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Abstract
Phase retrieval in dynamical sampling is a novel research direction, where an unknown
signal has to be recovered from thephaselessmeasurementswith respect to a dynamical
frame, i.e., a sequence of sampling vectors constructed by the repeated action of an
operator. The loss of the phase here turns the well-posed dynamical sampling into a
severe ill-posed inverse problem. In the existing literature, the involved operator is
usually completely known. In this paper, we combine phase retrieval in dynamical
sampling with the identification of the system. For instance, if the dynamical frame is
based on a repeated convolution, then we want to recover the unknown convolution
kernel in advance. Using Prony’s method, we establish several recovery guarantees
for signal and system, whose proofs are constructive and yield algebraic recovery
methods. The required assumptions are satisfied by almost all signals, operators, and
sampling vectors. Studying the sensitivity of the recovery procedures, we establish
error bounds for the approximate Prony method with respect to complex exponential
sums.
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1 Introduction

Phase retrieval is an ill-posed inverse problem consisting in the recovery of signals or
images from phaseless measurements like the magnitude of the Fourier transform or
the absolute values of inner products with respect to given sampling vectors. Phaseless
reconstructions appear naturally in many applications like X-ray crystallography [1–
3], astronomy [4, 5], laser optics [6, 7], and audio processing [8–10]. Themathematical
analysis of this ill-posed problem has been studied intensively during the last decades;
see, for instance, [4, 11–20] and references therein.

In this paper, we consider phase retrieval in the context of dynamical sampling.
Dynamical sampling is a novel research direction motivated by the work of Vetterli et
al. [21, 22] and was introduced in [23–26]. The topic instantly attracted attention in
the scientific community; see, for instance, [27–35] for further studies. Formulated in
the setting of finite-dimensional spaces, the main question in dynamical sampling is
to find conditions on the system A ∈ C

d×d and the sampling vectors {φi }J−1
i=0 ⊂ C

d

such that each signal x ∈ C
d can be stably recovered from the spatiotemporal samples

{〈x, A�φi 〉
}L−1,J−1
�,i=0

or such that {A�φi }L−1,J−1
�,i=0 forms a frame for some L, J ∈ N. Note that many struc-

turedmeasurements like the discrete Gabor transformmay be interpreted as dynamical
samples. For the Gabor transform, Awould be a diagonal matrix corresponding to the
modulation operator, and φi would be shifts of a window function. We refer to [23,
25] for motivations about this particular question.

Different from the classical finite-dimensional dynamical sampling, we consider
the phaseless measurements

{| 〈x, A�φi 〉 |2
}L−1,J−1
�,i=0

for some L, J ∈ N. The main question is again: under which conditions on A and φi
can x be recovered from the given measurements. Due to the loss of the phase, this
problem becomes far more challenging since the recovery is now severely ill posed in
advance.
Relation to existing literature

Phase retrieval in dynamical sampling has already been studied. In [36, 37], the
authors pose conditions on the operator A defined on a real Hilbert space and on the
sampling vectors φi to ensure that the dynamical phase retrieval problem has a unique
solution. The main strategy is here to ensure that the sequence {A�φi }Li−1,J−1

�,i=0 has the
complementary property meaning that each subset or its complement spans the entire
space. The restriction to the real-valued problem is crucial since the complementary
property is not sufficient to allow phase retrieval in the complex case. Furthermore, the
results are of a theoretical nature, and the question how to recover the signal numerical
remains open.

An approach for a numerical recovery procedure based on polarization identities
has been considered in [38], where the measurement vectors φi have been designed
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to allow phase retrieval. The key idea has been to consider interfering measurement
vectors that allow the recovery of themissing phase by polarization such that we obtain
a classical dynamical sampling problem, which can be solved in a second step. The
presented reconstruction technique works for almost all real or complex signals.
Contributions

Besides the recovery of the real or complex signal x, we recover the unknown
operator A from a given operator class. For instance, if A := circ a corresponds to the
convolution with a, we recover a as well. The theoretical requirements to allow phase
retrieval and system identification is our main contribution and focus of this paper. The
combination of phase retrieval, dynamical sampling, and system identification is to our
knowledge a new research topic. Our work horse to establish the recovery guarantees
is Prony’s method. As a result, all our proofs provide algebraic recovery methods.
The required assumptions are satisfied by almost all signals, considered systems, and
sampling vectors. Using several sampling vectors, we reduce the number of required
samples from O(d2) to O(d), where d is the dimension of the underlying space.
Furthermore, we study the sensitivity of the applied Prony method resulting in error
bounds that are interesting by their own outside the context of dynamical sampling.
On this basis, we moreover study the sensitivity of the proposed recovery procedures.
Roadmap

This paper is organized as follows. In Sect. 2, we introduce the required notations. In
Sect. 3,we recall Prony’smethod, andweexplain how thismethod enables us to recover
the missing information. In Sect. 4, we provide conditions to retrieve an unknown
signal when the underlying dynamical frame is known. Section5 is devoted to the
system identification in case that the signal x is already known. In Sect. 6, we finally
show that both the signal and the spectrum of A are recoverable in unison. In particular,
we establish recovery guarantees when the operator A corresponds to a convolution
with a low-passfilter as kernel. InSect. 7,we considermultiple samplingvectors,which
finally allow us to recover both—signal and operator—formO(d)measurements. The
sensitivity of the algebraic reconstructions is investigated in Sect. 8. Since the required
sensitivity of Prony’s method for general exponential sums is heavily based on the
existing literature, the proofs are provided in Appendix A. In Sect. 9, we present
numerical examples to accompany our theoretical results. Section10 concludes the
paper with a number of final remarks.

2 Preliminary notes

In this section, we introduce the notations and definitions that are needed throughout
this paper. All finite-dimensional vectors and matrices are stated in bold print. The
zero matrix of dimension L ×K is denoted by 0 := 0L,K and the (d ×d)-dimensional
identity by I := Id . If the dimension is clear within the context, we usually skip the
indices.

A matrix A ∈ C
d×d is called diagonalizable if there exist an invertible matrix

S ∈ C
d×d , whose columns consists of normalized eigenvectors of A, and a diagonal

matrix � ∈ C
d×d with the eigenvalues of A on its diagonal, such that A = S�S−1.

Throughout the paper, we always use this eigenvalue decomposition, where S does
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not have to be orthogonal implying that the columns of S only form a (maybe non-
orthogonal) basis. Note that if the eigenvalues of A are distinct, the matrix S is unique
up to permutation and global phase of the columns.

Definition 1 Let A = S�S−1 be a diagonalizable matrix with distinct eigenvalues.
We say that a given vector φ ∈ C

d is A-spectrally persistent if S−1φ does not vanish
anywhere, i.e., if all coordinates of φ with respect to the basis in S are non-zero.

For a ∈ C
d , we denote by circ(a) the circulant matrix whose first column is

a. Note that the multiplication with circ(a) results in the convolution with a, i.e.,
circ(a) x = a∗x. All circulant matrices are diagonalizable with respect to the discrete
Fourier transform. More precisely, we have circ(a) = 1/d F diag(â) F−1, where F =
(e−2π i jk/d)d−1

j,k=0 denotes the Fourier matrix and â := Fa the discrete Fourier transform.

Given a vector β ∈ C
K and L ∈ N, we define the rectangular Vandermonde matrix

VL ∈ C
L×K by

VL := VL(β) := (β�
k )

L−1,K−1
�,k=0 .

For L = K , we drop the subscript and denote the Vandermonde matrix by V or V (β).
Recall that the finite-dimensional p-norm is defined as

‖x‖p =
(d−1∑

k=0

|xk |p
)1/p

for x ∈ C
d and p ∈ [1,∞).

Moreover, the maximum norm is defined by ‖x‖∞ = maxk |xk |. Against this back-
ground and for notational convenience, we define the minimum norm ‖x‖−∞ =
mink |xk | although this expression is clearly no norm.

The non-zero complex numbers are denote by C∗. Without loss of generality, we
always choose the phase arg(·) of a complex number within the interval [−π, π).
Especially for calculations with phases, we denote by ·mod 2π the remainder within
[−π, π), i.e., we add or subtract amultiple of 2π to obtain an number in the considered
interval.

For a given vector x = (x0, . . . , xd−1), we call the set of relative phases arg(x j x̄k)
the winding direction of x. Figuratively, the winding direction describes how the
phase is changing by traveling through the components of x. We say that a vector x
can be uniquely recovered up to the winding direction if the relatives phases are only
reconstructable up to a global sign. If x0 is real, a vector with the opposite winding
direction can be computed by conjugating all components of x, i.e., changing the sign
of all relative phases.

Finally, we denote by #[·] the cardinality of a set.
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3 The approximate pronymethod

In a nutshell, Prony’s method [39–42] allows us to recover the coefficients ηk ∈ C∗
and the pairwise distinct bases βk ∈ C∗ of an exponential sum

f (t) :=
K−1∑

k=0

ηk β t
k (1)

from the equispaced sampled data h� := f (�) with � = 0, . . . , 2K − 1. The so-called
Prony polynomial P : C → C is the monic polynomial whose zeros are the unknown
bases, i.e., P(z) :=∑K

k=0 γk zk =∏K−1
k=0 (z−βk)with γK = 1. Considering the linear

equations

K∑

k=0

γk h�+k =
K−1∑

j=0

η jβ
�
j P(β j ) = 0, � = 0, . . . , K − 1, (2)

one may calculate the coefficients γk of the Prony polynomial by solving a linear
equation system. Knowing the Prony polynomial, we may extract the unknown bases
βk via its roots. The coefficients ηk of the exponential sum are determined by an
over-determined linear equation system. To improve the numerical performance, the
number of measurements may be increased [43–45]. On the basis of the rectangular
Hankel matrix

H := (h�+k
)L−K−1,K
�,k=0 with L ≥ 2K , (3)

the coefficients of the Prony polynomial are determined by the kernel of H . Similar
results to the following lemma can be found in [35] for real and in [45] for unimodular
bases.

