
Advances in Computational Mathematics (2023) 49:63
https://doi.org/10.1007/s10444-023-10067-7

A fast time domain solver for the equilibrium Dyson
equation

Jason Kaye1,2 · Hugo U. R. Strand3

Received: 21 September 2022 / Accepted: 29 June 2023 / Published online: 2 August 2023
© The Author(s) 2023

Abstract
Weconsider the numerical solution of the real-time equilibriumDyson equation,which
is used in calculations of the dynamical properties of quantummany-body systems.We
show that this equation can be written as a system of coupled, nonlinear, convolutional
Volterra integro-differential equations, for which the kernel depends self-consistently
on the solution. As is typical in the numerical solution of Volterra-type equations, the
computational bottleneck is the quadratic-scaling cost of history integration. However,
the structure of the nonlinear Volterra integral operator precludes the use of standard
fast algorithms.We propose a quasilinear-scaling FFT-based algorithmwhich respects
the structure of the nonlinear integral operator. The resulting method can reach large
propagation times and is thus well-suited to explore quantum many-body phenomena
at low energy scales. We demonstrate the solver with two standard model systems: the
Bethe graph and the Sachdev-Ye-Kitaev model.

Keywords Nonlinear Volterra integral equations · Fast algorithms · Equilibrium
Dyson equation · Many-body Green’s function methods

Mathematics Subject Classification (2010) 45D05 · 45J05 · 81-08 · 81-10 · 81S40 ·
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1 Introduction

Quantum many-body systems [1–3] can be described in terms of many-body Green’s
functions, which characterize the system’s response to the addition and removal of one
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ormore particles at different points in time. The number of degrees of freedom required
to describe a many-body Green’s function scales polynomially with the system size,
independently of the number of particles. Green’s function methods therefore provide
an important complement to wavefunction-basedmethods, especially for macroscopic
systems, since the dimensionality of a wavefunction is proportional to the number of
particles it describes. A large number of physical properties can be determined just
from single particle Green’s functions, which give the expectation value associated
with the addition and removal of a single particle.

The equation of motion for the single particle Green’s function is called the Dyson
equation [1]. The static thermal equilibriumproperties of quantummany-body systems
can be obtained by solving the equation of motion in imaginary time [3] and the
dynamical properties by solving it in real time or frequency. The last decade has seen
a revival of time domain Green’s function methods [4], mainly driven by an interest
in non-equilibrium phenomena. This has in turn spurred advances in the development
of numerical algorithms both for imaginary time [5–16] and non-equilibrum real-time
[17–22] Green’s functions. However, the real-time Dyson equation can also be used
to determine the dynamical properties of quantummany-body systems in equilibrium,
by evolving the imaginary time Green’s function along the real-time axis.

As we will show in Sect. 3.2, the Dyson equation of motion for the equilibrium
single particle Green’s function in real time can be written as a system of coupled
nonlinear Volterra integro-differential equations of the form

{
iy′(t) + ∫ t

0 k
(
y(t − t ′), t − t ′

)
y(t ′) dt ′ = f (y(t), t)

y(0) = y0.
(1)

In that context, the solution y is a real-time single-particle Green’s function, and
the interaction kernel k is called the self-energy. For simplicity of exposition, we
take all quantities to be complex scalar-valued, but the matrix-valued case often
encountered in Green’s function calculations is a straightforward generalization. We
also note that although we have assumed local nonlinearities k(t) = k(y(t), t) and
f (t) = f (y(t), t), our method applies equally well to the more general case of causal
nonlinearities k(t) = k(y(t ′)|t ′≤t , t) and f (t) = f (y(t ′)|t ′≤t , t), which appear in
more complicated diagrammatic models of the self-energy.

The cost of computing the history integral term in (1) scales as O
(
N 2

)
with the

number N of time steps, severely limiting the propagation times achievable by time
domain solvers [23]. This creates a practical barrier in studies of collective low energy
phenomena in quantum many-body systems, which require high resolution in the
frequency domain. This approach is typically avoided as a result. The standard alter-
native is to evaluate the self-energy in the time domain, where it is typically simpler,
and transform to the frequency domain to solve the Dyson equation and obtain the
corresponding Green’s function. While this method eliminates the problem of his-
tory integration and can be accelerated using the fast Fourier transform (FFT) [24],
it requires solving a global nonlinear problem [25, 26]. The convergence properties
of a given nonlinear iteration procedure are problem dependent, and the number of
iterations can grow in physically interesting regimes, such as the low temperature
limit.
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We also mention another method, which is to perform analytic continuation to
obtain a simpler integral equation in the imaginary time domain and then analyti-
cally continue the solution back to the real time or frequency domain by solving a
severely ill-conditioned integral equation [27]. For sufficiently complicated approxi-
mations to the self-energy, direct solution in real time or frequency can be impractical,
and this technique is the only option. However, despite significant recent progress
in sophisticated regularization methods [28–30], the analytic continuation problem is
fundamentally ill-posed, and obtaining high quantitative accuracy reliably, as we seek
here, remains a challenge.

In this work, we present a time-stepping algorithm for (1) which reduces the cost
of Volterra history integration to O

(
N log2 N

)
, eliminating the main barrier to car-

rying out equilibrium Green’s function calculations in the time domain. Using this
approach, the nonlinear problem is local and well-controlled; the number of nonlin-
ear iterations is independent of global features of the solution and is typically very
small. In combination with the recently introduced discrete Lehmann representation
[16] of the imaginary time axis, our time domain algorithm enables the calculation of
dynamical properties of quantum many-body systems at low temperatures and large
propagation times, i.e., at low energy scales, which are essential in capturing emergent
many-body excitations.

The problem of efficient Volterra history integration is well known in the scientific
computing literature, and several techniques have been proposed, particularly in the
context of solving Volterra integral equations and computing nonlocal transparent
boundary conditions. We mention fast Fourier transform (FFT)-based methods [31],
methods based on sum-of-exponentials projections of the history [32–40], convolution
quadrature [41, 42], and hierarchical low-rank or butterfly matrix compression [22,
43, 44]. Of the methods mentioned above, several have been applied to the efficient
numerical solution of convolutional nonlinear Volterra integral equations [31, 42, 43].
However, we emphasize that the form of the nonlinearity in (1) is different from that
typically considered, ∫ t

0
k(t − t ′)F

(
y(t ′), t ′

)
dt ′, (2)

where k, or its Laplace transform, is given either explicitly or numerically. All of the
methods cited above make use of this a priori access to k in order to obtain a fast
history summation scheme and are therefore not applicable in the present setting, in
which k itself is determined during the course of time stepping by a self-consistency
condition. This can be made evident by considering a simple example, k(y(t), t) =
y(t), which yields the integral operator

∫ t
0 y(t − t ′)y(t ′) dt ′ in (1). We refer to the

form of the nonlinearity considered here as a kernel nonlinearity, to distinguish it
from nonlinearities of the form (2).

