ∈ TPGr(n, p) to U ∈ St(n, p) can be calculated by

�hor
U = �U . (2.14)

Therefore, the horizontal lifts of � to two different representatives U and U R are
connected by

�hor
U R = �hor

U R, (2.15)

which relates to [3, Prop. 3.6.1]. The lift of � ∈ TPGr(n, p) to Q = (
U U⊥

) ∈ O(n)

can also be calculated explicitly. By (2.5), (2.6) and (2.8), it is given by

�hor
Q = [�, P]Q = Q

(
0 −BT

B 0

)
∈ Horπ

OG

Q O(n).

In conclusion, theGrassmannmanifold is placed at the end of the following quotient
space hierarchy with equivalence classes [·] from (2.10) and [[·]] from (2.4):

Gr(n, p) ∼= St(n, p)/O(p) = {[U ] | U ∈ St(n, p)}
∼= O(n)/(O(p)× O(n − p)) = {[[Q]] | Q ∈ O(n)} .
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Remark It should be noted that there is yet another way of viewing the Grassmann
manifold as a quotient. Instead of taking equivalence classes in O(n), one can take the
quotient of the noncompact Stiefel manifold by the general linear group GL(p). This
introduces a factor of the form (Y T Y )−1 into many formulae, where Y ∈ R

n×p is a
rank p matrix with (not necessarily orthogonal) column vectors spanning the desired
subspace. For this approach see for example [2].

3 Riemannian structure

In this section, we study the basic Riemannian structure of the Grassmannian. We
introduce the canonical metric coming from the quotient structure—which coincides
with the Euclidean metric—and the Riemannian connection. The Riemannian expo-
nential mapping for geodesics is derived in the formulation as projectors as well as
with Stiefel representatives. Lastly, we study the concept of parallel transport on the
Grassmannian. Many of those results have been studied before for the projector or the
ONB perspective. For the metric and the exponential see for example [2, 21] (Stiefel
perspective) and [10] (projector perspective). For the horizontal lift of the Riemannian
connection see [2]. A formula for parallel transport in the ONB perspective was given
in [21]. Here we combine the approaches and provide some modifications and addi-
tions. We derive formulae for all mentioned concepts in both perspectives and also
study the derivative of the exponential mapping.

3.1 Riemannianmetric

The Riemannian metric on the Grassmann manifold that is induced by the quotient
structure coincideswith (one half times) the Euclideanmetric. To see this, let�1,�2 ∈
TPGr(n, p) be two tangent vectors at P ∈ Gr(n, p) and let Q = (

U U⊥
) ∈ O(n)

such that πOG(Q) = P . The metric on the Grassmann manifold is then inherited from
the metric on O(n) applied to the horizontal lifts, i.e.

gGr
P (�1,�2) := gO

Q(�hor
1,Q,�hor

2,Q). (3.1)

Let �i = [�i , P], where �i ∈ soP (n), as well as �hor
i,Q = Q

(
0 −BT

i
Bi 0

)
and

�hor
i,U = U⊥Bi . We immediately see that

gGr
P (�1,�2) = 1

2
tr
(
(�hor

1,Q)T �hor
2,Q

)
= tr

(
�horT

1,U �hor
2,U

)
= tr(U T �1�2U )

= tr(BT
1 B2) = 1

2
tr(�1�2) = 1

2
tr(�T

1 �2).

(3.2)

The last equality can be seen by noticing [�i , P] = (In − 2P)�i for �i ∈ soP (n)

and (In − 2P)2 = In . Although the formulae in (3.2) all look similar, notice that
�i ,�i ,�

hor
i,Q ∈ R

n×n , but �hor
i,U ∈ R

n×p and Bi ∈ R
(n−p)×p.
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The metric does not depend on the point to which we lift: Lifting to a different
U R ∈ St(n, p) results in a postmultiplication of �hor

i,U with R according to (2.15). By
the invariance properties of the trace, this does not change the metric. An analogous
argument holds for the lift to O(n).

With the Riemannian metric we can define the induced norm of a tangent vector
� ∈ TPGr(n, p) by

‖�‖ :=
√

gGr
P (�,�) = 1√

2

√
tr(�2).

3.2 Riemannian connection

The disjoint collection of all tangent spaces of a manifold M is called the tangent
bundle T M = ∪̇p∈M Tp M , which is itself a smooth manifold, c.f. [40, Proposition
3.18]. A smooth vector field on M is a smooth map X from M to T M that maps a
point p ∈ M to a tangent vector X(p) ∈ Tp M . The set of all smooth vector fields
on M is denoted by X(M). Plugging smooth vector fields Y , Z ∈ X(M) into the
metric of a Riemannian manifold gives a smooth function g(Y , Z) : M → R. It is
not possible to calculate the differential of a vector field in the classical sense, since
every tangent space is a separate vector space and the addition of X(p) ∈ Tp M
and X(q) ∈ Tq M is not defined for p �= q. To this end, the abstract machinery of
differential geometry provides special tools called connections. A connection acts as
the derivative of a vector field in the direction of another vector field. On a Riemannian
manifold (M, g), the Riemannian or Levi-Civita connection is the unique connection
∇ : X(M)× X(M)→ X(M) : (X , Y ) �→ ∇X Y that is

• compatible with the metric: for all vector fields X , Y , Z ∈ X(M), we have the
product rule

∇X g(Y , Z) = g(∇X Y , Z)+ g(Y ,∇X Z).

• torsion free: for all X , Y ∈ X(M), ∇X Y − ∇Y X = [X , Y ], where [X , Y ] =
X(Y )− Y (X) denotes the Lie bracket of two vector fields.

The Riemannian connection can be explicitly calculated in the case of embedded
submanifolds: It is the projection of theLevi-Civita connection of the ambientmanifold
onto the tangent space of the embedded submanifold. For details see for example [41,
Chapter 5 & Chapter 8, Proposition 8.6].

The Euclidean spaceRn×p is a vector space, which implies that every tangent space
of Rn×p can be identified with Rn×p itself. Therefore, the Riemannian connection of
the Euclidean space R

n×p with the Euclidean metric (B.1) is the usual directional
derivative: Let F : Rn×p → R

n×p and X , Y ∈ R
n×p. The directional derivative of F

at X in direction Y is then

dFX (Y ) = d

dt

∣∣∣
t=0F(X + tY ).
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The same holds for the space of symmetric matrices Symn . When considered as
the set of orthogonal projectors, the Grassmann manifold Gr(n, p) is an embedded
submanifold of Symn . In this case, the projection onto the tangent space is

	TPGr : Symn → TPGr(n, p), S �→ (In − P)S P + P S(In − P), (3.3)

see also [44]. In order to restrict calculations to n × p matrices, we can lift to the
Stiefel manifold and use the projection onto the horizontal space, which is

	HorU St : Rn×p → HorU St(n, p), Z �→ (In −UU T )Z , (3.4)

see also [2, 21]. Note that HorU St(n, p) ∼= TπSG(U )Gr(n, p) as described in Sec-
tion 2.4. The Riemannian connection on Gr(n, p) is now obtained via the following
proposition.

Proposition 3.1 (Riemannian Connection) Let X ∈ X(Gr(n, p)) be a smooth vector
field on Gr(n, p), i.e., X(P) ∈ TPGr(n, p), with a smooth extension to an open set
in the symmetric n × n matrices, again denoted by X. Let Y ∈ TPGr(n, p). The
Riemannian connection on Gr(n, p) is then given by

∇Y (X) = 	TPGr(dX P (Y )) = 	TPGr

(
d

dt

∣∣∣
t=0X(P + tY )

)
. (3.5)

It can also be calculated via the horizontal lift,

(∇Y (X))horU = 	HorU St(d(U �→ Xhor
U )U (Y hor

U )) = (In −UU T )
d

dt

∣∣∣
t=0Xhor

U+tY hor
U

.

(3.6)
Here, Rn×p � U �→ Xhor

U ∈ R
n×p is to be understood as a smooth extension to

an open subset of Rn×p of the actual horizontal lift U �→ Xhor
U := (X(UU T ))horU

from (2.14), i.e., fulfilling d(πSG)U Xhor
U = X(UU T ), where X is the vector field

P �→ X(P).

Proof Equation (3.5) follows directly from the preceding discussion. It can be checked
that (3.6) is the horizontal lift of (3.5). Alternatively, (3.6) can be deduced from [49,
Lemma 7.45] by noticing that the horizontal space of the Stiefel manifold is the same
for the Euclidean and the canonical metric. Furthermore, (3.6) coincides with [2,
Theorem 3.4]. �

3.3 Gradient

The gradient of a real-valued function on the Grassmannian for the canonical metric
was computed in [21] for the Grassmannian with Stiefel representatives, in [32] for the
projector perspective and in [2] for the Grassmannian as a quotient of the noncompact
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Stiefel manifold. For the sake of completeness, we introduce it here as well. The
gradient is dual to the differential of a function in the following sense: For a func-
tion f : Gr(n, p) → R, the gradient at P is defined as the unique tangent vector
(grad f )P ∈ TPGr(n, p) fulfilling

d fP (�) = gGr
P ((grad f )P ,�)

for all � ∈ TPGr(n, p), where d fP denotes the differential of f at P .
It is well known that the gradient for the induced Euclidean metric on a manifold is

the projection of the Euclidean gradient gradeucl to the tangent space. For the Euclidean
gradient to be well-defined, f is to be understood as a smooth extension of the actual
function f to an open subset of Symn . Therefore

(grad f )P = 	TPGr((grad
eucl f )P ).

The function f on Gr(n, p) can be lifted to the function f̄ := f ◦ πSG on the
Stiefel manifold. Again, when necessary, we identify f̄ with a suitable differentiable
extension. These two functions are linked by

((grad f )P )horU = (grad f̄ )U = 	TUSt((grad
eucl f̄ )U ) = 	HorU St((grad

eucl f̄ )U ),

where 	TUSt(X) = X − 1
2U (X T U + U T X) is the projection of X ∈ R

n×p to
TUSt(n, p). The first equality is [2, Equation (3.39)], while the second equality uses
the same argument as above. The last equality is due to the fact that the gradient of f̄
has no vertical component. For further details see [2, 21, 32].

3.4 Exponential map

The exponential map expp : Tp M → M on a Riemannian manifold M maps a tangent
vector � ∈ Tp M to the endpoint γ (1) ∈ M of the unique geodesic γ that emanates
from p in the direction�. Thus, geodesics and the Riemannian exponential are related
by γ (t) = expp(t�). Under a Riemannian submersion π : M → N , geodesics with
horizontal tangent vectors in M are mapped to geodesics in N , cf. [49, Corollary
7.46]. Since the projection πOG : O(n) → Gr(n, p) defined in (2.3) is a Riemannian
submersion by construction, this observation may be used to obtain the Grassmann
geodesics.

We start with the geodesics of the orthogonal group. For any Lie group with bi-
invariant metric, the geodesics are the one-parameter subgroups, [5, §2]. Therefore,
the geodesic from Q ∈ O(n) in direction Q� ∈ TQO(n) is calculated via

ExpOQ(t Q�) = Q expm(t�),
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where expm denotes the matrix exponential, see (B.2). If πOG(Q) = P ∈ Gr(n, p)

and � ∈ TPGr(n, p) with �hor
Q = Q

(
0 −BT

B 0

)
∈ Horπ

OG

Q O(n), the geodesic in the

Grassmannian is therefore

ExpGrP (t�) = πOG
(

Q expm

(
t

(
0 −BT

B 0

)))
. (3.7)

This formula, while simple, is not useful for applications with large n, since it involves
the matrix exponential of an n× n matrix. Evaluating the projection πOG leads to the
geodesic formula from [10]:

Proposition 3.2 (Grassmann Exponential: Projector Perspective) Let P ∈ Gr(n, p)

be a point in the Grassmannian and � ∈ TPGr(n, p). The exponential map is given
by

ExpGrP (�) = expm([�, P])P expm(−[�, P]).

