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Abstract
We provide a posteriori error estimates in the energy norm for temporal semi-
discretisations of wave maps into spheres that are based on the angular momentum
formulation. Our analysis is based on novel weak–strong stability estimates which
we combine with suitable reconstructions of the numerical solution. We present time-
adaptive numerical simulations based on the a posteriori error estimators for solutions
involving blow-up.
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Blow-up
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1 Introduction

This paper is concerned with the numerical approximation of wave maps, i.e., semi-
linear wave equations with the point-wise constraint that the solution takes values in
some given target manifold. They arise as critical points of a Lagrange functional for
manifold valued functions and serve as model problems in general relativity [1] and
in particle physics [2]. We refer to [3–5] and the introduction in [6] for an overview on

Communicated by: Ilaria Perugia

David Jakob Stonner and Elena Mäder-Baumdicker contributed equally to this work.

B Jan Giesselmann
jan.giesselmann@tu-darmstadt.de

Elena Mäder-Baumdicker
maeder-baumdicker@mathematik.tu-darmstadt.de

1 Mathematics, Technical University of Darmstadt, Dolivostr. 15, 64293 Darmstadt, Hesse,
Germany

2 Mathematics, Technical University of Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Hesse,
Germany

6789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-023-10051-1&domain=pdf


54 Page 2 of 31 J. Giesselmann et al.

the general theory of wave maps. The monograph [7] contains a detailed introduction
to the recent development in the analysis of wave maps.

There are two key challenges in numerically approximating wave maps: One is
the point-wise constraint that make the function spaces in which solutions are sought
non-linear, and the second is gradient blow-up that leads to highly localized phenom-
ena in space and time that need to be suitably resolved by numerical methods. A
variety of different numerical methods that deal with the point-wise constraint using
different approaches such as projections, penalties, and Lagrange multipliers have
been proposed [8–14], and for the methods of Bartels and coworkers, a priori conver-
gence analysis is available, in the sense that stability estimates are proven that imply
convergence of subsequences to weak solutions.

It seems desirable to obtainmore quantitative information on the accuracy of numer-
ical approximations, and given the highly localized dynamics of gradient blow-up, we
aim to provide a posteriori error estimates. We will focus on a scheme whose a priori
analysis was studied in [15] and [16]. For the schemes at hand, convergence results
are available even beyond gradient blow-up, i.e., limits of subsequences of numerical
solutions are weak solutions, but quantitative estimates beyond singularity formation
seem to be out of reach due to discontinuity of the solution operator [17], see Section
2 for details. Thus, we focus on estimates for the solution up to the blow-up time.

Similarly to what was done in [18, 19], we study errors entering via temporal dis-
cretization, and indeed, we restrict our study to semi-discretization in time. While the
development of estimators for spatial discretization errors is certainly an important
task in its own right, it is beyond the scope of this work. Indeed, since our stability
analysis requires a strong solution that is in H2(�, S2), deriving a posteriori error
estimators for numerical schemes using finite differences or C0 finite elements for
spatial discretization will require suitable sufficiently regular spatial reconstructions
of the numerical solution. For wave equations in flat domains, this has been achieved
by elliptic reconstruction [20], i.e., the reconstruction is defined as the solution of an
elliptic equation, and a posteriori error estimates for numerical solutions of elliptic
problems are crucial in order to proceed. However, the corresponding elliptic problem
for the case at handwould be a harmonicmap problem, and for these, there do not seem
to be any a posteriori error estimators available. Indeed, little has been proven con-
cerning convergence of numerical schemes for harmonic maps. In certain situations,
uniqueness and regularity of harmonic maps can be ensured, which allows to show
high order convergence of so-called geodesic finite elements [21]. In the general case,
only existence of weak harmonic maps is guaranteed, and for general triangulations
and minimal regularity solutions, an a posteriori criterion is needed in order to guar-
antee weak convergence of numerical solutions [22]. To the best of our knowledge,
no quantitative a posteriori error bounds are available for numerical approximation
schemes for harmonic maps and harmonic map heat flows. Another option for spatial
reconstruction might be to extend smoothing by convolution, as investigated in [23],
to S2-valued functions.

For a long time, a posteriori error control for (linear) wave equations was limited
to first order schemes [20, 24]. Earlier works on adaptivity for wave equations can be
found in [25–27]. Quite recently, a posteriori error estimates for second order multi-
step time discretisations of the linear wave equation were derived [18].
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Due to the appearance of singularities, our goals are similar to those pursued in
[19, 28] that study blow-up for semi-linear parabolic equations. We also refer to these
papers for earlier works on numerical approximation of blow-up solutions of nonlinear
PDEs such as nonlinear Schrödinger equations or semi-linear parabolic problems. Let
usmention that the blow-upmechanism inwavemaps is rather different from the blow-
up mechanisms in nonlinear Schrödinger equations or semi-linear parabolic problems
where the L∞-norm blows up in finite time.

In order to derive the desired a posteriori error estimates, we use two main ingredi-
ents: firstly, a suitable reconstruction of the numerical solution that can be understood
as the exact solution of a perturbed version of the angular momentum formulation for
wave maps into spheres and, secondly, a novel weak–strong stability principle. One
key feature of our reconstruction is to ensure that the estimator is formally of optimal
order, i.e., that it converges to zero with the same rate as the true error on equidistant
meshes.

The remainder of this work is organized as follows: We review some facts from
the analysis of wave maps in Sect. 2 and introduce the problem and basic notation
in Sect. 3. Section4 provides two stability estimates: one is based on a first order
reformulation of the problem that is available when the target manifold is S2, and the
other theoremcovers the general case. In Sect. 5,we provide a posteriori error estimates
for a numerical scheme that is based on the first order reformulation of the problem.
The main contribution of this section is the construction of suitable reconstructions
of the numerical solution, whereas computable bounds for the residuals, that appear
when the reconstruction is inserted into the wave map problem, are postponed to the
Appendix. Finally, in Sect. 6, we report on numerical experiments using adaptive time
stepping based on the a posteriori error estimators derived before.

2 Background on wavemaps

A specific feature of wave maps is that depending on the size of initial data (in suitable
Sobolev norms) and the dimension of the target manifold either strong solutions may
exist on arbitrarily long time intervals or solutions may exhibit gradient blow-up in
finite time; see [6]. But there are also larger classes of solutions, namely distribu-
tional or weak solutions and in particular finite energy weak solutions. Note that weak
solutions, for example, exist as accumulation points of subsequences of numerical
schemes in [15]. The existence of global weak solutions for finite energy initial data
in 2 + 1 dimensions was established in [29]. We will introduce our precise notion of
finite energy weak solution in the next section. If a (global) finite energy weak solution
and a non-global strong solution exist, then uniqueness results as in [30, 31] guarantee
that both solutions agree until the appearance of the singularity. These, under certain
circumstances, strong solutions can be extended as weak solutions through the singu-
larity. Conditions such as an energy inequality are needed to get this uniqueness result
because, in general, weak solutions are not unique [31].

We provide weak–strong stability results in Theorems 1 and 2 that can be seen as
more quantitative versions of the (finite energy) weak–strong-uniqueness results in
[30, 31]. Indeed, Theorems 1 and 2 assert that as long as there exists a sufficiently
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regular solution for certain initial data, there are explicit bounds for the difference
between this solution and solutions to perturbed problems even if those are only finite
energy weak solutions. Note that this quantitative control requires the same regularity
as the uniqueness result [30]; see Remark 4 for more details.

WeemployTheorem1 (that assumes that the targetmanifold is S2) in our a posteriori
error analysis, but since weak–strong stability results are interesting in their own right,
we present a weak–strong stability result for general target manifolds in Theorem 2.
While it can be thought of as an extension of Theorem 1 (where the target manifold is
S2), there are some significant differences on the technical level that will be discussed
in Remark 5 and Remark 6. Those are the reason why we base our a posteriori error
analysis on Theorem 1. This is discussed in more detail in Remark 7.

Uniqueness and stability properties of wave maps do not only depend on the target
manifold but also on the domain. The main interest in analysis is currently in wave
maps with the whole of Rm as the spatial domain, and this is the setup the works
mentioned below address. Uniqueness for wave maps in 1+ 1 dimensions was shown
in [32], and non-uniqueness in the supercritical dimension 3 + 1 was shown in [31,
33]. To the best of our knowledge, in the critical dimension 2 + 1, uniqueness of
weak solutions to finite energy data is unknown, and it is unclear whether imposing an
energy inequality restores uniqueness in 2 or more space dimensions. An interesting
observation in 2+1 dimensions is that solutions (even if they are unique) do not depend
continuously on the initial data in the energy norm [17]. It should be noted that our
weak–strong stability results use the energy norm and are valid in arbitrarily many
space dimensions. It follows from [17] that any such stability result, i.e., any bound
for the difference of two solutions, measured in the energy norm, needs to involve
a stronger norm (than the energy norm) of at least one of the solutions. This is a
fundamental obstacle to deriving a posteriori error estimates (in the energy norm) that
are convergent (i.e., go to 0 for τ, h ↘ 0, where τ, h denote temporal and spatial mesh
width respectively) in case the exact solution does not have any additional regularity
(beyond being a finite energy weak solution).

