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Abstract
In d dimensions, accurately approximating an arbitrary function oscillating with fre-
quency � k requires ∼ kd degrees of freedom. A numerical method for solving
the Helmholtz equation (with wavenumber k) suffers from the pollution effect if, as
k → ∞, the total number of degrees of freedom needed to maintain accuracy grows
faster than this natural threshold. While the h-version of the finite element method
(FEM) (where accuracy is increased by decreasing the meshwidth h and keeping the
polynomial degree p fixed) suffers from the pollution effect, the hp-FEM (where
accuracy is increased by decreasing the meshwidth h and increasing the polynomial
degree p) does not suffer from the pollution effect. The heart of the proof of this
result is a PDE result splitting the solution of the Helmholtz equation into “high”
and “low” frequency components. This result for the constant-coefficient Helmholtz
equation in full space (i.e. in R

d ) was originally proved in Melenk and Sauter (Math.
Comp 79(272), 1871–1914, 2010). In this paper, we prove this result using only inte-
gration by parts and elementary properties of the Fourier transform. The proof in this
paper is motivated by the recent proof in Lafontaine et al. (Comp. Math. Appl. 113,
59–69, 2022) of this splitting for the variable-coefficient Helmholtz equation in full
space use the more-sophisticated tools of semiclassical pseudodifferential operators.
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E.A. Spence

1 Introduction andmotivation

When computing approximations with the finite element method to the solution of
the Helmholtz equation

�u + k2u = −f, (1.1)

with wavenumber k > 0, a fundamental question is:

How quickly must the meshwidth h decrease with k and/or the polynomial
degree p increase with k to maintain accuracy as k → ∞?

This question has been the subject of sustained interest since the late 1980s, with
initially answers obtained for 1-d problems [1, 29, 30], and now answers obtained for
2- and 3-d problems in general geometries, both for “standard” FEMs [14, 16, 19, 24,
32–36, 52, 55] and for variations of these, e.g. discontinuous Galerkin methods [17,
18, 37, 54] and multiscale methods [3, 7, 9, 10, 20, 45, 46]. Moreover, there is large
current interest in this question when the Helmholtz equation (1.1) is replaced by its
variable-coefficient generalisation ∇ · (A∇u) + k2nu = 0 [4, 6, 11, 21, 22, 25, 27,
32, 38] or even the time-harmonic Maxwell equations [39, 40, 44].

A highlight of this body of research is the result from [4, 16, 21, 22, 32, 34, 36, 37]
that the hp-FEM does not suffer from the pollution effect; i.e. accuracy can be main-
tained with a choice of the number of degrees of freedom growing like kd , where
“accuracy” here means that the computed solution is quasi-optimal (see (3.2) below).
This is contrast to the h-version of the FEM which, e.g. with p = 1, needs the total
number of degrees of freedom to grow like k2d to maintain accuracy in this sense.
Having the number of degrees of freedom growing like kd is the natural threshold
for this problem since an oscillatory function in d dimensions with frequency � k

requires ∼ kd degrees of freedom to be well-approximated by piecewise polynomi-
als; this is expected from the Nyquist–Shannon–Whittaker sampling theorem in 1-d
[50, 53], and from the recent results in general dimension in [23].

The proofs that the hp-FEM does not suffer from the pollution effect consist of
the following three ingredients.

1. Sufficient conditions for FEM solutions to be quasi-optimal originating from
the ideas of Schatz [49] (related to the classic “Aubin–Nitsche trick”), and then
developed by Sauter [48].