Proof With � = [�, P] = Q�̃QT ∈ soP (n) and �̃ =
(
0 −BT

B 0

)
, the horizontal

lift of the tangent vector � = [�, P] ∈ TPGr(n, p) is given by �Q ∈ Horπ
OG

Q O(n),
see (2.7). Then

ExpGrP ([�, P]) = Q expm(�̃)In,p I T
n,p expm(�̃T )QT

= expm(Q�̃QT )Q In,p I T
n,p QT expm(Q�̃T QT ) = expm(�)P expm(�T ).

�
Ifn � p, thenworkingwith Stiefel representatives reduces the computational effort

immensely. The corresponding geodesic formula appears in [2, 21] and is restated in
the following proposition. The bracket [·] denotes the equivalence classes from (2.10).

Proposition 3.3 (GrassmannExponential: ONBPerspective)For a point P = UU T ∈
Gr(n, p) and a tangent vector � ∈ TPGr(n, p), let �hor

U ∈ HorU St(n, p) be the
horizontal lift of � to HorU St(n, p). Let r ≤ min(p, n − p) be the number of non-
zero singular values of �hor

U . Denote the thin singular value decomposition (SVD) of
�hor

U by

�hor
U = Q̂�V T ,

i.e., Q̂ ∈ St(n, r),� = diag(σ1, . . . , σr ) and V ∈ St(p, r). The Grassmann exponen-
tial for the geodesic from P in direction � is given by

ExpGrP (t�) = [U V cos(t�)V T + Q̂ sin(t�)V T +U V⊥V T⊥ ]
= [(U V cos(t�)+ Q̂ sin(t�) U V⊥

)], (3.8)

which does not depend on the chosen orthogonal completion V⊥.
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Proof This is essentially [21, Theorem 2.3] with a reduced storage requirement for Q̂
in case of rank-deficient tangent velocity vectors. The thin SVD of B is given by

B = U T⊥�hor
U = U T⊥ Q̂�V T

with W := U T⊥ Q̂ ∈ St(n − p, r), � ∈ R
r×r , V ∈ St(p, r). Let W⊥, V⊥ be suitable

orthogonal completions. Then,

expm

(
0 −BT

B 0

)
=
(

V V⊥ 0 0
0 0 W W⊥

)⎛⎜⎜⎝
cos(�) 0 − sin(�) 0

0 Ip−r 0 0
sin(�) 0 cos(�) 0

0 0 0 In−p−r

⎞
⎟⎟⎠

⎛
⎜⎜⎝

V T 0
V T⊥ 0
0 W T

0 W T⊥

⎞
⎟⎟⎠,

which leads to the desired result when inserted into (3.7). The second equality in
(3.8) is given by a postmultiplication by

(
V V⊥

) ∈ O(p), which does not change the
equivalence class. This postmultiplication does however change the Stiefel representa-
tive, so

(
U V cos(t�)+ Q̂ sin(t�) U V⊥

)
is the Stiefel geodesic from

(
U V U V⊥

)
in

direction
(
Q̂� 0

)
. A different orthogonal completion of V does not change the second

expression in (3.8) and results in a different representative of the same equivalence
class in the third expression. �
The formula established in [21] uses the compact SVD �hor

U = Q̃�̃Ṽ T with Q̃ ∈
St(n, p), �̃ = diag(σ1, ..., σp) and Ṽ ∈ O(p). Then

ExpGrP (t�) = [U Ṽ cos(t�̃)Ṽ T + Q̃ sin(t�̃)Ṽ T ]. (3.9)

By a slight abuse of notation we also define

ExpGrU (t�hor
U ) = U Ṽ cos(t�̃)Ṽ T + Q̃ sin(t�̃)Ṽ T (3.10)

to be the Grassmann exponential on the level of Stiefel representatives.

3.5 Differentiating the Grassmann exponential

In this section, we compute explicit expressions for the differential d(ExpGrP )� of the
Grassmann exponential at a tangent location � ∈ TPGr(n, p). One possible motiva-
tion is the computation of Jacobi fields vanishing at a point in Section 7.1. Another
motivation is, e.g., Hermite manifold interpolation as in [70].

Formally, the differential at � is the linear map

d(ExpGrP )� : T�(TPGr(n, p)) → TExpGrP (�)Gr(n, p). (3.11)

The tangent space to a linear space can be identified with the linear space itself,
so that T�(TPGr(n, p)) ∼= TPGr(n, p). We also exploit this principle in practical
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computations. We consider the exponential in the form of (3.9). The task boils down
to computing the directional derivatives

d(ExpGrP )�(�̃) = d

dt

∣∣∣
t=0 Exp

Gr
P (�+ t�̃), (3.12)

where�, �̃ ∈ TPGr(n, p). A classical result inRiemannian geometry [41, Prop. 5.19]
ensures that for� = 0 ∈ TPGr(n, p) the derivative is the identity d(ExpGrP )0(�̃) = �̃.
For � �= 0, we can proceed as follows:

Proposition 3.4 (Derivative of the Grassmann Exponential) Let P = UU T ∈
Gr(n, p) and �, �̃ ∈ TPGr(n, p) such that �hor

U has mutually distinct, non-zero sin-
gular values. Furthermore let �hor

U = Q�V T and (� + t�̃)horU = Q(t)�(t)V (t)T

be the compact SVDs of the horizontal lifts of � and �+ t�̃, respectively. Denote the
derivative of Q(t) evaluated at t = 0 by Q̇ = d

dt

∣∣
t=0Q(t) and likewise for �(t) and

V (t).1 Let
Y := U V cos(�)+ Q sin(�) ∈ St(n, p)

and

� := U V̇ cos(�)−U V sin(�)�̇ + Q̇ sin(�)+ Q cos(�)�̇ ∈ TYSt(n, p).

Then the derivative of the Grassmann exponential is given by

d(ExpGrP )�(�̃) = �Y T + Y�T ∈ TExpGrP (�)Gr(n, p) ⊆ R
n×n . (3.13)

The horizontal lift to Y is accordingly

(
d(ExpGrP )�(�̃)

)hor
Y
= (In − Y Y T )� = � + Y�T Y ∈ R

n×p. (3.14)

Proof The curve γ (t) := ExpGrP (�+ t�̃) on the Grassmannian is given by

γ (t) = πSG
(

U V (t) cos(�(t))V (t)T + Q(t) sin(�(t))V (t)T
)

,

according to (3.9). Note that this is in general not a geodesic in Gr(n, p) but merely a
curve through the endpoints of the geodesics from P in direction�+t�̃. That is to say,
it is the mapping of the (non-radial) straight line�+ t�̃ in TPGr(n, p) to Gr(n, p) via
the exponential map. The projection πSG is not affected by the postmultiplication of
V (t)T ∈ O(p), because of the nature of the equivalence classes in St(n, p). Therefore
we set

μ : [0, 1] → St(n, p), μ(t) := U V (t) cos(�(t))+ Q(t) sin(�(t))

1 The matrices Q̇, �̇ and V̇ can be calculated via Algorithm 2.
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and have γ (t) = πSG(μ(t)). The derivative of γ with respect to t evaluated at t = 0
is then given by

d

dt

∣∣∣
t=0γ (t) = d

dt

∣∣∣
t=0π

SG(μ(t)) = dπSG
μ(0) (μ̇(0)) = μ̇(0)μ(0)T + μ(0)μ̇(0)T .

(3.15)

But with the definitions above, Y = μ(0) and � = μ̇(0), so (3.15) is equivalent to
(3.13). The horizontal lift of (3.15) to Y is according to (2.14) given by a postmultipli-
cation of Y , which shows (3.14). Note however that � ∈ TYSt(n, p) is not necessarily
horizontal, so 0 �= �T Y ∈ so(p). �

In order to remove the “mutually distinct singular values” assumption of
Proposition 3.4 and to remedy the numerical instability of the SVD in the presence of
clusters of singular values, we introduce an alternative computational approach that
relies on the derivative of the QR-decomposition rather than that of the SVD. Yet in
this case, the “non-zero singular values” assumption is retained, and instabilities may
arise for matrices that are close to being rank-deficient.

Let U ,�hor
U , �̃hor

U be as introduced in Proposition 3.4 (now with possibly repeated
singular values of�hor

U ) and consider the t-dependent QR-decomposition of thematrix
curve (�+ t�̃)horU = Q(t)R(t). The starting point is (3.7), which can be transformed
to

γ (t) = πSG
(

(U , Q(t)) expm

(
0 −R(t)T

R(t) 0

)(
Ip

0

))
=: πSG(γ̃ (t))

by means of elementary matrix operations. Write M(t) =
(

0 −R(t)T

R(t) 0

)
. By the

product rule,

d

dt

∣∣∣
t=0γ̃ (t) = (0, Q̇(0)) expm (M(0))

(
Ip

0

)
+ (U , Q(0))

d

dt

∣∣∣
t=0 expm (M(t))

(
Ip

0

)
.

(3.16)
The derivative d

dt

∣∣
t=0 expm (M(t)) = d(expm)M(0)(Ṁ(0)) can be computed according

to Mathias’ Theorem [34, Thm 3.6, p. 58] from

expm

(
M(0) Ṁ(0)
0 M(0)

)
=

(
expm(M(0)) d

dt

∣∣
t=0 expm(M(0)+ t Ṁ(0))

0 expm(M(0))

)

=

⎛
⎜⎜⎝

(
E11 E12
E21 E22

) (
D11 D12
D21 D22

)

0
(

E11 E12
E21 E22

)
⎞
⎟⎟⎠

which is a (4p × 4p)-matrix exponential written in sub-blocks of size (p × p). Sub-
stituting in (3.16) gives the O(np2)-formula

d

dt

∣∣∣
t=0γ̃ (t) = Q̇(0)E21 +U D11 + Q(0)D21. (3.17)
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This corresponds to [70, Lemma 5], which addresses the Stiefel case. The derivative
matrices Q̇(0), Ṙ(0) can be obtained from Alg. 3 in Appendix B. The final formula is
obtained by taking the projection into account as in (3.15), where μ is to be replaced
by γ̃ . The horizontal lift is computed accordingly.

The derivative of the Grassmann exponential can also be computed directly in
Gr(n, p) without using horizontal lifts, at the cost of a higher computational com-
plexity, but without restrictions with regard to the singular values. The key is
again to apply Mathias’ Theorem to evaluate the derivative of the matrix expo-
nential. Let P ∈ Gr(n, p) and � = [�, P], �̃ = [�̃, P] ∈ TPGr(n, p) with
� = (In − 2P)�, �̃ = (In − 2P)�̃ ∈ soP (n). Denote Q := expm(�) ∈ O(n) and
�Q = d

dt

∣∣
t=0 expm(� + t�̃). Here, � ∈ so(n), since expm(� + t�̃) is a curve in

O(n) through Q at t = 0. Then a computation shows that the derivative of

ExpGrP (�+ t�̃) = expm(�+ t�̃)P expm(−�− t�̃)

is given by

d

dt

∣∣∣
t=0 Exp

Gr
P (�+ t�̃) = �Q P QT + Q P(�Q)T ∈ TQ P QT Gr(n, p).