Our algorithm is inspired by the FFT-basedmethod of Hairer, Lubich, and Schlichte
(HLS), proposed for the numerical solution of Volterra integral equations with non-
linearities of the typical form (2) [31]. Their approach, which will be discussed in
detail in Sect. 2.1, is to restructure the history sums into a hierarchy of Toeplitz block
matrix–vector products and to apply the blocks in quasi-linear time using the FFT. This
yields an O

(
N log2 N

)
algorithm. Although their method does not apply directly to
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the present case because of the kernel nonlinearity, we find that a more sophisti-
cated block partitioning gives a compatible algorithm with the same computational
complexity.

This paper is organized as follows. We begin in Sect. 2 by describing our fast algo-
rithm to compute the history integrals in (1). In Sect. 3, we give a brief introduction
to many-body Green’s functions and the equilibrium Dyson equation for single parti-
cle Green’s functions and show that the latter can be reduced to a system of coupled
equations of the form (1). In Sect. 4, we apply our method to two canonical model
systems: the Bethe graph [45, 46] and the Sachdev-Yitaev-Ke (SYK) model [47–49].
We demonstrate a significant increase in attainable propagation times and therefore
improvements in the resolution of the fine spectral properties of solutions. A conclud-
ing discussion is given in Sect. 5. We also provide appendices describing a specific
high-order time-stepping method for (1) and technical algorithmic details of the pro-
posed method.

2 Fast history summation

To illustrate the appearance of the history sums in a simple manner, we first write
down a forward Euler discretization of (1). We do not recommend using this method
in practice, due to its poor accuracy and stability properties. Rather, we propose a high-
order implicit multistep method in Appendix 1. History sums of the same form appear
no matter the choice of discretization, and the details of our fast history summation
algorithm are independent of this choice.

Applying the forward Euler method to (1) yields

yn+1 = yn + i�t
∫ tn

0
k(tn − t ′)y(t ′) dt ′ − i�t fn .

Here, tn = n�t for a time step �t and n = 0, . . . , N − 1, yn ≈ y(tn), and
fn = f (tn). For notational simplicity, we have suppressed the dependence of k and f
on y. Applying the trapezoidal rule to the integral gives

yn+1 = yn + i�t2
n∑

m=0

kn−m ym − i�t2

2
(kn y0 + k0yn) − i�t fn .

The computational bottleneck is evidently the calculation of the history sum

sn =
n∑

m=0

kn−m ym (3)

at each time step. Indeed, the cost to compute all history sums for n = 0, . . . , N − 1
is O

(
N 2

)
, and dominates the otherwise O (N ) cost of time stepping. The collection

of history sums takes the form of a lower triangular Toeplitz matrix–vector product
s = Ky. Here, s, y ∈ C

N and K ∈ C
N×N , with Knm = kn−m for n ≥ m and Knm = 0

for n < m, n,m = 0, . . . , N −1. An N ×N Toeplitz matrix can be applied to a vector
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in O (N log N ) operations using the FFT; a detailed description of the algorithm is
given in Appendix 2. Therefore, if y and k were known, then computing the sums (3)
with quasi-linear cost would be straightforward.

However, in the present setting, there are two additional complications:

1. yn must be computed in order to obtain sn , which must in turn be computed in order
to obtain yn+1.

2. yn must be computed in order to obtain kn , which must in turn be computed in
order to obtain yn+1.

The first, which is familiar in the literature on fast algorithms for Volterra-type
equations and integral operators, prevents us from computing the history sums all at
once as a matrix–vector product, so we cannot simply use the standard algorithm for
the fast application of Toeplitz matrices. The HLS algorithm [31], which we review
in Sect. 2.1, offers a solution to this problem, as do the many other methods for the
efficient evaluation of Volterra integral operators mentioned in the introduction. The
second problem has not, to our knowledge, been addressed in this literature. We will
propose a solution in Sect. 2.2, which appropriately modifies the HLS algorithm to
respect the causal structure of the kernel nonlinearity.

2.1 HLS algorithm for fast history summation with a fixed kernel

TheHLS algorithm computes the sums (3), for the case in which the kernel k is known,
in O

(
N log2 N

)
operations [31]. The matrix Knm = kn−m is partitioned into square

blocks as in Fig. 1. In particular, we define n j = � j N/2L� for j = 1, . . . , 2L − 1
and n2L = N − 1, where L is the number of levels of subdivision. We choose L =
O

(
log2 N

)
so that n1 is a small, fixed constant. Each block is Toeplitz and therefore

can be applied with quasi-optimal complexity using the FFT.
The algorithmproceeds by accumulating partial sums s̃n in an efficientmanner, such

that by the nth time step, s̃n = sn as needed. Contributions to the partial sums come
both from triangular blocks (shown as the lettered blocks in Fig. 1) applied directly
row-by-row and square blocks (shown as the numbered blocks in Fig. 1) applied using
the FFT. The algorithm amounts to a re-ordering of the calculation of history sums
from the standard row-by-row approach, so as to enable the use of the FFT.

Apseudocode is given inAlgorithm1.Wenote the use of colonnotation for indexing
into vectors; for a vector x , we define xi : j ≡ (xi , . . . , x j )T . Let us go through the first
few steps of the algorithm.

First, the time steps n = 0, . . . , n1 − 1 are carried out by the standard method,
with the history sums s0, . . . , sn1−1 computed by direct summation. Once yn1 has
been computed, block 1 in Fig. 1 can be applied to the vector y0:n1 , yielding partial
contributions to the sums sn1:n2−1. These partial contributions are stored in s̃n1:n2−1.

Next, we carry out time steps n = n1 to n = n2 − 1. At the nth time step, we add
the local contribution corresponding to the nth row of block b to the stored partial sum
s̃n : s̃n ← s̃n + ∑n

m=n1+1 kn−m ym . We then take sn = s̃n , and can compute yn+1.
Once yn2 has been obtained, block 2 can be applied to y0:n2 , and the result stored

in s̃n2:n4−1. Then, we proceed with time steps n = n2 to n = n3 − 1. At the nth
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Fig. 1 Illustration of the HLS algorithm to compute the history sums (3) on the fly with a given kernel k.
Here, we have L = 3 levels. The lettered blocks correspond to entries which are incorporated into the partial
sums by direct summation, and the numbered blocks are applied using a fast Toeplitz matrix–vector product.
The blocks are processed in the order corresponding to their first row indices: a-1-b-2-c-3-d-4-e-5-f-6-g-7-h

Algorithm 1 Time-stepping using the HLS algorithm.

