
Advances in Computational Mathematics (2023) 49:64
https://doi.org/10.1007/s10444-023-10052-0

Numerical analysis of nonlinear degenerate parabolic
problems with application to eddy current models

Ramiro Acevedo1 · Christian Gómez2 · Paulo Navia1

Received: 15 July 2022 / Accepted: 25 May 2023 / Published online: 2 August 2023
© The Author(s) 2023

Abstract
This paper deals with the numerical analysis for a family of nonlinear degenerate
parabolic problems. The model is spatially discretized using a finite element method;
an implicit Euler scheme is employed for time discretization. We deduce sufficient
conditions to ensure that the fully discrete problem has a unique solution and to prove
quasi-optimal error estimates for the approximation. Finally, we propose a nonlinear
degenerate parabolic problem that arises from electromagnetic applications in conduc-
tive nonlinear magnetic media and deduce its solubility and convergence by using the
developed abstract theory, including some numerical results to confirm the obtained
theoretical results.
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1 Introduction

This paper is devoted to the fully discrete finite element approximation analysis for
a class of nonlinear degenerate parabolic problems. In this work, we consider that
a degenerate parabolic equation (see, for instance [1, 2]) is an abstract evolution
equation of the form

d

dt
(Ru(t)) + Au(t) = f (t), (1.1)

where R is a linear, bounded and monotone operator, and A is an operator which is not
necessarily linear. The study for these problems is a relevant topic for the numerical
analysis of partial differential equations, in particular for computing the eddy currents
in electromagnetic field theory (see, for instance, [3–8]). For the case, which R is time-
dependent, we can refer to reader to [9].

The main purpose of this paper is to extend the results obtained in [9] where the
operator A is assumed to be linear. To this purpose, we assume some reasonable
conditions inspired in physical properties that allow to deal with ferromagnetic con-
ducting materials. In this kind of materials, if the hysteresis effects and anisotropies
are neglected, we can suppose that the reluctivity is a scalar function that has a non-
linear dependence on the absolute value of the magnetic induction; see, for instance,
[10–12].

It is important to mention that the number of works referring to eddy current prob-
lems involving ferromagnetic conducting materials is very low. Among the papers
dedicated to the study of this problem, we can cite the papers [10] and [13], which
were based on the so-called multiharmonic-approach. In both cases, the authors apply
the truncated Fourier series expansions to approximate numerical solutions of the eddy
current problem. On the other hand, in [14] was presented a T − ψ formulation for
a nonlinear eddy current model, and more recently, in [15], a nonlinear 2D transient
magnetic fields with drop excitations was proposed. The numerical analysis for these
two works was studied by using a finite element approximation and an implicit time
discretization scheme. Besides, in [12], a FEM/BEM coupling was analyzed for a 3D
nonlinear eddy current formulation based on a time-primitive of the electric field.Other
important studies about numerical nonlinear degenerate parabolic problems have been
proposed in [16, 17].

This paper allows us to obtain convergence of conforming approximations in space
(typically, the family of finite dimensional subspaces is defined by finite elements)
and a backward Euler method for the time-approximation, under weaker assumptions
on the solution. Following the approach proposed in [1], we obtain error estimates for
the fully discrete scheme by assuming only a time-regularity of a suitable projection
of the solution, which is a more natural regularity assumption for the solution of
degenerate parabolic problems. In fact, this work is intended as a first step toward the
analysis for nonlinear 3D transient eddy current models that happen in the presence of
ferromagnetic materials, by considering variational formulations in terms of a time-
primitive of the electric field, which makes that the obtained problems are degenerate
(see [18–20]).
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The outline of the paper is as follows: In Sect. 2, we summarize some results from
[2] concerning nonlinear degenerate parabolic equations. In Sect. 3, we propose a fully
discrete approximation of the last problem by using finite dimensional subspaces to the
space approximation and a backward Euler scheme in time. The results ensuring the
quasi-optimal convergence of the approximation for numerical solution are shown in
Sect. 4. Furthermore, the application of the theory to an eddy current model is studied
in Sect. 5, where we deduce its solvability and theoretical convergence by using the
developed abstract theory. Finally, we report some numerical results that confirm the
expected convergence of the method according to the theory.

2 A nonlinear degenerate parabolic problem

Let X and Y be two real separable Hilbert spaces such that X ⊂ Y with a continuous
and dense embedding. Let us denote by X ′ and Y ′ the topological dual spaces of X
and Y respectively, where X ′ is obtained by using Y as a pivot space1. Besides, we
consider a linear and bounded operator2 R : Y → Y ′ and an operator A : X → X ′
which is not necessarily a linear operator. Let T > 0. Then, the nonlinear degenerate
parabolic problem consists in given f ∈ L2(0, T ;X ′) and u0 ∈ X :

Problem 1 Find u ∈ L2(0, T ;X) such that

d

dt
〈Ru(t), v〉Y + 〈Au(t), v〉X = 〈 f (t), v〉X ∀v ∈ X ,

〈Ru(0), v〉Y = 〈Ru0, v〉Y ∀v ∈ X ,

where we denote by 〈·, ·〉X and 〈·, ·〉Y the duality pairings between X and Y in theirs
corresponding dual spaces. In similar way, we will denote (·, ·)X and (·, ·)Y the inner
products on X and Y respectively and ‖ · ‖X , ‖ · ‖Y the corresponding norms.

The following result shows sufficient conditions to obtain the existence and unique-
ness of the solution for Problem 1, but first, we need to recall some definitions.