The matrices Q and �Q can be obtained in one calculation by evaluating the left side
of

expm

(
� �̃

0 �

)
=

(
expm(�) d

dt

∣∣∣
t=0 expm(�+ t�̃)

0 expm(�)

)
=

(
Q �Q
0 Q

)

according to Mathias’ Theorem.

3.6 Parallel transport

On a Riemannian manifold (M, g), parallel transport of a tangent vector v ∈ Tp M
along a smooth curve γ : I → M through p gives a smooth vector field V ∈ X(γ )

along γ that is parallel with respect to the Riemannian connection ∇ and fulfills the
initial condition V (p) = v. A vector field V ∈ X(γ ) along a curve γ is a vector field
that is defined on the range of the curve, i.e., V : γ (I ) → T M and V (γ (t)) ∈ Tγ (t)M .
The term “parallel” means that for all t ∈ I , the covariant derivative of V in direction
of the tangent vector of γ vanishes, i.e.

∇γ̇ (t)V = 0.

Parallel transport on the Grassmannian (ONB perspective) was studied in [21],
where an explicit formula for the horizontal lift of the parallel transport of a tangent
vector along a geodesic was derived, and in [2], where a differential equation for
the horizontal lift of parallel transport along general curves was given. In the next
proposition, we complete the picture by providing a formula for the parallel transport
on the Grassmannian from the projector perspective. Note that this formula is similar
to the parallel transport formula in the preprint [39].
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Proposition 3.5 (Parallel Transport: Projector Perspective) Let P ∈ Gr(n, p) and
�,� ∈ TPGr(n, p). Then the parallel transport P�(ExpGrP (t�)) of � along the
geodesic

ExpGrP (t�) = expm(t[�, P])P expm(−t[�, P])
is given by

P�(ExpGrP (t�)) = expm(t[�, P])� expm(−t[�, P]).
Proof Denote γ (t) := ExpGrP (t�) and note that � := [�, P] ∈ soP (n). The fact
that P�(ExpGrP (t�)) ∈ TExpGrP (t�)Gr(n, p) can be checked with Proposition 2.1 c).
To show that P� gives parallel transport, we need to show that ∇γ̇ (t)(P�(γ (t))) =
	Tγ (t)Gr

(
d(P�)γ (t)(γ̇ (t))

) = 0 as in (3.5). By making use of the chain rule, we have

d(P�)γ (t)(γ̇ (t)) = d
dt P�(γ (t)) = [�,P�(γ (t))], where [·, ·] denotes the matrix

commutator.Applying the projection	Tγ (t)Gr from (3.3) andmaking use of the relation
(2.7) and the tangent vector properties from Proposition 2.1 give the desired result. �

Applying the horizontal lift to the parallel transport equation leads to the formula

also found in [21]. Let Q = (
U U⊥

) ∈ (πOG)−1(P). Then � = Q
(
0 −AT

A 0

)
QT

and � = Q
(
0 BT

B 0

)
QT for some A, B ∈ R

(n−p)×p. According to (2.14), the

horizontal lift of P�(ExpGrP (t�)) to the Stiefel geodesic representative U (t) =
Q expm(t QT �Q)In,p is given by a post-multiplication with U (t),

(
P�(ExpGrP (t�))

)hor
U (t)

= P�(ExpGrP (t�))U (t) = Q expm

(
t

(
0 −AT

A 0

))(
0
B

)
.

This formula can be simplified similarly to [21, Theorem 2.4] by discarding all prin-
cipal angles equal to zero. With notation as above, �hor

U = U⊥A and �hor
U = U⊥B.

Let r ≤ min(p, n− p) be the number of non-zero singular values of �hor
U . Denote the

thin SVD of �hor
U by �hor

U = Q̂�V T , where Q̂ ∈ St(n, r),� = diag(σ1, . . . , σr )

and V ∈ St(p, r), which means � has full rank. Then A = U T⊥ Q̂�V T with
W := U T⊥ Q̂ ∈ St(n − p, r). Similarly to the proof of Proposition 3.3, with γ�(t) :=
ExpGrP (t�),

(P�(γ�(t)))horU (t)=
(
−U V sin(t�)W T+U⊥W cos(t�)W T+U⊥(In−p−W W T )

)
B

= (−U V sin(t�)Q̂T + Q̂ cos(t�)Q̂T + In − Q̂ Q̂T )�hor
U .

(3.18)

The difference between this formula and the one found from [21, Theorem 2.4] is in
the usage of the thin SVD and the therefore smaller matrices Q̂, � and V , depending
on the problem. But the first line also shows that if r = n− p, the term In−p −W W T

vanishes, and therefore also the term (In − Q̂ Q̂T )�hor
U . This can happen if p ≥ n/2.

For large n, (3.18) allows for an O(np2)-computation of the parallel transport, which
is efficient compared to the projector perspective of Proposition 3.5.
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4 Symmetry and curvature

In this section, we establish the symmetric space structure of the Grassmann manifold
by elementary means. The symmetric structure of the Grassmannian was for example
shown in [36, Vol. II] and [14].

Exploiting the symmetric space structure, the curvature of the Grassmannian can
be calculated explicitly. Curvature formulae for symmetric spaces can be found for
example in [49, Chapter 11, Proposition 11.31] and [36, Vol. II]. To the best of the
authors’ knowledge, a first formula for the sectional curvature of the Grassmannian
was given in [62], without making use of the symmetric structure. The bounds were
studied in [63]. In [42], curvature formulae have been derived in local coordinates
via differential forms. Explicit curvature formulae for a generalized version of the
Grassmannian as the space of orthogonal projectors were given in [44].

Curvature bounds are required for the analysis of Riemannian optimization prob-
lems (see, e.g., [6, 18, 66]) and, in particular, for studying the Riemannian centers
of mass, see for example [4, 15] and [43], and several references therein. The sec-
tional curvature features also in statistical problems on Riemannian manifolds [17],
and enables estimates for data processing errors on manifolds [70].

4.1 Symmetric space structure

In differential geometry, a metric symmetry at q is an isometry σ : M → M of a
manifold M that fixes a certain point σ(q) = q with the additional property that dσq =
− id |Tq M . This relates to the concept of a point reflection in Euclidean geometry. A
(metric) symmetric space is a connected differentiable manifold that has a metric
symmetry at every point, [49, Chapter 8]. Below, we execute an explicit construction
of symmetries for the Grassmannian, which compares to the abstract course of action
in [49, Chapter 11, p. 315ff].

Consider the orthogonal matrix S0 =
(

Ip 0
0 −In−p

)
∈ O(n). Then S0 induces

a symmetry at P0 via σ P0 : P �→ P S0 := S0P ST
0 , which is defined on all of

Gr(n, p). Obviously, σ P0(P0) = P0. For any point P ∈ Gr(n, p) and any tan-
gent vector � ∈ TPGr(n, p), the differential in direction � can be computed as
dσ P0

P (�) = d
dt |t=0σ(P(t)), where P(t) is any curve on Gr(n, p) with P(0) = P and

Ṗ(0) = �. This gives

dσ P0
P0
: TP0Gr(n, p) → TP0Gr(n, p),

(
0 BT

B 0

)
�→ S0

(
0 BT

B 0

)
ST
0 = −

(
0 BT

B 0

)
,

so that σ P0 is indeed a symmetry of Gr(n, p) at P0.
Given any other point P ∈ Gr(n, p), we can compute the EVD P = Q P0QT

and define σ P : P̃ �→ (QS0QT )P̃(QS0QT ). This isometry fixes P , σ P (P) = P .
Moreover, for any curve with P(0) = P , Ṗ(0) = � ∈ TPGr(n, p), it holds � =
d
dt |t=0Q(t)P0QT (t) = Q̇ P0QT + Q P0 Q̇T (evaluated at t = 0). Since Q(t) is a
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curve on O(n), it holds QT Q̇ = −Q̇T Q, so that QT Q̇ =
(

C11 −CT
21

C21 C22

)
is skew. As

a consequence, we use the transformation QT �Q =
(

0 CT
21

C21 0

)
to move � to the

tangent space at P0 and compute

dσ P
P (�)=QS0(QT �Q)S0QT =QS0

(
0 CT

21
C21 0

)
S0QT = −Q(QT �Q)QT = −�.

Hence, we have constructed metric symmetries at every point of Gr(n, p).
The symmetric space structure of Gr(n, p) implies a number of strong properties.

First of all, it follows that Gr(n, p) is geodesically complete [49, Chapter 8, Lemma
20]. This means that the maximal domain of definition for all Grassmann geodesics
is the whole real line R. As a consequence, all the statements of the Hopf-Rinow
Theorem [20, Chap. 7, Thm 2.8], [5, Thm 2.9] hold for the Grassmannian, as it is a
connected manifold:

1. TheRiemannian exponential ExpGrP : TPGr(n, p) → Gr(n, p) is globally defined.
2. (Gr(n, p), dist(·, ·)) is a complete metric space, where dist(·, ·) is the Riemannian

distance function.
3. Every closed and bounded set in Gr(n, p) is compact.

These statements are equivalent. Any one of them additionally implies

4. For any two points P1, P2 ∈ Gr(n, p), there exists a geodesic γ of length L(γ ) =
dist(P1, P2) that joins P1 to P2; hence any two points can be joined by a minimal
geodesic segment.

5. The exponential map ExpGrP : TPGr(n, p) → Gr(n, p) is surjective for all P ∈
Gr(n, p).

4.2 Sectional curvature

For X , Y , Z ∈ R
(n−p)×p, let X̂ :=

(
0 −X T

X 0

)
∈ HorI O(n) and Ŷ , Ẑ ∈ HorI O(n)

accordingly. Denote the projections to TP0Gr(n, p) by x := dπOG
P0

(X̂) =
(
0 X T

X 0

)
∈

TP0Gr(n, p), etc. Then, by [49, Proposition 11.31], the curvature tensor at P0 is given
by Rxyz = dπOG

P0
([Ẑ , [X̂ , Ŷ ]]), since the Grassmannian is symmetric and therefore

also reductive homogeneous. This formula coincides with the formula found in [44].
Explicitly, we can calculate

Rxyz =
(
0 BT

B 0

)
∈ TP0Gr(n, p),

where B = Z X T Y − ZY T X − XY T Z + Y X T Z ∈ R
(n−p)×p.

The sectional curvature of the Grassmannian can be calculated by the following
formulae. It depends only on the plane spanned by two given tangent vectors, not
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the spanning vectors themselves. For a Riemannian manifold, the sectional curvature
completely determines the curvature tensor, see for example [41, Proposition 8.31].

Proposition 4.1 Let P ∈ Gr(n, p) and let �1,�2 ∈ TPGr(n, p) span a non-
degenerate plane in TPGr(n, p). The sectional curvature is then given by

K P (�1,�2) = 4
tr
(
�2

1�
2
2

)− tr
(
(�1�2)

2
)

tr(�2
1) tr(�

2
2)− (tr(�1�2))2

= 2
‖[�1,�2]‖2F

‖�1‖2F‖�2‖2F − 〈�1,�2〉20
.

(4.1)

Proof This formula can be derived from the result in [44]. For a direct proof, we
proceed as follows. The tangent vectors can be expressed as �1 = [�1, P], �2 =
[�2, P] ∈ TPGr(n, p) for some �1,�2 ∈ soP (n). Using the fact

[�1, P][�2, P] = −�1�2,

we see that

tr
(
[�2, P][�1, P]2[�2, P]

)
− tr

(
([�2, P][�1, P])2

)
= tr(�2�1[�1,�2]) .