Lemma 2 For the exact samples h� with � = 0, . . . , L − 1, the rectangular Hankel
matrix (3) is of rank K , and the following assertions are equivalent:

(i),nosep the polynomial P(z) :=∑K
�=0 γ�z� has the K distinct rootsβ0, . . . , βK−1,

(ii),nosep the vector γ := (γ�)
K
�=0 spans ker(H), i.e. Hγ = 0.

Proof With η := (ηk)
K−1
k=0 and β := (βk)

K−1
k=0 in C

K∗ , we may factorize the Hankel
matrix (3) into

H = VL−K (β) diag(η) V T
K+1(β).

Since the occurring Vandermonde and diagonal matrices have full rank, we have
rank H = K meaning dim(ker(H)) = 1. Thus, H possesses the simple singular
value zero. Considering (2) for � = 0, . . . , L − K − 1, we obtain

Hγ = VL−K (β)
(
η j P(β j )

)K−1
j=0 .

Since the Vandermonde matrix VL−K has full rank due to the assumptions on (1), the
equivalence follows immediately. ��
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Lemma 2 is the theoretical justification why Prony’s method always yields the
parameters of (1) for exact measurements h�. In practice, the measurements h̃� :=
h� + e� are disturbed by some small error e�, so we have only access to the disturbed
rectangular Hankel matrix

H̃ := H + E = (h�+k + e�+k
)L−K−1,K
�,k=0 with L ≥ 2K , (4)

where E := (e�+k)
L−K−1,K
�,k=0 is the rectangular error Hankel matrix. If L > 2K , the

kernel of the perturbed Hankel matrix H̃ will be trivial almost surely. For this reason,
Potts and Tasche [45] propose to approximate the kernel using the singular value
decomposition. This approach is supported by the Lidskii–Weyl perturbation theorem
for singular values; see [46, Prob III.6.13] or [47], yielding

max
k=0,...,K

|σk(H̃) − σk(H) | ≤ ‖ H̃ − H ‖2 ≤ ‖E ‖2. (5)

If the non-zero singular values of H are greater than 2‖E ‖, the singular vector to the
smallest singular value of H̃ seems to be a valid approximation for γ . Summarized,
we obtain the so-called approximate Prony method [45, Alg 3.3] here written down
for complex exponential sums.

Algorithm 3 (Approximate Prony method)
Input: h̃ := (h̃�)

L−1
�=0 ∈ C

L with L > 2K .

(i),nosep Compute the right singular vector γ̃ to the smallest singular value σK of
H̃ .

(ii),nosep Determine the roots β̃ := (β̃k)
K−1
k=0 of P̃(z) =∑K

k=0 γ̃k zk .

(iii),nosep Compute the least-squares solution of VL(β̃) η̃ = h̃.

Output: η̃ ∈ C
K , β̃ ∈ C

K .

Finally, we would like to note that alternative methods to obtain unknown bases
from the exponential sum in (1) can be employed, for instance matrix pencil methods
[48, 49], ESPRIT estimation methods [50], and Cadzow denoising methods [51].

4 Exclusive phase retrieval

In the following,we assume that A ∈ C
d×d is diagonalizable, i.e., A = S�S−1, where

the columns of S are normalized. For a fixed signal x ∈ C
d and a fixed sampling vector

φ ∈ C
d , the given phaseless measurements are then of the form

| 〈x, A�φ〉 |2 = |〈 y,��ψ〉 |2 =
∣∣∣∣

d−1∑

k=0

λ�
k ȳkψk

=:ck

∣∣∣∣

2

=
d−1∑

j,k=0

c j c̄k (λ j λ̄k)
�, (6)

where y := S∗x and ψ := S−1φ. Notice that (6) is an exponential sum with coeffi-
cients c j c̄k and bases λ j λ̄k . In the following, we require that the exponential sum has
exactly d2 unique bases.
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Definition 4 A set M := {μ0, . . . , μd−1} ⊂ C is called

• collision-free if the products μ j μ̄k are pairwise distinct for j, k ∈ {0, . . . , d − 1}.
• absolutely collision-free if M is collision-free and if the products |μ j ||μk | are
pairwise distinct for j > k.

Note that a matrix with collision-free spectrum is always invertible, and that the
eigenvalue decomposition becomes unique up to permutations and global phases of
the columns of S. If the system or the matrix A is known, we can usually recover the
signal x using one sampling vector φ.

Theorem 5 Let A ∈ C
d×d be known and diagonalizable with collision-free eigenval-

ues, and let φ ∈ C
d be A-spectrally persistent. Then, every x ∈ C

d can be recovered

from the samples {|〈x, A�φ〉 |}d2−1
�=0 up to global phase.

Proof Assume that A has the eigenvalue decomposition A = S�S−1, and denote the
coordinates of φ with respect to S by ψ := S−1φ. The given measurements have the
form

| 〈x, A�φ〉 |2 =
d−1∑

j,k=0

c j c̄k (λ j λ̄k)
�

with ck = ȳkψk as shown in (6). Due to the distinctness of the products λ j λ̄k , the
coefficients c j c̄k may be calculated by solving a linear equation system based on an
invertible Vandermonde matrix. The products c j c̄k contain the absolute values |ck |
and the relative phases arg(c j c̄k), so the factors ck are determined up to global phase.
Since the components of ψ are non-zero, and since S is invertible, we finally obtain
x up to global phase. ��
Remark 6 The result can also be explained in a different way. Applying a tensorial
lifting, we have

| 〈x, A�φ〉 |2 = tr(A�φφ∗(A∗)�xx∗).

The right-hand side forms a linear equation system in X = xx∗. If the system is
invertible, then X is the unique solution, and x can be recovered using an eigenvalue
decomposition. Note that the invertibility here remains open.

Corollary 7 For almost all a ∈ C
d and almost all φ ∈ C

d , the signal x ∈ C
d can be

recovered from the samples {|〈x, (circ a)�φ〉 |}d2−1
�=0 up to global phase.

Proof The eigenvalues of A := circ a are just given by the discrete Fourier transform
â, and for almost all vectors a ∈ C

d or, equivalently, â ∈ C
d , the products â j

¯̂ak are
pairwise distinct. Furthermore, the vectors φ that are orthogonal to one column of the
Fourier matrix form a hyperplane. ��

Wewould like tonote that phase retrieval from thesample {|〈x, (circ a)�φi 〉 |}L−1,J−1
�,i=0

is possible with much less than d2 temporal measurement if more spatial measurement
vectors φi and polarization techniques are employed [38].
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5 Exclusive system identification

The other way round, if the signal x is known, then we can usually identify the
eigenvalues of the system A = S�S−1. Here, we assume that the eigenvectors S of
the system are known. For a convolutional systems A = circ a, the eigenvectors are
just the columns of the Fourier matrix for instance.

Theorem 8 Let A = S�S−1 be diagonalizable by a known eigenvector basis S and
assume that the eigenvalues are collision-free. Let φ ∈ C

d be A-spectrally persistent,
and let x ∈ C

d be given. If the coefficients ck defined in (6) are collision-free too, then

the eigenvalues λ0, . . . , λd−1 of A are defined by the samples {|〈x, A�φ〉 |}2d2−1
�=0 up

to global phase.

Proof The measurements again have the form

| 〈x, A�φ〉 |2 =
d−1∑

j,k=0

c j c̄k (λ j λ̄k)
�

as shown in (6). By assumption, the bases λ j λ̄k of this exponential sum are pairwise
distinct and the coefficients ck are non-zero. Thus, the products λ j λ̄k and c j c̄k are
determinable by Prony’s method. Note that Prony’s method gives only the values but
not the corresponding indices j and k. Exploiting that the products c j c̄k are known—
x, φ, S are known, we can however deduce these indices. Similarly to the proof of
Theorem 5, the products λ j λ̄k contain the absolute values |λk | and the relative phases
arg(λ j λ̄k), so the eigenvalues λk are determined up to global phase. ��
Corollary 9 For almost all x ∈ C

d and almost all φ ∈ C
d , almost all kernels a ∈ C

d

can be recovered from the samples {|〈x, (circ a)�φ〉 |}2d2−1
�=0 up to global phase.

Proof Again, the vectors φ that are orthogonal to one column of the Fourier matrix
form a hyperplane. Furthermore, for almost all φ and x, the products c j c̄k in (6) are
pairwise distinct. As discussed in the proof of Corollary 7 almost all vectors a ∈ C

d

satisfy the assumption of Theorem 8. ��

6 Simultaneous phase and system identification

If either the signal x or the spectrum of A are known, we can recover the respective
unknown information from the temporal samples of only one sampling point. To a
certain degree, we may even determine some information if both—the signal and the
spectrum—are unknown. Using one sampling point, we however lose the order of the
components. So we only obtain the spectrum of A.

Theorem 10 Let A = S�S−1 be diagonalizable by a known eigenvector basis S and
assume that the eigenvalues are absolutely collision-free. Let φ ∈ C

d be A-spectrally
persistent, and let y := S∗x be elementwise non-zero for unknown x ∈ C

d . Then, the
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spectrum of A is determined by the samples {|〈x, A�φ〉 |}2d2−1
�=0 up to global phase and

winding direction.