1: Given: The first and last row indices, r f
j and rlj , and the first and last column indices, c fj and clj , of

block j in Fig. 1, for j = 1, . . . , 2L − 1
2: Initialize s̃0:N−1 = 0
3: for n = 0, n1 − 1 do
4: sn ← ∑n

m=0 kn−m ym
5: Take a time step to obtain yn+1
6: end for
7: for j = 1, 2L − 1 do
8: Apply block j to y

c fj :clj
using FFT-based algorithm, and add result to s̃

r f
j :rlj

9: for n = n j , n j+1 − 1 do
10: Compute local contribution to history sums: s̃n ← s̃n + ∑n

m=n j+1 kn−m ym
11: Set sn = s̃n and take a time step to obtain yn+1
12: end for
13: end for

time step, we add the local contribution corresponding to the nth row of block c to s̃n ,
s̃n ← s̃n + ∑n

m=n2+1 kn−m ym , set sn = s̃n , and obtain yn+1.
Once yn3 is obtained, block 3 can be applied to yn2+1:n3 , and its contribution added

to s̃n3:n4−1. Then, the local contributions corresponding to the rows of block d are
added to the partial sums in order to take the corresponding time steps. The algorithm
proceeds in thismanner,with contributions fromeachblock added to the corresponding
partial sums in the indicated order, such that by the end of the nth time step, s̃n = sn
as needed.
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To derive the computational complexity of this algorithm, we simply add up the
cost of applying all blocks. Recall that L = O (log2N ). Since each triangular block is
of dimensional approximately N/2L = O (1), and there are 2L = O (N ) such blocks,
the total cost of applying these blocks is O (N ). For the square blocks, we have one
block of dimension approximately N/2, two blocks of dimension N/4, four blocks
of dimension N/8, and so on. The total cost of applying these blocks using the fast
Toeplitz algorithm is therefore approximately

L∑
l=1

2l−1 × N

2l
log

(
N

2l

)
= O

(
N log2 N

)
.

2.2 Fast history summation with a kernel nonlinearity

The HLS algorithm cannot be applied if kn+1, . . . , kN−1 are unknown at the nth time
step. Indeed, the block j is applied as soon as yn j is obtained. However, block j may
contain values kn of the kernel with k > n j ; for example, block 4 contains values up
to kN−1. Since kn depends on yn , it is not possible to apply the full blocks in the order
prescribed by the algorithm. In particular, only the upper triangular parts of blocks 1,
2, and 4 are known at the step they must be applied.

A modified partitioning of the same matrix is depicted in Fig. 2. It contains square,
triangular, and parallelogram-shaped blocks. In Appendix 2, we generalize the stan-
dard FFT-based algorithm for Toeplitzmatrices to triangular and parallelogram-shaped

Fig. 2 Modification of the block structure depicted in Fig. 1 to account for kernels which are obtained on
the fly. The blocks are again processed in the order corresponding to their first row indices: a-1-b-2-c-3-
d-4-e-5-f-6-g-7-h. Blocks with the same label and subscripts 1 and 2, like 31 and 32, can be processed
simultaneously
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blocks (appropriately completed to full rectangular matrices by zero-padding), allow-
ing these blocks to be applied in O (n log n) operations as well.

The structure of our algorithm is similar to that of the HLS algorithm, but with
the modified partitioning. The triangular blocks indicated in Fig. 2 by letters contain
rows which are applied directly, and the numbered blocks are applied as soon as the
time step corresponding to their first row n j is reached. The shapes of the numbered
blocks ensure that their entries depend only on kn for n ≤ n j . The results of both
the direct and block applications are accumulated in partial sums s̃n as before. Unlike
in the HLS algorithm, at each time step, there are two local contributions that must
be made: the first, as before, corresponds to values ym for m near the current time
step n and the second to values km for m near n. Also, at some steps, two blocks are
applied instead of one. A pseudocode for the full procedure is given in Algorithm 2.
The partioning for L = 5 is shown in Fig. 3. This is similar to Fig. 2, but contains more
levels.

To obtain the computational complexity of the new algorithm, we consider the two
types of units separately. We know from the previous section that the total cost of
applying the triangular HLS-type units, indicated in blue in Fig. 3, is approximately

L∑
l=1

N

2l
log2

(
N

2l

)
= O

(
N log2 N

)
.

Fig. 3 Illustration of the block partitioning of the kernel matrix for the full fast algorithm, with L = 5.
The full partioning is comprised of triangular units (blue) from the HLS algorithm (Fig. 1) and square units
(red), which account for the self-consistent nature of (1)
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Algorithm 2 Time-stepping using the fast history summation algorithm for kernel
nonlinearities.
1: Given: The first and last row indices, r f

j and rlj , and the first and last column indices, c fj and clj , of
block j in Fig. 1, for j = 1, 2, 31, 32, 4, 51, 52, . . .

2: Initialize s̃0:N−1 = 0
3: for n = 0, n1 − 1 do
4: sn ← ∑n

m=0 kn−m ym
5: Take a time step to obtain yn+1
6: end for
7: for j = 1, 2L − 1 do
8: if there is one numbered block at row n j then
9: Apply block j to y

c fj :clj
using FFT-based algorithm, and add result to s̃

r f
j :rlj

10: else
11: There are two blocks at row n j ; do the same as above, for j = j1 and j = j2
12: end if
13: for n = n j , n j+1 − 1 do

14: Compute local contribution to history sums: s̃n ← s̃n + ∑n−n j−1
m=0 kn−m ym +∑n

m=n j+1 kn−m ym
15: Set sn = s̃n and take a time step to obtain yn+1
16: end for
17: end for

The total cost of applying each block in the square unit of dimension N/2l is

N

2l
log

(
N

2l

)
+

L−l∑
k=0

2k
N

2l+k
log

(
N

2l+k

)
≤ N

2l
log

(
N

2l

)
(L − l + 2).

Here, the first term corresponds to the top-right upper triangular block, and the
second term corresponds to the rest of the blocks. Summing over all square units gives
the total cost

L∑
l=1

(
N

2l
log

(
N

2l

)
(L − l + 2)

)
= O

(
N log2 N

)
.