Definition 2.1 Given Z be a Hilbert space, let us consider an operator G : Z → Z ′.
• G is called symmetric, if 〈Gu, v〉Z = 〈Gv, u〉Z for any u, v ∈ Z.
• G is monotone if 〈Gu − Gv, u − v〉Z ≥ 0 for any u, v ∈ Z. Moreover, G is
strictly monotone if 〈Gu − Gv, u − v〉Z > 0 for any u, v ∈ Z with u �= v.
Furthermore, G is strongly monotone if there is a constant α > 0 such that
〈Gu − Gv, u − v〉Z ≥ α‖u − v‖2Z for any u, v ∈ Z.

• G is coercive if lim‖v‖Z→+∞
〈Gv, v〉Z

‖v‖Z = +∞.

• G is Lipschitz continuous if there is a constant κ > 0 such that

‖Gu − Gv‖Z ′ ≤ κ‖u − v‖Z ∀u, v ∈ Z .

1 Each element in Y must be identified as an element of X ′ by the Riesz representation theorem in Y , i.e.
〈y, x〉X := (y, x)Y for any y ∈ Y and x ∈ X . Here, 〈·, ·〉X is the duality pairing between X ′ and X , and
(·, ·)Y is the inner product in Y .
2 In this context, an operator is understood as a function between normed vector spaces.
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• G is hemicontinuous if for every u, v ∈ Z the function t �→ 〈G(u + tv), v〉Z is
continuous.

The following result shows sufficient conditions to obtain the existence and unique-
ness of solution for Problem 1:

Theorem 2.1 Assume that R is a monotone and symmetric operator. Futhermore, we
suppose the operator A is monotone and hemicontinuous, and there is a constant
α > 0 such that

〈Av, v〉X ≥ α‖v‖2X ∀v ∈ X . (2.1)

Then, there exists a solution of Problem 1. In addition, if A is a strictly monotone
operator, the solution of Problem 1 is unique.

Proof See [2, Proposition III.6.2].

3 Fully discrete approximation for the nonlinear degenerate
parabolic problem

In this section, we present the fully discrete approximation for the nonlinear degen-
erate parabolic problem which was introduced in the previous section. To this end,
we assume that R and A are operators that satisfy the sufficient conditions given in
Theorem 2.1 to guarantee the existence and uniqueness of solution of Problem 1.

The fully discrete approximation will be obtained by using the finite-element
method in space and a backward-Euler scheme in time. Let {Xh}h>0 be a sequence
of finite-dimensional subspaces of X and let tn := n�t , n = 0, . . . , N , be a uniform
partition of [0, T ] with a time-step �t := T /N .

For any finite sequence {θn : n = 0, . . . , N } we denote

∂θn := θn − θn−1

�t
, n = 1, . . . , N .

Let u0,h ∈ Xh a given approximation of u0. The fully discrete approximation of
Problem 1 reads as follows.

Problem 2 Find unh ∈ Xh, n = 1, . . . , N, such that

〈R∂unh, v〉Y + 〈Aunh, v〉X = 〈 f (tn), v〉X ∀v ∈ Xh,

Ru0h = Ru0,h .

We can note that in each step n = 1, . . . , N , unh is computed as the solution of the
following problem: find unh ∈ Xh such that

A(unh, v) = Fn(v) ∀v ∈ Xh,
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where A and Fn are defined by

A(w, v) := 〈Rw, v〉Y + �t 〈Aw, v〉X ∀w, v ∈ Xh,

Fn(v) := �t 〈 f (tn), v〉X + 〈Run−1
h , v〉Y ∀v ∈ Xh .

Wewill use the theorem of Browder andMinty ([21, Theorem 26.A]) to deduce the
existence and uniqueness of solution of Problem 2 for each n = 1, . . . , N . Since Fn is
linear and bounded, we need to prove thatA : Xh → X ′

h ismonotone, hemicontinuous
and coercive. We will only prove the coerciveness, because the other properties are
fulfilled due to that Xh is a subset of X . In fact, by recalling that R is monotone, for
any v ∈ Xh , we have

A(v, v) = 〈Rv, v〉Y + �t〈Av, v〉X ≥ �t 〈Av, v〉X .

Thus, the coerciveness ofA follows from (2.1). Consequently, we have proved the
following result.

Theorem 3.1 If R and A are operators that satisfy the sufficient conditions given in
Theorem 2.1. Then, the fully discrete Problem 2 has a unique solution unh ∈ Xh with
n = 1, . . . , N.

4 Error estimates for the fully discrete approximation

In this section, we will deduce some error estimates for the fully discrete approxi-
mation. To this aim, we start by recalling that R : Y → Y ′ is a linear and bounded
operator that is monotone and symmetric. Hence, if we denote the Riesz isomorphism
by �Y : Y → Y ′ and define R̂ := �−1

Y R, we deduce that R̂ : Y → Y is a linear and
bounded operator. Moreover, R is monotone (i.e., (R̂v, v)Y ≥ 0 for any v ∈ Y ) and
symmetric (i.e., (R̂v,w)Y = (v, R̂w)Y for any v,w ∈ Y ). Thus, in virtue of [1] we
can define Y+ as the orthogonal space of Y0 := ker R̂ and let us consider Y 1/2

+ be the
completion of Y+ under the norm given by ‖v‖+ := ‖R̂1/2v‖Y .

Next, we consider the orthogonal projection operator P+ : Y → Y+ defined by

P+v ∈ Y+ : (v − P+v,w)Y = 0 ∀w ∈ Y+.

Therefore, R̂v = R̂P+v for any v ∈ Y and furthermore

〈Rv, v〉Y = ‖R̂1/2v‖2Y = ‖R̂1/2P+v‖2 = ‖P+v‖2+ ∀v ∈ Y .