Proof Since the coefficients ck = ȳkψk with y := S∗x and ψ := S−1φ are non-zero,
and since the eigenvalues are absolutely collision-free, the measurements have the
form

| 〈x, A�φ〉 |2 =
d−1∑

j,k=0

c j c̄k (λ j λ̄k)
� =

d2−1∑

k=0

ηkβ
�
k

as shown in (6),whereβk denotes the d2 unique, unknownbases andηk the correspond-

ing coefficients. Applying Prony’s method, we now recover the set B := {βk}d2−1
k=0 .

Note that the relation between the elements of B and {λ j λ̄k : k, j = 0, . . . , d − 1} is
still unrevealed.

In the following, we denote the recovered eigenvalues of A in absolutely decreasing
order by μk , i.e., |μ0 | > · · · > |μd−1 |, and recover the permuted eigenvalues step
by step. Our assumption guarantees that μ j μ̄k differs from μkμ̄ j , i.e., the imaginary
part cannot vanish, so the real values in B correspond to the magnitudes |μk |. The
absolute collision freedom now allows us to recover the productsμ j μ̄k andμkμ̄ j in B
corresponding to |μ j | and |μk |. We now assume that μ0 is real and positive because
the global phase cannot be recovered. Considering μ0μ̄1 and μ1μ̄0, we obtain the
relative phase arg(μ0) − arg(μ1)mod 2π up to sign. At this point, we have to chose
one winding direction for the phase. For k = 2, . . . , d − 1, we may consider the
relative phases between μk and the recovered μ0 and μ1; see Fig. 1, which uniquely
determines the remaining phases. ��

Fig. 1 Propagating the phase in the proof of Theorem 10. The points μ0 and μ1 are already known. Using
the relatives phases ± arg(μkμ0) and ± arg(μk μ̄1), starting from μ0 and μ1, we obtain two possible
candidates (×) for μk respectively since |μk | is known too. Furthermore, since μ1 cannot also be real by
assumption, exactly two candidates coincide yielding μk . For the other winding direction, i.e., choosing
μ̄1 instead of μ1, we obtain μ̄k
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Remark 11 Note that the spectrum retrieved in Theorem 10 is unordered, i.e., the rela-
tion to the known eigenvectors in S is not revealed. Applying the recovered relations
between the bases, we may also recover the coefficients ck in (6) up to global phase
and winding direction. However, without knowing the actual order of the eigenval-
ues/coefficients, the recovery of the unknown signal is forlorn.

Supposing that the unknown complex eigenvalues of the operator A have a clearly
recognizable structure like increasing/decreasing absolute values leads to highly
artificial side condition. Nevertheless, interesting special cases are real-valued convo-
lutional systems with symmetrically decreasing kernels in the frequency domain. For
the following theorem, we therefore restrict the setup to real-valued signals x ∈ R

d ,
real-valued convolution operators circ a with a ∈ R

d , and real-valued sampling vec-
tors φ ∈ R

d . We call a kernel a strictly, symmetrically decreasing when

â ∈ R
d++, âk = â−k, and âk > â j

for k, j ∈ {0, . . . , �d/2�}with k < j . The negative indices are here considered modulo
d, and R++ denotes the real and positive half axis. Strictly, symmetrically decreasing
kernels correspond to low-pass filters, whose identification in dynamical sampling has
been studied in [35]. Note that the signal a is real and symmetric too.We call the kernel
collision-free in frequency if the products â j âk are unique for k, j ∈ {0, . . . , �d/2�}
with j ≥ k. This definition differs from the collision-free complex sets. In order to
recover the signal and kernel, we employ two sampling vectors φ1 and φ2. We call φ1
andφ2 pointwise independent (in the frequency domain)when φ̂1,k and φ̂2,k interpreted
as two-dimensional real vectors are linearly independent for k = 1, . . . , �d/2�. For this
specific setting, the identification of the system and the signal is usually possible. Here,
we denote the real and imaginary parts of a complex number by �[·] and �[·].
Theorem 12 Let a ∈ R

d be strictly, symmetrically decreasing and collision-free
in frequency, let φ1,φ2 ∈ R

d be pointwise independent, and let x ∈ R
d satisfy

�[ ¯̂xk φ̂i,k] �= 0 for k = −�(d−1)/2�, . . . , �d/2�, i = 1, 2. Then, a and x can be recov-
ered from the samples

{| 〈x, (circ a)�φ1〉 |, | 〈x, (circ a)�φ2〉 |
}L−1
�=0 with L := (⌊ d2

⌋+ 1
)(⌊ d

2

⌋+ 2
)

up to global sign.

Proof To simplify the notation, we first study the temporal samples with respect to
an arbitrary sampling vector φ. Exploiting the symmetry of â and the conjugated
symmetry of c := ( ¯̂xk φ̂k)

�d/2�
k=−�(d−1)/2� caused by the Fourier transform, we combine the

several times appearing bases in (6) to obtain

| 〈x, (circ a)�φ〉 |2 =
∣∣∣∣

�d/2�∑

k=−�(d−1)/2�
ckâ

�
k

∣∣∣∣

2

=
∣∣∣∣

�d/2�∑

k=0

ξk�[ck] â�
k

∣∣∣∣

2
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=
�d/2�∑

k=0

�d/2�∑

j=0

ξkξ j�[ck]�[c j ] (âk â j )
�

=
�d/2�∑

k=0

�d/2�∑

j=k

ξk, j�[ck]�[c j ]︸ ︷︷ ︸
ηk

(âk â j )
� =

L/2−1∑

k=0

ηkβ
�
k ,

with bases βk related to âk â j and coefficients ηk where the multipliers are given by

ξk :=

⎧
⎪⎨

⎪⎩

1 if k = 0,

2 if k = 1, . . . , �(d−1)/2�,
1 if k = d/2 and d is even,

and ξk, j :=
{
2ξkξ j if k �= j,

ξ2k if k = j .

This exponential sum has exactly 1/2(�d/2� + 1)(�d/2� + 2) distinct bases since a is
collision-free in frequency.

Applying Prony’s method, we compute the bases βk and coefficients ηk . Because
the bases βk are all real and non-negative, we need a different procedure than before
to reveal the relation to the factors âk â j . Let B be the set of recovered bases, where
we assume β0 > · · · > βL/2−1.

(i) The strict, symmetric decrease of a ensures β0 = â20 . Now, remove β0 from B.
(ii) The next largest basis β1 corresponds to â0â1 allowing the recovery of â1.

Remove β1 = â0â1 and â21 from B.
(iii) The largest remaining bases correspond to â0â2, which gives us â2. Remove all

products â0â2, â1â2, â2â2 of â2 with the recovered components from B.
(iv) Repeating this procedure, we obtain â0, . . . , â�d/2� and, due to symmetry, the

remaining half of â.

Alongside of the kernel, we also obtain the relation between ηk and ξk, j�[ck]�[c j ]
for each sampling vector φ1, φ2. Assuming �[ ¯̂x0φ̂1,0] = ¯̂x0φ̂1,0 > 0, we compute the
real parts �[ ¯̂xk φ̂1,k] for k = 1, . . . , �d/2� by exploiting the revealed relative phases
(sign changes), transfer the sign from ¯̂x0φ̂1,0 to ¯̂x0φ̂2,0 = �[ ¯̂x0φ̂2,0] since φ̂1,0 and
φ̂2,0 are known, and determine �[ ¯̂xk φ̂2,k] for k = 1, . . . , �d/2� analogously. Due to
the pointwise linear independence, the equation system

�[ ¯̂xk φ̂1,k] = �φ̂1,k�x̂k + �φ̂1,k�x̂k
�[ ¯̂xk φ̂2,k] = �φ̂2,k�x̂k + �φ̂2,k�x̂k

gives us x̂k for k = 1, . . . , �d/2�. With the conjugated symmetry of x̂, the inverse
Fourier transform yields x up to the sign. ��
Remark 13 Note that the assumption �[ ¯̂xk φ̂i,k] �= 0 for k = 0, . . . , d − 1 may be
weakened to only hold for one sampling vector φ1 or φ2 as long as �[ ¯̂x0φ̂i,0] �= 0
for both. In this case, the exponential sum corresponding to the temporal samples of
the other sampling vector may consist of less than 1/2 (�d/2� + 1)(�d/2� + 2) bases.

123
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Exploiting that the coefficients ηk of the missing bases are zero, and spreading the
sign between the non-zero coefficients, we can nevertheless recover x.

It is also possible to identify the strictly, symmetrically decreasing kernel alongside
a complex signal and to allow complex sampling vectors. In this case, the temporal
samples corresponding to one sampling vector φ possesses the form

| 〈x, (circ a)�φ〉 |2 =
�d/2�∑

k=0

�d/2�∑

j=k

ξk, j
4 �[(ck + c−k)(c̄ j + c̄− j )] (âk â j )

�.

Similarly to the proof of Theorem 12, we may recover the kernel a from the temporal
samples of one sampling vector if

�[( ¯̂xk φ̂k + ¯̂x−k φ̂−k)( ¯̂x j φ̂ j + ¯̂x− j φ̂− j )
] �= 0 (7)

for k, j = 0, . . . , �d/2�. Additionally, the signal x may be recovered if four sampling
vectors are employed. In this case, the coefficient of â20 is just | ¯̂x0φ̂i,0 |, so fixing the
phase for c1,0, we may spread the phase to ci,0, i = 2, 3, 4, where the first index stands
for the related sampling vector, i.e. all coefficients ci,0 are known. If the equation
system

�[ci,0(c̄i,k + c̄i,−k)] = �[c̄i,0φ̂i,k] �x̂k + �[c̄i,0φ̂i,k] �x̂k
+ �[c̄i,0φ̂i,−k] �x̂−k + �[c̄i,0φ̂i,−k] �x̂−k

with i = 1, . . . , 4 is solvable, we obtain x̂ and thus x. Notice that the recovery of â
here is not a special case of Theorem 10 since â is not collision-free as a complex set.
In sum, the following statement can be established.