3 Problem statement and notation

For some bounded Lipschitz domain � ⊂ R
m , some final time T > 0 and some

n-dimensional submanifold without boundary N ⊂ R
� a wave-map is a map

u : (0,T) × � → N , satisfying ∂2t u − �u ⊥ TuN in (0,T) × � (1)

where TuN denotes the tangent space ofN at u. Equation (1) needs to be complemented
with initial and boundary data. To this end, maps u0 : � → N and u1 : � → R

� such
that u1(x) ∈ Tu0(x)N for all x ∈ � are fixed, and one requires

u(0, ·) = u0, ∂t u(0, ·) = u1, (2)
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and homogeneous Neumann boundary conditions

∂nu = 0 on (0,T) × ∂�. (3)

Strong solutions of the wave map equation satisfy an energy conservation principle

E[u(t), ∂t u(t)] := 1

2

∫
�

|∂t u(t)|2 + |∇u(t)|2 dx = E[u0, u1] (4)

and are critical points of the Lagrangian

L[u(t), ∂t u(t)] := 1

2

∫
T

0

∫
�

|∂t u(t)|2 − |∇u(t)|2 dx dt . (5)

We reformulate the wave map (1) in order to see that this is a semi-linear wave
equation. Let Ap(·, ·) : TpN × TpN → (TpN )⊥ be the second fundamental form of
the compact submanifold N at a point p ∈ N . We denote the variables on [0,T) × �

by (t, x) = (xα), 0 ≤ α ≤ m. We raise and lower indices with the Minkowski metric
(ηαβ) = diag(−1, 1, ..., 1), and we sum over repeated indices. Then, a (strong) wave
map is a map u = (u1, ..., u�) : [0,T) × � → N ↪→ R

� that satisfies

∂2t u − �u = A[u](Du, Du), (6)

where A[u](Du, Du) stands for
(
Ai
jk

∣∣
u∂αu j∂αuk

) ∣∣
1≤i≤�

; see [3].

A significant part of our analysis will consider the case in which the target manifold
N is the 2-sphere S2 ⊂ R

3 and in this case (6) reduces to

∂2t u − �u = (|∇u|2 − |∂t u|2)u (7)

with point-wise constraint |u(t, x)| = 1. (8)

Let us also mention that, using angular momentum ω := ∂t u × u, the wave map
equation can be phrased as [16]

∂t u = u × ω and ∂tω = �u × u. (9)

This variant is the one underlying the numerical scheme that we will study.

4 A quantitative stability estimate

In this section, we establish a weak–strong stability result that complements weak–
strong uniqueness results in [30, 31] by providing bounds for differences between
solutions. In particular, our estimates quantify the impact of residuals that is crucial
for the use of stability results in proving a posteriori error estimates. We prove weak–
strong stability in the general case as well as in the special case of N = S2 since
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we believe that the former nicely highlights the general geometric structure while the
latter proof uses very elementary techniques and does not require any background in
differential geometry.

We denote by (·, ·) the L2 inner product on (0,T) × � and by (·, ·)� the L2 inner
product on �.

Definition 1 Given u0 ∈ H1(�, N ) and u1 ∈ L2(�,R�) so that u1(x) ∈ Tu0(x)N
for almost all x , we call a function u ∈ L2([0,T) × �) with values in N and
∇u, ∂t u ∈ L∞(0,T; L2(�)) a finite energy weak solution of (1)-(3) provided the
following conditions are satisfied

1. u(0, ·) = u0
2. (∂t u, ∂tψ) − (∇u,∇ψ) = −(

A[u](Du, Du), ψ
) − (u1, ψ(0, ·))� for all ψ ∈

C∞
c ([0,T) × �̄)

3. E[u(t), ∂t u(t)] ≤ E[u0, u1] for almost all 0 < t < T.

We say that u satisfies the local energy condition provided

E[u(t), ∂t u(t)] ≤ E[u(s), ∂t u(s)] for almost all 0 < s < t < T

Remark 1 Note that the weak formulation in Definition 1 actually holds for all ψ ∈
W 1,1(0,T; L2(�)) ∩ L1(0,T; L∞ ∩ H1(�)) with ψ(T, ·) = 0, due to a density
argument where passing to the limit in

(
A[u](Du, Du), ψ

)
is done using dominated

convergence; see the Appendix of [34] for details.

We are going to compare a finite energy weak solution u to a more regular solution
(ũ, w̃) of the perturbed problem

∂t ũ = ũ × w̃ + ru, ∂t w̃ = �ũ × ũ + rw. (10)

Lemma 1 For any two sufficiently regular functions ũ : � → S2, w̃ : � → R
3, the

following identities hold:

(a) (ũ × w̃) × w̃ = (ũ · w̃)w̃ − |w̃|2ũ
(b) ũ × (�ũ × ũ) = �ũ + |∇ũ|2ũ
Proof Part (a) immediately follows from (a × b) × c = (a · c)b − (b · c)a for any
a, b, c ∈ R

3. In order to prove (b), we note that (∂x j ũ) · ũ = 1
2∂x j |ũ|2 = 0 so that

ũ × (�ũ × ũ) =
3∑
j=1

[∂x j (ũ × (∂x j ũ × ũ)) − (∂x j ũ) × (∂x j ũ × ũ)]

=
3∑
j=1

[∂x j (|ũ|2∂x j ũ − (∂x j ũ · ũ)ũ) − (∂x j ũ · ũ)∂x j ũ + |∂x j ũ|2ũ]

=
3∑
j=1

[∂x j (∂x j ũ) + |∂x j ũ|2ũ].

��
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Theorem 1 Let u be a finite energy weak solution of (1)-(3) satisfying the local energy
condition. Let s = m for m ≥ 3 and s ∈ (2,∞] for m = 2. Let (ũ, w̃) be a
solution of the perturbed problem (10). We ask for the following regularity: ũ ∈
L∞((0,T) × �, S2) and

∇ũ, w̃ ∈
(
L1(0,T; H1(�)) ∩ L∞(0,T; L2(�))

∩ Lk(0,T; L∞(�)) ∩ L
k

k−1 (0,T; Ls(�))
)

for some k ∈ [1, 2] and with given functions rw ∈ L1(0,T; L2(�)) and ru ∈
L1(0,T; H1(�)) ∩ L

k
k−1 (0,T; L2(�)). Then, the difference at time t can be con-

trolled via the difference in initial data and perturbation terms. Indeed, H defined
by

H(t) := 1

2

∫
�

|∂t u(t) − ũ(t) × w̃(t)|2 + |∇u(t) − ∇ũ(t)|2 + |u(t) − ũ(t)|2 dx,

satisfies

√
H(t2) ≤

(√
H(t1) +

(∫ t2

t1
α(t) dt

))
× exp

(
1

2

∫ t2

t1
δ(t) dt

)
(11)

for almost all 0 < t1 < t2 < T with

α := ‖rg + ru × w̃ + ũ × rw‖L2(�) + ‖ru‖L2(�) + ‖∇ru‖L2(�)

rg := (ũ · w̃)w̃ − |ũ · w̃|2ũ; A[ũ] := |∇ũ|2 − |ũ × w̃|2

δ :=
(
1 + cq‖A[ũ]‖Ls (�) + 2cq |ũ × w̃‖2L2s (�)

+2cq‖∇ũ‖L2s (�)|ũ × w̃‖L2s (�) + 4|ũ × w̃‖L∞(�)

)

where cq is the squared constant of the Sobolev embedding H1(�) → Lq(�) with
q = 2s

s−2 . This implies that for almost any sequence 0 = t0 < t1 < · · · < tN ≤ T

√
H(tN ) ≤ √

H(0) exp

(
1

2

∫ tN

0
δ(t) dt

)

+
N∑
j=1

(∫ t j

t j−1

α(t) dt

)
× exp

(
1

2

∫ tN

t j−1

δ(t) dt

)
(12)

Remark 2 (Constants in the estimate) Note that s, k are given by assumption and fixed.
Explicit upper bounds for cq (with q = 2s/(s − 2)), for a variety of domains, can be
found in [35].
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Remark 3 (Regularity of weak solution) Note that if u is a finite energy weak solution,
not necessarily satisfying the local energy condition, then (11) still holds in the special
case t1 = 0.

Remark 4 (Regularity of strong solution) Note that our regularity assumptions with
k = 1 correspond to the conditions in Struwe’s result [30, Thm 2.2]. The case studied
in [30, Thm 2.2] corresponds to m = 2 and ru = rω = rg = 0 in our notation
so that the space-time gradient Dũ corresponds to the vector (ũ × w̃,∇ũ). Thus,

choosing k = 1, s = 2 + ε, we assume ∇ũ, w̃ ∈
(
L1(0,T; H1(�) ∩ L∞(�)) ∩

L∞(0,T; L2+ε(�))
)

=: X .
Struwe assumes Dũ ∈ X which also holds under our assumptions mainly because

ũ ∈ L∞((0,T) × �). There is the difference that we consider Neumann boundary
data and Struwe has a solution on full R2.