On the other hand, it is clear that ∂t P+u = P+∂t u and the fact that R ∈ L(Y ,Y ′)
implies RP+u ∈ H1(0, T ;Y ′) and ∂t R(P+u) = R(∂t P+u) in L2(0, T ;Y ′). Hence, we
deduce

∂t (Ru) = ∂t R(P+u) = R(∂t P+u) = R(P+∂t u) in L2(0, T ;Y ). (4.1)
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Furthermore, recalling that R is monotone and symmetric, it satisfies the Cauchy-
Schwarz type inequality given by

|〈Rv,w〉Y | ≤ 〈Rv, v〉1/2Y 〈Rw,w〉1/2Y ∀u, v ∈ Y . (4.2)

Thus, we obtain

‖Rv‖Y ′ ≤ ‖R‖1/2L(Y ,Y ′)‖v‖+ ∀v ∈ Y+.

The previous inequality allows us to extend R : Y+ → Y ′ to R̃ : Y 1/2
+ → Y ′ by

using standard arguments of continuity and density. Furthermore, we have

∣
∣
∣〈R̃v,w〉Y

∣
∣
∣ ≤ ‖v‖+〈Rw,w〉1/2Y ∀v ∈ Y 1/2

+ ∀w ∈ Y . (4.3)

Next, we proceed to introduce a convenient splitting of the approximation error
to obtain the estimates. To do that, we assume the assumptions of Theorem 2.1. and
suppose that the solution of Problem 1 satisfies

u ∈ H1(0, T ;V ),

where V is a subspace of X . Besides, we assume that there exists a linear and bounded
operator 	h : V → Xh .

Remark 1 The subspace V can be understood as a functional space with a major
regularity where the solution belongs in. For example, if X = H1(
) (i.e., u ∈
L2(0, T ; H1

0 (
))), we can take V := H1
0 (
)∩H1+s(
) with s > 0 (i.e., in this case,

we would assume u ∈ H1(0, T ; H1
0 (
) ∩ H1+s(
))).

On the other hand, there are exist different examples of operators 	h satisfying the
previous conditions.

1. In general, we can take V := X and define two orthogonal projection operators
	1,h : X → Xh and 	2,h : X → Xh, respectively given by

	1,hw ∈ Xh : (	1,hw, v)Y = (w, v)Y ∀v ∈ Xh

and
	2,hw ∈ Xh : (	2,hw, v)X = (w, v)X ∀v ∈ Xh . (4.4)

It is easy to see that these operators satisfy the following estimates for anyw ∈ X:

‖w − 	1,hw‖Y ≤ inf
v∈Xh

‖w − v‖Y ≤ C inf
v∈Xh

‖w − v‖X

and

‖w − 	2,hw‖X ≤ inf
v∈Xh

‖w − v‖X . (4.5)
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2. In several cases, the space V allows us to define an interpolation operator Ih :
V → Xh such that there exists a function γ (h) tending to zero as h goes to zero,
such that for every w ∈ V it holds that

‖w − Ihw‖X ≤ γ (h) ‖w‖V .

In particular, if X := H1
0 (
), V := H1

0 (
) ∩ H1+s(
)) and Xh is given by the
usual family of Lagrange finite element subspaces, we can consider the Lagrange
interpolant operator Lh : H1

0 (
) ∩ H1+s(
)) → Xh, which satisfies (see, for
instance, [22])

‖w − Lhw‖H1
0 (
) ≤ Ch1+s ‖w‖H1+s (
) ∀w ∈ H1

0(
) ∩ H1+s(
).

Now, we define the error and consider its splitting

enh := u(tn) − unh = ρn
h + σ n

h , n = 1, . . . , N ,

where

ρh(t) := u(t) − 	hu(t), ρn
h := ρh(tn), σ n

h := 	hu(tn) − unh . (4.6)

Furthermore, assuming P+u ∈ C1([0, T ];Y 1/2
+ ) we denote

τ n := P+u(tn) − P+u(tn−1)

�t
− ∂t P+u(tn). (4.7)

Moreover, we can easily check that

∂t P+u(tn) − ∂(P+unh) = ∂(P+enh) − τ n = ∂(P+ρn
h ) + ∂(P+σ n

h ) − τ n (4.8)

for n = 1, · · · , N .

Lemma 4.1 For n = 1, . . . , N, let ρn
h and σ n

h be as in (4.6), and τ n as in (4.7). Let u be
the solution to Problem 1 and unh, n = 1, . . . , N , that to Problem 2 and A : X → X ′
is strongly monotone and Lipschitz continuous operator. If u ∈ H1(0, T ; X) with
P+u ∈ C1([0, T ];Y 1/2

+ ) then there exists a constant C > 0, independent of h and �t ,
such that

〈Rσ n
h , σ n

h 〉Y + �t
n

∑

k=1

‖σ k
h ‖2X

≤ C

[

〈Rσ 0
h , σ 0

h 〉Y + �t
N

∑

k=1

{

‖τ k‖2+ + ‖∂ρk
h‖2Y + ‖ρk

h‖2X
}
]

.
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Proof Let n ∈ {1, . . . , N }, k ∈ {1, . . . , n} and v ∈ Xh . Then, from Problem 1 and
Problem 2, we obtain the error equation

〈R(∂t u(tk) − ∂ukh), v〉Y + 〈Au(tk) − Aukh, v〉X = 0.

Thus, by using (4.1) and ∂t (RP+u) = R̃(∂t (P+u)) in C0([0, T ]; Y ′) ⊂
C0([0, T ]; X ′) we have

〈R̃(∂t (P+u)(tk) − ∂P+ukh), v〉Y + 〈Au(tk) − Aukh, v〉X = 0.