Theorem 14 Let a ∈ R
d be strictly, symmetrically decreasing and collision-free in

frequency, let φ1, . . . ,φ4 ∈ C
d and x ∈ C

d satisfy (7). If the real-valued vectors

(�[c̄i,0φ̂i,k],�[c̄i,0φ̂i,k],�[c̄i,0φ̂i,−k],�[c̄i,0φ̂i,−k])T , i = 1, . . . , 4,

are independent for each k = 1, . . . , �(d−1)/2�, then a and x can be recovered from
the samples

{| 〈x, (circ a)�φi 〉 |
}L−1,4
�=0,i=1 with L := (⌊ d2

⌋+ 1
)(⌊ d

2

⌋+ 2
)

up to global phase.

Remark 15 The strictly, symmetrically decreasing kernels form a (�d/2� + 1)-
dimensional manifold. Furthermore, the not collision-free kernels live on the union
of submanifolds with strictly smaller dimension, so almost all strictly, symmetrically
decreasing kernels are collision-free. Moreover, almost all vectors x and φi satisfy the
posed conditions in the real as well as in the complex setting.
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7 Multiple sampling vectors

Let us return to the parameter identification of arbitrary systems after that brief digres-
sion to strictly, symmetrically decreasing convolution kernels. Revisiting the statement
in Theorem10, ourmain problemhas been thatwe cannot recover the order of the spec-
trum frommerely one sampling vector if both—signal and eigenvalues—are unknown.
Since our analysis is based on Prony’s method, we have always relied on a squared
number of measurements. To surmount these shortcomings, we suppose specifically
constructed sets of sampling vectors.

Instead of assuming that the sampling vectors φi are A-spectrally persistent, we
now assume that φi might be partly A-spectrally persistent, i.e., S−1φi might have
some zero coordinates. Considering the temporal samples for such a sampling vector,
in analogy to (6), we have

| 〈x, A�φi 〉 |2 = |〈 y,��ψ i 〉 |2 =
∣∣∣∣
∑

k∈Ii
λ�
k ȳkψi,k

=:ci,k

∣∣∣∣

2

=
∑

j,k∈Ii
ci, j c̄i,k (λ j λ̄k)

�,

where y := S∗x, ψ i := S−1φi , and Ii := suppψ i . Since φi only captures a small
part of the spectrum, the last sum only consists of |Ii | exponentials instead of d2

and allows the recovery of a specific part of the spectrum. To combine these partial
information and to overcome the mentioned issues, we need to have the following
assumptions on the sequence {φi }J−1

i=0 :

Definition 16 Let S be the matrix of given eigenvectors, let {φi }J−1
i=0 be the sampling

vectors, and let ψ i := S−1φi . We say that the pair ({φi }J−1
i=0 , S) allows

(i) index separation if the supports of {ψ i }J−1
i=0 form a full cover meaning

⋃J−1
i=0 suppψ j = {0, . . . , d − 1}, and for every k ∈ {0, . . . , d − 1} there exist

two index sets Fk and Gk such that

{k} =
⋂

i∈Fk

suppψ i

∖ ⋃

i∈Gk

suppψ i , (8)

(ii) phase propagation if the set {φi }J−1
i=0 is ordered such that

#

[
suppψk ∩

k−1⋃

i=0

suppψ i

]
≥ 2 (9)

for k = 1, . . . , J − 1, i.e. there is an overlap of two elements at least,
(iii) winding direction determination if there are indices i1, i2, k1, k2 such that

arg(ψi1,k1ψ̄i1,k2) �≡ arg(ψi2,k1ψ̄i2,k2)mod π, (10)

where ψi1,k1ψ̄i1,k2 and ψi2,k1ψ̄i2,k2 are non-zero.
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If all three assumptions holds,we say that ({φi }J−1
i=0 , S) allows parameter identification

and phase retrieval (up to global phase).

Weare nowable to recover the signal and the eigenvalues of the system, simultaneously.

Theorem 17 Let A = S�S−1 be diagonalizable by a known eigenvector basis S
and assume that the eigenvalues are absolutely collision-free. Let ({φ j }J−1

j=0 , S) allow
parameter identification and phase retrieval, and let y := S∗x be elementwise non-
zero for unknown x ∈ C

d . Then, the eigenvalues λ0, . . . , λd−1 of A and the signal x
are determined by the spatiotemporal samples

{|〈x, A�φi 〉|
}L2

i −1,J−1
�,i=0 with Li := #[supp(S−1φi )]

up to global phase.

Proof Using the procedure in the proof of Theorem 10, we recover the unblocked part
�i := {λk : k ∈ Ii } of the spectrum of A for each i = 0, . . . , J −1 up to global phase
and winding direction. Note that we do not know which value in �i corresponds to
which index. However, since the eigenvalues are absolutely collision-free, and since
the sampling set allows index separation, we have

⋂

j∈Fk

|� j |
∖ ⋃

i∈Gk

|�i | = |λk |,

where the absolute value is applied elementwise. Thus, the true index of the eigenvalues
is revealed.

Using that the sampling set allows phase propagation, we align the global phase and
winding direction of the sets �i as follows. First, we fix the global phase and winding
direction of�0. There are at least two eigenvalues λk1 and λk2 that are contained in�0
and �1. The collision-freedom ensures arg(λk1 λ̄k2) �≡ 0mod π . Using λk1 and λk2 ,
which can be identified by their absolute values, the global phase andwinding direction
are uniquely transferable form �0 to �1, i.e. we obtain the eigenvalues in �0 ∪ �1
up to global phase and winding direction. Repeating this argument, we propagate the
phase information to the remaining subsets �i , which results in the recovery of all
eigenvalues λ0, . . . , λd−1 up to global phase and winding direction.

The ambiguity with respect to the winding direction occurs since we have not been
able to determine whether the true relative phase between λ j and λk corresponds
to arg(λ j λ̄k) or to arg(λk λ̄ j ). Let us now consider the indices i1, i2, k1, k2 in the
winding direction property (10) of {φi }J−1

i=0 . Notice that both λk1 and λk2 are captured
by the sampling vectors φi1 , φi2 . Due to the missing winding direction, the coefficients
ci1,k1 c̄i1,k2 and ci2,k1 c̄i2,k2 can only be identified up to the conjugation, so we merely
obtain �[ci1,k1 c̄i1,k2 ] and �[ci2,k1 c̄i2,k2 ], which however are given by

�[ci1,k1 c̄i1,k2 ] = �[yk1 ȳk2 ] �[ψi1,k1ψ̄i1,k2 ] + �[yk1 ȳk2 ] �[ψi1,k1ψ̄i1,k2 ],
�[ci2,k1 c̄i2,k2 ] = �[yk1 ȳk2 ] �[ψi2,k1ψ̄i2,k2 ] + �[yk1 ȳk2 ] �[ψi2,k1ψ̄i2,k2 ].
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Our assumptions guarantees that this equation system has the unique answer yk1 ȳk2 ,
which yields ci1,k1 c̄i1,k2 and ci2,k1 c̄i2,k2 without conjugation ambiguity. Furthermore, at
least one of the products ci1,k1 c̄i1,k2 and ci2,k1 c̄i2,k2 has a non-vanishing imaginary part
again due to (10). The corresponding basis λk1 λ̄k2 reveals the true winding direction
resulting in the recovery of λ0, . . . , λd−1 up to global phase.

Considering the coefficient of the temporal samples for each φi , we determine yk
with k ∈ suppψ i up to global phase. The recovered components of y may now be
aligned due to the overlap between the supports in (9) yielding y up to global phase.
Applying the inverse of S∗, we finally obtain the wanted signal x up to global phase.

��
Remark 18 The absolute collision-freedom of the eigenvalues can be weakened. More
precisely, we only require the absolute collision-freedom on the non-blocked parts
of the spectrum with respect to {φi }J−1

i=0 , i.e. we only require that the sets �i are
absolutely collision-free. In order to propagate the phase, there have to be to at least
two indices

k1, k2 ∈ suppψk ∩
k−1⋃

i=0

suppψ i

for k = 1, . . . , J − 1, cf. (9), satisfying arg(λk1 λ̄k2) �≡ 0mod π .

Theorem 17 not only allow us to recover the signal and the system’s eigenvalues
simultaneously but also to reduce the required number of samples. In the statements
before, the number of required measurements to apply Prony’s method is always a
multiple of the squared dimension, i.e. we requireO(d2) samples. In Theorem 17 the
number of spatiotemporal samples mainly correlate with the support sparsity Li :=
#[supp(S−1φi )].With L := max{Li : i = 0, . . . , J−1}, the number of samples is thus
bounded by 2L2 J . Notice that we need d vectors at the most to build a sampling set,
which allows parameter identification and phase retrieval. For instance the sampling
vectorsmay be constructed such that suppψ i := {i, . . . , i+L−1} for i = 0, . . . , d−L
and L ≥ 3. We then employ only O(dL2) measurement. For a fixed sparsity L , we
only need linearly many spatiotemporal samples.

Corollary 19 Under the assumption of Theorem 17, the eigenvalues of A ∈ C
d×d and

the unknown signal x ∈ C
d are identifiable with O(d) spatiotemporal samples.