Thus, the computational complexity of the modified algorithm is O
(
N log2 N

)
,

the same as that of the original HLS algorithm.

3 Green’s functions and the equilibriumDyson equation

The aim of this section is to give a brief introduction to quantum many-body theory,
the single particle Green’s function, and the Dyson equation of motion, starting from
basic quantum mechanics. We refer the reader to [4] for a more thorough introduction
to the subject.
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In thermal equilibrium, the state of a quantum many-body system is described by
a many-body density matrix �̂, which represents a statistical mixture of states |ψn〉
weighted, according to the Gibbs distribution, by e−βEn/Z :

�̂ = e−β Ĥ

Z
= 1

Z

∑
n

e−βEn |ψn〉〈ψn|.

Here, Ĥ is the Hamiltonian of the system for times t < 0, β is the inverse temper-
ature, |ψn〉 is an eigenstate of the system with energy En , Ĥ |ψn〉 = En|ψn〉, and Z is
the partition function Z = ∑

n e
−βEn .

In this context, the expectation value of an operator Ô is given by the ensemble
average

〈Ô〉 = 1

Z

∑
n

e−βEn 〈ψn|Ô|ψn〉 = Tr
[
�̂ Ô

]
.

For a system with a time-dependent Hamiltonian Ĥ(t) for t ≥ 0, the operator
expectation values are time-dependent, and can be calculated in theHeisenberg picture
by time evolving the operator: Ô → Û (0, t) Ô Û (t, 0) ≡ Ô(t). Here, Û (t, t ′) is
the unitary time evolution operator from time t ′ to t—the solution operator for the
Schrödinger equation with Hamiltonian Ĥ(t)—and is given formally by

Û (t, t ′) =

⎧⎪⎨
⎪⎩
T exp

[
−i

∫ t
t ′ Ĥ(t̄) dt̄

]
if t > t ′

T exp
[
+i

∫ t ′
t Ĥ(t̄) dt̄

]
if t < t ′,

with T the time ordering operator and T the anti-time ordering operator. The time-
dependent ensemble average is then given by

〈Ô(t)〉 ≡ Tr
[
�̂ Û (0, t) Ô Û (t, 0)

]
. (4)

The notion of time propagation can also be extended to the initial state, since �̂ can
be expressed as

�̂ = 1

Z
exp

[
−

∫ β

0
Ĥ dτ

]
= 1

Z
exp

[
−i

∫ −iβ

0
Ĥ dz

]
≡ 1

Z
Û (−iβ, 0).

Hence, the initial thermal equilibrium density matrix can be viewed in terms of
evolution in imaginary time from t = z = 0 to−iβ, and the time-dependent ensemble
average (4) can be expressed as

〈Ô(t)〉 ≡ 1

Z
Tr

[
Û (−iβ, 0) Û (0, t) Ô Û (t, 0)

]
. (5)
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One can now interpret the contents of the trace in (5) as the following sequence
of operations: (i) propagate from time 0 to t and apply the operator Ô; (ii) propagate
backwards from time t to 0; and (iii) propagate in imaginary time from 0 to −iβ.

More generally, expectation values of multiple operators acting at different times,
like the two-time correlation function between operators Ô1 and Ô2,

〈Ô1(t)Ô2(t
′)〉 ≡ 1

Z
Tr

[
Û (−iβ, 0) Û (0, t) Ô1 Û (t, t ′) Ô2 Û (t ′, 0)

]
,

can be treated by means of propagation on the generalized time contour C shown in
Fig. 4. This contour is comprised of three branches, representing the three directions of
propagation used in calculating expectation values: a forward time propagation branch
C+, a backward timepropagationbranchC−, and an imaginary timepropagationbranch
CM .

3.1 Single particle Green’s functions

Quantum many-body systems can be described using a special class of expectation
values called many-body Green’s functions. Many-body Green’s functions are the
expectation values associated with the addition and removal of particles from a system
at a collection of times on C. For example, the single particle Green’s functionG(z, z′)
is given by [4]

G(z, z′) = −i〈TCc(z)c†(z′)〉 , z, z′ ∈ C , (6)

where c†(z′) is a particle creation operator, which adds a particle to the system at a
generalized time z′, c(z) is a particle annihilation operator, which removes a particle
from the system at another generalized time z, and TC is the contour time ordering
operator, which commutes operators according to their contour ordering; see Fig. 4.
In the standard treatment [4], Green’s function components are introduced for each
possible restriction of z and z′ to the three branches C+, C−, and CM , using the real-
valued arguments t and τ , where t ≡ z for z ∈ C±, and τ ≡ i z for z ∈ CM ; see also
Fig. 4.

Fig. 4 Generalized time contour for time-dependent correlation functions of quantum many-body systems.
Here, tmax indicates a finite propagation time which can in principle be taken to ∞
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3.2 The real-time equilibrium Dyson equation

The Dyson equation of motion for the single particle Green’s function (6) can be
derived from the Martin-Schwinger hierarchy of coupled equations for n-particle
Green’s functions by collecting higher-order many-body corrections into an integral
kernel called the self-energy �. Here, we write the Dyson equations of motion for the
Green’s function components relevant in the case of equilibrium real-time evolution.

We note that in equilibrium, the Green’s function is translation invariant in real
time.

The initial thermal equilibrium state is described by the restriction GM of the
contour Green’s function G to imaginary time z = −iτ ,

z, z′ ∈ CM , G(z, z′) = G(−iτ,−iτ ′) = iGM (τ, τ ′) = iGM (τ − τ ′).

GM is referred to as theMatsubara Green’s function. TheDyson equation ofmotion
for GM (τ ), for τ ∈ [0, β], has the form

{
(−∂τ − h)GM (τ ) − ∫ β

0 �M (τ − τ ′)GM (τ ′) dτ ′ = 0

GM (0) − ξGM (β) = −1.
(7)

Here, ξ = ±1 for bosonic and fermionic particles, respectively, and GM is
extended to (−β, 0) in the convolution by the periodicity or antiperiodicity condi-
tions GM (−τ) = ξGM (β − τ)1. The interaction kernel in these equations is the
imaginary time self-energy �M , which depends self-consistently on GM .