The property that for any two X , Y ∈ HorI O(n) the equality

tr(Y X [X , Y ]) = 〈[Y , [X , Y ]], X〉

holds, shows the claim according to [49, Proposition 11.31]. �
With (2.12) every �i ∈ TPGr(n, p) can be written as �i = U⊥BiU T +U BT

i U T⊥
for some

(
U U⊥

) ∈ (πOG)−1(P) and Bi ∈ R
(n−p)×p. Since every tangent vector in

TPGr(n, p) is uniquely determined by such a B for a chosen representative
(
U U⊥

)
,

we can insert this into (4.1) and get the simplified formula

K P (B1, B2) = tr
(
BT
1 B2

(
BT
2 B1 − 2BT

1 B2
)+ BT

1 B1BT
2 B2

)
tr
(
BT
1 B1

)
tr
(
BT
2 B2

)− (
tr
(
BT
1 B2

))2
= ‖BT

2 B1‖2F + ‖B1BT
2 ‖2F − 2〈BT

2 B1, BT
1 B2〉0

‖B1‖2F‖B2‖2F − 〈B1, B2〉20
.

(4.2)

This formula is equivalent to the slightly more extended form in [62] and depends
only on the factors BT

1 B2, BT
1 B1 and BT

2 B2 ∈ R
p×p. It also holds for the horizontal

lifts of �i by just replacing the symbols Bi by (�i )
hor
U , which can also be shown by

exploiting (2.12) and (�i )
hor
U = U⊥Bi .

In summary, for two orthonormal tangent vectors �1 = [�1, P], �2 = [�2, P] ∈
TPGr(n, p) with �1,�2 ∈ soP (n), i.e.,

1 = 〈�i ,�i 〉 = 1

2
tr(�T

i �i ) and 0 = 〈�1,�2〉
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the sectional curvature is given by

K P (�1,�2) = tr(�2�1[�1, �2])
= tr

(
�horT

2,U �hor
1,U

(
�horT

1,U �hor
2,U − 2�horT

2,U �hor
1,U

)
+�horT

1,U �hor
1,U �horT

2,U �hor
2,U

)
.

Inserting any pair of orthonormal tangent vectors shows that for n > 2, the sectional
curvature of the real projective space Gr(n, 1) = RP

n−1 is constant K P ≡ 1, as it is
by the same calculation for Gr(n, n − 1), see also [62]. The same source also states a
list of facts about the sectional curvature on Gr(n, p) without proof, especially that

0 ≤ K P (�1,�2) ≤ 2 (4.3)

for min(p, n − p) ≥ 2. Nonnegativity follows directly from (4.1). The upper bound
was proven in [63], by proving that for any twomatrices A, B ∈ R

m×n , withm, n ≥ 2,
the inequality

‖ABT − B AT ‖2F ≤ 2‖A‖2F‖B‖2F (4.4)

holds. Note that (4.2) can be rewritten as

K P (B1, B2) =
1
2

(‖B1BT
2 − B2BT

1 ‖2F + ‖BT
1 B2 − BT

2 B1‖2F
)

‖B1‖2F‖B2‖2F − (tr(BT
1 B2))2

.

The bounds of the sectional curvature (4.3) are sharp for all cases except those men-
tioned in the next paragraph: The lower bound zero is attained whenever �1,�2

commute. The upper curvature bound is attained, e.g., for B1 =
(

1 1
−1 1

)
, B2 =(−1 1

−1 −1
)
, or matrices containing B1 and B2 as their top-left block and else only zeros,

when p > 2.
In [42] it was shown that a Grassmannian Gr(n, p) features a strictly positive

sectional curvature K P only if the sectional curvature is constant throughout. The
sectional curvature is constant (and equal to K P ≡ 1) only in the cases p = 1, n > 2
or p = n − 1, n > 2. In the case of n = 2, p = 1, the sectional curvature is not
defined, since dim(Gr(2, 1)) = 1. Hence, in this case, there are no non-degenerate
two-planes in the tangent space.

5 Cut locus and Riemannian logarithm

We have seen in Section 4.1 that Gr(n, p) is a complete Riemannian manifold. On
such manifolds, the cut locus of a point P consists of those points F beyond which
the geodesics starting at P cease to be length-minimizing. It is known [55, Ch. III,
Prop. 4.1] that P and F are in each other’s cut locus if there is more than one shortest
geodesic from P to F . We will see that, on the Grassmannian, this “if” is an “if and
only if” (in other words, the Grassmannian does not admit singular cut points in the
sense of [13]), and moreover “more than one” is always either two or infinitely many.
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To get an intuitive idea of the cut locus, think of the earth as an ideal sphere. Then
the cut locus of the north pole is the south pole, as it is the only point beyond which
the geodesics starting at the north pole cease to be length-minimizing. In the case of
the sphere, the “if and only if” statement that we just mentioned for the Grassmannian
also holds; however, for the sphere, “more than one” is always infinitely many.

Given two points P, F ∈ Gr(n, p) that are not in each other’s cut locus, the unique
smallest norm tangent vector � ∈ TPGr(n, p) such that ExpGrP (�) = F is called
the Riemannian logarithm of F at P . We propose an algorithm that calculates the
Riemannian logarithm. Moreover, in the case of cut points, the algorithm is able
to return any of the (two or infinitely many) smallest � ∈ TPGr(n, p) such that
ExpGrP (�) = F . This ability comes from the indeterminacy of the SVD operation
invoked by the algorithm.

The horizontal lift of the exponential map (3.9) depends explicitly on the so called
principal angles between two points and allows us to give explicit formulae for dif-
ferent geodesics between P and a cut point F . We observe that the inherent ambiguity
of the SVD, see Appendix B, corresponds to the different geodesics connecting the
same points.

Our approach allows data processing schemes to explicitly map any given set of
points on the Grassmannian to any tangent space TPGr(n, p), with the catch that
possibly a subset of the points (namely those that are in the cut locus of P), is mapped
to a set of tangent vectors each, instead of just a single one.

The cut locus, and the related injectivity radius, play an important role in curvefitting
methods onmanifolds [27] and the analysis of Riemannian optimization problems [4].
The ability to tackle cut points numerically is of special importance for computing
so-called almost gradients, which enable the computation of Riemannian barycenters
for not necessarily localized point sets, see [4, Section 6.2].

5.1 Cut locus

We can introduce the cut locus of the Grassmannian by applying the definitions of
[41, Chap. 10] about cut points to Gr(n, p). In the following, let P ∈ Gr(n, p) and
� ∈ TPGr(n, p) and γ� : t �→ ExpGrP (t�). Then the cut time of (P,�) is defined as

tcut(P,�) := sup{b > 0 | the restriction of γ� to [0, b] is minimizing}.

The cut point of P along γ� is given by γ�(tcut(P,�)) and the cut locus of P is
defined as

CutP := {F ∈ Gr(n, p) | F = γ�(tcut(P,�)) for some � ∈ TPGr(n, p)}.

In [54, 60], it is shown that the cut locus of P = UU T ∈ Gr(n, p) is the set of all
(projectors onto) subspaces with at least one direction orthogonal to all directions in
the subspace onto which P projects, i.e.

CutP =
{

F = Y Y T ∈ Gr(n, p)

∣∣∣ rank(U T Y ) < p
}

. (5.1)
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This means that the cut locus can be described in terms of principal angles: The
principal angles θ1, . . . , θp ∈ [0, π

2 ] between two subspaces U and Ũ are defined
recursively by

cos(θk) := uT
k vk := max

u ∈ U , ‖u‖ = 1
u⊥u1, . . . , uk−1

max
v ∈ Ũ , ‖v‖ = 1
v⊥v1, . . . vk−1

uT v.

They can be computed via θk := arccos(sk) ∈ [0, π
2 ], where sk ≤ 1 is the k-

largest singular value of U T Ũ ∈ R
p×p for any two Stiefel representatives U and

Ũ . According to this definition, the principal angles are listed in ascending order:
0 ≤ θ1 ≤ . . . ≤ θp ≤ π

2 . In other words, the cut locus of P consists of all points
F ∈ Gr(n, p) with at least one principal angle between P and F being equal to π

2 .
Furthermore, as in [41, Chapter 10, p. 310], we introduce the tangent cut locus of

P by
TCLP := {� ∈ TPGr(n, p) | ‖�‖ = tcut(P,�/‖�‖)}

and the injectivity domain of P by

IDP := {� ∈ TPGr(n, p) | ‖�‖ < tcut(P,�/‖�‖)}.

The cut time can be explicitly calculated by the following proposition.

Proposition 5.1 Let P = UU T ∈ Gr(n, p) and � ∈ TPGr(n, p). Denote the largest
singular value of �hor

U ∈ HorU St(n, p) by σ1. Then

tcut(P,�) = π

2σ1
. (5.2)

Proof Since γ�(tcut(P,�)) ∈ CutP , by (3.9) we have

rank(U T (U V cos(tcut(P,�)�)V T + Q̂ sin(tcut(P,�)�)V T )) < p,

which is equivalent to cos(tcut(P,�)σ1) = 0. �
Now we see that the tangent cut locus TCLP consists of those tangent vectors for

which σ1 (the largest singular value of the horizontal lift) fulfills σ1 = π
2 and the

injectivity domain IDP contains the tangent vectors with σ1 < π
2 .

The geodesic distance is a natural notion of distance between two points on a
Riemannian manifold. It is defined as the length of the shortest curve(s) between
two points as measured with the Riemannian metric, if such a curve exists. On the
Grassmannian, it can be calculated as the two-norm of the vector of principal angles
between the two subspaces, cf. [60], i.e.

dist(U , Ũ) =
( p∑

i=1
σ 2

i

) 1
2

. (5.3)
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This shows that for any two points on the Grassmann manifold Gr(n, p), the geodesic
distance is bounded by

dist(U , Ũ) ≤ √p
π

2
,

which was already stated in [60, Theorem 8].

Remark There are other notions of distance on the Grassmannian that can also be
computed from the principal angles, but which are not equal to the geodesic distance,
see [21, §4.5], [50], [64, Table 2]. In the latter reference, it is also shown that all these
distances can be generalized to subspaces of different dimensions by introducing
Schubert varieties and adding π

2 for the “missing” angles.

The injectivity radius at P ∈ Gr(n, p) is defined as the distance from P to its cut
locus, or equivalently, as the supremum of the radii r for which ExpGrP is a diffeomor-
phism from the open ball Br (0) ⊂ TPGr(n, p) onto its image. The injectivity radius
at every P is equal to inj(P) = π

2 , since there is always a subspace F for which the
principal angles between P and F are all equal to zero, except one, which is equal to
π
2 . For such an F it holds that dist(P, F) = π

2 , c.f. (5.3), and F ∈ CutP . For all other
points F̃ with dist(P, F̃) < π

2 , all principal angles are strictly smaller than π
2 , and

therefore F̃ /∈ CutP .

Proposition 5.2 Let P = UU T ∈ Gr(n, p) and � ∈ TPGr(n, p). Consider the
geodesic segment γ� : [0, 1] � t �→ ExpGrP (t�). Let the SVD of the horizontal lift of

� be given by Q̂�V T = �hor
U ∈ HorU St(n, p), where � = diag(σ1, . . . , σp).

a) If the largest singular value σ1 < π/2, then the geodesic segment γ� is unique
minimizing.

b) If the largest singular value σ1 = π/2, then the geodesic segment γ� is non-unique
minimizing.

c) If the largest singular value σ1 > π/2, then the geodesic segment γ� is not
minimizing.