The idea of blocking a part of the spectrum to reduce the number of required
spatiotemporal samples clearly transfers to Theorem 12 and 14. The indices of the
recovered eigenvalues is then determined by the strict, symmetrical decay, so the
index separation, phase propagation, and winding direction determination are not
required, although the supports of {φ̂i }J−1

i=0 should still form a full cover. Considering
Theorem 12 exemplarily, we instead need that, for every k ∈ {0, . . . , d − 1}, there
exists at least one index j ∈ {0, . . . , J − 1} such that �[ ¯̂xk φ̂i,k] �= 0 to recover all
components of â and two indices i1, i2 ∈ {0, . . . , J − 1} such that φ̂i1,k and φ̂i2,k
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are linearly independent interpreted as two-dimensional real vectors to recover all
components of x̂.

8 Sensitivity analysis

In the previous sections, we have shown that the dynamical phase retrieval and system
identification problem is solvable under certain assumptions from exact measure-
ments. In the following, we study the situation for disturbed measurements. Since our
constructive proofs have been heavily based on Prony’s method, the sensitivity also
mainly depends on it. First, the sensitivity of the approximate Prony method for the
complex setting is surveyed. The proofs follow the ideas of Potts and Tasche [45],
where real-valued exponential sums are considered, and may be found in Sect. 10. In
a second step, we analyze the error propagation in dynamical phase retrieval.

8.1 Sensitivity of prony’s method

Essentially, the (approximate) Prony method is a two step approach to determine
the parameters of the exponential sum (1). In the first step, the unknown bases β

are recovered using a singular value decomposition and determining the roots of the
Prony polynomial. In the second, the unknown coefficients η are computed by solving
a linear least-square problem. The sensitivity mainly depends on the product πβ and
the minimal separation σβ of the bases in β given by

πβ :=
K−1∏

k=0

(1 + |βk |) and σβ := min{|β� − βk | : 0 ≤ � < k ≤ K − 1}.

Recall that the approximate Prony method is based on the assumption that the
measurement error ε with |h� + e� | ≤ ε is small enough such that the singular values
of the unperturbed Hankel matrix fulfill σk(H) ≥ 2‖E ‖2. The spectral norm is here
bounded by

‖E ‖2 ≤ √‖E ‖1‖E ‖∞ ≤ √(L − K )(K + 1) ε ≤ (L + 1) ε/2.

If the error is small, the true bases are nearly roots of the perturbed Prony polynomial.

Theorem 20 Let L > 2K, and let γ̃ be a normalized right singular vector to the
smallest singular value σ̃K of the perturbed Hankel matrix (4) with respect to the
exponential sum (1). Then, the corresponding polynomial P̃(z) =∑K

k=0 γ̃k zk satisfies

K−1∑

k=0

|ηk |2| P̃(βk) |2 ≤ L

(
πβ

σ K−1
β

)2 (
σ̃K + ‖E ‖2

)2
.
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The weights |ηk |2 on the left-hand side may be avoided using

ρβ := max{1, ‖β ‖∞}.

Theorem 21 Let L > 2K, let γ̃ be a normalized right singular vector to the smallest
singular value σ̃K of the perturbed Hankel matrix (4), and let σK−1 be the smallest
non-zero singular value of the unperturbedHankelmatrix (3). Then, the corresponding
polynomial P̃(z) =∑K

k=0 γ̃k zk satisfies

K−1∑

k=0

| P̃(βk) |2 ≤ K L ρ2L−2
β

(
σ̃K + ‖E ‖2

)2

σ 2
K−1

.

These results nurture the hope that the perturbed roots are close to the original
ones. Although this seems plausible for generic polynomials, we can construct patho-
logical cases of very sensitive polynomials, where already slight disturbances of the
coefficients have tremendous effects on the roots.

Remark 22 Tang [35] establishes an explicit bound on the reconstruction error regard-
ing the roots of the Prony polynomial, whichwe initially wanted to adapt to our setting.
Unfortunately, the key theorem studying a linear perturbation of the coefficient of a
polynomial cannot be applied to our setting since here the perturbations e� in the
measurements h̃� = h� + e� lead to non-linear perturbations of the coefficients in the
Prony polynomial.

In the second main step of Prony’s method, the coefficients η of the exponential
sum (1) are determined by solving VL(β) η = h̃ in the least-square sense. For exact
bases, the error of perturbed solution is bounded as follows.

Proposition 23 Let η and β be the parameters of the exponential sum (1). The least-
squares solution η̃ of the perturbed equation system VL(β) η̃ = h̃ with ‖h− h̃‖∞ ≤ ε

satisfies

‖η − η̃‖∞ ≤ πβ

σ K−1
β

ε.

Certainly, the computed bases β̃ are themselves only approximations of β in prac-
tice. Therefore, besides the right-hand side h̃, the Vandermonde matrix VL(β̃) is
perturbed too. The effect of this additional error lead to the following bound.

Theorem 24 Let η and β be the parameters of the exponential sum (1). The least-
squares solution η̃ of the perturbed equation system VL(β̃) η̃ = h̃with ‖h− h̃‖∞ ≤ ε,
‖β − β̃ ‖∞ ≤ δ, and δ < σβ/2 satisfies

‖η − η̃‖∞ ≤ π|β |+δ1

(σβ − 2δ)K−1

(√
2 K L

πβ ρL−1
|β |+δ1

σ K−1
β

‖h‖∞ δ + ε

)
.
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8.2 Sensitivity of phase and system identification

On the basis of the sensitivity analysis of Prony’s method, we analyze the error prop-
agation in dynamical phase retrieval. For this, we assume that the unknown bases
λ j λ̄k and coefficients c j c̄k of the exponential sum describing the measurements (6)
have been approximately computed. In the following, we denote the true bases and
coefficients by

βτ( j,k) = λ j λ̄k and ητ( j,k) = c j c̄k, (11)

where the bijective map

τ : {0, . . . , d − 1} × {0, . . . , d − 1} → {0, . . . , d2 − 1}

describes the relation between the indices. Assuming that the recovered bases β̃ and
coefficients η̃ satisfy ‖β̃ − β‖∞ ≤ δ and ‖η̃ − η‖∞ ≤ ε, where δ should be small
enough such that the mapping τ can be recovered up to the winding direction by
the above constructive proofs, i.e. the error is small enough such that the order of
the absolute values |βk | remains unchanged, we want to estimate the errors in the
recovered spectrum λ̃ and signal x̃. Note that β̃τ ( j,k) and η̃τ ( j,k) are simply conjugated
for the opposite winding direction.

In line with the above procedures, where firstly the magnitudes of the unknown
variables are determined, and secondly the phase is propagated between the elements,
we decouple the sensitivity analysis of absolute value and phase. Furthermore, we first
discuss the sensitivity of the unknown operator spectrum, followed by the analysis of
the unknown signal, and finally the error propagation for multiple sampling vectors.
Sensitivity of the spectrum

The recovered bases β̃ already contain estimates of the squared modulus of the
spectrum λ. After recovering the relation τ (up to winding direction), the magnitude
of the spectrum is easily obtained by taking the square root, i.e.

| λ̃ j | :=
√

| β̃τ ( j, j) |. (12)

The sensitivity of the magnitude computation may be easily estimated via the mean
value theorem.

Lemma 25 Assume | β̃τ ( j, j) − βτ( j, j) | ≤ δ, and estimate the magnitude |λ j | by (12).
If δ < |λ j |2, then we have

∣∣ | λ̃ j | − |λ j |
∣∣ ≤ δ

2
√

|λ j |2 − δ
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and, for δ < |λ j |2/2, in particular

∣∣ | λ̃ j | − |λ j |
∣∣ ≤

√
2 δ

2
√

|λ j |2
.

Proof The statement immediately follows from applying the mean value theorem and
the reversed triangle inequality by

∣∣ | λ̃ j | − |λ j |
∣∣ = ∣∣ | β̃τ ( j, j) |1/2 − |βτ( j, j) |1/2

∣∣ ≤ δ

2
√|βτ( j, j) | − δ

.

The second one is a trivial consequence. ��
Recall that for computing the phase of λ̃ j , we first find the element with the largest

magnitude, say λ̃k , then set the phase of λ̃k to be zero due to the global phase ambiguity,
and finally propagate the phase to λ̃ j using the relative phase encoded in βτ( j,k). More
precisely, exploiting β̃τ ( j,k) ≈ λ j λ̄k , we retrieve the phase of λ j by

λ̃ j := β̃τ ( j,k)

|β̃τ ( j,k)|
| λ̃ j |, (13)

where | λ̃ j | has been computed by (12) in the first step. Note that this phase propagation
is a very simple method, which however allow to analyze the propagation error. For
doing this, we assume that the map τ given in (11) has been identified with respect to
the true winding direction. Otherwise, we consider the conjugated recovered spectrum¯̃
λ without loss of generality. For simplicity, we first consider the phase propagation
only between two elements. The idea of the proof was motivated by [52].

Lemma 26 Assume | β̃τ ( j,k) − βτ( j,k) | ≤ δ, suppose that λk is real and positive, and
estimate the phase arg(λ j ) by (13). If δ < |λ j ||λk |, then we have

| arg(λ̃ j ) − arg(λ j )mod 2π | ≤ 2δ

|λk ||λ j | .

Proof Since λk is supposed to be real and positive, the phase of λ j is directly encoded
in the basis βτ( j,k) by

arg(βτ( j,k)) = arg(λ j ) − arg(λk)mod 2π = arg(λ j ).

During the proof, we denote the phases of βτ( j,k) and β̃τ ( j,k) or λ j and λ̃ j by α j and
α̃ j respectively. Because of | β̃τ ( j,k) − βτ( j,k) | ≤ δ < |βτ( j,k) |, the phase difference
|α̃ j − α j mod 2π | is always smaller than π/2. Thus, we have

| α̃ j − α j mod 2π | ≤ 2 sin(| α̃ j − α j mod 2π |).
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To estimate the sine of the phase difference, we exploit the geometrical relation
between βτ( j,k) and β̃τ ( j,k) schematically presented in Fig. 2. Using the best-known
sine relation of the right-angled triangle, we have

| α̃ j − α j mod 2π | ≤ 2γ

|βτ( j,k) | ≤ 2δ

|βτ( j,k)| .