Note furthermore that the conditions in our theorem allow us to use ũ × w̃

as test function in (2) of Definition 1, i.e. ũ × w̃ ∈ W 1,1(0,T; L2(�)) ∩
L1(0,T; L∞ ∩ H1(�)). This can be seen as follows: First, we observe that ũ × w̃ ∈
L1(0,T; L∞(�)) and ∇(ũ × w̃) ∈ L1(0,T; L2(�)) since, using Young’s inequality,∫ ‖∇ũ‖Ls (�)‖w̃‖Lq (�)dt ≤ c

∫ ‖∇ũ‖
k

k−1
Ls (�) + ‖w̃‖kLq (�)dt < ∞ ( 1s + 1

q = 1
2 ). It

remains to check ∂t (ũ × w̃) ∈ L1(0,T; L2(�)): Using Lemma 1, we know that

∂t (ũ × w̃) = ∂t ũ × w̃ + ũ × ∂t w̃

= (ũ × w̃) × w̃ + ru × w̃ + ũ × (�ũ × ũ) + ũ × rw
= rg + (|∇ũ|2 − |ũ × w̃|2)ũ + ru × w̃ + �ũ + ũ × rw,

(13)

where we have used |ũ × w̃|2 = |w̃|2 −|w̃ · ũ|2. Note that rg ∼ |w̃|2. We always have
that w̃,∇ũ ∈ L2(0,T; L4(�)) because of

∫
‖w̃‖2L4(�)

dt ≤
∫

‖w̃‖L∞(�)‖w̃‖L2(�)dt

≤
⎧⎨
⎩
esssupt‖w̃‖L2(�)

∫ ‖w̃‖L∞(�)dt < ∞ if k = 1

c
∫ ‖w̃‖kL∞(�) + ‖w̃‖

k
k−1

L2(�)
dt < ∞ if k > 1.

The conditions on ru imply that also ru × w̃ ∈ L1(0,T; L2(�)). Thus, all terms in
(13) are controlled in L1(0,T; L2(�)).

Proof of Theorem 1 Let us fix some (arbitrary) 0 < t1 < t2 < T and let us define for
any 0 < ε < min{T − t2, t2 − t1} the map

φε(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 : t ≤ t1
t−t1

ε
: t1 ≤ t < t1 + ε

1 : t1 + ε ≤ t ≤ t2
1 − t−t2

ε
: t2 ≤ t ≤ t2 + ε

0 : t2 + ε < t
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Wewill study limε↘0
∫
T

0 H(t)∂tφε(t) dt . On the one hand, for every pair of Lebesgue
points of t �→ E[u(t), ∂t u(t)], we have

lim
ε↘0

∫
T

0
H(t)∂tφε(t) dt = − lim

ε↘0

1

ε

(∫ t2+ε

t2
H(t) dt −

∫ t1+ε

t1
H(t) dt

)
= −H(t2) + H(t1). (14)

On the other hand, we may decompose the integral at hand as

∫
T

0
H(t)∂tφε(t) dt =

∫
T

0
E[u(t), ∂t u(t)]∂tφε(t) dt

−
∫

T

0
(∂t u · ũ × w̃ + ∇u · ∇ũ)∂tφε(t) dt

+
∫

T

0
E[ũ(t), ũ(t) × w̃(t)]∂tφε(t) dt +

∫
T

0

1

2
|u(t) − ũ(t)|2∂tφε(t) dt

=: E1
ε − E2

ε + E3
ε + E4

ε .

(15)
Concerning E1

ε , we observe that for every pair of Lebesgue points of t �→
E[u(t), ∂t u(t)]

lim
ε↘0

E1
ε = lim

ε↘0

∫
T

0
E[u(t), ∂t u(t)]∂tφε(t) dt

= − lim
ε↘0

1

ε

(∫ t2+ε

t2
E[u(t), ∂t u(t)] dt −

∫ t1+ε

t1
E[u(t), ∂t u(t)] dt

)

= −E[u(t2), ∂t u(t2)] + E[u(t1), ∂t u(t1)] ≥ 0. (16)

Next, we consider E2
ε for fixed ε and observe

E2
ε = (∂t u, ũ × w̃∂tφε) + (∇u,∇ũ∂tφε)

= (∂t u, ∂t (ũ × w̃φε)) − (∂t u, ∂t (ũ × w̃)φε) + (∇u,∇ũ∂tφε)

= (∇u,∇(ũ × w̃φε)) − ((|∇u|2 − |∂t u|2)u, ũ × w̃φε)

− (∂t u, ∂t (ũ × w̃)φε) + (∇u,∇ũ∂tφε),

(17)

where we have used the weak formulation in the last step. We also note that

(∇u,∇(ũ × w̃φε)) + (∇u,∇ũ∂tφε) = (∇u,∇(∂t ũφε)) − (∇u,∇ruφε)

+ (∇u,∇ũ∂tφε)

= (∇u,∇∂t (ũφε)) − (∇u,∇ruφε)

(18)
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due to (10)1 and the fact that φε is independent of x .We insert (13) and (18) into (17)
and obtain

E2
ε = (∇u,∇∂t (ũφε)) − (∇u,∇ruφε) − ((|∇u|2 − |∂t u|2)u, ũ × w̃φε)

− (∂t u, (rg + (|∇ũ|2 − |ũ × w̃|2)ũ + ru × w̃ + �ũ + ũ × rw)φε)

= −(∇u,∇ruφε) − ((|∇u|2 − |∂t u|2)u, ũ × w̃φε)

− (∂t u, (rg + (|∇ũ|2 − |ũ × w̃|2)ũ + ru × w̃ + ũ × rw)φε)

(19)

where we have used integration by parts and
∫
T

0 ∂t (∇u,∇ũφε)� = 0 in the last
equality. Equation (19) allows us to conclude

lim
ε↘0

E2
ε = −

∫ t2

t1

∫
�

{
∂t u · [rg + (|∇ũ|2 − |ũ × w̃|2)ũ + ru × w̃ + ũ × rw]

+ ∇u · ∇ru + (|∇u|2 − |∂t u|2)u · (ũ × w̃)
}
dxdt . (20)

Concerning E3
ε , we use (13) and integration by parts to obtain

E3
ε = 1

2
(ũ × w̃, ũ × w̃∂tφε) + 1

2
(∇ũ, ∇ũ∂tφε)

= −(ũ × w̃φε, rg + (|∇ũ|2 − |ũ × w̃|2)ũ + ru × w̃ + �ũ + ũ × rw) + (∂t ũ, �ũφε)

= −(ũ × w̃φε, rg + ru × w̃ + ũ × rw) + (ru, �ũφε),

(21)

where we have used point-wise orthogonality of ũ to ũ × w̃ in the last equality.
Equation (21) allows us to conclude

lim
ε↘0

E3
ε = −

∫ t2

t1

∫
�

(ũ × w̃) · [rg + ru × w̃ + ũ × rw] + ∇ru · ∇ũ dxdt . (22)

Finally, we find

lim
ε↘0

E4
ε = −

∫ t2

t1

∫
�

(u − ũ) · (∂t u − ũ × w̃ − ru) dxdt . (23)

We combine (14), (16), (20), (22) and (23) to obtain

H(t2) − H(t1)

≤
∫ t2

t1

∫
�

(ũ × w̃ − ∂t u) · [rg + ru × w̃ + ũ × rw] − ∇ru · (∇u − ∇ũ)dxdt

+
∫ t2

t1

∫
�

(u − ũ) · (∂t u − ũ × w̃) − (u − ũ) · rudxdt

−
∫ t2

t1

∫
�

(|∇ũ|2 − |ũ × w̃|2)ũ · ∂t u + (|∇u|2 − |∂t u|2)u · ũ × w̃ dxdt .

(24)
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Let us define A[u] := (|∇u|2 − |∂t u|2) and (with a slight abuse of notation) A[ũ] :=
(|∇ũ|2 − |ũ × w̃|2). Then, u ⊥ ∂t u and ũ ⊥ (ũ × w̃) allows us to infer

∂t u ·A[ũ]ũ + (ũ × w̃) ·A[u]u = −(∂t u − ũ × w̃) ·A[ũ](u − ũ) + ũ × w̃(A[u] −A[ũ])(u − ũ).

We use 1
s + 1

q = 1
2 to get that

∫ t2

t1
‖∂t u · A[ũ]ũ + (ũ × w̃) · A[u]u‖L1(�)dt

≤
∫ t2

t1
‖∂t u − ũ × w̃‖L2(�)‖A[ũ]‖Ls (�)‖u − ũ‖Lq (�)

+ ‖(ũ × w̃)(A[u] − A[ũ])(u − ũ)‖L1(�) dt

≤
∫ t2

t1
‖∂t u − ũ × w̃‖L2(�)

(
‖A[ũ]‖Ls (�) + 2‖ũ × w̃‖2L2s (�)

)
‖u − ũ‖Lq (�)

+ 2‖∇ũ‖L2s (�)‖ũ × w̃‖L2s (�)‖∇u − ∇ũ‖L2(�)‖u − ũ‖Lq (�)

+ 2‖∇u − ∇ũ‖2L2(�)
‖ũ × w̃‖L∞(�) + 2‖∂t u − ũ × w̃‖2L2(�)

‖ũ × w̃‖L∞(�) dt
(25)

where we have used that

A[u] − A[ũ] = 2∇ũ · (∇u − ∇ũ) + |∇u − ∇ũ|2
− 2(ũ × w̃) · (∂t u − ũ × w̃) − |∂t u − ũ × w̃|2

(26)
and u, ũ ∈ S2.We insert (25) into (24) and obtain, using that H1(�) embeds into
Lq(�),

H(t2) ≤ H(t1) +
∫ t2

t1
2
√
H(t)α(t)dt +

∫ t2

t1
δ(t)H(t)dt . (27)

According to [36, Thm 21], (27) implies (11). Equation (12) follows by taking the
square-root of (11) and induction in j . ��

We now come to the computations for a general closed target manifold N . Since
for general N , we use one second order equation instead of a system of first order
equations we have only one residual, but we split this into two parts, assuming that
one part can be expressed as a time derivative.