Proof In case of a), γ� is minimizing by definition of the cut locus. It is unique by
[41, Thm. 10.34 c)]. In case of b), γ� is still minimizing by the definition of the
cut locus. For non-uniqueness, replace σ1 by −π

2 (instead of π
2 ) and observe that we

get a different geodesic with the same length and same endpoints. Case c) holds by
definition of the cut locus. �

5.2 Riemannian logarithm

For any P ∈ Gr(n, p), the restriction of ExpGrP to the injectivity domain IDP is
a diffeomorphism onto Gr(n, p) \ CutP by [41, Theorem 10.34]. This means that
for any F ∈ Gr(n, p) \ CutP there is a unique tangent vector � ∈ IDP such that
ExpGrP (�) = F . Themapping that finds this� is conventionally called theRiemannian
logarithm. Furthermore, [41, Thm. 10.34] states that the restriction of ExpGrP to the
union of the injectivity domain and the tangent cut locus IDP ∪TCLP is surjective.
Therefore for any F ∈ CutP we find a (non-unique) tangent vector which is mapped
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to F via the exponential map. We propose Algorithm 1, which computes the unique
� ∈ IDP ⊂ TPGr(n, p) in case of F ∈ Gr(n, p) \ CutP and one possible � ∈
TCLP ⊂ Gr(n, p) for F ∈ CutP . In the latter case, all other possible �̃ ∈ TCLP such
that ExpGrP (�̃) = F can explicitly be derived from that result.

Algorithm 1 Extended Grassmann logarithm with Stiefel representatives.

Input: U , Y ∈ St(n, p) representing P = UU T , F = Y Y T ∈ Gr(n, p), respectively

1: Q̃ S̃ R̃T SVD:= Y T U � SVD
2: Y∗ := Y (Q̃ R̃T ) � Procrustes processing
3: Q̂ Ŝ RT SVD:= (In −UU T )Y∗ � compact SVD
4: � := arcsin(Ŝ) � element-wise on the diagonal
5: �hor

U := Q̂�RT

Output: smallest �hor
U ∈ HorU St(n, p) such that ExpGrP (�) = F

Remark: In Step 1, the expression
SVD:= is to be understood as “is an SVD”. In case of F ∈ CutP , i.e. singular

values equal to zero, different choices of decompositions lead to different valid output vectors �hor
U . The

non-uniqueness of the compact SVD in Step 3 does not matter, because � = arcsin(Ŝ), and arcsin maps
zero to zero and repeated singular values to repeated singular values. Therefore any non-uniqueness cancels
out in the definition of �hor

U .

Beforewe prove the claimed properties ofAlgorithm1, let us state the following:An
algorithm for theGrassmann logarithmwith Stiefel representatives onlywas derived in
[2, Section 3.8]. The Stiefel representatives are however not retained in this algorithm,
i.e., coupling the exponential map and the logarithm recovers the input subspace but
produces a different Stiefel representative Ỹ = ExpGrU (LogGrU (Y )) �= Y as an output.
Furthermore, it requires thematrix inverse ofU T Y , which alsomeans that it onlyworks
for points not in the cut locus, see (5.1). By slightly modifying this algorithm we get
Algorithm 1, which retains the Stiefel representative, does not require the calculation
of the matrix inverse (U T Y )−1 and works for all pairs of points. The computational
procedure of Algorithm 1 was first published in the preprint of the book chapter [69].

In the following Theorem 5.4, we show that Algorithm 1 indeed produces the
Grassmann logarithm for points not in the cut locus.

Theorem 5.4 Let P = UU T ∈ Gr(n, p) and F = Y Y T ∈ Gr(n, p) \ CutP be two
points on the Grassmannian. Then Algorithm 1 computes the horizontal lift of the
Grassmann logarithm LogGrP (F) = � ∈ TPGr(n, p) to HorU St(n, p). It retains the
Stiefel representative Y∗ when coupled with the Grassmann exponential on the level
of Stiefel representatives (3.10), i.e.

Y∗ = ExpGrU (�hor
U ).

Proof First, Algorithm 1 aligns the given subspace representatives U and Y by pro-
ducing a representative of the equivalence class [Y ] that is “closest” to U . To this end,
the Procrustes method is used, cf. [34, Theorem 8.6]. Procrustes gives

Q RT = argmin
�∈O(p)

‖U − Y�‖F ,
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by means of the SVD
Y T U = QS RT , (5.4)

chosen here to be with singular values in ascending order from the top left to the
bottom right. Therefore Y∗ := Y Q RT represents the same subspace [Y∗] = [Y ], but

U T Y∗ = RS RT

is symmetric. Now, we can split Y∗ with the projector P = UU T onto span(U ) and
the projector In −UU T onto the orthogonal complement of span(U ) via

Y∗ = UU T Y∗ + (In −UU T )Y∗ = U RS RT + (In −UU T )Y∗. (5.5)

If we denote the part of Y∗ that lies in span(U )⊥ by L := (In −UU T )Y∗, we see that

LT L = Y T∗ (In −UU T )Y∗ = In − RS2RT = R(In − S2)RT .

That means that Ŝ := √
(In − S2) is the diagonal matrix of singular values of L , with

the singular values in descending order. The square root is well-defined, since (In−S2)

is diagonal with values between 0 and 1. Note also that the column vectors of R are a
set of orthonormal eigenvectors of LT L , i.e., a compact singular value decomposition
of L is of the form

L = (In −UU T )Y∗ = Q̂ Ŝ RT , (5.6)

where again Q̂ ∈ St(n, p). Define � := arccos(S), where the arcus cosine (and sine
and cosine in the following) is applied entry-wise on the diagonal. Then S = cos(�)

and Ŝ = sin(�). Inserting in (5.5) gives

Y∗ = U R cos(�)RT + Q̂ sin(�)RT .

This is exactly the exponential with Stiefel representatives (3.10), i.e., ExpGrU (�hor
U ) =

Y∗, where�hor
U = Q̂�RT . We also see that the exact matrix representative Y∗, and not

just any equivalent representative, is computed by plugging �hor
U into the exponential

ExpGrU .
The singular value decomposition in (5.4) differs from theusual SVD–with singular

values in descending order – only by a permutation of the columns of Q and R. But if
Y T U = QS RT is an SVDwith singular values in ascending order and Y T U = Q̃ S̃ R̃T

is an SVD with singular values in descending order, the product Q RT = Q̃ R̃T does
not change, i.e., the computation of Y∗ is not affected. Therefore we can compute the
usual SVD for an easier implementation and keep in mind that S̃2 + Ŝ2 �= In .

It remains to show that � ∈ IDP , so that it is actually the Riemannian logarithm.
Since F is not in the cut locus CutP , we have rank(U T Y ) = p, which means that the
smallest singular value of U T Y is larger than zero (and smaller than or equal to one).
Therefore the entries of � = arccos(S) are smaller than π

2 , which shows the claim. �
Remark It should be noted that the compact SVD of the n × p matrix in Step 3 of
Algorithm 1 does not need to be computed explicitly. As can be seen from the proof
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of Theorem 5.4, the factors Ŝ and R can be obtained from the SVD of Y T U ∈ R
p×p

in Step 1 of Algorithm 1, by flipping the order of columns of R̃ to obtain R, and by
flipping the order of the diagonal S̃ to obtain S and calculate Ŝ = √

(In − S2). In the
end, Q̂ is obtained by Q̂ = (In −UU T )Y QŜ−1, where Q is Q̃ with flipped columns.
(When Ŝ has zeros on the diagonal, the resulting 0/0 ambiguity can be resolved in
any way that preserves the orthogonality of Q̂; this has no impact on the output of
Algorithm 1 in view of the remark therein.) This course of action with just one SVD
can be compared to approaches in [24, Task 2], using a thin CS-decomposition of a
larger matrix, and [7, Equation (16)].

The next theorem gives an explicit description of the shortest geodesics between a
point and another point in its cut locus.

Theorem 5.5 For P = UU T ∈ Gr(n, p) and some F = Y Y T ∈ CutP , let r denote
the number of principal angles between P and F equal to π

2 . Then � ∈ TCLP ⊂
TPGr(n, p) is a minimizing solution of

ExpGrP (�) = F (5.7)

if and only if the horizontal lift �hor
U is an output of Algorithm 1.

Consider the compact SVD �hor
U = Q̂�RT . Then the horizontal lifts of all other

minimizing solutions of (5.7) are given by

(�W )horU := Q̂� diag(W , Ip−r )RT ,

where W ∈ O(r) and diag(W , Ip−r ) =
(

W 0
0 Ip−r

)
denotes a block diagonal matrix.

The shortest geodesics between P and F are given by

γW (t) := ExpGrP (t�W ) = [U R diag(W T , Ip−r ) cos(t�)+ Q̂ sin(t�)].

Proof Algorithm 1 continues to work for points in the cut locus, but the result is not
unique. With an SVD of Y T U with singular values in ascending order, the first r
singular values are zero. By Proposition B.1,

Y T U = QS RT = Q diag(W1, D)S diag(W2, DT )RT ,

where D ∈ O(p − r) with (D)i j = 0 for si �= s j and W1, W2 ∈ O(r) arbitrary. Then
Y∗ is not unique anymore, but is given as the set of matrices

{
Y∗,W1,W2 := Y Q diag(W1W2, Ip−r )RT | W1, W2 ∈ O(r)

}
.
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Define W := W1W2 and Ŵ := diag(W , Ip−r ). Then

(In −UU T )Y∗,W = (In −UU T )Y QŴ RT

= (In −UU T )Y Q RT︸ ︷︷ ︸
Q̂ Ŝ RT

RŴ RT = Q̂ ŜŴ RT .

With � = arcsin(Ŝ) = arccos(S), every matrix

(�W )horU := Q̂�Ŵ RT

is the horizontal lift of a tangent vector at P of a geodesic towards F : For the expo-
nential, it holds that

ExpGrP (�W ) = [U RŴ T cos(�)Ŵ RT + Q̂ sin(�)Ŵ RT ]
= [U RŴ T cos(�)+ Q̂ sin(�)] = [U R cos(�)+ Q̂ sin(�)] = [Y ],

where the third equality holds, since � = diag(π
2 , . . . , π

2 , σr+1, . . . , σp). But the
geodesics γW starting at [U ] in the directions �W differ, i.e.

γW (t) = [U RŴ T cos(t�)Ŵ RT + Q̂ sin(t�)Ŵ RT ]
= [U RŴ T cos(t�)+ Q̂ sin(t�)].

Hence, the ambiguity factor Ŵ T = diag(W T , Ip−r ) does not vanish for 0 < t < 1.
The geodesics are all of the same (minimal) length, since the singular values do not
change and γW (1) = ExpGrP (�W ).