2. Results from [34, Appendices B and C] about how well the hp-FEM spaces
approximate analytic functions.

3. A PDE result splitting the solution of the Helmholtz equation into “high” and
“low” frequency components.

The motivation for the present paper was the realisation that, for the constant-
coefficient Helmholtz equation (1.1) posed in R

d , given a bound on the solution in
terms of the data (which can be proved using essentially only integration by parts),
the splitting in point 3 above can be proved using only elementary properties of the
Fourier transform, thus making the key ideas behind this body of work accessible to
a wide audience.
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The hp-FEM does not suffer from the pollution effect

The proof in this paper is motivated by the recent proof in [32] of this splitting for
the variable-coefficient Helmholtz equation in R

d ; the proof in [32] uses the more-
sophisticated tools of semiclassical pseudodifferential operators that reduce to the
elementary ones above in the constant-coefficient case — we discuss this further in
Section 7.6.

We highlight that the splitting in point 3 above, and also the results of points 1
and 2, are all concerned with the analysis of the hp-FEM; i.e. they influence the
implementation of the hp-FEM only in that that together they give a prescription of
how to tie h and p to k to ensure that the FEM solution is quasi-optimal, uniformly
in k, as k → ∞.

Plan of the paper Section 2 recalls basic facts about the Helmholtz equation. Sec-
tions 3, 4, and 5 concern points 1, 2, and 3 above, respectively. Section 5 states the
splitting for the constant-coefficient full-space Helmholtz equation, and then uses
the results of points 1–3 to prove that the hp-FEM does not suffer from the pollu-
tion effect when applied to this problem. Section 6 recaps the basic properties of the
Fourier transform, and then Section 7 proves the splitting stated in Section 5 using
the material in Section 6.

2 The Helmholtz equation

2.1 Themodel Helmholtz problem

As in [34], we consider the following model Helmholtz problem. Given f ∈ L2(Rd)

with compact support, let u ∈ H 1
loc(R

d) be the solution of

k−2�u + u = −f in R
d , d = 2, 3, (2.1)

that is outgoing in the sense that it satisfies the Sommerfeld radiation condition

k−1∂ru(x) − iu(x) = o
(
r−(d−1)/2) (2.2)

as r := |x| → ∞, uniformly in x̂ := x/r . Rellich’s uniqueness theorem (see,
e.g. [13, Theorem 3.13]) implies that the solution of (2.1)–(2.2) is unique. For this
particular model problem, the solution can be written down explicitly as an integral
of f against the fundamental solution of the Helmholtz equation (see (7.10) below),
with then mapping properties of this integral operator (see, e.g. [41, Theorem 6.1])
showing existence of the solution to (2.1)–(2.2). Observe that we have multiplied the
Helmholtz equation (1.1) by k−2 and rescaled the right-hand side f ; we see below
how this rescaling by k−2 allows us to keep better track of the k-dependence.

2.2 The variational formulation of the Helmholtz equation

Let R > 0 be large enough so that suppf ⊂ BR := {x ∈ R
d : |x| < R}. The

variational formulation of (2.1)–(2.2) is then

find ũ ∈ H 1(BR) such that a(̃u, v) = F(v) for all v ∈ H 1(BR), (2.3)
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where

a(̃u, v) :=
∫

BR

(
k−2∇ũ · ∇v − ũv

)
− k−1〈DtNkũ, v

〉
∂BR

(2.4)

and

F(v) :=
∫

BR

f v.

The operator DtNk in (2.4) is the Dirichlet-to-Neumann map for the outgoing solution
of the Helmholtz equation in the exterior of the ball BR; i.e. given g ∈ H 1/2(∂BR),
let v be the unique outgoing solution to

(−k−2� − 1)v = 0 in R
d \ BR and v = g on ∂BR;

then DtNkg := k−1∂rv, i.e.

DtNkg(θ) = 1

2π

∞∑

n=−∞

H
(1)′
n (kR)

H
(1)
n (kR)

exp(inθ)

∫ 2π

0
e−inθg(R, θ) dθ;

for the analogous expression when d = 3, see, e.g. [34, Equations 3.7 and 3.10].
Green’s identity and the definitions of DtNk and a(·, ·) imply that if u is a solution

of (2.1)–(2.2), then u|BR
is a solution of the variational problem (2.3). Conversely,

if ũ is a solution of this variational problem, then there exists a solution u of (2.1)–
(2.2) such that u|BR

= ũ; thus, the solution of the variational problem (2.3) exists
and is unique. Because of this equivalence result, and for simplicity, from now on,
we denote by u both the solution of (2.1)–(2.2) and the solution of the variational
problem (2.3).