Theorem 2 Let u be a weak solution of the problem (1)-(3) and ũ = (ũ1, ..., ũ�) :
[0,T) × � → N a strong solution of a perturbed problem

∂2t ũ − �ũ = A[ũ](Dũ, Dũ) + R1 + ∂t R2, ∂nũ = 0.
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Let s = m for m ≥ 3 and s ∈ (2,∞] for m = 2. We assume that there is a k ∈ [1, 4
3 ]

such that

ũ ∈ W 2,1((0,T) × �),

Dũ ∈ L1(0,T; H1(�)) ∩ L∞(0,T; L2(�)) ∩ Lk(0,T; L∞(�)) ∩ L
k

k−1 (0,T; Ls(�)),

R1 ∈ L2 ((0,T) × �) ,

R2 ∈ H1 ((0,T) × �) ∩ L1 (
0,T; L∞(�)

) ∩ L
k

k−1 (0,T; L2(�)).

We define the energy I[u(t, ·)] := 1
2

∫
�

|u(t, ·)|2 +|∂t u(t, ·)|2 +|∇u(t, ·)|2dx . Then,
we have the inequality

sup
0≤t1≤t2

I[u(t1, ·) − ũ(t1, ·)] ≤ γ (t2) · exp
(∫ t2

0
δ(t)dt

)
, where (28)

γ (t2) := 8I[u − ũ]∣∣t=0 + 4‖R2(0, ·)‖2L2(�)
+ 2 sup

0≤t1≤t2
‖R2(t1, ·)‖2L2(�)

+ 4
∫ t2

0
‖R1R2‖L1(�)dt

+ 8

(∫ t2

0
‖∇R2‖L2(�) + 2c1‖Dũ‖L∞(�)‖R2‖L2(�)

+c1
√
c2‖R2‖Lq (�)‖Dũ‖2Ls (�) + ‖R1‖L2(�)dt

)2
,

δ(t) := 4 + 4c1
(
3c2‖Dũ‖2L2s (�)

+ 2c3‖∂t ũ‖L∞(�) + 2‖R2‖L∞(�)

)
.

The constant c3 is the diameter of N , c3 = diam(N ), c2 is the squared constant
from the Sobolev embedding H1 ↪→ Lq, q := 2s

s−2 . The constant c1 = c1(N ) is the
maximum of the Lipschitz constant of p �→ A[p](·, ·) and supN |A|.
Proof We pretend that u is a strong solution in order to keep the computations simpler.
For a weak solution, we use the cutoff-trick with φε , that was introduced in the proof
of Theorem 1. Let us denote

d

dt
I[u − ũ] = d

dt

(
1
2

∫
�

|u − ũ|2 + |∂t u − ∂t ũ|2 + |∇u − ∇ũ|2dx
)

=: d

dt
(I 1 + I 2 + I 3).

Then, we compute

d

dt
(I 2 + I 3) = (∂t u − ∂t ũ, ∂t t u − ∂t t ũ)� + (∇u − ∇ũ, ∂t∇u − ∂t∇ũ)�

= (∂t u − ∂t ũ, ∂t t u − ∂t t ũ)� − (�u − �ũ, ∂t u − ∂t ũ)�

= (∂t u − ∂t ũ, A[u](Du, Du) − A[ũ](Dũ, Dũ) − R1 − ∂t R2)�.
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As A has normal values, we get that ∂t u · A[u](·, ·) = 0 = ∂t ũ · A[ũ](·, ·). Using this
orthogonality, we get that

d

dt
(I 2 + I 3) = (∂t u, A[u](Dũ, Dũ) − A[ũ](Dũ, Dũ))� − (∂t u − ∂t ũ, R1 + ∂t R2)�

− (∂t ũ, A[u](Du, Du) − A[ũ](Du, Du))�

= (∂t u − ∂t ũ, (A[u] − A[ũ])(Dũ, Dũ))� − (∂t u − ∂t ũ, R1 + ∂t R2)�

− (∂t ũ, (A[u] − A[ũ])(Du, Du) − (A[u] − A[ũ])(Dũ, Dũ))�.

(29)

We consider the term (∂t u − ∂t ũ, ∂t R2)� that is contained in (29) and compute

(∂t u − ∂t ũ, ∂t R2)� = d

dt
(∂t u − ∂t ũ, R2)� − (�u − �ũ, R2)�

− (A[u](Du, Du) − A[ũ](Dũ, Dũ) − R1 − ∂t R2, R2)�

= d

dt
(∂t u − ∂t ũ, R2)� + (∇u − ∇ũ,∇R2)�

− (A[u](Du, Du) − A[ũ](Dũ, Dũ), R2)� + (R1, R2)�

+ 1

2

d

dt
(R2, R2)�.

(30)
In order to estimate the term (A[u](Du, Du) − A[ũ](Dũ, Dũ), R2)�, we do the
following:

(
A[u](Du, Du) − A[ũ](Dũ, Dũ)

) · R2

= (
A[u](Du, Du) − A[u](Dũ, Dũ) + (A[u] − A[ũ])(Dũ, Dũ)

) · R2

= (
A[u](Du − Dũ, Du − Dũ) + 2A[u](Du − Dũ, Dũ) + (A[u] − A[ũ])(Dũ, Dũ)

) · R2

where we used the equation B(X , X) − B(Y ,Y ) = B (X − Y , (X − Y ) + 2Y ) for a
symmetric bilinear form B : Rn × R

n → R. The map p �→ A[p](·, ·) is Lipschitz
and N is a compact smooth manifold. Therefore, there is a constant c1 = c1(N ) such
that

|(A[u](Du, Du) − A[ũ](Dũ, Dũ)
) · R2|

≤ c1|R2|
(
|Du − Dũ|2 + 2|Du − Dũ||Dũ| + |u − ũ||Dũ|2

)

Using Hölder’s inequality and generalized Hölder’s inequality, we get that

(A[u](Du, Du) − A[ũ](Dũ, Dũ), R2)�

≤ 2c1‖R2‖L∞(�)I[u − ũ] + 2c1‖Dũ‖L∞(�)‖R2‖L2(�)

√
2I[u − ũ]

+ c1‖R2‖Lq (�)‖u − ũ‖Lq (�)‖Dũ‖2
L2q̃ (�)

(31)
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for any pair (q, q̃) with 2
q + 1

q̃ = 1. For m ≥ 3, we use this inequality for q = 2m
m−2

and get by Sobolev embedding H1(�) ↪→ L
2m
m−2 (�)

(A[u](Du, Du) − A[ũ](Dũ, Dũ), R2)�

≤ 2c1‖R2‖L∞(�)I[u − ũ] + 2c1‖Dũ‖L∞(�)‖R2‖L2(�)

√
2I[u − ũ]

+ c1
√
c2‖R2‖Lq (�)‖Dũ‖2

L2q̃ (�)

√
2I[u − ũ],

(32)

where q̃ = m
2 and c2 is the squared constant from the Sobolev embedding. Thus, in

the case m ≥ 3, we get for s = m the inequality

(A[u](Du, Du) − A[ũ](Dũ, Dũ), R2)�

≤ 2c1‖R2‖L∞(�)I[u − ũ]
+ c1

(
2‖Dũ‖L∞(�)‖R2‖L2(�) + √

c2‖R2‖Lq (�)‖Dũ‖2Ls (�)

)√
2I[u − ũ].

(33)
For m = 2, we can choose 1 ≤ q < ∞ arbitrarily large in (31), which implies (33)
holds for 2 < s arbitrary.