To show that there are no other solutions, let �̄ ∈ TCLP fulfill ExpGrP (�̄) = F and
�̄hor

U = Q̄�̄ R̄T . Then by (3.10) there is some M ∈ O(p) such that

Y M = U R̄ cos(�̄)R̄T + Q̄ sin(�̄)R̄T ,

which implies U T Y M = R̄ cos(�̄)R̄T , which is an SVD of U T Y M . Therefore Ȳ∗ :=
Y M R̄ R̄T = Y M fulfills the properties of Y∗ of Algorithm 1. Now

(In −UU T )Ȳ∗ = (In −UU T )(U R̄ cos(�̄)R̄T + Q̄ sin(�̄)R̄T ) = Q̄ sin(�̄)R̄T ,

which means that Q̄ sin(�̄)R̄T is a compact SVD of (In −UU T )Ȳ∗. Therefore �̄hor
U

is an output of Algorithm 1 and the claim is shown. �
Together, Theorems 5.4 and 5.5 allow to map any set of points on Gr(n, p) to

a single tangent space. The situation of multiple tangent vectors that correspond to
one and the same point in the cut locus is visualized in Fig. 2. Notice that if r = 1
in Theorem 5.5, there are only two possible geodesics γ±1(t). For r > 1 there is a
smooth variation of geodesics.
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Fig. 2 Themanifold of one-dimensional subspaces ofR3, i.e., Gr(3, 1), can be seen as the upper half sphere
with half of the equator removed. For points in the cut locus of a point P ∈ Gr(3, 1) (like F3 in the figure),
there is no unique velocity vector in TPGr(3, 1) that sends a geodesic from P to the point in question, but
instead a set of two starting velocities (�3,+1 and �3,−1) that can be calculated according to Theorem 5.5.
Since the points actually mark one dimensional subspaces through the origin, F3 is identical to its antipode
on the equator

In [10, Theorem 3.3] a closed formula for the logarithm for Grassmann locations
represented by orthogonal projectors was derived. We recast this result in form of the
following proposition.

Proposition 5.6 (Grassmann Logarithm: Projector perspective) Let a point P ∈
Gr(n, p) and F ∈ Gr(n, p) \ CutP . Then � = [�, P] ∈ IDP ⊂ TPGr(n, p) such
that ExpGrP ([�, P]) = F is determined by

� = 1

2
logm ((In − 2F)(In − 2P)) ∈ soP (n).

Consequently LogGrP (F) = [�, P].
This proposition gives the logarithm explicitly, but it relies on n × n matrices.

Lifting the problem to the Stiefel manifold reduces the computational complexity. A
method to compute the logarithm that uses an orthogonal completion of the Stiefel
representative U and the CS decomposition was proposed in [24].

5.3 Numerical performance of the logarithm

In this section, we assess the numerical accuracy of Algorithm 1 as opposed to the
algorithm introduced in [2, Section 3.8], for brevity hereafter referred to as the new
log algorithm and the standard log algorithm, respectively.

For a random subspace representative U ∈ St(1000, 200) and a random horizontal
tangent vector �hor

U ∈ HorU St(1000, 200) with largest singular value set to π
2 , the

subspace representative

U1(τ ) = ExpGrU

(
(1− τ)�hor

U

)
, τ ∈ [10−20, 100],
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is calculated.Observe thatU1(0)U1(0)T is in the cut locus ofUU T . Then the logarithm
(�̃(τ ))horU = LoghorU (U , U1(τ )) is calculated according to the new log algorithm and
the standard log algorithm, respectively. In the latter case, (�̃(τ ))horU is projected to
the horizontal space HorU St(1000, 200) by (3.4) to ensure U T (�̃(τ ))horU = 0. For
Ũ1(τ ) = ExpGrU ((�̃(τ ))horU ), the error is then calculated according to (5.3) as

dist
(

U1(τ ), Ũ1(τ )
)
= ‖arccos(S)‖F ,

where QS RT = U1(τ )T Ũ1(τ ) is an SVD. Even though theoretically impossible,
entries of values larger than one may arise in S due to the finite machine precision. In
order to catch such numerical errors, the real part �(arccos(S)) is used in the actual
calculations of the subspace distance.

In Fig. 3, the subspace distance between U1(τ ) and Ũ1(τ ) is displayed for 100 log-
arithmically spaced values τ between 10−20 and 100. The Stiefel representative Ũ1(τ )

is here calculatedwith the new log algorithm,with the standard log algorithm, andwith
the standard log algorithm with projection onto the horizontal space. This is repeated

Fig. 3 The error of the new log algorithm (blue stars) versus standard log algorithm with horizontal pro-
jection (red crosses) by subspace distance over τ . For comparison, the error of the standard log algorithm
without projection onto the horizontal space is also displayed (yellow plus). The cut locus is approached as
τ goes to zero. It can be observed that the new log algorithm still produces reliable results close to the cut
locus
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for 10 random subspace representatives U with random horizontal tangent vectors
�hor

U , and the results are plotted individually. As expected, Algorithm 1 shows favor-
able behaviour when approaching the cut locus. When the result of the standard log
algorithm is not projectedonto thehorizontal space, it canbe seen that its subspace error
starts to increase already at τ ≈ 10−3. The baseline error (in Fig. 3) is due to the numer-
ical accuracy of the subspace distance calculation procedure. The code to reproduce
Fig. 3 can be found at github.com/RalfZimmermannSDU/RiemannGrassmannLog.

Even though this experiment addresses the extreme-case behavior, it is of practical
importance. In fact, the results of [1] show that for large-scale n and two subspaces
drawn from the uniform distribution on Gr(n, p), the largest principal angle between
the subspaces is with high probability close to π

2 .

6 Local parameterizations of the Grassmannmanifold

In this section, we construct local parameterizations and coordinate charts of the
Grassmannian. To this end, we work with the Grassmann representation as orthogonal
projector P = UU T . The dimension of Gr(n, p) is (n − p)p. Here, we recap how
explicit local parameterizations from open subsets of R(n−p)×p onto open subsets of
Gr(n, p) (and the corresponding coordinate charts) can be constructed.

The Grassmannian Gr(n, p) can be parameterized by the so called normal coordi-
nates via the exponential map, whichwas also done in [32]. Let P = UU T ∈ Gr(n, p)

and U⊥ some orthogonal completion of U ∈ St(n, p). By making use of (2.12), a
parameterization of Gr(n, p) around P is given via

ρ : R(n−p)×p → Gr(n, p),

ρ(B) := ExpGrP (U⊥BU T +U BT U T⊥ )

= (
U U⊥

)
expm

((
0 −BT

B 0

))
P0 expm

((
0 BT

−B 0

)) (
U U⊥

)T
.

A different approach that avoids matrix exponentials, and which is also briefly
introduced in [33, Appendix C.4], works as follows: Let B ⊂ R

(n−p)×p be an open
ball around the zero-matrix 0 ∈ R

(n−p)×p for some inducedmatrix norm ‖·‖. Consider

ϕ : B→ R
n×n, B �→

(
Ip

B

)
(Ip + BT B)−1

(
Ip BT

)
.

Note that B is mapped to the orthogonal projector onto colspan(
(

Ip
B

)
), so that actually

ϕ(B) ⊂ Gr(n, p). In particular, ϕ(0) = P0. Let P ∈ Gr(n, p) be written block-wise

as P =
(

A BT

B C

)
. Next, we show that the image of ϕ is the set of such projectors P

with an invertible p× p-block A and that ϕ is a bijection onto its image. To this end,
assume that A ∈ R

p×p has full rank p. Because P is idempotent, it holds

P =
(

A BT

B C

)
=

(
A2 + BT B ABT + BT C
B A + C B B BT + C2

)
= P2.
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As a consequence, (Ip + A−1BT B A−1)−1 = A(

=A︷ ︸︸ ︷
A2 + BT B)−1A = A. Moreover,

since p = rank P = rank A = rank
(

A
B

)
, the blocks

(
BT

C

)
can be expressed as a linear

combination
(

A
B

)
X =

(
BT

C

)
with X ∈ R

p×(n−p). This shows that X = A−1BT and

C = B A−1BT . In summary,

P =
(

A BT

B B A−1BT

)
=

(
Ip

B A−1
)

A
(
Ip A−1BT

)

=
(

Ip

B A−1
)

(Ip + A−1BT B A−1)−1
(
Ip A−1BT

) = ϕ(B A−1).

Letψ :
(

A BT

B C

)
�→ B A−1. Then, for any B ∈ B, (ψ◦ϕ)(B) = B so thatψ◦ϕ = id |B.

Conversely, for any P ∈ Gr(n, p) with full rank upper (p × p)-diagonal block A,
(ϕ ◦ ψ)(P) = P . Therefore, ϕ : B → ϕ(B) is a local parameterization around
0 ∈ R

(n−p)×p and x := ψ |ϕ(B) : ϕ(B) → B is the associated coordinate chart
x = ϕ−1. With the group action �, we can move this local parameterization to obtain
local parameterizations around any other point of Gr(n, p) via ϕQ(B) := Qϕ(B)QT ,
which (re)establishes the fact that Gr(n, p) is an embedded (n − p)p-dimensional
submanifold of Rn×n .

The tangent space at P is the image colspan(dϕP ) for a suitable parameterization
ϕ around P . At P0, we obtain

TP0Gr(n, p) = {dϕP0(B) | B ∈ R
(n−p)×p} = {

(
0 BT

B 0

)
| B ∈ R

(n−p)×p},

in consistency with (2.8).
In principle, ϕ andψ can be used as a replacement for the Riemannian exp- and log-

mappings in data processing procedures. For example, for a set of data points contained
in ϕ(B) ⊂ Gr(n, p), Euclidean interpolation can be performed on the coordinate
images inB ⊂ R

(n−p)×p. Likewise, for an objective function f : Gr(n, p) ⊃ D→ R

with domain D ⊂ ϕ(B), the associated function f ◦ ϕ : R(n−p)×p ⊃ ϕ−1(D) → R

can be optimized relying entirely on standard Euclidean tools; no evaluation of neither
matrix exponentials nor matrix logarithms is required. Yet, these parameterizations do
not enjoy themetric special properties of the Riemannian normal coordinates. Another
reason to bewary of interpolation in coordinates is that the values on theGrassmannian
will never leave ϕ(B), and this can be very unnatural for some data sets. Furthermore,
the presence of a domain D can be unnatural, as ϕ(B) is an open subset of Gr(n, p),
whereas the whole Grassmannian is compact, a desirable property for optimization.
If charts are switched, then information gathered by the solver may lose interest.
Nevertheless, working in charts can be a successful approach [58].
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7 Jacobi fields and conjugate points

In this section, we describe Jacobi fields vanishing at one point and the conjugate locus
of the Grassmannian. Jacobi fields are vector fields along a geodesic fulfilling the
Jacobi equation (7.1). They can be viewed as vector fields pointing towards another
“close-by” geodesic, see for example [41, Chapter 10]. The conjugate points of P
are all those F ∈ Gr(n, p) such that there is a non-zero Jacobi field along a (not
necessarily minimizing) geodesic from P to F , which vanishes at P and F . The set
of all conjugate points of P is the conjugate locus of P . In general, there are not
always multiple distinct (possibly non-minimizing) geodesics between two conjugate
points, but on the Grassmannian there are. The conjugate locus on the Grassmannian
was first treated in [61], but the description there is not complete. This is for example
pointed out in [54] and [11]. The latter gives a description of the conjugate locus in
the complex case, which we show can be transferred to the real case.

Jacobi fields and conjugate points are of interest when variations of geodesics
are considered. They arise for example in geodesic regression [22] and curve fitting
problems on manifolds [12].