In equilibrium systems, it is sufficient to solve for the Green’s function restricted to
mixed real and imaginary time arguments. The left mixing component G�(t, τ ), with
the second argument on the vertical imaginary time branch CM ,

z ∈ C±, z′ ∈ CM , G(z, z′) = G(t,−iτ) = G�(t, τ ) ,

satisfies the equilibrium Dyson equation of motion

{
(i∂t − h)G�(t, τ ) − ∫ t

0 �R(t − t ′)G�(t ′, τ ) dt ′ = Q�(t, τ )

G�(0, τ ) = iGM (−τ) = iξGM (β − τ),
(8)

with

Q�(t, τ ) =
∫ β

0
��(t, τ ′)GM (τ ′ − τ) dτ ′. (9)

Here, ��(t, τ ) and �R(t) are called the left mixing and retarded self-energies,
respectively, and they depend self-consistently on G�(t, τ ). We note that the equation
(7) for the Matsubara Green’s function can be solved first, independently, and its
solution then used in the initial condition and source term in (8).

1 The boundary condition in (7) is obtained from the periodicity/antiperiodicity condition and the commu-
tation relation G(0−) − G(0+) = 1.
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The solution of (7) and (8) completely determines the single particle Green’s
function. However, several other components are commonly used in the litera-
ture, and we mention them for completeness. The lesser component is defined as
G<(t, t ′) = G(z, z′) with z ∈ C−, z′ ∈ C+, and it is related to the occupied density of
states. It is given in equilibrium byG<(t, t ′) ≡ G<(t−t ′) = G�(t−t ′, 0). The greater
component is defined as G>(t, t ′) = G(z, z′)with z ∈ C+, z′ ∈ C−, and it is related to
the unoccupied density of states. It is given byG>(t, t ′) ≡ G>(t−t ′) = ξG�(t−t ′, β).
The retarded component is given by GR(t, t ′) = G>(t, t ′) − G<(t, t ′) and is related
to the full density of states. Again, taking GR(t, t ′) ≡ GR(t − t ′), we therefore have

GR(t) = −
(
G�(t, 0) − ξG�(t, β)

)
. (10)

For later convenience, we note that GR(t) satisfies the Dyson equation

{
(i∂t − h)GR(t) − ∫ t

0 �R(t − t ′)GR(t ′) dt ′ = 0

GR(0) = −i .
(11)

for t ≥ 0, and is taken to be zero for t < 0.

3.3 Semi-discretization in the imaginary time variable

To write the Dyson equation as a system of equations of the form (1), we must semi-
discretize in the imaginary time variable τ . In addition to the equation (7) for GM ,
we will obtain r equations from (8), where r is the number of grid points discretizing
τ ∈ [0, β]. It is therefore important to find as efficient of a discretization of the
imaginary time domain as possible.

Due to the importance of the Matsubara formalism in many-body calculations,
there is a significant literature on the efficient discretization of GM . The most com-
mon approach is to use a uniform grid on τ ∈ [0, β] and to solve (7) by an FFT-based
method. However, since GM is not periodic, this discretization suffers from low-order
accuracy, and it struggles to resolve GM in low temperature calculations. Methods
based on orthogonal polynomial expansions [6–8] and adaptive grids [9–11] offer
an improvement, but remain suboptimal. Recently, two methods have been pro-
posed which use the specific structure of imaginary time Green’s functions, along
with low-rank compression techniques, to obtain highly compact representations: the
intermediate representation with sparse sampling [12–15] and the discrete Lehmann
representation (DLR) [16]. Here, we work with the DLR.

Using the DLR, GM can be expanded in a basis of a small number r of exponential
functions,

GM (τ ) ≈
r∑

k=1

e−ωkτ

1 + e−βωk
ĝMk , (12)

for carefully chosen DLR frequencies ωk . The expansion coefficients ĝMk can be
recovered from values gMj = GM (τ j ) at a collection of r DLR imaginary time grid
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points τ j . The frequencies and imaginary time grid points can be obtained using the
interpolative decomposition [50, 51], and they depend only on a dimensionless cutoff
parameter � = βωmax, with ωmax a frequency cutoff, and an accuracy parameter ε.�
can typically be estimatedbasedonphysical considerations, but in practice calculations
should be converged with respect to that parameter. The size of the basis scales as
r = O (log (�) log (1/ε)), and is exceptionally small in practice. The Matsubara
component (7) of the Dyson equation can be solved on the DLR imaginary time grid.
We refer to [16] for further details on the DLR.

Once the DLR expansion of GM is known, it can be used to compute Q� by the
convolution in (9). In particular, let σ �

j (t) and q
�
j (t) be the DLR grid discretizations of

��(t, τ j ) and Q�(t, τ j ), respectively, so that q�(t), σ �(t) ∈ C
r . Then, the discretiza-

tion of (9) on the DLR grid is given by

q�(t) = GMσ �(t), (13)

for an r × r matrix GM which can be computed from the values gMj . We refer to [16]

for a detailed description of this process. We note that we have assumed �� and Q�
can also be represented by the DLR, which is the case for typical problems of physical
interest.

As we did for σ �, and q�, we define g�
j (t) as the discretization of G

�(t, τ j ), so that
g�(t) ∈ C

R , and σ R(t) as the discretization of �R(t). The nature of the dependence
of σ � and σ R on g� follows from that of �� and �R on G�; namely, we have σ �(t) =
σ �(g�(t), t) and σ R(t) = σ R(g�(t), t).

With these definitions, the semi-discretization of (8) is given a coupled system of
integro-differential equations,

{
(i∂t − h)g�(t) − ∫ t

0 σ R(g�(t − t ′), t − t ′)g�(t ′) dt ′ = q�(g�(t − t ′), t)
g�
j (0) = iξGM (β − τ j ),

(14)

for j = 1, . . . , r . The exponential change of variables y(t) ≡ eiht g�(t) yields a system
of equations of the form (1), with

k(y(t), t) ≡ σ R
(
e−iht y(t), t

)
,

f (y(t), t) ≡ eihtq�(t) = eihtGMσ �(e−iht y(t), t),

and initial conditions

y j (0) = iξGM (β − τ j ).

We note that as for GM (τ ) in (12), G�(t, τ ) can be expanded in the DLR basis:

G�(t, τ ) ≈
r∑

k=1

e−ωkτ

1 + e−βωk
ĝ�
k(t). (15)
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The r expansion coefficients ĝ�
k(t) can be obtain from the r values g�

j (t). This

expression can be used, for example, to compute GR(t) using (10).

4 Numerical examples

As a benchmark and proof of concept, we apply the fast history summation algorithm
to two simple but nontrivial systems with different self-energy expressions: the Bethe
graph [45, 46], for which � depends linearly on G, and the SYK model [47–49], for
which the dependence is cubic.