We put (30) and (33) together and get that

− (∂t u − ∂t ũ, ∂t R2)� ≤ − d

dt
(∂t u − ∂t ũ, R2)� + 2c1‖R2‖L∞(�)I[u − ũ]

+
(
‖∇R2‖L2(�) + 2c1‖Dũ‖L∞(�)‖R2‖L2(�) + c1

√
c2‖R2‖Lq (�)‖Dũ‖2Ls (�)

)

×
√
2I[u − ũ]

+ ‖R1R2‖L1(�) − 1

2

d

dt
(R2, R2)�

(34)
Coming back to (29), we again use the formula
B(X , X) − B(Y ,Y ) = B (X − Y , (X − Y ) + 2Y ) for the terms with the second
fundamental form there. Since 1

s + 1
q = 1

2 , we get that

(∂t u − ∂t ũ,(A[u] − A[ũ])(Dũ, Dũ))�

− (∂t ũ, (A[u] − A[ũ])(Du, Du) − (A[u] − A[ũ])(Dũ, Dũ))�

≤ c1‖∂t u − ∂t ũ‖L2(�)‖u − ũ‖Lq (�)‖Dũ‖2L2s (�)

+ c1‖∂t ũ‖L∞(�)‖u − ũ‖L∞(�)‖Du − Dũ‖2L2(�)

+ 2c1‖(|∂t ũ||Dũ|)‖Ls (�)‖u − ũ‖Lq (�)‖Du − Dũ‖L2(�).
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We define c3 = c3(N ) = diam(N ) and c2 to be the squared Sobolev embedding
constant from H1 ↪→ Lq . We also use |∂t ũ||Dũ| ≤ |Dũ|2 and get that

d

dt
(I 2 + I 3) ≤ c1

(
c2‖Dũ‖2L2s (�)

+ 2c3‖∂t ũ‖L∞(�)

+ 2c2‖Dũ‖2L2s (�)
+ 2‖R2‖L∞(�)

)
I[u − ũ]

− d

dt
(∂t u − ∂t ũ, R2)� + ‖R1R2‖L1(�) − 1

2

d

dt
(R2, R2)�

+ (‖∇R2‖L2(�) + 2c1‖Dũ‖L∞(�)‖R2‖L2(�)

+c1
√
c2‖R2‖Lq (�)‖Dũ‖2Ls (�) + ‖R1‖L2(�)

) √
2I[u − ũ].

(35)

Together with d
dt I

1 = (u − ũ, ∂t u − ∂t ũ)� ≤ I[u − ũ], (35) implies

I[u(t1, ·) − ũ(t1, ·)] ≤ I[u − ũ]∣∣t=0 − (∂t u − ∂t ũ, R2)�
∣∣
t1

+ (∂t u(0) − ∂t ũ(0), R2(0, ·))� − 1

2
‖R2(t1, ·)‖2L2(�)

+ 1

2
‖R2(0, ·)‖2L2(�)

+
∫ t1

0
α(t)I[u(t, ·) − ũ(t, ·)]dt +

∫ t1

0
β(t)dt +

∫ t1

0
γ (t)

√
2I[u(t, ·) − ũ(t, ·)]dt,

(36)

where

α(t) := 1 + c1
(
3c2‖Dũ‖2L2s (�)

+ 2c3‖∂t ũ‖L∞(�) + 2‖R2‖L∞(�)

)

β(t) := ‖R1R2‖L1(�)

γ (t) := ‖∇R2‖L2(�) + 2c1‖Dũ‖L∞(�)‖R2‖L2(�) + c1
√
c2‖R2‖Lq (�)‖Dũ‖2Ls (�) + ‖R1‖L2(�).

From inequality (36), we get that

1

2
I[u(t1, ·) − ũ(t1, ·)] ≤ 2I[u − ũ]∣∣t=0 + ‖R2(0, ·)‖2L2(�)

+ 1

2
‖R2(t1, ·)‖2L2(�)

+
∫ t1

0
α(t)I[u(t, ·) − ũ(t, ·)]dt +

∫ t1

0
β(t)dt +

∫ t1

0
γ (t)

√
2I[u(t, ·) − ũ(t, ·)]dt .

(37)

We set
Ī[u − ũ](t2) := sup

0≤t1≤t2
I[u(t1, ·) − ũ(t1, ·)]

and obtain, as the right hand side of (37) is monotone increasing in time

1

2
Ī[u(t2, ·) − ũ(t2, ·)] ≤ 2I[u − ũ]∣∣t=0 + ‖R2(0, ·)‖2L2(�)

+ 1

2
sup

0≤t1≤t2
‖R2(t1, ·)‖2L2(�)

+
∫ t2

0
α(t)Ī[u(t, ·) − ũ(t, ·)]dt +

∫ t2

0
β(t)dt +

∫ t2

0
γ (t)dt

√
2Ī[u(t2, ·) − ũ(t2, ·)],
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so that

1

4
Ī[u(t2, ·) − ũ(t2, ·)] ≤ 2I[u − ũ]∣∣t=0 + ‖R2(0, ·)‖2L2(�)

+ 1

2
sup

0≤t≤t2
‖R2(t, ·)‖2L2(�)

+
∫ t2

0
α(t)Ī[u(t, ·) − ũ(t, ·)]dt +

∫ t2

0
β(t)dt + 2

(∫ t2

0
γ (t)dt

)2

.

Gronwall’s inequality now implies (28).
It remains to explain that the conditions on ũ are strong enough for the above com-

putations. We use ∂t ũ as a test function in the weak formulation for u. This is allowed
because the assumptions on ũ imply ∂t ũ ∈ W 1,1(0,T; L2(�)) ∩ L1(0,T; L∞ ∩
H1(�)).
The conditions on ũ imply that all appearing terms are finite. Note particularly that

∫
‖R2‖L2(�)‖Dũ‖L∞(�)dt ≤ c

∫
‖R2‖

k
k−1

L2(�)
+ ‖Dũ‖kL∞(�)dt < ∞ and

∫
‖Dũ‖2L2s (�)

dt ≤
∫

‖Dũ‖L∞(�)‖Dũ‖Ls (�)dt

≤
∫

c‖Dũ‖kL∞(�) + ‖Dũ‖
k

k−1
Ls (�)dt < ∞,

∫
‖R2‖Lq (�)‖Dũ‖2Ls dt ≤ c

∫
‖R2‖2H1 + ‖Dũ‖4Ls dt,

and the latter is finite because k ≤ 4
3 implies k

k−1 ≥ 4. ��
Remark 5 (Comparison of Theorems 1 and 2) As one can see, the estimate for general
N is slightly different than the one for spheres. The reason is that there is no such
formulation as the angular momentum formulation (9) for general N . The formulation
(9) has the advantage that it transforms the wave map equation into a system of
equations that are only first order in time. Our numerical scheme is based on that
formulation. Our reconstruction will have ũ, w̃ that are (once) weakly differentiable
in time, but due to the presence of ru , this does not make ũ twice weakly differentiable
in time. Indeed, in the setting of Theorem 1, the energy I[ũ] would not be weakly
differentiable in time.

Our motivation for splitting the residual in Theorem 2 is that if ũ in Theorem 1
happens to be twice weakly differentiable in time, then it satisfies

∂2t ũ = �ũ + (|∇ũ|2 − |ũ × w̃|2)ũ + ∂t ru + rg + ru × w̃ + ũ × rw,

where we have used (13). This equation provides a connection between R1, R2 and
ru , rg and rω. We formulated the estimates in Theorem 1 and Theorem 2 as similar as
possible—in particular, there is no norm of a time derivative of the residuals involved
on the right hand sides of the inequalities—but in detail, the estimates look slightly
different. Indeed all terms in (11) have corresponding terms in (28) whereas all terms
in (28) except ‖R2‖L∞(0,t;L2(�)) and

∫ t
0 ‖Dũ‖2Ls (�)‖R2‖Lq (�)ds have counterparts in

(11).
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Remark 6 (Regularity assumptions) We note that our regularity assumptions for gen-
eral N are only slightly stronger than the one for spheres in Theorem 1. On the one
hand, we need a second time derivative of ũ; see the remark above. On the other
hand, we need the additional assumption Dũ ∈ L

k
k−1 (0,T; Ls(�)) where k

k−1 ≥ 4
(and not k ≤ 2 as in the sphere case). The reason is the appearance of the term∫ t
0 ‖Dũ‖2Ls (�)‖R2‖Lq (�)ds in inequality (28). Due to the different structure of the
proof, this term did not appear in Theorem 1.

Note furthermore that by choosing k = 1 and considering the case R1 = R2 = 0,
we have the same regularity assumptions as Struwe has in his result [30, Thm 2.2];
see Remark 4.

Remark 7 (Connection to a posteriori error estimates) In the next chapter, we derive
an a posteriori error estimate based on the stability framework of Theorem 1 and not
on Theorem 2. Since an angular momentum formulation is not available for general
target manifolds, basing our analysis on Theorem 1 requires us to restrict our analysis
to numerical methods for wave maps with values in S2. The reason why we use this,
less general, stability analysis is able to handle reconstructions ũ that are not twice
weakly differentiable in time. In contrast, a posteriori results based on Theorem 2
would require some reconstruction of the numerical solution that is in W 2,1 in time.
Such a reconstruction was derived for the linear wave equation in [20], but it is not
clear how to extend this construction to the wave map case.

5 Numerical scheme and a posteriori error estimates

Weare concernedwith a semi-discretization in timedevised forwavemaps into spheres
in [16]. The scheme is based on the reformulation (9) of the wave-map equation and
reads

dtu
k+1 = uk+1/2 × ωk+1/2, dtω

k+1 = �uk+1/2 × uk+1/2, (38)

where dt is a backward difference quotient in time for a step size τk and the fractional
superscript denotes an average in time, i.e.,

dtu
k+1 := 1

τk
(uk+1 − uk), uk+1/2 := uk+1 + uk

2
.