Remark 2.1 (Approximating DtNk) Implementing the operator DtNk appearing in
a(·, ·) (2.4) is computationally expensive, and so in practice one seeks to approximate
this operator by, e.g. imposing an absorbing boundary condition on ∂BR , or using a
perfectly-matched layer (PML). For simplicity, in this paper (as in [34]), we analyse
the FEM assuming that DtNk is realised exactly.

2.3 The k-dependence of the Helmholtz solution operator

We work with the weighted norm

‖v‖2
Hm

k (BR) :=
∑

0≤|α|≤m

∥∥∥(k−1∂)αv

∥∥∥
2

L2(BR)
. (2.5)

with special case ‖v‖2
H 1

k (BR)
:= ‖k−1∇v‖2

L2(BR)
+ ‖v‖2

L2(BR)
. The rationale for

using these norms is that if a function v oscillates with frequency k, then we expect
|(k−1∂)αv| ∼ |v| for all α; this is true, e.g. if v(x) = exp(ikx · a).

Let Csol(k, R) be the operator norm of the map L2(BR) � f �→ u ∈ H 1(BR),
where u is the outgoing solution of the Helmholtz equation (2.1); i.e. given k and R,
Csol(k, R) is such that given f ∈ L2(BR) if u is the solution of (2.1)–(2.2), then

‖u‖H 1
k (BR) ≤ Csol ‖f ‖L2(BR) . (2.6)
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For the simple model problem (2.1)–(2.2), the following bound on Csol can be
obtained by multiplying the Helmholtz equation (2.1) by a judiciously chosen test
function and integrating by parts.

Theorem 2.2 (Morawetz bound on Csol) For all k > 0 and R > 0,

Csol ≤ 2kR

√

1 +
(

d − 1

2kR

)2

. (2.7)

This bound was essentially proved in [42, 43] (although the bound does not quite
appear in this form in those papers) (see also [8, Lemma 3.5] and [28, Equations 1.9
and 1.10]). The details of the proof of this bound are not needed in the rest of the
paper, but for completeness (and since they involve essentially only integrating by
parts), we include them in Appendix A.

The bound (2.7) is sharp in its kR dependence for kR large; indeed, by considering
u(x) = eikx1χ(|x|/R) for χ ∈ C∞ supported in [0, 1), one can show that given
k0, R0 > 0, there exists C > 0 such that Csol ≥ CkR for all k ≥ k0 and R ≥ R0.

Corollary 2.3 (Bound on H 2
k norm of the Helmholtz solution) Given k0, R0 > 0,

there exists C > 0 such that the solution u of (2.1)–(2.2) with suppf ⊂ BR with
R ≥ R0 satisfies ‖u‖H 2

k (BR) ≤ CkR ‖f ‖L2(BR) for all k ≥ k0. (2.8)

Comparing the bounds (2.7) and (2.8) shows the advantage of working in the par-
ticular weighted norms (2.5) — the k-dependence of the solution operator is the same
regardless of the spaces it maps between.

Sketch proof of Corollary 2.3 Corollary 6.4 below uses the Fourier transform to
prove H 2 regularity of the solution of (−k−2� + 1)v = g ∈ L2(Rd). To apply this
bound to the solution of (2.1)–(2.2), let ϕ ∈ C∞

comp(R
d , [0, 1]) be equal to one on

BR and vanish outside B2R , and then let v := ϕu so that g = (−k−2� + 1)(ϕu) =
(−k−2� − 1)(ϕu) + 2ϕu. The bound (2.8) then follows by bounding ‖g‖L2(B2R) in
terms of ‖f ‖L2(BR) using the PDE (2.1) and the bounds (2.6) and (2.7).