All numerical experiments were implemented in Fortran and carried out on a single
CPU core of a laptop with an Intel Xeon E-2176M 2.70GHz processor. The Fortran
library libdlrwas used for an implementation of the DLR [52] (https://github.com/
jasonkaye/libdlr). The FFTW library [53] was used for FFTs.

4.1 The Bethe graph

The Bethe graph [45, 46] is a simplified model of a periodic lattice system in which
each lattice site is connected to q other sites. It is commonly employed in model
calculations since the dynamics on the infinite graph can be described by the simple
self-energy

� = c2G. (16)

Here, the real constant c = q J is determined by the hopping parameter J , given by
the matrix element of the kinetic energy operator coupling states at neighboring sites,
and the coordination number q. The Green’s function is known analytically in this
case, so it provides a straightforward performance test for our time stepping method
and history summation algorithm.

Let us first derive GR analytically, starting from the Dyson equation (11). We note
that, following the convention in the literature [3, 4], we define the Fourier transform
of by f (ω) = ∫ ∞

−∞ eiωt f (t) dt , and the function argument itself indicates that we
are working in the transform domain. Since by definition GR(t) = 0 and �R(t) =
c2GR(t) = 0 for t < 0, (11) can be extended to the whole real axis2:

(i∂t − h)GR(t) − c2
∫ ∞

−∞
GR(t − t ′)GR(t ′) dt ′ = δ(t).

2 Using the boundary condition GR(0) = −i, �R(t) = θ(t)�R(t), and GR(t) = θ(t)GR(t) gives

i∂t G
R(t) = iδ(t)GR(0) + iθ(t)∂t G

R(t)

= δ(t) + θ(t)

[
hGR(t) +

∫ t

0
�R(t − t ′)GR(t ′) dt ′

]

= δ(t) + hGR(t) +
∫ ∞
−∞

�R(t − t ′)GR(t ′) dt ′.
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Applying the Fourier transform yields a quadratic equation for GR(ω),

(ω − h)GR(ω) − c2(GR(ω))2 = 1,

which has the solution

GR(ω) = 1

2c2

[
ω − h −

√
(ω − h)2 − 4c2

]
. (17)

SinceGR(t) is zero for t < 0, the spectral function A(ω) ≡ − 1
π
ImGR(ω) satisfies

the Kramers-Kronig relations,

GR(ω) = −iπ A(ω) + P.V.
∫ ∞

−∞
A(ν)

ω − ν
dν = −i (θ ∗ A) (ω),

where θ(ω) is the Fourier transform of the Heaviside function. It follows, in particular,
that

GR(t) = −2π iθ(t)A(t).

From (17), we see that A(ω) is the well known semi-circular density of states:

A(ω) =
{

1
2πc2

√
4c2 − (ω − h)2 if (ω − h)2 < 4c2

0 otherwise.

Applying the inverse Fourier transform gives

GR(t) = −iθ(t)
∫ ∞

−∞
e−iωt A(ω) dω

= − iθ(t)

2πc2

∫ h+2c

h−2c
e−iωt

√
4c2 − (ω − h)2 dω

= θ(t)

2πc2t

∫ h+2c

h−2c

(ω − h)e−iωt√
4c2 − (ω − h)2

dω

= θ(t)
e−iht

πct

∫ π/2

−π/2
e−i2ct sin θ sin θ dθ,

where in the third equality, we have integrated by parts, and in the fourth equality, we
have used the change of variables 2c sin θ = ω − h. Here, we recognize the integral
formula for the Bessel function J1 of the first kind and obtain

GR(t) = −iθ(t)e−iht J1(2ct)

ct
. (18)

For the numerical calculations, we fix c = 1, h = −1 and β = 10, and con-
sider the fermionic case ξ = −1. Since the initial condition for the real time
propagation of G�(t, τ ) in (8) is determined by GM (τ ), we first solve the imagi-
nary time equation of motion (7). The imaginary time axis τ ∈ [0, β] is discretized

123

63   Page 16 of 26



A fast time domain solver for the equilibrium Dyson equation

using the DLR tolerance ε = 10−15, and a high energy cutoff � = 40, which
we have verified is sufficient to eliminate the discretization error in τ to high
accuracy.

The resulting DLR contains r = 31 basis functions and DLR grid points τ j . We
obtain GM (τ ) on the DLR grid using the method described in [16] for the equivalent
integral form of (7), treating the nonlinearity by a weighted fixed point iteration with
pointwise tolerance 10−15.

We then solve the real-time equation of motion (8) for G�(t, τ ) using the high-
order Adams-Moulton method described in Appendix 1 and compute GR(t) from
(10) by evaluating the DLR expansion (15) of G�. We use fixed point iteration with a
pointwise tolerance 10−15 for the nonlinear solve. Figure5 shows a plot ofG�(t, τ ) for
t ∈ [0, 15]. In Fig. 6a, we show convergence of the fourth- and eighth-order Adams-
Moulton methods with respect to �t by comparing the computed value of GR(t)
with the exact solution (18) for t ∈ [0, 1000]. We then fix �t = 1/64, sufficient to
achieve near machine precision accuracy for all calculations using the eighth-order
method, and vary the final propagation time from t = 1 to t = 131072 by increasing
the number N of time steps. Figure6b shows wall clock timings using direct history
summation (for some choices of N ) and our fast history summation algorithm. We
observe the expected O

(
N log2 N

)
scaling for the fast method, and note that it is

superior for N ≥ 256, indicating a very small pre-factor in the scaling. For the longest
propagation carried out here, with N = 8388608 and T = 131072, only N ≈ 110000
time steps to T ≈ 1700 would be possible by the direct method with the same cost.
We also note that only one fixed point iteration is required to reach self-consistency
for all time steps after the first 500, and before that at most two, indicating that the
equations are non-stiff and an Adams predictor-corrector-type method is sufficient in
this case [54, Sec 5.4.2.].