Note that (38) preserves the point-wise constraints |uk(x)| = 1 and uk ⊥ ωk for all k
provided they are satisfied for the initial data. Indeed, this follows by multiplying (38)
by uk+1/2.

A fully discrete version of this scheme, using a finite element discretization in
space, was investigated in [15]. There, it was shown that the scheme conserves energy,
in the sense that

1

2

∫
�

|ωk |2 + |∇uk |2dx = 1

2

∫
�

|ω0|2 + |∇u0|2dx ∀k = 0, . . . , N
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and that in the limit of vanishing time step size subsequences of the numerical solution
converge to weak solutions of the wave map problem. In contrast to the results of
Bartels, we are interested in a posteriori error estimates, i.e., computable error bounds
that can be evaluated once the numerical solution has been computed.

While weak solutions can be defined beyond times at which a gradient blow-up has
occurred, there does not seem to be uniqueness beyond these times, and the results of
[17] show that numerical schemes cannot be expected to converge with respect to the
energy norm, once the exact solution has no additional regularity. As a consequence,
we are only able to provide useful estimates up to the blow-up time. Beyond apparent
gradient blow-up in the solution, the error bounds keep converging in τ but blow up
for h → 0.

Our error analysis follows the approach outlined by Makridakis [37] in that it
combines the “energy type” stability result derived in Theorem 1 with a suitable
reconstruction of the numerical solution.

The scheme (38) is very close to a Crank-Nicolson scheme, and consequently, we
apply a reconstruction that is close to the reconstruction proposed in [38]. A specific
feature is that in order to employ the stability result from Theorem 1, we need to
project the reconstruction into the target manifold.

5.1 Reconstruction

In the sequel, we will define suitable reconstructions of the numerical solutions
assuming that a sequence of numerical approximations at different points in time
0 = t0 < t1 < .... < tN is given:

{un}Nn=0 : � → S2, {ωn}Nn=0 : � → R
3.

Firstly, we define preliminary, globally continuous, and piecewise linear interpolants
using local Lagrange polynomials

�0n(t) := tn+1 − t

tn+1 − tn
, �1n(t) := t − tn

tn+1 − tn

by

û|[tn ,tn+1](t) := �0n(t)u
n + �1n(t)u

n+1, ω̂|[tn ,tn+1](t) := �0n(t)ω
n + �1n(t)ω

n+1.

In addition, for any g ∈ C0([0, tN ], L2(�,R3)), we define piecewise constant and
piecewise linear interpolants by

I1[g]|[tn ,tn+1](t) := g(tn) + t − tn
tn+1 − tn

(g(tn+1) − g(tn))

I0[g]|(tn,tn+1)(t) := 1

2
(g(tn) + g(tn+1)).

123



A posteriori error estimates for wave maps into spheres Page 19 of 31 54

This allows us to rewrite the numerical scheme as

∂t û|(tn ,tn+1) = I0 [̂u × ω̂] − un+1 − un

2
× ωn+1 − ωn

2
=: I0 [̂u × ω̂] − anu ,

∂t ω̂|(tn ,tn+1) = I0[�û × û] − �un+1 − �un

2
× un+1 − un

2
=: I0[�û × û] − anω .

(39)
Next, we define piecewise quadratic reconstructions via

u∗|(tn ,tn+1)(t) := un +
∫ t

tn
I1 [̂u × ω̂] − anu ds,

w̃|(tn ,tn+1)(t) := ωn +
∫ t

tn
I1[�û × û] − anω ds.

(40)

Note that u∗, w̃ are globally continuous in time since the trapezoidal formula is exact
for linear functions and, in particular, u∗(tn) = un and, thus, |u∗(tn, x)| = |un(x)| = 1
for all n and all x ∈ �. Finally, we define

ũ := u∗

|u∗| , (41)

such that ũ is a map into S2 and ũ(tn) = un for n = 0, . . . , N .
A straightforward computation gives

∂t ũ = ũ × w̃ − ru

with ru := ũ × w̃ − I1(ũ × w̃) + au + ∂t u
∗ − ∂t u∗

|u∗| + ∂t u∗ · u∗

|u∗|3 u∗,

∂t w̃ = �ũ × ũ − rω with rω := �ũ × ũ − I1[�ũ × ũ] + aω,

(42)

where au |(tn ,tn+1) := anu and aω|(tn ,tn+1) := anω.

5.2 Computable bounds for residuals

It should be noted that, due to the projection onto the sphere, ũ is no longer piecewise
quadratic. Thus, it is not straightforward how to compute (norms of) the residuals from
(42). In addition, the method at hand is formally second order, so that we should strive
for a reconstruction making the a posteriori error estimator second order as well. It
might seemobvious that ũ×w̃−I1(ũ×w̃)+au and�ũ×ũ−I1[�ũ×ũ]+aω are second
order in time, but this property does not seem obvious for ∂t u∗ − ∂t u∗

|u∗| + ∂t u∗·u∗
|u∗|3 u∗.

Let us begin by decomposing the residuals into several parts:

ru,1 = ũ × w̃ − I1(ũ × w̃),

ru,2 = au,
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ru,3 = ∂t u
∗ − ∂t u∗

|u∗| + ∂t u∗ · u∗

|u∗|3 u∗,

rω,1 = �ũ × ũ − I1[�ũ × ũ],
rω,2 = aω. (43)

Let us note that ru,2, rω,2 are both computable from the numerical solution, without
computing any reconstruction, and are both going to converge to zero as τ 2 as long as
the scheme is at least second order convergent.

We will also give easily computable (though lengthy) bounds for the other parts of
the residuals, but we postpone their proof to the Appendix. We will state the bounds
for a representative time interval (tn, tn+1) and use the following abbreviations:

Au := |un+1 − un|, Au
x := |∇(un+1 − un)|, Au

xx := |�(un+1 − un)|,
Aω := |wn+1 − wn|, Aω

x := |∇(wn+1 − wn)|
Bu := |un+1 × wn+1 − un × wn|, Bu

x := |∇(un+1 × wn+1 − un × wn)|,
Bu
xx := |�(un+1 × wn+1 − un × wn)|
Bω := |�un+1 × un+1 − �un × un|, Bω

x := |∇(�un+1 × un+1 − �ũn × ũn)|,
Cω := max{|ωn|, |ωn+1|},Cu

x := max{|∇un|, |∇un+1|},
Cω
x := max{|∇ωn|, |∇ωn+1|}, Cu

xx := max{|�un|, |�un+1|}.
Let us mention that we expect Au, Aω, Au

x , A
ω
x , Au

xx , B
u, Bω, Bu

x , Bω
x , Bu

xx to scale
like τn := tn+1−tn as long as the exact solution is regular enough for the true error to be
proportional to τ 2n . In addition, we expect C

ω,Cu
x ,C

ω
x ,Cu

xx to be bounded (uniformly
in τn) as long as the exact solution is regular. Both expectations are confirmed by our
numerical experiments.

Lemma 2 Let us denote τn := tn+1 − tn and let the time-step be chosen sufficiently
small such that (Au)2 + τn Bu < 1

4 holds point-wise. Then, the residuals defined in
(42) satisfy the following point-wise estimates.

∣∣∣ru,1|(tn ,tn+1)

∣∣∣ ≤ τn B
ω + Cω(Au)2 + Cωτn B

u + 1

4
Au Aω (44)∣∣∣∇ru,1|(tn ,tn+1)

∣∣∣ ≤ (Cu
x + τn B

u
x )(τn B

ω + Cω(Au)2) + τn B
ω
x (45)

+ Cω(Au
x A

u + τn B
u
x + Cu

x τn B
u + τ 2n B

u Bu
x )

+ (Au)2Cω
x + τn B

u
x C

ω + τn B
uCω

x + Au
x A

ω + Au Aω
x∣∣∣ru,2|(tn ,tn+1)

∣∣∣ ≤ 1

4
Au Aω (46)

∣∣∣∇ru,2|(tn ,tn+1)

∣∣∣ ≤ 1

4
(Au

x A
ω + Au Aω

x ) (47)
∣∣∣ru,3|(tn ,tn+1)

∣∣∣ ≤ (Cω + 1

4
Au Aω)(

4

3
(Au)2 + 8

3
τn B

u) (48)

+ 4Au Aω(2 + τn B
u) + 4Cωτn B

u
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∣∣∣∇ru,3|(tn ,tn+1)

∣∣∣ ≤ 8Cω[Au Au
x + τn B

u
x + Cu

x τn B
u + τ 2n C

uCu
x ] (49)

+ (Cω
x + Cu

x C
ω)[(Au)2 + 3τn B

u]
+ Cu

x A
u Aω + Au Aω

x + 1

4
(Au

x A
ω + Au Aω

x )

+ 1

4
Au Aω(Cu

x + τn B
u
x ) + (Cω

x + Cu
x C

ω)τn B
u + Cωτn B

u
x

∣∣∣rω|(tn ,tn+1)

∣∣∣ ≤ (Cu
xx + τn B

u
xx )

(
7

3
(Au)2 + 11

3
τn B

u
)

+ 9

4
Au
xx A

u + (Au
x )

2 (50)

+ (Cu
x + τn B

u
x )2[Au

x A
u + τn B

u
x + (1 + Cu

x )τn B
u + τ 2n B

u
x B

u]
|rg| ≤ (Cω + τn B

ω))[τn Bω + Cω((Au)2 + τn B
u) + Au Aω] (51)

+ [τn Bω + Cω((Au)2 + τn B
u) + Au Aω]2.