7.1 Jacobi fields

A Jacobi field is smooth vector field J along a geodesic γ satisfying the ordinary
differential equation

D2
t J + R(J , γ̇ )γ̇ = 0, (7.1)

called Jacobi equation. Here R(·, ·) is the curvature tensor and Dt denotes the covariant
derivative along the curve γ . This means that for every extension Ĵ of J , which is
to be understood as a smooth vector field on a neighborhood of the image of γ that
coincides with J on γ (t) for every t , it holds that (Dt J )(t) = ∇γ̇ (t) Ĵ . For a detailed
introduction see for example [41, Chapter 10]. A Jacobi field is the variation field of
a variation through geodesics. That means intuitively that J points from the geodesic
γ to a “close-by” geodesic, and, by linearity and scaling, to a whole family of such
close-by geodesics. Jacobi fields that vanish at a point can be explicitly described
via [41, Proposition 10.10], which states that the Jacobi field J along the geodesic
γ , with γ (0) = p and γ̇ (0) = v, and initial conditions J (0) = 0 ∈ Tp M and
Dt J (0) = w ∈ Tv(Tp M) ∼= Tp M is given by

J (t) = d(expp)tv(tw). (7.2)

The concept is visualized in Fig. 4.
By making use of the derivative of the exponential mapping derived in Proposition 3.4,

we can state the following proposition for Jacobi fields vanishing at a point on the
Grassmannian.

Proposition 7.1 Let P = UU T ∈ Gr(n, p) and let �1,�2 ∈ TPGr(n, p) be two
tangent vectors, where the singular values of (�1)

hor
U are mutually distinct and non-

zero. Define the geodesic γ by γ (t) := ExpGrP (t�1). Furthermore, let (t�1)
hor
U =
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6 Page 40 of 51 T. Bendokat et al.

Fig. 4 The Jacobi field J points from the geodesic γ towards close-by geodesics (dotted) and vanishes at
P . Note that J (t) ∈ Tγ (t)Gr(3, 1) is a tangent vector and not actually the offset vector between points on

the respective geodesics in R3. Nevertheless, J is the variation field of a variation of γ through geodesics,
c.f. [41, Proposition 10.4]

Q(t�)V T and (t(�1 + s�2))
hor
U = Q(s)(t�(s))V (s)T be given via the compact

SVDs of the horizontal lifts, i.e., Q(s) ∈ St(n, p), �(s) = diag(σ1(s), . . . , σp(s))
and V (s) ∈ O(p), as well as Q(0) = Q, �(0) = � and V (0) = V . Finally, define

Y (t) := U V cos(t�)+ Q sin(t�) ∈ St(n, p)

and

�(t) := U V̇ cos(t�)−tU V sin(t�)�̇+ Q̇ sin(t�)+t Q cos(t�)�̇ ∈ TY (t)St(n, p).2

Then the Jacobi field J along γ fulfilling J (0) = 0 and Dt J (0) = �2 is given by

J (t) = �(t)Y (t)T + Y (t)�(t)T ∈ Tγ (t)Gr(n, p).

The horizontal lift of J (t) to Y (t) is accordingly given by

(J (t))horY (t) = �(t)+ Y (t)�(t)T Y (t) = (In − Y (t)Y (t)T )�(t).

It is the variation field of the variation of γ through geodesics given by �(s, t) :=
ExpGrP (t(�1 + s�2)).

Proof The proof works analogously to the one of Proposition 3.4, since according to
(7.2)

J (t) = d(ExpGrP )t�1(t�2) = d

ds

∣∣∣
s=0 Exp

Gr
P (t(�1 + s�2)).

�
2 As in the case of the derivative of the Grassmann exponential, the matrices Q̇ = dQ

ds (0), �̇ = d�
ds (0)

and V̇ = dV
ds (0) can be calculated by Algorithm 2.
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7.2 Conjugate locus

In the following, let p ≤ n
2 . The reason for this restriction is that for p > n

2 there
are automatically principal angles equal to zero, yet these do not contribute to the
conjugate locus, as one can see by switching to the orthogonal complement. We will
see that the conjugate locus ConjP of P ∈ Gr(n, p) is given by all F ∈ Gr(n, p)

such that at least two principal angles between P and F coincide, or there is at least
one principal angle equal to zero if p < n

2 . This obviously includes the case of two
or more principal angles equal to π

2 . In the complex case, the conjugate locus also
includes points with one principal angle of π

2 , as is shown in [11]. Only in the cases
of principal angles of π

2 is there a nontrivial Jacobi field vanishing at P and F along
a shortest geodesic. It can be calculated from the variation of geodesics as above.
In the other cases, the shortest geodesic is unique, but we can smoothly vary longer
geodesics from P to F . This variation is possible because of the periodicity of sine
and cosine and the indeterminacies of the SVD.

Theorem 7.2 Let P ∈ Gr(n, p) where p ≤ n
2 . The conjugate locus ConjP of P

consists of all points F ∈ Gr(n, p) with at least two identical principal angles or,
when p < n

2 , at least one zero principal angle between F and P.

Proof Let P and F have r = j − i + 1 repeated principal angles σi = · · · = σ j .
Obtain �hor

U = Q̂�RT by Algorithm 1. Define �′ by adding π to one of the repeated
angles. Then for every D ∈ O(r) and D̃ := diag(Ii−1, D, Ip− j ), the curve

γD(t) = πSG
(

U RD̃ cos(t�′)D̃T RT + Q̂ D̃ sin(t�′)D̃T RT
)

is a geodesic from P to γD(1) = F , with projection πSG from (2.11). Since for 0 <

t < 1 the matrix cos(t�′) does not have the same number of repeated diagonal entries
as cos(t�), not all curves γD coincide. Then we can choose an open interval I around
0 and a smooth curve D : I → O(r) with D(0) = Ir such that �(s, t) = γD(s)(t) is a
variation through geodesics as defined in [41, Chap. 10, p. 284]. The variation field J
of � is a Jacobi field along γD(0) according to [41, Theorem 10.1]. Furthermore, J is
vanishing at t = 0 and t = 1, as γD(s)(1) = γD(s̃)(1) for all s, s̃ ∈ I by Proposition
B.1, and likewise for t = 0. Since J is not constantly vanishing, P and F are conjugate
along γD(0) by definition.

When p < n
2 and there is at least one principal angle equal to zero, there is some

additional freedom of variation. Let the last r principal angles between P and F be
σp−r+1 = · · · = σp = 0. Obtain �hor

U = Q̂�RT by Algorithm 1. Since p < n
2 , Q̂

can be chosen such that U T Q̂ = 0, and there is at least one unit vector q̂ ∈ R
n , such

that q̂ is orthogonal to all column vectors in U and in Q̂. Let Q̂⊥ be an orthogonal
completion of Q̂ with q̂ as its first column vector. Define �′ as the matrix � with π

added to the (p − r + 1)th diagonal entry. Then for every W ∈ O(2),

γW (t) = πSG
(

U R cos(t�′)+ (
Q̂ Q̂⊥

)
diag(Ip−r , W , In−p+r−2)

(
sin(t�′)

0

))
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is a geodesic from P with γW (1) = F . With an argument as above, P and F are
conjugate along γI2 .

There are no other points in the conjugate locus than those with repeated principal
angles (or one zero angle in case of p < n

2 ), as the SVD is unique (up to order of
the singular values) for matrices with no repeating and no zero singular values. As
every geodesic on the Grassmannian is of the form (3.9), the claim can be shown by
contradiction. �

By construction, the length of γD(0) between P and F is longer than the length of
the shortest geodesic, since ‖�‖F < ‖�′‖F . The same is true for the case of a zero
angle. It holds that the cut locus CutP is no subset of the conjugate locus ConjP , since
points with just one principal angle equal to π

2 are not in the conjugate locus. Likewise
the conjugate locus is no subset of the cut locus. The points in the conjugate locus that
are conjugate along a minimizing geodesic however are also in the cut locus, as those
are exactly those with multiple principal angles equal to π

2 .

Remark The (incomplete) treatment in [61] covered only the cases of at least two
principal angles equal to π

2 or principal angles equal to zero, but not the cases of
repeated arbitrary principal angles.We can nevertheless take from there that for p > n

2
we need at least 2p − n + 1 principal angles equal to zero, instead of just one as for
p < n

2 . Points with repeated (nonzero) principal angles are however always in the
conjugate locus, as the proof of Theorem 7.2 still holds for them.

8 Conclusion

In this work, we have collected the facts and formulae that we deem most impor-
tant for Riemannian computations on the Grassmann manifold. This includes in
particular explicit formulae and algorithms for computing local coordinates, the Rie-
mannian normal coordinates (the Grassmann exponential and logarithm mappings),
the Riemannian connection, the parallel transport of tangent vectors and the sectional
curvature. All these concepts may appear as building blocks or tools for the theoretical
analysis of, e.g., optimization problems, interpolation problems and, more generally
speaking, data processing problems such as data averaging or clustering.

We have treated the Grassmannian both as a quotient manifold of the orthogonal
group and the Stiefel manifold, and as the space of orthogonal projectors of fixed rank
and have exposed (and exploited) the connections between these view points. While
concepts from differential geometry arise naturally in the theoretical considerations,
care has been taken that the final formulae are purely matrix-based and thus are fit
for immediate use in algorithms. At last, the paper features an original approach to
computing theGrassmann logarithm,which simplifies the theoretical analysis, extends
its operational domain and features improved numerical properties. Eventually, this
tool allowed us to conduct a detailed investigation of shortest curves to cut points as
well as studying the conjugate points on the Grassmannian by basic matrix-algebraic
means. These findings are more explicit and more complete than the previous results
in the research literature.
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A Basics from Riemannian geometry

For the reader’s convenience, we recap some fundamentals from Riemannian geom-
etry. Concise introductions can be found in [33, Appendices C.3, C.4, C.5], [23] and
[3]. For an in-depth treatment, see for example [20, 36, 41].

An n-dimensional differentiable manifold M is a topological space M such that
for every point p ∈M, there exists a so-called coordinate chart x :M ⊃ Dp → R

n

that bijectively maps an open neighborhood Dp ⊂ M of a location p to an open
neighborhood Dx(p) ⊂ R

n around x(p) ∈ R
n with the additional property that the

coordinate change
x ◦ x̃−1 : x̃(Dp ∩ D̃p)→ x(Dp ∩ D̃p)

of two such charts x, x̃ is a diffeomorphism, where their domains of definition overlap,
see [23, Fig. 18.2, p. 496]. This enables to transfer themost essential tools fromcalculus
to manifolds. An n-dimensional submanifold of Rn+d is a subsetM ⊂ R

n+d that can
be locally smoothly straightened, i.e., satisfies the local n-slice condition [40, Thm.
5.8].

Theorem A.1 ([23, Prop. 18.7, p. 500]) Let h : Rn+d ⊃ � → R
d be differentiable

and c0 ∈ R
d be defined such that the differential Dh p ∈ R

d×(n+d) has maximum
possible rank d at every point p ∈ � with h(p) = c0. Then, the preimage

h−1(c0) = {p ∈ � | h(p) = c0}

is an n-dimensional submanifold of Rn+d .

This theorem establishes the Stiefel manifold St(n, p) = {
U ∈ R

n×p
∣∣ U T U = I

}
as an embedded submanifold of Rn×p, since St(n, p) = F−1(I ) for F : U �→ U T U .

Tangent spaces The tangent space of a submanifoldM at a point p ∈M, in symbols
TpM, is the space of velocity vectors of differentiable curves c : t �→ c(t) passing
through p, i.e.,

TpM = {ċ(t0) | c : I →M, c(t0) = p}.
The tangent space is a vector space of the same dimension n as the manifold M.