Remark 2.4 Many papers on the numerical analysis of the Helmholtz equation use
the weighted H 1 norm ‖u‖2

H 1
k (BR)

:= ‖∇u‖2
L2(BR)

+ k2‖u‖2
L2(BR)

; we use (2.5)

instead since weighting the j th derivative by k−j is easier to keep track of than
weighting it by k−j+1 (especially for high derivatives).

3 The Galerkin method and sufficient conditions for quasioptimality

Let HN be a finite-dimensional subspace of H 1(BR). The Galerkin method applied
to the variational problem (2.3) is

find uN ∈ HN such that a(uN, vN) = F(vN) for all vN ∈ HN . (3.1)
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The FEM is the Galerkin method (3.1) with HN consisting of piecewise polynomials
(we describe in Section 4 the specific assumptions we make on HN ).

Given a sequence of finite-dimensional spaces {HN }∞N=1, a standard error bound
one seeks to prove on the sequence of Galerkin solutions {uN }∞N=1 is the following
quasioptimal error bound: there exists a Cqo > 0 and N0 ∈ N such that, for N ≥ N0,

‖u − uN‖H 1
k (BR) ≤ Cqo min

vN∈HN

‖u − vN‖H 1
k (BR) . (3.2)

The main result of this section is Lemma 3.4 below, giving sufficient conditions
for quasioptimality. This result crucially relies on the following properties of the
sesquilinear form a(·, ·) and the following properties of the adjoint solution operator.

Lemma 3.1 (Properties of a(·, ·))
(i) (Continuity) Given k0, R0 > 0 there exists Ccont > 0 such that for all k ≥ k0

and R ≥ R0,

|a(u, v)| ≤ Ccont ‖u‖H 1
k (BR) ‖v‖H 1

k (BR) for all u, v ∈ H 1(BR).

(ii) (Gårding inequality)

�a(v, v) ≥ ‖v‖2
H 1

k (BR)
− 2 ‖v‖2

L2(BR)
for all v ∈ H 1(BR).

References for the proof Part (i) follows from the Cauchy–Schwarz inequality and
boundedness of DtNk; see [34, Lemma 3.3, Part 1]. Part (ii) follows from the fact that
−�〈

DtNkφ, φ
〉
∂BR

≥ 0 for all φ ∈ H 1/2(∂BR); see [34, Lemma 3.3, Part 2].

Definition 3.2 (Adjoint solution operator S∗) Given f ∈ L2(BR), let S∗f ∈
H 1(BR) be defined by

a(v,S∗f ) = (v, f )L2(BR) for all v ∈ H 1(BR). (3.3)

The following lemma shows that our knowledge about outgoing Helmholtz
solutions immediately gives us knowledge about S∗.

Lemma 3.3 If S∗ is defined as in (3.3) then

a(S∗f , v) = (f , v)L2(BR) for all v ∈ H 1(BR).

i.e. S∗f is the complex-conjugate of the outgoing Helmholtz solution with data f .

Sketch proof Green’s identity and the radiation condition (2.2) show that〈
DtNkψ, φ

〉
∂BR

= 〈
DtNkφ, ψ

〉
∂BR

for all φ, ψ ∈ H 1/2(∂BR). This implies that
a(v, u) = a(u, v) for all u, v, which implies the result.
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Lemma 3.4 (Sufficient conditions for quasi-optimality) If

η(HN) := sup
0�=f ∈L2(BR)

min
vN∈HN

‖S∗f − vN‖H 1
k (BR)

‖f ‖L2(BR)

≤ 1

2Ccont
, (3.4)

then the Galerkin solution uN to the variational problem (3.1) exists, is unique, and
satisfies the quasi-optimal error bound

‖u − uN‖H 1
k (BR) ≤ 2Ccont

(
min

vN∈VN

‖u − vN‖H 1
k (BR)

)
. (3.5)

References for the proof See [48, Theorem 2.5] or [34, Theorem 4.3] (note that these
references consider the Helmholtz equation in the form �u + k2u = −f and use
the weighted norm discussed in Remark 2.4, but it is straightforward to convert the
results to our setting).