An a posteriori estimate for the difference between the exact solution and the recon-
structions (ũ, w̃) is easily obtained by combiningLemma2 andTheorem1. It should be
noted that the definitions of the residuals and the way they enter into the error estimate
are rather similar to [18, Theorem 3.1]. However, we cannot avoid exponential-in-time
growth of the error due to the non-linearity of the problem, even if the solution does
not exhibit gradient blow-up.

6 Numerical experiments

In this section, we perform numerical experiments in order to demonstrate the scaling
behavior of the error estimator and to investigate time stepping strategies. We focus
on the scaling (in τ ) of the error and of the error estimator. In order to obtain a
fully practical scheme, we used a finite difference discretisation in space (together
with the temporal discretisation discussed above), i.e., the scheme from [16]. We
have performed numerical simulations on a Cartesian grid for simplicity. This seems
reasonable since none of the papers investigating numerical schemes have reported
any effects of the choice of spatial grid. On this grid, the scheme from [16] is equivalent
to the finite element scheme from [15] since the latter uses mass lumping.

Whenever derivatives occur in the error estimator, they are approximated using
finite differences. We consider the problem that was also studied in [8]. These are
smooth initial data for which a singularity forms in the numerical experiments. We
believe that this reflects formation of a singularity in the exact solution, but, strictly
speaking, we cannot be sure that this is what happens since the error estimator stops
converging for h → 0 after a singularity seems to have formed. The fact that the error
estimator does not converge once a singularity (seems to) have formed is related to the
fact that our error estimator is an upper bound for the difference between the numerical
solution and any finite energy weak solution in the sense of Definition 3.1, and these
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solutions are expected not to be unique once a singularity has formed. Note that this is
not a contradiction to convergence of numerical solutions to some weak solution. In
order to obtain an error estimator that converges after singularity formation, one would
need some technique to compare the numerical solutions to only one weak solution.
It is currently unclear how to achieve this.

The problem data are given by N = S2, � = (− 1
2 ,

1
2 )

2 and

u(0, x) =
{

(2a(x)x1,2a(x)x2,a(x)−|x |)T
a(x)2+|x |2 for |x | ≤ 1/2

(0, 0,−1)T for |x | ≥ 1/2
∂t u(0, ·) ≡ 0 (52)

with a(x) := (1 − 2|x |)4 and homogeneous Neumann boundary conditions (Fig. 1).
The numerical solution develops a singularity at some time t > .2 to be precise. Thus,
we expect the scheme to converge with order τ 2 in the energy norm

max
t∈[0,T]

(∫
�

|∂t u − ũ × ω̃|2 + |∇u − ∇ũ|2dx
) 1

2

at least until T = .2.
Since the exact solution is unknown in this case, we use a numerical solution on

a very fine mesh (h = 2−9, τ = 2−14) as reference solution in order to approximate
the error. We observe that the error indeed scales as τ 2; see Table 1. There we present
errors and experimental order of convergence (eoc)

One of the goals we had in constructing the error estimator, i.e., the upper bound
provided by combining Theorem 1 and Lemma 2, was that it is formally of opti-
mal order, i.e., that it converges to zero with the same rate as the true error on
equidistant meshes. This is guaranteed as soon as the quantities Au, Au

x , A
u
xx , A

ω, Aω
x ,

Bu, Bu
x , Bu

xx , B
ω, Bω

x areO(τ ) andCu
x ,C

u
xx ,C

ω,Cω
x are uniformly bounded in τ . This

is indeed what we observe in the experiments we carried out. We do not report these

Fig. 1 Snapshots of numerical solution using h = 1/60 and τ = 2−10 at different times. Arrows depict
first two components of uh , and color indicates direction of third component
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Table 1 Error in energy norm and eoc up to time T = 0.2

τ ‖ωh − ωref‖L∞(0,T;L2(�)) eoc ‖∇uh − ∇uref‖L∞(0,T;L2(�)) eoc

2−10 6.51e−04 — 8.10e−04 —

2−11 2.13e−04 1.61 2.36e−04 1.78

2−12 6.19e−05 1.78 6.51e−05 1.86

2−13 1.28e−05 2.28 1.34e−05 2.28

We use a mesh constant h = 2−9 and a reference time step τ = 2−14

numbers in detail but plot
∫ t
0 α̂(s) ds and

∫ t
0 δ̂(s) ds for several equidistant step-sizes

τ and for different spatial mesh widths h, in Fig. 2. Here, α̂ and δ̂ are computable upper
bounds for α and δ based on Lemma 2. These results show that α and δ are independent
of the spatial mesh width h, as they are supposed to be since we are quantifying time
discretisation errors. We also observe that α is proportional to τ 2 and δ is (essentially)
independent of τ . This confirms our theoretical predictions, i.e., optimal convergence
order of the error estimator in the smooth regime.

Due to the expected non-uniqueness of finite energy weak solutions, we focus on
time-stepping before and up-to singularity formation. Standard algorithms for mesh
adaptation aim at equi-distributing 1

τ j

∫ t j+τ j
t j

α̂(s) ds among all time steps, i.e., the

local step size is reduced if 1
τ j

∫ t j+τ j
t j

α̂(s) ds exceeds a given tolerance. As observed
in [19], this strategy leads to excessive over-refinement close to blow-ups. Moreover,
(12) shows that errors incurred in different time-steps are amplified by different factors.
In order to obtain a scheme that is efficient up to blow-up, this needs to be taken into
account, and we follow a strategy that is similar to the one proposed in [19], i.e.,
from the j-th to the ( j + 1)-th time step, we increase the tolerance by a factor of
exp( 12

∫ t j
t j−1

δ̂(s) ds).

Fig. 2 Left: temporal evolution of the integral of computable upper bounds for α based on Lemma 2.
Note that, as long as the numerical solutions are “smooth,” α is independent of the spatial mesh width h
and proportional to τ2. Once numerical solutions show a singularity, α does depend on h. Right: temporal
evolution of the integral of computable upper bounds for δ based on Lemma 2. Note that the bounds for δ are
independent of h and τ as long as the numerical solutions are “smooth,” whereas δ is h dependent once the
numerical solutions display singularities. It should be noted that δ contains finite difference approximations
of ‖∇u‖L2p , and it is anticipated that if the gradient of the exact solution blows up the finite differences of
the numerical solution approximating ‖∇u‖∞ scale like 2/h
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Fig. 3 Temporal evolution, for different spatial mesh widths, of the quantity that needs to be smaller than 1
4

for Lemma 2 to hold. This condition is satisfied for both adaptive time stepping (left) and constant time-step
sizes (right)

In Fig. 4, we compare values of the error estimator and time step sizes for the
two time-stepping strategies described above. Note that the error estimator hinges on
Lemma 2 which is conditional on (Au)2 + τn Bu being small enough. Figure3 shows
that this condition is indeed satisfied in the case under consideration. Moreover, Fig. 3
(right) shows that this quantity is quadratic in the time step size, i.e., we can ensure
that the condition holds by making time steps small enough. The condition might be
violated close to gradient blow-up of the numerical solution. It turns out that the scheme
using the updated error tolerances uses much smaller step sizes in the beginning and
larger step sizes at later times than the equidistribution strategy. We observe that at
time t = 0.17, the strategy using updated error tolerances has used fewer time steps
but leads to a smaller error bound.

We observe in Fig. 4 that for time stepping with updated tolerances, time step sizes
stop increasing beyond a certain point in time. This is due to the fact that for time
step sizes larger than some threshold value τthresh(h) > 0, the fixed point iteration that
we use for solving the non-linear system (38) in each time step (see [15, Algo. 2] for

Fig. 4 Time step sizes (left) and values of the combined error estimator from Theorem 1 and Lemma 2
(right) as functions of time for different (equidistant) spatial meshes. We compare simulations with time
step adaptation using a fixed tolerance 10−4 to ones using updated tolerances starting at 10−6, so that at
time t = 0.17, the number of computed time steps is comparable (approx. 21000)
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details) does not converge. This results in the time step being automatically reduced
independently of the error tolerance.
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Appendix

This appendix is devoted to the proof of Lemma 2. Here, each quantity that is defined
continuously in time is to be understood as its restriction to (tn, tn+1). Let us begin
by giving explicit formulae for certain parts of ru and rω. The first such expressions
make explicit the difference between some piecewise quadratic, globally continuous
function and its piecewise linear interpolations:

u∗(t) − û(t) = 1

2

(t − tn)(tn+1 − t)

tn+1 − tn

(
un+1 × ωn+1 − un × ωn

)
,

w̃(t) − ω̂(t) = 1

2

(t − tn)(tn+1 − t)

tn+1 − tn

(
�un+1 × un+1 − �un × un

)
,

û(t) × ŵ(t) − I1(̂u × ŵ)(t) = − (t − tn)(tn+1 − t)

(tn+1 − tn)2
(un+1 − un) × (ωn+1 − ωn).