Geodesics and the Riemannian distance function Riemannian metrics measure the
lengths and angles between tangent vectors. Eventually, this allows to measure the
lengths of curves on a manifold and the Riemannian distance between two manifold
locations.

A Riemannian metric on M is a family (gp(·, ·))p∈M of inner products gp(·, ·) :
TpM×TpM→ R that is smooth in variations of the base point p, or more precisely,
a smooth covariant 2-tensor field, c.f. [41, Chapter 2]. The length of a tangent vector
v ∈ TpM is ‖v‖p :=

√
gp(v, v). The length of a curve c : [a, b] →M is defined as

L(c) =
∫ b

a
‖ċ(t)‖c(t)dt =

∫ b

a

√
gc(t)(ċ(t), ċ(t))dt .
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A curve is said to be parameterized by the arc length, if L(c|[a,t]) = t − a for all
t ∈ [a, b]. Obviously, unit-speed curves with ‖ċ(t)‖c(t) ≡ 1 are parameterized by the
arc length. Constant-speed curves with ‖ċ(t)‖c(t) ≡ ν0 are parameterized proportional
to the arc length. TheRiemannian distance between two points p, q ∈Mwith respect
to a given metric is

distM(p, q) = inf{L(c) | c : [a, b] →M piecewise smooth, c(a) = p, c(b) = q},
(A.1)

where, by convention, inf{∅} = ∞. A shortest path between p, q ∈ M is a curve c
that connects p and q such that L(c) = distM(p, q). Candidates for shortest curves
between points are called geodesics and are characterized by a differential equation:
A differentiable curve c : [a, b] → M is a geodesic (w.r.t. to a given Riemannian
metric), if the covariant derivative of its velocity vector field vanishes, i.e.,

Dċ

dt
(t) = 0 ∀t ∈ [a, b]. (A.2)

Intuitively, the covariant derivative can be thought of as the standard derivative (if it
exists) followed by a point-wise projection onto the tangent space. In general, a covari-
ant derivative, also knownas a linear connection, is a bilinearmapping (X , Y ) �→ ∇X Y
that maps two vector fields X , Y to a third vector field ∇X Y in such a way that it can
be interpreted as the directional derivative of Y in the direction of X , [41, §4, §5]. Of
importance is the Riemannian connection or Levi-Civita connection that is compatible
with a Riemannian metric [3, Thm 5.3.1], [41, Thm 5.10]. It is determined uniquely
by the Koszul formula

2g(∇X Y , Z) = X(g(Y , Z))+ Y (g(Z , X))− Z(g(X , Y ))

−g(X , [Y , Z ])− g(Y , [X , Z ])+ g(Z , [X , Y ])

and is used to define the Riemannian curvature tensor 3

(X , Y , Z) �→ R(X , Y )Z = ∇X∇Y Z −∇Y∇X Z − ∇[X ,Y ]Z .

A Riemannian manifold is flat if and only if it is locally isometric to the Euclidean
space, which holds if and only if the Riemannian curvature tensor vanishes identically
[41, Thm. 7.10].

Lie groups and orbits A Lie group is a smooth manifold that is also a group with
smooth multiplication and inversion. A matrix Lie group G is a subgroup of the
general linear group GL(n,C) that is closed in GL(n,C) (but not necessarily in
the ambient space C

n×n). Basic examples include GL(n,R) and the orthogonal
group O(n). Any matrix Lie group G is automatically an embedded submanifold
of Cn×n [29, Corollary 3.45]. The tangent space TI G of G at the identity I ∈ G
has a special role. When endowed with the bracket operator or matrix commutator

3 In these formulae, [X , Y ] = X(Y )− Y (X) is the Lie bracket of two vector fields.
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[V , W ] = V W − W V for V , W ∈ TI G, the tangent space becomes an algebra,
called the Lie algebra associated with the Lie group G, see [29, §3]. As such, it is
denoted by g = TI G. For any A ∈ G, the function “left-multiplication with A” is a
diffeomorphism L A : G → G, L A(B) = AB; its differential at a point B ∈ G is the
isomorphism d(L A)B : TB G → TL A(B)G, d(L A)B(V ) = AV . Using this observa-
tion at B = I shows that the tangent space at an arbitrary location A ∈ G is given by
the translates (by left-multiplication) of the tangent space at the identity [26, §5.6, p.
160],

TAG = TL A(I )G = Ag = {
� = AV ∈ R

n×n| V ∈ g
}
. (A.3)

A smooth left actionof aLie groupG on amanifold M is a smoothmapφ : G×M →
M fulfilling φ(g1, φ(g2, p)) = φ(g1g2, p) and φ(e, p) = p for all g1, g2 ∈ G and all
p ∈ M , where e ∈ G denotes the identity element. One often writes φ(g, p) = g · p.
For each p ∈ M , the orbit of p is defined as

G · p := {g · p | g ∈ G}, (A.4)

and the stabilizer of p is defined as

G p := {g ∈ G | g · p = p}. (A.5)

For a detailed introduction see for example [40, Chapters 7 & 21].We need the follow-
ing well known result, see for example [33, Section 2.1], where the quotient manifold
G/G p refers to the set {gG p | g ∈ G} endowed with the unique manifold structure
that turns the quotient map g �→ gG p into a submersion.

Proposition A.2 Let G be a compact Lie group acting smoothly on a manifold M. Then
for any p ∈ M, the orbit G · p is an embedded submanifold of M that is diffeomorphic
to the quotient manifold G/G p.

Proof The continuous action of a compact Lie group is always proper, [40, Corollary
21.6]. Therefore [5, Proposition 3.41] shows the claim. �

B Matrix analysis necessities

Throughout, we consider the matrix space Rm×n as a Euclidean vector space with the
standard metric

〈A, B〉0 = tr(AT B). (B.1)

Unless noted otherwise, the singular value decomposition (SVD) of a matrix X ∈
R

m×n is understood to be the compact SVD

X = U�V T , U ∈ R
m×n, �, V ∈ R

n×n .

The SVD is not unique.
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Proposition B.1 (Ambiguity of the Singular Value Decomposition)[35, Theorem
3.1.1’] Let X ∈ R

m×n have a (full) SVD X = U�V T with singular values in descend-
ing order and rank(X) = r . Let σ1 > · · · > σk > 0 be the distinct nonzero singular
values with respective multiplicity μ1, . . . , μk . Then X = Ũ�Ṽ T is another SVD if
and only if Ũ = U diag(D1, . . . , Dk, W1) and Ṽ = V diag(D1, . . . , Dk, W2), with
Di ∈ O(μi ), W1 ∈ O(m − r), and W2 ∈ O(n − r) arbitrary.

Differentiating the singular value decomposition Let p ≤ n ∈ N and suppose that
t �→ Y (t) ∈ R

n×p is a differentiable matrix curve around t0 ∈ R. If the singular
values of Y (t0) are mutually distinct and non-zero, then the singular values and both
the left and the right singular vectors depend differentiable on t ∈ [t0 − δt, t0 + δt]
for δt small enough.

Let t �→ Y (t) = U (t)�(t)V (t)T ∈ R
n×p, where U (t) ∈ St(n, p), V (t) ∈ O(p)

and �(t) ∈ R
p×p diagonal and positive definite. Let u j and v j , j = 1, . . . , p denote

the columns of U (t0) and V (t0), respectively. For brevity, write Y = Y (t0), Ẏ =
d
dt

∣∣
t=t0

Y (t), likewise for the other matrices that feature in the SVD. The derivatives
of the matrix factors of the SVD can be calculated with Algorithm 2. A proof can for
example be found in [19, 30].

Algorithm 2 Differentiating the SVD.

Input: Matrices Y , Ẏ ∈ R
n×p , (compact) SVD Y = U�V T .

1: σ̇ j = (u j )
T Ẏv j for j = 1, . . . , p

2: V̇ = V �, where �i j =
⎧⎨
⎩

σi (u
T
i Ẏv j )+σ j (u

T
j Ẏvi )

(σ j+σi )(σ j−σi )
, i �= j

0, i = j
for i, j = 1, . . . , p

3: U̇ = (
Ẏ V +U (�� − �̇)

)
�−1.

Output: U̇ , �̇ = diag(σ̇1, . . . , σ̇m ), V̇

Differentiating the QR-decomposition Let t �→ Y (t) ∈ R
n×r be a differentiable

matrix functionwith Taylor expansion Y (t0+h) = Y (t0)+hẎ (t0)+O(h2). Following
[59, Proposition 2.2], the QR-decomposition is characterized via the following set of
matrix equations.

Y (t) = Q(t)R(t), QT (t)Q(t) = Ir , 0 = PL & R(t).

In the latter, PL =

⎛
⎜⎜⎜⎝
0 · · · · · · 0
1

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

1 · · · 1 0

⎞
⎟⎟⎟⎠ and ‘&’ is the element-wise matrix product so that

PL & R selects the strictly lower triangle of the square matrix R. For brevity, we write
Y = Y (t0), Ẏ = d

dt

∣∣
t=t0

Y (t), likewise for Q(t), R(t). By the product rule

Ẏ = Q̇ R + Q Ṙ, 0 = Q̇T Q + QT Q̇, 0 = PL & Ṙ.
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According to [59, Proposition 2.2], the derivatives Q̇, Ṙ can be obtained from Algo-
rithm 3. The trick is to compute X = QT Q̇ first and then use this to compute
Q̇ = Q QT Q̇ + (In − Q QT )Q̇ by exploiting that QT Q̇ is skew-symmetric and
that Ṙ R−1 is upper triangular.

Algorithm 3 Differentiating the QR-decomposition, [59, Proposition 2.2].
Input: Matrices T , Ṫ ∈ R

n×r , (compact) QR-decomposition T = Q R.
1: L := PL & (QT Ṫ R−1)
2: X = L − LT � Now, X = QT Q̇
3: Ṙ = QT Ṫ − X R
4: Q̇ = (In − Q QT )Ṫ R−1 + Q X
Output: Q̇, Ṙ

Matrix exponential and the principal matrix logarithm The matrix exponential and
the principal matrix logarithm are defined by

expm(X) :=
∞∑
j=0

X j

j ! , logm(I + X) :=
∞∑
j=1

(−1) j+1 X j

j
. (B.2)

The latter is well-defined for matrices that have no eigenvalues on R
−.

C Computational complexity

For the benefit of the reader, we include Table 1 of the floating point operation (FLOP)
counts of some of the most commonly used formulas in this handbook. Note that the
FLOP count of the SVD and other operations depends on the specific implementation.
Furthermore, we counted sin(·), cos(·),√· etc. for scalars as one flop for simplicity.

Table 1 Floating point operation (FLOP) counts for some of the most commonly used formulas in this
handbook, working with Stiefel representatives and assuming n � p

Operation Formula FLOPS

Riem. metric gGr
UU T (�1, �2) =
tr((�hor

1,U )T �hor
2,U )

2np2 + p

Riem. gradient (grad f̄ )U =
(I −UU T ) gradeucl f̄U

4np2 + np

Riem. exponential ExpGrU (t�hor
U ) =

U Ṽ cos(t�̃)Ṽ T + Q̃ sin(t�̃)Ṽ T
∼ 6np2 + 6p3 + p

Parallel transport (P�(γ�(t)))horU (t) = (3.18) ∼ 5np2 + 4np + p2 + 4p

Riem. logarithm (LogGr
UU T (Y Y T ))horU = Alg. 1 ∼ 8np2 + 2np + p3 + p2 + 2p
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