4 Recap of approximation results in hp-FEM spaces

The result that the hp-FEM does not suffer from the pollution effect is proved under
the following two assumptions on the finite-dimensional subspaces; these assump-
tions describe how well (as a function of h and p) the spaces approximate functions
with a given regularity.

We highlight immediately that both these assumptions are satisfied by hp-
finite-element spaces with curved elements that fit ∂BR exactly, provided that the
triangulations are quasi-uniform and are constructed by refining a fixed triangulation
that has analytic element maps (see Theorem 4.4 below). Nevertheless, we formulate
these properties as specific assumptions to make it clear the actual properties of the
subspaces that are needed in the proof of the result that the hp-FEM does not suffer
from the pollution effect. Since we are ultimately thinking of the subspaces in these
assumptions as hp-finite-element spaces, we denote the sequence of these subspaces
as {Hh,p}h>0,p∈Z+ .

Assumption 4.1 (Approximation in the finite-dimensional subspace of functions
with finite regularity) Let {Hh,p}h>0,p∈Z+ be a sequence of finite-dimensional sub-
spaces of H 1(BR). Given s, d with d the spatial dimension and s > d/2, there exists
Capprox1 > 0 such that if v ∈ Hs(BR) and p ≥ s − 1, then

min
wh,p∈Hh,p

∥∥v − wh,p

∥∥
H 1

k (BR)
≤ Capprox1

(
hk

p

)s−1 (
1 + hk

p

)
‖v‖Hs

k (BR) . (4.1)

Discussion of Assumption 4.1 A standard polynomial approximation result is the fol-
lowing. For d = 2, 3, given s ≥ 2 and p ≥ s − 1, there exists C > 0 such that if
v ∈ Hs(D) and m = 0 or 1, then

∥∥∥v − Ihv

∥∥∥
Hm(D)

≤ Chs−m|v|Hs(D), (4.2)
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where Ih is a global interpolation operator (see, e.g. [5, Equation 4.4.28], [12, Theo-
rem 17.1]). The approximation result (4.1) is a generalisation of (4.2) which (i) makes
explicit the dependence on p of the constant C in (4.2), and (ii) works in norms
weighted with k.

Motivation for Assumption 4.3. Assumption 4.1 is about approximating in k-
weighted norms an arbitrary function in Hs for some s > 0; note that the constant
Capprox1 depends on s in an unspecified way, and so we cannot use the bound (4.1)
for arbitrarily large s, and hence arbitrarily large p, since p is tied to s via p ≥ s − 1.
The next assumption, Assumption 4.3, allows us to take arbitrarily large p; the price
one pays is that the function being approximated must be analytic.

Before stating Assumption 4.3, we recall the relationship between derivative
bounds and analyticity for families of functions depending on k.

Lemma 4.2 (k-explicit analyticity) Let D be a bounded open subset of Rd and let
u ∈ C∞(D) be a family of functions depending on k.

(i) If there exist C, Cu > 0, independent of α, such that
∥∥∂αu

∥∥
L2(D)

≤ Cu(Ck)|α| for all multiindices α, (4.3)

then u is real analytic in D and its power series has infinite radius of convergence,
i.e. u can be extended to an entire function on R

d .
(ii) If there exist C, Cu > 0, independent of α, such that

∥∥∂αu
∥∥

L2(D)
≤ Cu(Ck)|α||α|! for all multiindices α,

then u is real analytic in D with radius of convergence of its power series
proportional to (Ck)−1.