Fig. 5 ImG�(t, τ ) for the Bethe lattice self-consistency.GM (−τ) = ImG�(0, τ ) is indicated by the dashed
line, ImG<(t) = ImG�(t, 0) by the solid line, and −ImG>(t) = ImG�(t, β) by the dotted line

123

Page 17 of 26 63



J. Kaye and H.U.R. Strand

Fig. 6 Numerical experiments with the Bethe lattice self-consistency� = G. aConvergence of the Adams-
Moulton method as �t → 0. b Wall clock timings using direct and fast history summation with fixed �t
and increasing propagation time

4.2 The Sachdev-Yitaev-Kemodel

The fermionic Sachdev-Yitaev-Ke (SYK)model demonstrates the challenge of resolv-
ing emergent low energy features in quantum many-body systems. It is used to model
certain features of strange metals, a poorly understood phase of matter with proper-
ties distinct from simple metals, and is connected to a variety of other phenomena of
physical interest [47–49, 55, 56]. The SYK equations of motion in real time are given
by (7) and (8) with ξ = −1, and a self-energy consisting of a single second-order
diagram in the interaction J , containing a product of three Green’s functions:

�M (τ ) = J 2
(
GM (τ )

)2
GM (β − τ)

��(t, τ ) = J 2
(
G�(t, τ )

)2 (
G�(t, β − τ)

)∗
. (19)

In the limit of zero temperature T = 1/β → 0, the SYK model displays an
emergent low energy feature in the spectral function A(ω) = − 1

π
ImGR(ω): a square

root divergence A(ω) ∼ |ω|−1/2 [47]. At finite temperature T , the divergence is
regularized by thermal fluctuations at frequencies |ω| � T .

In order to resolve this feature, the Green’s function must be propagated to a large
time at low temperature. Our fast history summation algorithm makes this practical.
We demonstrate this by solving the SYK equations and computing the spectral density
at temperatures up to four orders of magnitude smaller than the coupling strength J
and establish the scaling of the cost required to reach even lower temperatures.

We solve the SYK equations and compute GR(t) and A(ω) for J = 1, h = 0 and
β = 100, 1000, 10000 using the eighth-order Adams-Moulton method described in
Appendix 1. We tune all discretization parameters and the propagation time, so that
the spectral function A(ω) is resolved.

For β = 10000, we use the DLR parameters � = 105 and ε = 10−10, which
yields r = 92 degrees of freedom in τ . We use a fixed point tolerance of 10−14 for
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the nonlinear iteration. We propagate to a final time t = 50000 with N = 1048576
time steps. The computation takes less than 5 min to complete using our fast method.
It would take approximately 2 days by the direct method.

We note that for all three choices of β, only one fixed point iteration is required
to reach self-consistency for all time steps after the first 100 and before that at most
three.

Plots of GR and A are shown in Fig. 7. GR(t) decays exponentially as t → ∞ at
a rate proportional to the temperature (Fig. 7a). As a result, for large β, the spectral
density is highly localized (Fig. 7b). In the zero-temperature limit, the spectral density
has an |ω|−1/2 singularity at the origin.Although for finite temperature A(ω) is smooth,
we observe it approaching this singularity as β → ∞, with a corresponding t−1/2

decay regime in GR(t) at intermediate times.

5 Conclusion

We have presented an efficient solver for a class of nonlinear convolutional Volterra
integro-differential equations for which the integral kernel depends causally on the
solution. As is typical for Volterra-type equations, the computational bottleneck is
the evaluation of history integrals at each time step. However, in the present setting,
limited knowledge of the kernel at a given time step precludes the use of the various
Volterra history summation techniques which have been introduced in the literature.
We present an O

(
N log2 N

)
algorithm which properly handles the structure of the

integral operator.
We are motivated to study equations of the form (1) by their appearance in quantum

many-body Green’s function methods. In particular, the equilibrium real-time Dyson
equation of motion (8) for the single-particle Green’s function can be reduced to
a system of equations of this form. By using the imaginary time Green’s function,

Fig. 7 Numerical experiments for the SYK model. a Asymptotic behavior of the retarded Green’s function
GR(t) at different temperatures. The inital t−1/2 decay (inset) transitions into exponential decay at a rate
proportional to the temperature, requiring large propagation times for low temperature. b Structure of the
spectral density A(ω) at different temperatures. The spectral function becomes highly localized at low
temperatures (left inset). In the β → ∞ limit, it approaches an |ω|−1/2 singularity at the origin (right inset)
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which is relatively easy to compute, to initialize real-time propagation, our approach
requires only local nonlinear iteration.By contrast, the standardmethod requires global
nonlinear iteration in real time and frequency, which can lead to slow convergence in
regimes of physical interest.

As proofs of concept, we present numerical experiments for theBethe graph [45, 46]
and the Sachdev-Ye-Kitaev model [47, 49], demonstrating propagation to extremely
large times. In particular, we are able to resolve the square root divergence in the
SYK model at a temperature 1/β four orders of magnitude lower than the coupling
J , β−1/J = 10−4, while resolving energy scales ω three orders of magnitude smaller
than J , ω/J ≈ 10−3, in a calculation taking less than 5 min on a single CPU core of
a laptop. More generally, our approach is applicable to many-body Green’s function
methods with low-order self-energy expressions, as in low-order pertubation theory
[1–4], as well as bubble and ladder resummations like Hedin’s GW approximation
and beyond [57–60].

Appendix 1. Adams-Moulton time stepping with Gregory integration

We consider a general coupled system of equations of the form (1), in order to directly
treat the case of the equilibrium Dyson equation described in Sect. 3.2:

iy′
j (t)+

∫ t

0
k j

(
y1(t − t ′), . . . , yd(t − t ′), t − t ′

)
y j (t

′) dt ′ = f j (y1(t), . . . , yd(t), t)

(20)
for j = 1, . . . , d.

We discretize (20) by the Adams-Moulton method. For notational simplicity, we
suppress the dependence of k and f on y1, . . . , yd , and write

f̃ j (t) ≡ f j (t) −
∫ t

0
k j (t − t ′)y j (t ′) dt ′

so that

iy′
j (t) = f̃ j (t).

Integrating both sides from tn to tn+1 gives

yn+1
j = ynj − i

∫ tn+1

tn
f̃ j (t) dt .

The Adams-Moulton method of order p is obtained by replacing the integrand
with its polynomial interpolant at the points {tn+1− j }p−1

j=0 and computing the resulting
integrals analytically. This yields the discretization

yn+1
j = ynj − i�t

p−1∑
l=0

μAM
l f̃ n+1−l

j

= ynj − i�t
p−1∑
l=0

μAM
l

(
f n+1−l
j −

∫ tn+1−l

0
k j (tn+1−l − t ′)y j (t ′) dt ′

)
. (21)
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Here, μAM
j are the Adams-Moulton weights. For a procedure to obtain the weights,

along with tabulated weights for methods of up to eighth-order, we refer the reader to
[61, Chap. 24].