Furthermore, due to that R̃P+v = RP+v = Rv ∀v ∈ X and (4.8) we have

〈R∂σ k
h , v〉Y + 〈A	hu(tk) − Aukh, v〉X = 〈R̃τ k, v〉Y

− 〈R∂ρk
h , v〉Y − 〈Au(tk) − A	hu(tk), v〉X ∀v ∈ Xh . (4.9)

By testing this previous identity with v = σ k
h ∈ Xh , we obtain

〈R∂σ k
h , σ k

h 〉Y + 〈A	hu(tk) − Aukh, σ
k
h 〉X = 〈R̃τ k, σ k

h 〉Y
− 〈R∂ρk

h , σ
k
h 〉Y − 〈Au(tk) − A	hu(tk), σ

k
h 〉X . (4.10)

Now, since A is a Lipschitz and strongly monotone operator, we have

∣
∣
∣〈Au(tk) − A	hu(tk), σ

k
h 〉X

∣
∣
∣ ≤ κ‖ρk

h‖X‖σ k
h ‖X (4.11)

and
∣
∣
∣〈A	hu(tk) − Aukh, σ

k
h 〉X

∣
∣
∣ ≥ α‖σ k

h ‖2X . (4.12)

On the other hand, using the fact that R is symmetric and monotone, it follows that

〈R∂σ k
h , σ k

h 〉Y ≥ 1

2�t

{

〈Rσ k
h , σ k

h 〉Y − 〈Rσ k−1
h , σ k−1

h 〉Y
}

. (4.13)

Hence, using (4.11)-(4.13) in (4.10) together with Young’s inequality, we deduce

1

2�t

[

〈Rσ k
h , σ k

h 〉Y − 〈Rσ k−1
h , σ k−1

h 〉Y
]

+ α

2
‖σ k

h ‖2X
≤ 〈R̃τ k, σ k

h 〉Y − 〈R∂ρk
h , σ

k
h 〉Y + 1

2α
κ2‖ρk

h‖2X . (4.14)

From (4.3) and Young’s inequality, we have

|〈R̃τ k, σ k
h 〉Y | ≤ 1

4T
〈Rσ k

h , σ k
h 〉Y + T ‖τ k‖2+.
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On the other hand, using (4.2) and Young’s inequality

|〈R∂ρk
h , σ

k
h 〉Y | ≤ 1

4T
〈Rσ k

h , σ k
h 〉Y + T 〈R∂ρk

h , ∂ρk
h〉Y .

Therefore, by replacing the previous inequalities in (4.14) and using the fact that
R is a bounded operator, we obtain

〈Rσ k
h , σ k

h 〉Y − 〈Rσ k−1
h , σ k−1

h 〉Y + α

2
�t‖σ k

h ‖2X
≤ �t

2T
〈Rσ k

h , σ k
h 〉Y + C�t

[

‖τ k‖2+ + ‖∂ρk
h‖2Y + ‖ρk

h‖2X
]

.

Thus, summing over k, we obtain

〈Rσ n
h , σ n

h 〉Y − 〈Rσ 0
h , σ 0

h 〉Y + α

2
�t

n
∑

k=1

‖σ k
h ‖2X

≤ �t

2T

n
∑

k=1

〈Rσ k
h , σ k

h 〉Y + C�t
n

∑

k=1

[

‖τ k‖2+ + ‖∂ρk
h‖2Y + ‖ρk

h‖2X
]

.

Then, we have

1

2
〈Rσ n

h , σ n
h 〉Y + α�t

n
∑

k=1

‖σ k
h ‖2X ≤ 〈Rσ 0

h , σ 0
h 〉Y + �t

2T

n−1
∑

k=1

〈Rσ k
h , σ k

h 〉Y (4.15)

+C�t
n

∑

k=1

[

‖τ k‖2+ + ‖∂ρk
h‖2Y + ‖ρk

h‖2X
]

,

which implies

〈Rσ n
h , σ n

h 〉Y ≤ 2〈Rσ 0
h , σ 0

h 〉Y + �t

T

n−1
∑

k=1

〈Rσ k
h , σ k

h 〉Y

+C�t
n

∑

k=1

[

‖τ k‖2+ + ‖∂ρk
h‖2Y + ‖ρk

h‖2X
]

.

Therefore, by using the discrete Gronwall’s Lemma (see, for instance, [23, Lemma
1.4.2]), we obtain

〈Rσ n
h , σ n

h 〉Y ≤ C

{

〈Rσ 0
h , σ 0

h 〉Y + �t
n

∑

k=1

[

‖τ k‖2+ + ‖∂ρk
h‖2Y + ‖ρk

h‖2X
]
}

.

Finally, by using the last inequality to estimate the second term in the right-hand
term of (4.15), we have established the result.
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Below, we show the theorem that allows to obtain the error estimates for nonlinear
degenerate parabolic problems.

Theorem 4.1 Assume the conditions of Lemma 4.1. Let u be the solution to Problem 1
and unh, n = 1, . . . , N , that to Problem 2. If u ∈ H1(0, T ;V )with P+u ∈ H2(0, T ;Y+)

then, there exists a constant C > 0, independent of h and �t , such that

max
1≤n≤N

〈R(u(tn) − unh), u(tn) − unh〉Y + �t
N

∑

n=1

‖u(tn) − unh‖2X

≤ C

{

〈R(u0 − u0,h, u0 − u0,h〉Y + max
0≤n≤N

‖ρn
h‖2X

+
∫ T

0
‖∂tρh(t)‖2Y dt + (�t)2

∫ T

0
‖∂t t P+u(t)‖2+ dt

}

.