(iii) If there exist C, Cu > 0, independent of α, such that
∥∥∂αu

∥∥
L2(D)

≤ CuC
|α| max

{|α|, k}|α|
for all multiindices α,

then u is real analytic in D with radius of convergence of its power series
proportional to C−1 and independent of k.

Sketch proof In each case, use the Sobolev embedding theorem (see, e.g. [41, Theo-
rem 3.26]) to obtain a bound on ‖∂αu‖L∞(D), and then use this to bound the Lagrange
form of the remainder in the Taylor series (see, e.g. [34, Proof of Lemma C.2]).

In the rest of the paper, we only use the class of functions in part (i) of Lemma
4.2, but the classes in parts (ii) and (iii) are included for context.

Assumption 4.3 (Approximation in the finite-dimensional subspace of the class of
functions in part (i) of Lemma 4.2) Let {Hh,p}h>0,p∈Z+ be a sequence of finite-
dimensional subspaces of H 1(BR), and suppose v ∈ C∞(BR) is such that, given
k0 > 0 there exists C1, C2 > 0 such that

∥∥(k−1∂)αv
∥∥

L2(BR)
≤ C1(C2)

|α| for all α and for all k ≥ k0. (4.4)
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Given C̃, there exist σ, Capprox2 > 0, depending on C2 and C̃ (but not C1), such that,
if k ≥ k0 and k, h, and p satisfy

h

R
+ hk

p
≤ C̃, (4.5)

then

min
wh,p∈Hh,p

∥∥v − wh,p

∥∥
H 1

k (BR)
≤ C1Capprox2

[
1

kR

(
h/R

h/R + σ

)p

+
(

hk

σp

)p]
.

(4.6)

Discussion of Assumption 4.3 The key points about the bound (4.6) are the
following.

(i) For fixed p and k, as h → 0, the right hand side of (4.6) is O(hp) (just like
the right-hand side of (4.1) with s = p + 1).

(ii) If hk/(σp) < 1 then the right-hand side of (4.6) decreases exponentially as
p → ∞.

(iii) The quantities h/R, hk/p, and kR are dimensionless, and thus the right-hand
sides of (4.5) and (4.6) involve only dimensionless quantities.

Approximation spaces satisfying Assumptions 4.1 and 4.3 Let (Th)0<h≤h0 (with h

the maximum element diameter) be a sequence of triangulations of BR , with each
element K ∈ Th the image of a reference element K̂ (a reference triangle in 2-d and
a reference tetrahedron in 3-d) under the map FK : K̂ → K . As is standard, we
assume there are no hanging nodes and that the element maps of elements sharing an
edge or face induce the same parametrisation on that edge or face. We consider the
hp-finite-element spaces

Hp(Th) :=
{
v ∈ H 1(BR) : for each K ∈ Th, v|K ◦ FK is a polynomial of degree ≤ p

}
. (4.7)

Since BR is curved, we consider triangulations with curved elements that fit ∂BR

exactly (thus avoiding the issue of analysing the non-conforming error coming from
using simplicial triangulations (see, e.g. [5, Chapter 10])). Recall that the family
(Th)0<h≤h0 is quasi-uniform if there exists C > 0 such that

h := max
K∈Th

diam(K) ≤ C min
K∈Th

diam(K) for all 0 < h ≤ h0;

for such triangulations, the dimension of Hp(Th) is proportional to (p/(h/R))d .

Theorem 4.4 (Conditions under which Assumptions 4.1 and 4.3 hold) If (Th)0<h≤h0

satisfies [34, Assumption 5.2], then Hp(Th) defined by (4.7) satisfies Assumptions
4.1 and 4.3.