��

Coupling the recovery of absolute values and the phase, we may estimate the total
recovery error for the spectrum λ, which mainly depends on ‖λ‖−∞.

Proposition 27 Assume ‖ β̃ − β ‖∞ ≤ δ, and estimate λ by (12) and (13), where
the true winding direction is used without loss of generality, and where the phase is
propagated from the element largest in magnitude. If δ < ‖λ‖2−∞, then we have

‖λ̃ − λ‖∞ ≤
(

2
√
2

‖λ‖−∞
+ 1

2
√

‖λ‖2−∞ − δ

)
δ

and, for δ ≤ ‖λ‖2−∞/2, in particular

‖λ̃ − λ‖∞ ≤ 5
√
2 δ

2‖λ‖−∞
.

Proof Let α̃ j , α j be the phases of λ̃ j , λ j respectively. We decouple the phase and
magnitude error by

| λ̃ j −λ j | = ∣∣ | λ̃ j | ei α̃ j ±| λ̃ j | eiα j −|λ j |eiα j
∣∣ ≤ | λ̃ j | |ei α̃ j − eiα j |+ ∣∣ | λ̃ j |− |λ j |

∣∣.

Fig. 2 Geometrical relation between βτ( j ,k) and β̃τ ( j ,k). In the proof of Lemma 26, we exploit the right-

angled triangle between the rays with angle α j and α̃ j . Note that the point β̃τ ( j,k) may lay on the adjacent.
The opposite γ is of length δ at the most
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The magnitude error may be simply estimated using Lemma 25 via

∣∣ | λ̃ j | − |λ j |
∣∣ ≤ δ

2
√

‖λ‖2−∞ − δ

.

For the phase error, assume that λk is the eigenvalue with largest magnitude, set
arg(λk) = 0, and propagate the phase from λk to the remaining λ j by (13). The
difference between the unimodular exponentials is now

|ei α̃ j − eiα j | = |ei(α̃ j−α j )/2 − e−i(α̃ j−α j )/2| = 2| sin((α̃ j−α j )/2)|
≤ |α̃ j − α j mod 2π | ≤ 2δ

‖λ‖∞‖λ‖−∞
,

where the last inequality holds by Lemma 26. Using |λ̃ j | ≤ √‖λ‖2∞ + δ ≤ √
2‖λ‖∞,

we finally arrive at

‖λ̃ − λ‖∞ ≤ 2δ
√‖λ‖2∞ + δ

‖λ‖∞‖λ‖−∞
+ δ

2
√

‖λ‖2−∞ − δ

≤
(

2
√
2

‖λ‖−∞
+ 1

2
√

‖λ‖2−∞ − δ

)
δ.

If δ < ‖λ‖−∞/2, we obtain

‖λ̃ − λ‖∞ ≤ 2
√
2 δ

‖λ‖−∞
+

√
2 δ

2‖λ‖−∞
≤ 5

√
2δ

2‖λ‖−∞
.

��
Sensitivity of the signal

As discussed in the previous sections, the components of η̃ are in line with the
structure of (11) meaning

η̃τ ( j,k) ≈ c j c̄k with c j = ȳ jψ j = (S∗x) j (S−1φ) j .

With respect to the above proofs, we recover the transformed signal y = S∗x similar
to the spectrum λ. Thus, we first recover themagnitudes via the real and positive values
η̃τ ( j, j), then assume that c̃k largest in magnitude is real and positive, and spread the
phase from c̃k to every other c̃ j using the relative phase encoded in η̃τ ( j,k). Because of
y j = c jψ

−1
j resulting in |y j | = |ψ−1

j | √ητ( j, j) and arg(y j ) = arg(ητ( j,k))−arg(ψ j ),
we compute the tranformed components via

| ỹ j | :=
√| η̃τ ( j, j) |

|ψ j | and y j := ητ( j,k)

|ητ( j,k)|
ψ̄ j

|ψ j | | y j |. (14)

Adapting the considerations in the previous paragraph for the spectrum, we obtain the
following sensitivities.
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Lemma 28 Assume | η̃τ ( j, j) − ητ( j, j) | ≤ ε, and estimate the magnitude | y j | by (14).
If ε < | y j |2|ψ j |2, then we have

∣∣ | ỹ j | − | y j |
∣∣ ≤ ε

2|ψ j |
√

| y j |2|ψ j |2 − ε

.

Proof Consider ||ỹ j |−|y j || = |ψ−1
j | ||c̃ j |−|c j || and use the arguments in Lemma 25.

��
Lemma 29 Assume | η̃τ ( j,k) − ητ( j,k) | ≤ ε, suppose that yk is real and positive, and
estimate the phase arg(y j ) by (14). If ε < | y j || yk ||ψ j ||ψk |, then we have

| arg(ỹ j ) − arg(y j )mod 2π | ≤ 2ε

| yk || y j ||ψk ||ψ j | .

Proof Note that the phase difference may be written as

| arg(ỹ j )−arg(y j )| = | arg(c̃ j )−arg(ψ j )−arg(c j )+arg(ψ j )| = | arg(c̃ j )−arg(c j )|,

and use the arguments of Lemma 29. ��
Proposition 30 Assume ‖ η̃−η‖∞ ≤ ε, and estimate y by (14), where the truewinding
direction is used without loss of generality, and where the phase is propagated form
the element largest in magnitude. If ε < ‖ y‖2−∞‖ψ ‖2−∞, then we have

‖ ỹ − y‖∞ ≤
(
2
√
2 ‖ y‖∞ ‖ψ ‖∞

‖ y‖2−∞ ‖ψ ‖2−∞
+ 1

2 ‖ψ ‖−∞
√

‖ y‖2−∞ ‖ψ‖2−∞ − ε

)
ε

and thus

‖x̃ − x‖∞ ≤
(
2
√
2 ‖ y‖∞ ‖ψ ‖∞

‖ y‖2−∞ ‖ψ ‖2−∞
+ 1

2 ‖ψ ‖−∞
√

‖ y‖2−∞ ‖ψ‖2−∞ − ε

)
‖S−1 ‖1 ε.

Proof The statement follows using the same technique as for Proposition 27. Notice
however that in the last estimate | yk | and |ψk |would not have to correspond to ‖ y‖∞
and ‖ψ ‖∞ respectively since the phase is propagated from the coefficient c̃k ≈ ȳkψk

largest in magnitude. Therefore the maximum norms do not cancel out. For the second
part, exploit x = (S∗)−1 y and ‖(S−1)∗‖∞ = ‖S−1‖1. ��
Multiple sampling vectors

Finally, we would like to discuss the sensitivity of the phase propagation in the
setting of Theorem 17, where we exploit spatiotemporal measurements with respect
to several sampling vectors φi . Here, we first recover the partial spectra �̃i = {λ̃k :
k ∈ suppψi } up to global phase and winding direction, then identify the order within
the partial spectra, and afterwards align these to find the complete spectrum of A
with one unified global phase and winding direction. In this process an extra error
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Fig. 3 Schematic example for the propagation of the phase from some starting element over some path to
another element. The elements of �̃i with the largest magnitude are marked in red. In each partial spectra,
the phase error get worse by 2ρ at the most

will appear in the phase of eigenvalues because of the phase propagation between the
partial spectra. Fortunately, the amplitude of the eigenvalues is not affected.

To demonstrate the issue in more detail, let us—for the moment—consider two
partial spectra �̃0 and �̃1 and assume

|arg(λ̃i,k) − arg(λk)mod 2π | ≤ ρ

if λk is covered by �̃i . For simplicity, we assume that the winding directions are
already aligned. If we now propagate the phase from �̃0 over λ̃0,k and λ̃1,k to �̃1, then
the phases in �̃1 have to be shifted by arg(λ̃0,k) − arg(λ̃1,k). Since the phase of λ̃1,k
is already defective, the error within �̃1 may accumulate at most to 2ρ. If we want to
align the global phase of the entire spectrum, we may take the element with the largest
magnitude in �̃0, look for the shortest path over the partial spectra �̃i to λ̃ j , and
propagate the phase along this path. The error of arg(λ̃ j )may then accumulate at most
to [1+ 2(M − 1)]ρ, where M is the number of the employed spectra �i . A schematic
example of this procedure is shown in Fig. 3. For the phase of the transformed signal
y, we may apply the same procedure.