Proof We estimate each term on the right hand of the inequality given in Lemma 4.1.
To start, we write σ 0

h = e0h − ρ0
h and using the fact that R is symmetric and monotone

to obtain

〈Rσ 0
h , σ 0

h 〉Y ≤ 2〈R(u0 − u0,h), u0 − u0,h〉Y + 2〈Rρ0
h , ρ

0
h 〉Y

≤ 2〈R(u0 − u0,h), u0 − u0,h〉Y + C‖ρ0
h‖X . (4.16)

On the other side, a Taylor’s expansion shows that

N
∑

k=1

‖τ k‖2+ =
N

∑

k=1

∥
∥
∥
∥

1

�t

∫ tk

tk−1

(tk−1 − t)∂t t P+u(t) dt

∥
∥
∥
∥

2

+

≤ �t
∫ T

0
‖∂t t P+u(t)‖2+ dt .

(4.17)

Now, we can see that

�t
N

∑

k=1

‖∂ρk
h‖2Y = 1

�t

N
∑

k=1

∥
∥
∥
∥

∫ tk

tk−1

∂tρh(t)

∥
∥
∥
∥

2

Y

≤
N

∑

k=1

∫ tk

tk−1

‖∂tρh(t)‖2Y . (4.18)

On the other hand, we can easily check that Cauchy-Schwarz inequality implies

〈Renh , enh〉Y + �t
N

∑

k=1

‖ekh‖2X

≤ C

[

〈Rσ n
h , σ n

h 〉Y + 〈Rρn
h , ρn

h 〉Y + �t
N

∑

k=1

‖σ k
h ‖2X + �t

N
∑

k=1

‖ρk
h‖2X

]

.

Consequently, using Lemma 4.1 and (4.16)-(4.18), the result is established.
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Remark 2 If we use the operator	2,h given by (4.4) to define ρh, then by using (4.5),
it follows that

max
0≤n≤N

‖ρn
h‖2X ≤ max

0≤n≤N

[

inf
v∈Xh

‖u(tn) − v‖2X
]

and
∫ T

0
‖∂tρh(t)‖2Y dt ≤

∫ T

0
inf

v∈Xh
‖∂t u(t) − v‖2X dt .

Hence, we can replace these two inequalities in the estimate given in Theorem 4.1
to obtain a Céa-like result for the approximation error u(tn) − unh.

5 Application to the eddy current problem

Let us recall that eddy currents are usually modeled by the low-frequency Maxwell’s
equations [11, chapter 8]. The aim for the eddy current problem is to determine the
eddy currents induced in a three-dimensional conducting domain 
̂c by a given time
dependent compactly supported current density J. The eddy current problem consists
in the following system of equations which gets the connection between the magnetic
field H, the magnetic intensity field B, and the electric field E:

∂tB + curl E = 0,

curl H = J + σE,

divB = 0,

(5.1)

where σ represents the electric conductivity in the conductor. Furthermore, we assume
that the relationship between themagnetic induction and intensity of themagnetic field
is nonlinear. More exactly, in similar way as in [10, 12, 14], we suppose that

H = ν(|B|)B, (5.2)

where ν : R+ → R represents the magnetic reluctivity in ferromagnetic materials.
Besides, we assume that the condutivity is a piecewise smooth real-valued function
satisfying

σmax ≥ σ(x) ≥ σmin > 0 a.e.in 
̂c and σ(x) = 0 a.e. in R3 \ 
̂c. (5.3)

Zlamal [3] has proposed a solution of a particular case of the eddy current sys-
tem (5.1) by solving the following two-dimensional nonlinear degenerate parabolic
problem for a given data function Jd : R2 × [0, T ] → R.

Problem 3 Find u : R2 × [0, T ] → R such that

σ
∂u

∂t
= div (ν(|∇u|)∇u) + Jd, (5.4)

where the physical parameters σ is independent of x3.
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It is easy to deduce the relationship between the eddy current problem (5.1) and the
nonlinear degenerate parabolic equation Problem 3. In fact, the following proposition
allows to write a particular solution of the eddy current model in terms of the solution
u of Problem 3.

Proposition 5.1 If u : R2 × [0, T ] → R is an enough regular solution of Problem 3,
then

E :=
(

0, 0,−∂u

∂t

)

, B :=
(

∂u

∂x2
,− ∂u

∂x1
, 0

)

and

H := ν(|∇u|)
(

∂u

∂x2
,− ∂u

∂x1
, 0

) (5.5)

are solutions of (5.1) with J := (0, 0, Jd).

5.1 Well-posedness for the nonlinear eddy current formulation

Let 
̂ ⊂ R
3 be a simply connected and bounded set containing the closure of 
̂c

and Supp J, with J as in Proposition 5.1. In order to obtain a weak formulation for
Problem 3, we have to consider the projection of both sets 
̂ and the conducting
domain 
̂c onto the plane x1x2, that will be denoted 
 and 
c, respectively. Then,
given uc0 ∈ L2(
c) and Jd ∈ L2(0, T ;L2(
)), by multiplying (5.4) with v ∈ H1

0(
)

and integrating by parts over 
, we obtain the following weak formulation for the
Problem 3.

Problem 4 Find u ∈ L2(0, T ;H1
0(
)) such that

d

dt

∫


c

σuv +
∫




ν(|∇u|)∇u · ∇v =
∫




Jdv ∀v ∈ H1
0(
),

u(0)|
c = uc0 in 
c.