Informally, [34, Assumption 5.2] is that (Th)0<h≤h0 is quasi-uniform with each
element map FK the composition of a affine map and an analytic map; [36, Remark
5.2] notes that (Th)0<h≤h0 satisfying this assumption can be constructed by refining
a fixed triangulation that has analytic element maps.
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References for the proof of Theorem 4.4 That Assumption 4.1 holds follows from
[34, Theorem B.4] (a result about approximation on the reference element) and a
scaling argument (see [34, Bottom of Page 1895]). For Assumption 4.3, the bound
(4.6) is proved in the course of [34, Proof of Theorem 5.5], see the last equation on
[34, Page 1896]; note that (i) we have simplified this equation using the assump-
tion (4.5), and (ii) the weighted H 1 norm in [34] is k times ‖ · ‖H 1

k (BR) defined by
(2.5).

5 The splitting of the Helmholtz solution and the proof
that the hp-FEM does not suffer from the pollution effect

5.1 Statement of the splitting

The crucial result used to prove that the hp-FEM applied to the problem (2.1)–(2.2)
does not suffer from the pollution effect is the following (with the proof contained in
Section 7).

Theorem 5.1 (Splitting of the Helmholtz solution) Given k0, R0 > 0, there exists
Csplit,H 2 , Csplit,A > 0 such that the following holds. Given f ∈ L2(BR) with R ≥ R0,
let u satisfy the Helmholtz equation (2.1) and the Sommerfeld radiation condition
(2.2). Then

u|BR
= uH 2 + uA (5.1)

where uH 2 ∈ H 2(BR) with
∥∥uH 2

∥∥
H 2

k (BR)
≤ Csplit,H 2 ‖f ‖L2(BR) for all k ≥ k0 (5.2)

and uA ∈ C∞(BR) with
∥∥(k−1∂)αuA

∥∥
L2(BR)

≤ Csol(k, 2R)
(
Csplit,A

)|α| ‖f ‖L2(BR) (5.3)

for all α and for all k ≥ k0.

Discussion of the properties of uH2 and uA in Theorem 5.1 Recall that the solution u

itself satisfies the bound (2.8); i.e. ‖u‖H 2
k (BR) ≤ CkR ‖f ‖L2(BR). Therefore,

(i) the bound (5.2) on uH 2 is one power of k better than the corresponding bound
(2.8) on u, and

(ii) the bound (5.3) on uA has the same k dependence as the bound (2.8) on u

— both are governed by Csol — although uA is C∞ (with each derivative
incurring a power of k), and indeed analytic by Lemma 4.2.

We discuss in Section 5.3 why both of these points are crucial in proving that the
hp-FEM does not suffer from the pollution effect.

We see in the proof of Theorem 5.1 in Section 7 that uH 2 corresponds to com-
ponents of u with frequencies ≥ λk and uA corresponds to components of u with
frequencies ≤ λk, where λ > 1, and the notion of “frequencies” is understood via
the Fourier transform. We see in Section 7.4 below that uH 2 satisfies the property
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(i) above because the Helmholtz operator is “well behaved” (in a sense made precise
below) on frequencies ≥ λk with λ > 1. We see in Section 7.3 that uA satisfies the
property (ii) above because a function with a compactly-supported Fourier transform
is analytic.

5.2 The hp-FEM does not suffer from the pollution effect

Theorem 5.2 (Quasioptimality of the hp-FEM) Suppose that {Hh,p}h>0,p∈Z+ sat-
isfy Assumptions 4.1 and 4.3. Given k0, R0 > 0, there exist C1, C2 > 0 (independent
of k, R, h, and p) such that the following holds. If u is the solution of the variational
problem (2.3), k ≥ k0,

hk

p
≤ C1, and p ≥ C2 log(kR), (5.4)

then the Galerkin solution exists, is unique, and satisfies the quasi-optimal error
bound (3.5).

The pollution effect occurs when no choice of the number of degrees of freedom
growing like (kR)d ensures that the quasi-optimal error bound (3.2) holds with Cqo
independent of k (see [2, Definition 2.1] or [26, Equation 1.5] for more-precise state-
ments of this). Since the number of degrees of freedom of Hh,p is proportional to
(p/(h/R))d , if h and p are chosen so that the inequalities (5.4) hold with equality,
then the number of degrees of freedom of Hh,p is proportional to (kR)d ; i.e. Theorem
5.2 shows that the hp-FEM does not suffer from the pollution effect.