(53)

Controlling |̂u|, |u∗|

Let us now study how far away û, u∗ are from maps into the sphere: If un+1 − un is
sufficiently small, a geometric argument implies

∣∣∣1− |̂u|
∣∣∣ ≤ |un+1 −un|2 = (Au)2,

∣∣∣1−|u∗|
∣∣∣ ≤

∣∣∣1− |̂u|
∣∣∣+

∣∣∣̂u−u∗
∣∣∣ ≤ (Au)2 + τn B

u

123

http://creativecommons.org/licenses/by/4.0/


54 Page 26 of 31 J. Giesselmann et al.

and, therefore,

∣∣∣ũ − u∗
∣∣∣ =

∣∣∣ũ
(
1 −

∣∣∣u∗
∣∣∣
)∣∣∣ ≤ |un+1 − un|2 = (Au)2 + τn B

u . (54)

Thus, the conditions in Lemma 2 imply

3

4
≤ |̂u| ≤ 5

4
,

1

2
≤ |u∗| ≤ 3

2
. (55)

Estimating ru,1

Since ũ(tn) = û(tn) and w̃(tn) = ω̂(tn) we may rewrite ru,1 as

ru,1 = ũ × (w̃ − ω̂) + (ũ − u∗) × ω̂ + (u∗ − û) × ω̂ + û × ŵ − I1(̂u × ŵ) (56)

such that
∣∣∣ru,1

∣∣∣ ≤ τn(�ũn+1 × ũn+1 − �ũn × ũn)2|un+1 − un| |ωn+1 − ωn|
+ max{|ωn|, |ωn+1|}

[
|un+1 − un|2 + |tn+1 − tn| |un+1 × ωn+1 − un × ωn|

]
.

(57)
This proves (44).

We obtain (45) by applying the product rule to (56) since |̂u(t, x)|≤ 1. We also use
the fact that ∇ũ is the projection of ∇u∗ onto the tangent space of the sphere, so that,
provided |un+1 − un| < 1/2 holds, we have the point-wise estimate

|∇ũ| ≤ 2|∇u∗|. (58)

Estimating ru,3

The key to estimating ru,3 is to control ∂t u∗ · u∗. We notice that

∂t u
∗ · u∗ = (I1 [̂u × ω̂] + au) · (̂u + (u∗ − û)) (59)

and, thus,

|∂t u∗ · u∗| ≤ |I1 [̂u × ω̂] · û| + Au Aω(1 + τn B
u) + Cωτn B

u (60)

so that it remains to understand I1 [̂u × ω̂] · û. Using orthogonality, we obtain

I1 [̂u × ω̂] · û = [�0n(t)un × ωn + �1n(t)u
n+1 × ωn+1] · [�0n(t)un + �1n(t)u

n+1]
= �0n(t)�

1
n(t)[un+1 · (un × ωn) + un · (un+1 × ωn+1)]

= �0n(t)�
1
n(t) det(u

n+1, un, ωn+1 − ωn)

= �0n(t)�
1
n(t) det(u

n+1 − un, un, ωn+1 − ωn).

(61)
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We insert (61) into (59) and obtain

|∂t u∗ · u∗| ≤ Au Aω(2 + τn B
u) + Cωτn B

u . (62)

Moreover, due to (55) we arrive at

∣∣∣∣1 − 1

|u∗|
∣∣∣∣ =

∣∣∣∣1 − 1

|̂u| − |u∗| − |̂u|
|u∗||̂u|

∣∣∣∣ ≤ 4

3
(Au)2 + 8

3
τn B

u (63)

Using (63) and (62) we obtain:

|ru,3| ≤ (Cω+1

4
Au Aω)

(
4

3
(Au)2 + 8

3
τn B

u
)

+4Au Aω(2+τn B
u)+4Cωτn B

u . (64)

Let us note that for

∇ru,3 = ∇∂t u
∗
(
1 − 1

|u∗|
)

+ ∇(I1 [̂u × ω̂] · û) + ∇au · u∗

+ au · ∇u∗ + ∇(I1 [̂u × ω̂] · (u∗ − û)) + ∂t u
∗∇

(
1 − 1

|u∗|
) (65)

we have suitable bounds for all terms on the right hand side of (65) except for

∇
(
1 − 1

|u∗|
)
, e.g., ∇(I1 [̂u × ω̂] · û) can be estimated by applying the product rule to

(61). As a first step towards estimating for ∇
(
1 − 1

|u∗|
)

= − u∗·∇u∗
|u∗|3 , we compute

|u∗|3∂x j
(
1 − 1

|u∗|
)

= ∂x j û · û + ∂x j (u
∗ − û) · û

+ ∂x j û ·(u∗ − û) + ∂x j (u
∗ − û) · (u∗ − û).

(66)

We recall |un| = 1, which implies ∂x j u
n · un = 0, for all n, so that

∂x j û · û = ∂x j (�
0
n(t)u

n + �1n(t)u
n+1) · (�0n(t)u

n + �1n(t)u
n+1)

= �0n(t)�
1
n(t)(∂x j u

n · un+1 + ∂x j u
n+1 · un)

= −�0n(t)�
1
n(t)∂x j (u

n+1 − un) · (un+1 − un).

(67)

We insert (67) into (66) and obtain

∣∣∣∣∇
(
1 − 1

|u∗|
)∣∣∣∣ ≤ 8[Au

x A
u + τn B

u
x + Cu

x τn B
u + τ 2n B

u
x B

u] (68)
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Thus, we obtain

|∇ru,3| ≤
(
Cu
x C

ω + Cω
x + 1

4
Au
x A

ω + 1

4
Au Aω

x

) (
4

3
(Au)2 + 8

3
τn B

u
)

+ 3

2
Au
x A

ω + 2AuCu
x A

ω + 3

2
Au Aω

x + (
Cu
x C

ω + Cω
x

)
τn B

u + Cωτn B
u
x

+ 8

(
Cω + 1

4
Au Aω

)(
Au
x A

u + τn B
u
x + Cu

x τn B
u + τ 2n B

u
x B

u
)

.

(69)
This completes providing bounds for the different components of ru and ∇ru .

Estimating r!

Obviously, |rω,2| = |aω| ≤ 1
4 A

u Au
xx and

rω,1 = (�ũ − �u∗) × ũ + (�u∗ − �û) × ũ + �û × (ũ − u∗)
+ �û × (u∗ − û) + �û × û − I1[�û × û]. (70)

We insert (54) and (53) into (70) and obtain

|rω,1| ≤ |(�ũ − �u∗)| + τn B
u + Cu

xx (A
u)2 + Cu

xxτn B
u + Au

xx A
u , (71)

where we have used that

�û × û − I1[�û × û] = −�0n(t)�
1
n(t)(�un+1 − �un) × (un+1 − un).

It remains to provide an estimate for |�ũ − �u∗|. We note that u∗ = ũ|u∗| and, thus,

�(ũ − u∗) = �u∗
(
1 − 1

|u∗|
)

−
∑

j ∂x j ũ · ∂x j |u∗|
|u∗| − ũ�|u∗|

|u∗| , (72)

so that

|�(ũ − u∗)| ≤ (Cu
xx + τn B

u
xx )

(
4

3
(Au)2 + 8

3
τn B

u
)

+ |∇ũ| |u
∗ · ∇u∗|
|u∗|2 + |�|u∗| |

|u∗|
≤ (Cu

xx + τn B
u
xx )

(
4

3
(Au)2 + 8

3
τn B

u
)

+ (Cu
x + τn B

u
x )2[Au

x A
u + τn B

u
x + Cu

x τn B
u + τ 2n B

u
x B

u] + |�|u∗| |
|u∗|

(73)
where we have used (68). Orthogonality ∂x j u

n ⊥ un for all j and all n implies

�|u∗| = −�0n(t)�
1
n(t)[(un+1 − un) · ∂2x j (u

n+1 − un) + |∂x j (un+1 − un)|2]. (74)
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Inserting (74) into (73) implies

|�(ũ − u∗)| ≤ (Cu
xx + τn B

u
xx )

(
4

3
(Au)2 + 8

3
τn B

u
)

+ Au
xx A

u + (Au
x )

2

+ (Cu
x + τn B

u
x )2[Au

x A
u + τn B

u
x + Cu

x τn B
u + τ 2n B

u
x B

u]
(75)

Inserting (75) into (71) completes the bound for rω.

Estimating rg

We note that orthogonality un ⊥ ωn implies

ũ · w̃ = ũ · (w̃ − ω̂) − (ũ − û) · ω̂ + û · ω̂

= ũ · (w̃ − ω̂) − (ũ − û) · ω̂ − �0n(t)�
1
n(t)(u

n+1 − un) · (ωn+1 − ωn)
(76)

so that
|ũ · w̃| ≤ τn B

ω + Cω((Au)2 + τn B
u) + Au Aω. (77)

Thus, using the definition of rg

|rg| ≤ (Cω + τn B
ω))[τn Bω + Cω((Au)2 + τn B

u) + Au Aω]
+ [τn Bω + Cω((Au)2 + τn B

u) + Au Aω]2.
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