It remains to discretize the history integrals to high-order accuracy. Since y j (t) is
known only at the grid points t = tn , a standard high-order rule, such as a composite
Gauss-Legendre rule, would require interpolation, and is inconsistent with our fast
algorithm without significant modification. Instead we require a high-order rule of the
form

∫ tn

0
k j (tn−t ′)y j (t ′) dt ′ ≈ �t

n∑
m=0

kn−m
j ymj +�t

q−1∑
m=0

μG
m

(
kn−m
j ymj +kmj y

n−m
j

)
≡ Snj

(22)
for some weights μG

m ; that is, a standard equispaced rule with endpoint corrections.
A simple method is the Gregory integration rule. The Gregory rule with q weights is
correct to order q + 1. Although this approach becomes unstable for very high orders,
we have found it to be effective at least up to order 8. More stable endpoint-corrected
rules have been introduced, including modifications of Gregory rules [62, 63], and
stable rules of very high order which require modifying endpoint node locations [64,
65], but we have found the standard Gregory rules to be sufficient for our purposes.
For a procedure to obtain the weights, we refer the reader to [63]; the weights are
obtained from the Gregory coefficients, which are tabulated to high order in [66, 67].

Inserting (22) into (21) and rearranging to place all unknown quantities on the left
hand side, we obtain

(
1 − i�t2μAM

0

(
1 + μG

0

))
yn+1
j − iμAM

0 �t2
(
1 + μG

0

)
kn+1
j y0j + iμAM

0 �t f n+1
j

= ynj + iμAM
0 �t S

n+1
j − i�t

p−1∑
l=1

μAM
l

(
f n+1−l
j − Sn+1−l

j

)
(23)

where we have defined the truncated endpoint-corrected history sum

S
n
j ≡ Snj − �t

(
knj y

0
j + k0j y

n
j + μG

0

(
knj y

0
j + k0j y

n
j

))
. (24)

This is a collection of d coupled nonlinear equations, which are closed by prescrib-
ing the functional dependence of knj and f nj on yn1 , . . . , ynd . Once these are solved,

Sn+1
j must be computed by updating the value S

n+1
j using (24). In any given time step,

the previous p − 1 computed values of f nj and Snj must be stored, along with the full
history of y j , for j = 1, . . . , d.

We can split the endpoint corrected history sums Snj into two terms, Snj =
�t

(
snj + cnj

)
, with

snj ≡
n∑

m=0

kn−m
j ymj ,
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a standard equispaced history sum, and

cnj ≡
q−1∑
m=0

μG
m

(
kn−m
j ymj + kmj y

n−m
j

)
,

a local correction. Thus, as for the simple discretization given in Sect. 2, we recognize
the computation of the sums snj as the quadratic scaling bottleneck of the time stepping
procedure, and we can apply the same fast algorithm.

We do not suggest a specific nonlinear iteration procedure to solve (23)—in our
numerical examples, we use a simple fixed point iteration—but propose using an
Adams-Bashforth method to obtain an initial guess. The Adams-Bashforth method is
derived in a similar manner to the Adams-Moulton method, but it is explicit. The pth
order Adams-Bashforth discretization is given by

yn+1
j = ynj − i�t

p∑
l=1

μAB
l

(
f n+1−l
j − Sn+1−l

j

)
. (25)

We again refer the reader to [61, Chap. 24] for a method to compute the Adams-
Bashforth weights μAB, along with tabulated weights for the methods up to eighth-
order. In practice, using this guess can significantly reduce the number of nonlinear
iterations required at each time step.

To obtain amethod of order p, it suffices to set q = p−1. Then (23) is only applica-
ble when n ≥ p−2, and (25) when n ≥ p−1. An alternative method is then required
to obtain ynj , f

n
j , and S

n
j for n = 0, . . . , p−1.A convenient approach is to useRichard-

son extrapolation on the second-order version of the method—the implicit trapezoidal
rule—which does not require any initialization. The method, which requires p to be
even, proceeds as follows:

1. Use the second-order method, (23), with p = 2, until a final time t = (p − 1)�t ,
taking time steps of size �t , �t/2, �t/4, …, �t/2p/2−1. Record the computed
values of ynj , f

n
j , and Snj for each time step choice.

2. Apply Richardson extrapolation to these values to obtain approximations of y j (t),
f j (t), and S j (t) at t = �t, 2�t, . . . , (p − 1)�t which are accurate to order p.

Here, we have used that the truncation error of the implicit trapezoidal rule contains
only even-order terms. For further details of the Richardson extrapolation procedure,
we refer the reader to [68, Sec. 3.4.6].

Appendix 2. Fast application of square, triangular, andparallelogram-
shaped Toeplitz blocks

We first review the standard fast algorithm to apply an n × n Toeplitz matrix A in
O (n log n) operations [69, Sec. 4.7.7]. Let D be the n × n discrete Fourier transform
matrix, Djk = ω

jk
n with ωn = e−2π i/n , and let C be an n × n circulant matrix with

first column c. Then D diagonalizes C :

C = D−1�D.
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Here, � is the diagonal matrix with entries Dc. Since D and D−1 can be applied to
a vector in O (n log n) operations using the FFT, this gives an O (n log n) algorithm
to compute a matrix–vector product b = Cx :

Algorithm 3 Fast matrix-vector product b = Cx for a circulant matrix C with first
column c.
1: Compute Dc by FFT
2: Compute Dx by FFT
3: Compute the entrywise product Dc � Dx
4: Compute b = D−1 (Dc � Dx) by inverse FFT

To obtain an O (n log n) algorithm to compute the product b = Ax with an n × n
Toeplitz matrix A, we simply embed A in a 2n × 2n circulant matrix C , apply C to
a zero-padded vector x using Algorithm 3, and truncate the result. An example for
n = 4 illustrates the method:

Here, the top-left block, with bolded entries, is the original Toeplitzmatrix A, which
has been extended to a circulant matrix. The vector x is zero-padded as shown. Then,
the result is truncated; here, the desired result is the vector b = (b1 b2 b3 b4)T , and
the dashes indicate entries that are ignored.

A triangular Toeplitz matrix is simply a special case of a square Toeplitz matrix; in
the above example, we would take e = f = g = 0. Therefore, the algorithm for this
case is the same.

We could also treat the case of a Toeplitz matrix whose non-zero entries form a
parallelogram as simply another special case. However, this requires forming a circu-
lant matrix of approximately twice the size necessary. We illustrate a more efficient
method using the example of a 4 × 7 parallelogram:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d c b a 0 0 0
0 d c b a 0 0
0 0 d c b a 0
0 0 0 d c b a
a 0 0 0 d c b
b a 0 0 0 d c
c b a 0 0 0 d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
−
−
−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Here, the parallelogram has been embedded in the top half of a circulant matrix. No
zero-padding of the input vector is necessary, but the result is still truncated to obtain b.
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