9 Numerical examples

The constructive proofs of the uniqueness guarantees for phase retrieval and sys-
tem identification can immediately be implemented to obtain numerical algorithms.
Because of the sensitivity of Prony’s method as corner stone of the proofs, these
methods will however be vulnerable to noise. Nevertheless, we provide some small
numerical examples to accompany the theoretical results and to show that simultaneous
identification of system and signal is possible in principle. All numerical experiments
have been implemented in Julia.1

1 The Julia Programming Language—Version 1.4.2 (https://docs.julialang.org)
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Table 1 The mean of the reconstruction error ‖β − β̃ ‖∞ over 5000 experiments for different numbers of
addends K and samples L in the noise-free setting; see Example 31

Number of samples L
K 2K + 1 3K + 1 4K + 1 5K + 1 8K + 1 10K + 1

5 7.380 · 10−12 1.317 · 10−12 1.446 · 10−12 9.931 · 10−13 2.162 · 10−13 4.886 · 10−13

10 1.212 · 10−7 1.822 · 10−7 4.340 · 10−8 1.526 · 10−8 4.081 · 10−9 5.598 · 10−9

15 1.286 · 10−3 2.475 · 10−4 1.646 · 10−6 3.558 · 10−5 2.163 · 10−6 2.460 · 10−6

20 1.503 · 10−2 5.406 · 10−4 7.727 · 10−4 3.951 · 10−4 2.998 · 10−4 2.325 · 10−4

Example 31 (Prony’s method) First, we apply the approximated Prony method in
Algorithm 3 to the complex setting. For this, we generate exponential sums (1)
by choosing the coefficients and bases from a ring in the complex plane. More
precisely, the absolute values are drawn with respect to the uniform distributions
|ηk | ∼ U([1/8, 1]) and |βk | ∼ U([1/2, 1]) and the phases form U((−π, π ]) inde-
pendently. The mean maximal reconstruction errors for different numbers of addends
K and numbers of samples L . The results over 5000 reconstructions are recorded
in Tables 1 and 2. For a small number of addends, the parameter are identified
fairly well. Increasing the number of addends however leads to a significant loss
of accuracy. To some degree, this may be compensated by employing more sam-
ples. We repeat this experiment with small additive noise |ek | ∼ U ([0, 10−10]) and
arg(ek) ∼ U((−π, π ]); see Tables 3 and 4.

Example 32 (Simultaneous signal and system identification) In this numerical exam-
ple, we consider the recovery of real-valued signals and convolution kernels as
discussed in Section 6. The true, unknown kernel a ∈ R

6 is here chosen as

â := ( cos(2k))2k=−3,

where the indices are considered modulo 6. Besides the strictly, symmetrically
decreasing kernel, the unknown signal x ∈ R

6 and the known measurement vec-
tors φ1,φ2 ∈ R

6 have been randomly generated such that the requirements for the
reconstruction are fulfilled, i.e. φ1 and φ2 are pointwise independent in the fre-
quency domain, and the assumption �[ ¯̂xk φ̂i,k] �= 0 is satisfied for k = 0, . . . , 5,

Table 2 The mean of the reconstruction error ‖η − η̃‖∞ over 5000 experiments for different numbers of
addends K and samples L in the noise-free setting; see Example 31

Number of samples L
K 2K + 1 3K + 1 4K + 1 5K + 1 8K + 1 10K + 1

5 1.298 · 10−10 5.154 · 10−11 4.864 · 10−11 3.644 · 10−11 6.745 · 10−12 1.988 · 10−11

10 3.517 · 10−6 6.538 · 10−6 6.285 · 10−6 5.281 · 10−7 1.483 · 10−7 2.763 · 10−7

15 2.194 · 10−3 1.403 · 10−4 1.193 · 10−4 2.193 · 10−4 6.814 · 10−5 6.406 · 10−5

20 1.860 · 10−2 2.040 · 10−3 2.445 · 10−3 1.503 · 10−3 2.021 · 10−3 1.405 · 10−3
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Table 3 The mean of the reconstruction error ‖β − β̃ ‖∞ over 5000 experiments for different numbers
of addends K and samples L in the noisy setting |ek | ∼ U ([0, 10−10]) and arg(ek ) ∼ U((−π, π ]); see
Example 31

Number of samples L
K 2K + 1 3K + 1 4K + 1 5K + 1 8K + 1 10K + 1

5 1.481 · 10−5 7.640 · 10−6 5.188 · 10−7 1.942 · 10−7 3.555 · 10−7 3.335 · 10−7

10 1.580 · 10−2 4.646 · 10−3 3.571 · 10−3 3.210 · 10−3 3.442 · 10−3 3.413 · 10−3

15 9.528 · 10−2 2.016 · 10−2 1.719 · 10−2 1.570 · 10−2 1.685 · 10−2 1.290 · 10−2

20 2.741 · 10−1 9.357 · 10−2 8.451 · 10−2 7.909 · 10−2 8.243 · 10−2 8.477 · 10−2

Table 4 The mean of the reconstruction error ‖η − η̃ ‖∞ over 5000 experiments for different numbers
of addends K and samples L in the noisy setting |ek | ∼ U ([0, 10−10]) and arg(ek ) ∼ U((−π, π ]); see
Example 31

Number of samples L
K 2K + 1 3K + 1 4K + 1 5K + 1 8K + 1 10K + 1

5 2.680 · 10−4 2.120 · 10−4 1.215 · 10−5 3.500 · 10−6 1.419 · 10−5 6.576 · 10−6

10 1.580 · 10−2 4.646 · 10−3 3.571 · 10−3 3.210 · 10−3 3.442 · 10−3 3.413 · 10−3

15 9.304 · 10−2 3.209 · 10−2 3.271 · 10−2 2.968 · 10−2 3.093 · 10−2 2.804 · 10−2

20 2.256 · 10−1 1.224 · 10−1 1.178 · 10−1 1.135 · 10−1 1.184 · 10−1 1.230 · 10−1

Table 5 The randomly generated unknown signal x and the known measurement vectors φ1, φ2 in
Example 32 satisfying the assumptions of Theorem 12

Index k in time domain
0 1 2 3 4 5

x −0.806494570 0.697047937 0.475340169 −0.868496176 −0.373776219 0.573125494

φ1 0.299100737 −0.067652854 0.223548074 −0.419039372 0.398336559 0.439827094

φ2 −0.222947251 0.185111331 0.508076580 −0.024006689 0.491191477 −0.360304943
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i = 1, 2. For reproducibility, the employed signals are shown in Table 5. Choosing
L := 4d2+1 = 145 to encounter the numerical sensitivity of Prony’s method, we now
apply the procedure in the constructive proof of Theorem12. The reconstructions ã and
x̃ of the true signals a and x are shown in Fig. 4. Aligning the overall sign of x and x̃,
we are able to recover the unknown signals up to an error of ‖ â− ˆ̃a‖∞ = 8.650 ·10−5

and ‖x − x̃ ‖∞ = 1.141 · 10−3. The theoretical procedure behind Theorem 12 thus
allows the simultaneous numerical recovery of signal and kernel.

Due to the sensitivity of Prony’s method, the procedure considered in Example 32
becomes numerically unstable when d increases. For high dimensional instances, sig-
nal and system can nevertheless be identified if more sampling vectors are employed.

Example 33 (Multiple sampling vectors) Finally, we consider the identification of
complex-valued signals and convolution kernels, i.e. A := circ a, using multiple
sampling vectors. For the experiment, the true but unknown signal x ∈ C

50 and kernel
a ∈ C

50 have been randomly generated such that x has a non-vanishing Fourier
transform and a is absolutely collision-free; see Fig. 5. Furthermore, we generate 47
sampling vectors φi ∈ C

50 such that supp φ̂i = {i, . . . , i + 3}. Since the support of
two consecutive sampling vectors is shifted by one, the generated sampling vectors
allow index separation (8) and phase propagation (9). Additionally, we ensure that the
winding direction determination property (10) is satisfied for i1 = 0, i1 = 1, k1 =
1, k2 = 2. Furthermore, we employ for each sampling vector 65 samples, which is
around twice the minimal required number to apply Prony’s method. Next, we apply
the construction behind the proof of Theorem 17 line by line, where the procedure in
the proof of Theorem 10 is used to identify the partial spectrum of a with respect to
φi . The recovered signal x̃ and kernel ã are shown in Fig. 5. Aligning the phase of the
true and recovered vectors at the first component, we here observe the reconstruction
errors ‖ â − ˆ̃a‖∞ = 1.897 · 10−3 and ‖ x̂ − ˆ̃x ‖∞ = 1.563 · 10−4. As shown in this
example, the techniques behind the theoretical proofs may be applied to recover signal
and kernel from noise-free samples.

Fig. 4 The true and reconstructed signal and kernel in Example 32 by applying the procedure provided in
Theorem 12
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Fig. 5 The true and reconstructed signal and kernel in Example 33 by applying the procedure behind
Theorem 17

10 Conclusion

Phase retrieval in dynamical sampling is a novel research direction occurring a few
years ago. As for most phase retrieval problems, the main issue is the ill-posedness
especially emerging in the non-uniqueness of the solution. Besides the phase retrieval
of the unknown signal, we additionally identify the unknown involved operator
from a certain operator class. We have shown that both—phase retrieval and system
identification—is in principle simultaneously possible if the spectrum of the operator
is (absolutely) collision-free. The employed conditions to ensure the uniqueness of
the combined phase and system identification hold for almost all signals, spectra, and
measurement vectors. Our work horse has been the approximate Prony method for
complex exponential sums. As a consequence, all proofs are constructive and give
explicit analytic reconstruction methods. Unfortunately, Prony’s method is notorious
for its instability. We have studied the sensitivity in more details yielding error bounds
that are interesting by themselves outside the context of dynamical sampling. The
recovery error of phase and system here centrally depends on the well-separation of
the pairwise products of the spectrum and how far the involved entities are away from
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zero. Especially for high-dimensional instances, the well-separation gets worse since
the pairwise products start to cluster, so the analytic reconstructions can only be applied
to small instances or a series of specially constructed sampling vectors numerically.
The main contributions of this paper are the theoretical uniqueness guarantees, where
the question of a practical recovery methods remains open for further research. In
particular for phase retrieval, it would be interesting to adapt Prony’s method to the
occurring quadratic structure or to replace it by a more suitable method.