Remark 3 Since the electric permittivity is zero outside of the conductor, left hand
term of (5.4) suggests that the companion initial condition u(0) should be only known
in 
c. Consequently, a natural choice for the initial condition is u(0)|
c = uc0, where
uc0 is a given data in L2(
c). This fact is consistent with the structure of the abstract
degenerate Problem 1 and the natural definition of operator R given by (5.7) below.

Our next goal is to prove the existence and uniqueness of solution of last problem.
Thus, we proceed to fit Problem 4 in the abstract structure of Problem 1, so we have
to define Y := L2(
) and X := H1

0(
) with their usual inner products. Then, we can
easily deduce that these spaces satisfy the corresponding properties of Sect. 2. More
exactly, we define the operators R : Y → Y ′ and A : X → X ′ given by

〈Av,w〉X :=
∫




ν(|∇v|)∇v · ∇w ∀v,w ∈ X , (5.6)

〈Rv,w〉Y :=
∫


c

σvw ∀v,w ∈ Y . (5.7)
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Besides, we can notice that

R̂v = σχ
cv, R̂1/2v = σ 1/2χ
cv ∀v ∈ Y = L2(
),

where χ
c is the characteristic function of 
c. Furthermore,

Y 1/2
+ = Y+ =

{

v ∈ L2(
) : v|
\
c
= 0

} ∼= L2(
c).

and P+v = χ
cv for all v ∈ Y . In addition, we define the function f ∈ L2(0, T ;X ′)
given by

〈 f (t), v〉X :=
∫




Jd(t)v ∀v ∈ X . (5.8)

Finally, we should notice that the initial condition to Problem 4 is equivalent to
Ru(0) = Ru0 in Y ′ where u0 = ũc0 is an extension of uc0 to the whole 
. Now, let us
consider the following assumptions on the nonlinear reluctivity ν : R+

0 → R
+,

∃νmin, νmax : 0 < νmin ≤ ν(s) ≤ νmax ∀s ∈ R
+
0 , (5.9)

∃Mνc > 0 : |ν(p)p − ν(q)q| ≤ Mν |p − q| ∀p, q ∈ R
+
0 , (5.10)

∃αν > 0 : (ν(p)p − ν(q)q)(p − q) ≥ αν |p − q|2 ∀p, q ∈ R
+
0 . (5.11)

The last assumptions on the reluctivity can be derived from natural properties of
the physical BH-curves (see [24, Section 2 ]).

Theorem 5.1 There exists a unique solution u of Problem 4.

Proof The conditions (5.9)-(5.11) imply that the nonlinear operator A defined in
(5.6) is strongly monotone and Lipschitz continuous with constants α = CPFαν

and κ = 3Mν , where CPF is the Poincaré-Friedrichs constant, αν and Mν are indi-
cated in (5.10)-(5.11), respectively (see [24]). Besides, the operator R is monotone
and symmetric. Finally, by using (5.3), noticing that

〈Ru0, u0〉Y =
∫


c

σ |u0|2 ≤ σmax
∥
∥uc0

∥
∥2
L2(
c)

,

and applying Theorem 2.1, we conclude the proof.

Remark 4 It is easy to see that

σ∂t u + div(ν(|∇u|)∇u) = Jd in L2(0, T ;H1
0(
)′),

consequently u|
c belongs to the space

W :=
{

w ∈ L2(0, T ;H1(
c)) : ∂tw ∈ L2(0, T ;H1(
c)
′)
}

.
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5.2 Error estimates for the fully discrete nonlinear degenerate formulation

The fully discrete approximation for Problem 4 is obtained by using finite element
subspaces to define the corresponding family of finite dimensional subspaces of X .
To this aim, in what follows we assume that 
 and 
c are polygonal domains. Let
{Th}h be a regular family of triangles meshes of 
 such that each element K ∈ Th is

contained either in 
c or in 
d := 
 \ 
c. As usual, h stands for the largest diameter
of the triangles K in Th .

We will use standard Lagrange finite element to define Xh subspace of H1
0(
), i.e.,

Xh :=
{

vh ∈ C0(
) : v|K ∈ P1(K )
}

∩ H1
0(
),

where C0(
) is the space of scalar continuous functions defined on 
 and P1 is
the set of polynomials of degree not greater than one. Then, the fully discrete approx-
imation for the nonlinear degenerate parabolic formulation is given by Problem 2 by
using the notation (5.6)–(5.8). More precisely, given u0,h ∈ Xh an approximation of
u0, the fully discrete approximation of Problem 4 can be read as follows.

Problem 5 Find unh ∈ Xh, n = 1, . . . , N, such that

∫


c

σ

(

unh − un−1
h

�t

)

v +
∫




ν(
∣
∣∇unh

∣
∣)∇unh · ∇v =

∫




Jd(tn)v ∀v ∈ Xh,

Ru0h = Ru0,h .

Thus, in similar way as in Theorem 5.1 by using the properties (5.9)-(5.11), we
can guarantee the existence and uniqueness of solution unh ∈ Xh , n = 1, . . . , N ,
the fully dicrete solution of Problem 5. Furthermore, the following result is a direct
consequence of Theorem 4.1 (see Remark 2).