Appendix

A Sensitivity of the approximate Pronymethod

Inverse Vandermondematrices

The inverse of a quadratic Vandermonde matrix has been well studied in the literature
[53–60] and is given by

V−1(β) =
(
(−1)K−k−1 S(�)

K−k−1(β)
/

��(β)
)K−1

�,k=0
, (15)

where S(�)
k denotes the kthe elementary symmetric polynomial without the �the vari-

able, which is more precisely defined by

S(�)
k (β) =

∑

0≤ j1<···< jk≤K−1
j1,..., jk �=�

β j1 . . . β jk and S(�)
0 (β) = 1,

and where �� is the product of differences

��(β) :=
K−1∏

k=0
k �=�

(β� − βk).

The classical elementary symmetric polynomials are based on all elements of β, i.e.
without the condition j1, . . . , jk �= �, and are denoted by Sk(β).

Lemma 34 (Gautschi [55]) The elementary symmetric polynomial are bounded by

K−1∑

k=0

| Sk(β) | ≤
K−1∏

k=0

(1 + |βk |).
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Proof For convenience, we give the brief proof from [55]. On the bases of Vieta’s
formula, the elementary symmetric polynomials are related to the polynomial

z �→
K−1∑

k=0

(−1)k Sk(β) zK−k−1 =
K−1∏

k=0

(z − βk).

Choosing z = −1, we obtain the assertion for real and positive βk , k = 0, . . . , K − 1.
The general assertion then follows from | Sk(β) | ≤ Sk(|β |), where | · | is applied
elementwise. ��
Proposition 35 For β ∈ C

K∗ with distinct elements, the inverse of the quadratic Van-
dermonde matrix V (β) satisfies

‖V−1(β)‖∞ ≤ πβ

σ K−1
β

.

Proof The bound follows immediately from the inversion formula (15) and from
applying Lemma 34 to the sum over the elementary symmetric polynomials S(�)

k with
fixed � as well as multiplying the estimated for the row sums by the missing factor
(1 + |β� |) > 1. ��

Next, we consider the Moore–Penrose inverse of the rectangular Vandermonde
matrix VL(β), which is given by

V †
L (β) = (V ∗

L (β) VL(β))−1 V ∗
L (β).

To estimate its norm,we exploit that theMoore–Penrose inverse is the zero extension of
the inverse with respect to the orthogonal complement of the kernel. For an arbitrary
full-rank matrix, the Moore–Penrose inverse is therefore the left inverse with the
smallest norm.

Proposition 36 Let A ∈ C
L×K with L ≥ K be a full-rank matrix, and let A+ be an

arbitrary left inverse. For every 1 ≤ p ≤ ∞, the Moore–Penrose inverse then satisfies

‖ A†‖p ≤ ‖ A+ ‖p.

Proof Since every left inverse A+ fulfills A+A = I , all left inverses coincide on the
range of A. The Moore–Penrose inverse is now the unique zero continuation from
the range to the whole space CL , which geometrically means that the Moore–Penrose
inverse is the projection onto ran A composed with the unique inverse on the range.
For the induced matrix norm, this means

‖ A+ ‖p = sup
‖ x ‖p=1

‖ A+x ‖p ≥ sup
‖ x ‖p=1
x∈ran A

‖ A+x ‖p = sup
‖ x ‖p=1

‖ A†x ‖p = ‖ A†‖p
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because (ran A)⊥ = ker A†. This argumentation holds for all induced matrix norms
and not only for the p-norm. ��

Proofs of the results in Sect. 8.1

Proof of Theorem 20 Let ν̃ be the corresponding left singular vector, i.e. H̃ γ̃ = σ̃K ν̃.
Incorporating (4) and (1) into this equation, we obtain

σ̃K ν̃� =
K∑

k=0

h̃�+k γ̃k =
K∑

k=0

(h�+k + e�+k) γ̃k =
K−1∑

j=0

η jβ
�
j P̃(β j ) +

K∑

k=0

e�+k γ̃k

for � = 0, . . . , L − K − 1. In matrix–vector form, these equations are given by

VL−K (β)
(
η j P̃(β j )

)K−1

j=0
= σ̃K ν̃ − Eγ̃ .

Multiplying with the left inverse V+
L−K (β) := ( V−1(β)

0L−2K ,K

)
, we obtain

(
η j P̃(β j )

)K−1

j=0
= V+

L−K (β) (σ̃K ν̃ − Eγ̃ ).

Taking the squared Euclidean norm, bounding the spectral norm by the row-sum norm,
and applying Proposition 35 yields the assertion. ��

Proof of Theorem 21 First assume γ̃ /∈ ker H . Letting γ := projker H γ̃ , the projection
γ is a maybe not normalized right singular vector for the singular value zero. Lemma 2
implies that the polynomial P(z) := ∑K

k=0 γk zk has the roots β0, . . . , βK−1. There-
fore, we can write

K−1∑

k=0

|P̃(βk)|2=
K−1∑

k=0

|P̃(βk)−P(βk)|2=‖V T (β) γ̃−V T (β) γ ‖22≤‖V (β)‖22 ‖γ̃−γ ‖22.

Now since (γ̃ − γ ) ⊥ ker H , we obtain

σ 2
K−1‖γ̃ − γ ‖22 ≤ ‖H(γ̃ − γ )‖22 = ‖(H̃ − E)γ̃ ‖22 ≤ (σ̃K + ‖E ‖2

)2
.
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Combining the above inequalities, and exploiting

‖VL(β)‖∞ ≤ max
0≤�<L

K−1∑

k=0

|βk |� ≤ K max
0≤�<L

‖β‖�∞ ≤ K max{1, ‖β ‖L−1∞ } ≤ KρL−1
β ,

(16)

‖VL(β)‖1 ≤ max
0≤k<K

L−1∑

�=0

|βk |� ≤ L max
0≤k<K

(
max{1, βL−1

k }
)

(17)

≤ L max{1, ‖β ‖L−1∞ } ≤ LρL−1
β , (18)

‖VL(β)‖2 ≤ √‖VL(β)‖1‖VL(β)‖∞ ≤ √
K LρL−1

β ,

we establish the assertion. For the remaining case γ̃ ∈ ker H , the bases βk are roots
of P̃ by Lemma 2. ��
Proof of Proposition 23 The inequality follows immediately from

‖η − η̃‖∞ ≤ ‖V †
L (β)‖∞‖h − h̃‖∞

and from applying Proposition 36 and 35 with the left inverse

V+
L−K (β) := ( V−1(β)

0L−2K ,K

)
.��

Lemma 37 For β ∈ C
K , and for β̃ ∈ C

K with ‖β − β̃ ‖∞ ≤ δ, it holds

π
β̃

≤ π|β |+δ1, σ
β̃

≥ σβ − 2δ, (19)

‖VL(β̃) − VL(β)‖∞ ≤ √
2 K L ρL−1

|β |+δ1 δ. (20)

Proof The left-hand inequality in (19) is established by

π
β̃

=
K−1∏

k=0

(1 + | β̃k |) ≤
K−1∏

k=0

(1 + |βk | + δ) = π|β |+δ1.

Using the triangle inequality, we may estimate the minimal separation (19) in by

| β̃� − β̃k | ≥ |β� − βk | − |β� − β̃� | − |βk − β̃k | ≥ |β� − βk | − 2δ.

For the proof of (20),we use the following complexmean value theorem [61, Thm2.2]:
Let f be a holomorphic function defined on an open convex set D ⊂ C, and let a and
b be two distinct points in D. Then, there exist z1, z2 ∈ (a, b) such that

�( f ′(z1)
) = �

(
f (b) − f (a)

b − a

)
and �( f ′(z2)

) = �
(

f (b) − f (a)

b − a

)
,
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where (a, b) denotes the open line segment

(a, b) := {a + t(b − a) : t ∈ (0, 1)}.

On the basis of this complex mean value theorem, we obtain

‖VL(β)−VL(β̃)‖∞ = max
0≤�<L

K−1∑

k=0

|β�
k−β̃�

k |= max
0≤�<L

K−1∑

k=0

�|βk−β̃k ||�(ξ�−1
�,k )+i�(ζ �−1

�,k ) |

with intermediate points ξ�,k , ζ�,k ∈ (βk, β̃k). Since |ξ�,k | ≤ |βk | + δ as well as
|ζ�,k | ≤ |βk | + δ, we finally have

‖VL(β) − VL(β̃)‖∞ ≤ max
0≤�<L
0≤k<K

√
2 �K (|βk | + δ)�−1 δ ≤ √

2 K L ρL−1
|β |+δ1 δ.��

Proof of Proposition 24 Due to δ < σβ/2, the perturbed Vandermonde matrix VL(β̃)

has full rank. Furthermore, the reconstruction error may be estimated by

‖η − η̃‖∞ = ‖η − V †
L (β̃) h̃‖∞ (21)

= ‖V †
L (β̃) VL(β̃)η − V †

L (β̃) VL(β) η + V †
L (β̃)(h − h̃)‖∞ (22)

≤ ‖V †
L (β̃)‖∞

(‖VL(β̃) − VL(β)‖∞‖η‖∞ + ‖h − h̃‖∞
)

Thefirst factormay be estimated by applying Proposition 36with perturbed left inverse

V+
L−K (β̃) := ( V−1(β̃)

0L−2K ,K

)
followed by Proposition 35 and (19) yielding

‖V †
L (β̃)‖∞ ≤ π

β̃

σ K−1
β̃

≤ π|β |+δ1

(σβ − 2δ)K−1 .

Using (20) and that ‖η‖∞ ≤ ‖V †
L (β)‖∞‖h‖∞ together with Proposition 36 and

Proposition 35, we finally arrive at

‖η − η̃‖∞ ≤ π|β |+δ1

(σβ − 2δ)K−1

(√
2 K L ρL−1

|β |+δ1 δ
πβ

σ K−1
β

‖h‖∞ + ε

)
.��
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