Theorem 5.2 If u0 ∈ H1
0(
) and u∈ H1(0, T ;H1

0(
))with u|
c ∈ H2(0, T ;L2(
c))

then there exists a constant C > 0, independent of h and �t , such that

max
1≤n≤N

‖u(tn) − unh‖2σ,
c
+ �t

N
∑

n=1

‖u(tn) − unh‖2H1
0(
)

≤C

{

‖u0 − u0,h‖2σ,
c
+ max

0≤n≤N

[

inf
v∈Xh

‖u(tn) − v‖2
H1
0(
)

]

+
∫ T

0
inf

v∈Xh
‖∂t u(t) − v‖2

H1
0(
)

dt + (�t)2
∫ T

0
‖∂t t u(t)dt‖2L2(
c)

}

,

where ‖w‖2σ,
c
:= ∫


c
σ |w|2.
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Remark 5 In order to satisfy the assumption of the previous theorem, it is necessary
that u0 ∈ H1

0(
). If uc0 ∈ H1
0(
c), then u0 can be defined as the extension by zero of

uc0 to the whole 
. If uc0 ∈ H1(
c) with uc0 /∈ H1
0(
c), we can define

u0 :=
{

uc0, in 
c,

ud0 , in 
d,

where ud0 ∈ H1(
d) satisfies ud0 |∂
c = uc0|∂
c , u
d
0 |∂
 = 0 and

∫


d

ν(|∇ud0 |)∇ud0 · ∇v =
∫


d

Jd(0)v ∀v ∈ H1
0(
d).

Finally, to obtain the asymptotic error estimates, we need to consider the Sobolev
space H1+s(Q) for 0 < s ≤ 1, where Q is either 
c or 
d, and define the space

X :=
{

v ∈ H1(
) : v|
c ∈ H1+s(
c), v|
d ∈ H1+s(
d)
}

,

endowed with the norm

‖v‖X :=
(

‖v‖2H1+s (
c)
+ ‖v‖2H1+s (
d)

)1/2
.

Let Lh denote the Lagrange interpolant. Then, if v ∈ X ∩ H1
0(
) then Lhv ∈ Xh

and (see, for instance, [22])

‖v − Lhv‖L2(
) + h |v − Lhv|H1(
) ≤ Ch1+s ‖v‖X ∀v ∈ X ∩ H1
0(
), (5.12)

where | · |H1(
) denotes the usual semi-norm in H1(
). Consequently, we have the
following result.

Theorem 5.3 If u0 ∈ H1
0(
) and there exists 0 < s ≤ 1 such that u ∈ H1(0, T ;X ∩

H1
0(
)) with u|
c ∈ H2(0, T ;L2(
c)). Then, there exists a constant C > 0 indepen-

dent of h and �t , such that

max
1≤n≤N

‖u(tn) − unh‖2σ,
c
+ �t

N
∑

n=1

‖u(tn) − unh‖2H1
0(
)

≤ C

⎧

⎨

⎩
‖u0 − u0,h‖2σ,
c

+ h2s
[

max
1≤n≤N

‖u(tn)‖2X + h2‖∂t u‖2L2(0,T ;X )

]

+ (�t)2‖∂t t u‖2L2(0,T ;L2(
c))

⎫

⎬

⎭
.
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Moreover, if u0 ∈ X ∩ H1
0(
), for 0 < s ≤ 1 and u0,h = Lhu0 then

max
1≤n≤N

‖u(tn) − unh‖2σ,
c
+ �t

N
∑

n=1

‖u(tn) − unh‖2H1
0(
)

= O(h2s + (�t)2).

Proof It is a direct consequence of Theorem 4.1 (see also Remark 1) and the interpo-
lation error estimate (5.12).

Remark 6 The previous result shows that the solution of Problem5provides a suitable
approximation for the physical variable magnetic field intensity B(tn) in the three-
dimensional computational domain 
̂. More precisely, we can use the relationship
given in (5.5), to define

B(tn) :=
(

∂u

∂x2
(tn),− ∂u

∂x1
(tn), 0

)

in 
̂,

for any n = 1, . . . , N, and propose the following approximation

B(tn) ≈ Bn
h :=

(
∂unh
∂x2

,−∂unh
∂x1

, 0

)

in 
̂.

Consequently, by using Corollary 5.3, we deduce the following quasi-optimal error
estimates

�t
N

∑

n=1

∥
∥B(tn) − Bn

h

∥
∥
2
L2(
̂)3

≤ C
[

h2s + (�t)2
]

.

5.3 Numerical results

In this subsection we present some numerical results obtained with a MATLAB code
which implements the numerical method described in Problem 5, to illustrate the
convergence with respect to the discretization parameters. To this aim, we write the
results obtained for a test problem with a known analytical solution.

5.4 Implementation issues

To compute the solution of Problem 5 at each time step, it is necessary to solve the
nonlinear system: find unh ∈ Xh such that

∫


c

σunhv + �t
∫




ν(
∣
∣∇unh

∣
∣)∇unh · ∇v = �t

∫




Jd(tn)v +
∫


c

σun−1
h v ∀v ∈ Xh .
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To apply the Newton’s method, we calculate the Gâteaux-Fréchet derivative of the
operator A : X → X ′ defined by

〈Av,w〉X :=
∫




ν(|∇v|)∇v · ∇w.

Now, following the lines of [24, Section 2.4], the derivative of A with respect to v

in a direction z is given by

〈DA(v)(z), w〉 = lim
h→0

1

h
(〈A(v + hz), w〉 − 〈Av,w〉)

=
∫




{

lim
h→0

1

h

[

ν(|∇v + h∇z|)(∇v + h∇z) − ν(|∇v|)∇v
]}

· ∇w.

Now, even though the norm application is not differentiable at the null vector, the
application w ∈ R

2 �→ ν(|w|)w ∈ R
2 is in C1(R2). Thus, if ∇v �= 0, then

〈DA(v)(z), w〉 =
∫




ν(|∇v|)∇z · ∇w +
∫




ν′(|∇v|)
|∇v| (∇v · ∇z)(∇v · ∇w).

On the other hand, in the case ∇v = 0, we have

〈DA(v)z, w〉 =
∫




ν(0)∇z · ∇w.

Then, for a fixed time step tn , Newton’s method generates a sequence defined by
uk+1 = uk + δk , where the Newton’s direction δk is computed by solving the linear
system:

∫


c

σδkv + �t〈DA(uk)δk, v〉

= −
∫


c

σukv − �t〈Auk, v〉 + �t
∫




Jd(tn)v ∀v ∈ Xh,

until the solution satisfies a suitable stopping criterion.

5.5 A test with known analytical solution

We consider domains 
̂, 
̂c such that their respective projection 
 and 
c onto the
plane x1x2, are given by (see Fig. 1)


 := (0, 1)2 \ [0.5, 1]2, 
c := (0.2, 0.8)2 \ [0.4, 0.8]2,

and assume T := 1. The right hand side Jd , is chosen so that

u(x1, x2, t) = e−5π t sin(πx1) sin(πx2),
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Fig. 1 Sketch of the domain 3D (left) and 2D (right)

is the solution to Problem 4. We have taken σ = σ0 = 106(
m)−1 in 
c, the electric
conductivity. The numericalmethod has been appliedwith several successively refined
meshes and time-steps. The computed approximate solution has been compared with
the analytical one, by calculating the relative percentage error in time-discrete norm
from Corollary 5.3 and Remark 6 given by

100
�t

∑N
n=1

∥
∥B(tn) − Bn

h

∥
∥2
L2(
̂)3

�t
∑N

n=1 ‖B(tn)‖2L2(
̂)3

.

On the other side, we will consider the nonlinear constitutive magnetic law as in
[25]. This magnetization curve is called the Fröhlich-Kennelly model, that is given by

B = μ0H + f (T )
H

a + b|H| (5.13)

Fig. 2 BH -curve of the
ferromagnetic core
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Table 1 Percentage errors for B
in the L2(0, T ;L2(
̂))-norm,
with h = 0.3687 and
�t = 0.012

h h/2 h/4 h/8 h/16

�t 90.64 95.98 97.49 97.91 98.04

�t/2 50.24 55.07 56.62 57.04 57.16

�t/4 31.45 29.97 30.61 30.84 30.90

�t/8 28.46 17.99 16.44 16.16 16.12

�t/16 30.18 14.24 9.83 8.62 8.31

�t/32 31.83 13.79 7.48 5.15 4.42

�t/64 32.83 14.02 6.93 3.87 2.65

with parameters a, b > 0, μ0 = 4π × 10−7Hm−1 the magnetic permeability, and

f (T ) =
(

T 2
c − T 2

T 2
c − T 2

0

)1/4

where Tc and T0 denote Curie and the room temperature in Celsius. Now, from (5.2)
and (5.13), we can obtain

ν(T , |B|) = −aμ0 − f (T ) + b|B| + √
D

2bμ0|B|
where

D = μ2
0a

2 + b2|B|2 + f (T )2 + 2aμ0 f (T ) − 2abμ0|B| − 2b f (T )|B| + 4abμ0|B|.

Now, we choose a = 2532.35, b = 0.49, Tc = 748.69 0C , T0 = 23.5 0C , and
T = 300 0C . The nonlinear system is solved by using Newton’s method, and the

Fig. 3 Percentage discretization
error curve for B versus number
of d.o.f. (log–log scale)
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Fig. 4 Percentage discretization
error curve for E versus number
of d.o.f. (log–log scale)
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BH -curve is shown in Fig. 2 for the values of the parameters used in the numerical
simulation.

The Table 1 shows the relative errors for B in the L2(0, T ;L2(
̂))-norm. We can
notice that by taking a small enough time-step �t , we can observe the behavior of the
error with respect to the space discretization (see the row corresponding to �t/64).
On the other side, by considering a small enough mesh-size h, we can check the
convergence order with respect �t (see column corresponding to h/16). Hence, we
conclude an order the convergence O(h + �t) for B, which confirm the theoretical
results proved in Corollary 5.3. Finally, Fig. 3 shows log–log plot of the error of B,
versus number of degrees of freedom (d.o.f). To report this, we have used values of
�t proportional to h (see the values within boxes in Table 1). The slope of curve is
clearly an order of convergence O(h + �t). Unfortunately, our study does not allow
to estimate the error for the variable ∂t u = E. However, we compute the following
percentage error:

100
�t

∑N
n=1 ‖E(tn) − En

h‖2σ,
̂c

�t
∑N

n=1 ‖E(tn)‖2
σ,
̂c

,

Table 2 Percentage errors for E
in the L2(0, T ;L2(
̂c))-norm,
with h = 0.3687 and
�t = 0.012

h h/2 h/4 h/8 h/16

�t 31.56 31.07 30.97 30.95 30.94

�t/2 17.71 17.04 16.82 16.77 16.75

�t/4 11.23 9.39 9.01 8.94 8.94

�t/8 9.04 5.49 4.77 4.68 4.66

�t/16 10.62 4.05 2.58 2.41 2.39
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by using the same data defined above. Table 2 shows that the time discretization error
dominates the error for the space discretization, even for a small enough time-step �t
(see the row corresponding to�t/64). In fact, an orderO(�t) can be observed for the
finest mesh (see column corresponding to h/16). Finally, Fig. 4 shows log–log plot of
the error of E, versus number of degrees of freedom (d.o.f). To report this, we have
used values of�t proportional to h (see the values within boxes in Table 2). The slope
of curve confirms an order of convergence O(�t) = O(h + �t).
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