Proof of Theorem 5.2 The plan is to show that there exist C1, C2 > 0 such that if
h, k, and p satisfy (5.4), then the inequality (3.4) holds; the result then follows from
Lemma 3.4. By Lemma 3.3, we can consider S∗f to be the solution of (2.1)–(2.2); we
then use Theorem 5.1 to split u into uH 2 and uA, approximate uH 2 using Assumption
4.1 (with s = 2), and approximate uA by Assumption 4.3. By the bounds (4.1) and
(5.2), there exists v

(1)
h,p ∈ Hh,p such that

‖uH 2 − v
(1)
h,p‖H 1

k (BR)

‖f ‖L2(BR)

≤ Capprox1

(
1 + hk

p

)(
hk

p

)
=

‖u‖H 2
k (BR)

‖f ‖L2(BR)

≤ Capprox1

(
1 + hk

p

)(
hk

p

)
Csplit,H 2 . (5.5)

The bound (5.3) implies that uA satisfies the conditions of Assumption 4.3 with
C2 := Csplit,A and C1 := Csol(k, 2R) ‖f ‖L2(BR). Therefore, by (4.6) and the bound

(2.7) on Csol, there exists C > 0 and v
(2)
h,p ∈ Hh,p such that

‖uA − v
(2)
h,p‖H 1

k (BR)

‖f ‖L2(BR)

≤ Capprox2C

[(
h

h + σ

)p

+ kR

(
hk

σp

)p]
. (5.6)
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Let vh,p := v
(1)
h,p + v

(2)
h,p. Using the triangle inequality and the decomposition u =

uH 2 + uA on BR , we obtain that

η(Hh,p) ≤ Capprox1

(
1 + hk

p

) (
hk

p

)
Csplit,H 2 + Capprox2C

[(
h

h + σ

)p

+ kR

(
hk

σp

)p]
. (5.7)

Therefore, to prove the bound (3.4) on η(Hh,p), it is sufficient to prove that the
right-hand sides of (5.5) and (5.6) are each ≤ Ccont/4. To do this, first recall from
Lemma 3.1 that Ccont is independent of k. We then choose C1 sufficiently small so
that C1 ≤ min{C̃, σ } (where C̃ and σ are as in Assumption 4.3) and

Capprox1C1(1 + C1)Csplit,H 2 ≤ Ccont/4;
observe that, since hk/p ≤ C1, this last inequality is the desired bound on the right-
hand side of (5.5). Next let θ1 := h/(σ + h) and θ2 := C1/σ ; observe that θ1 < 1
by definition, and θ2 < 1 by the definition of C1. The right-hand side of (5.6) is then
bounded by

Capprox2C
[
(θ1)

p + kR(θ2)
p
]
.

Since θ1, θ2 < 1, if p ≥ C2 log(kR) for C2 sufficiently large, then the decay of (θ2)
p

beats the growth of kR; thus, with C2 sufficiently large, the right-hand side of (5.6)
can be made ≤ Ccont/4 and the proof is complete.

5.3 Discussion of the insight the splitting gives into the pollution effect

This subsection discusses three natural questions:

1. Why is the splitting of Theorem 5.1 needed? That is, why does the no-pollution
result not just follow from using the bound (2.8) on u itself to bound η(Hh,p)?

2. How are the properties of uH 2 and uA used to prove Theorem 5.2 (the
no-pollution result)?

3. Why does one need p → ∞ to remove the pollution effect?

Regarding 1: inputting the bound (2.8) on u into the approximation result (4.1) in
Assumption 4.1, we obtain that

η(Hh,p) ≤ Capprox1

(
1 + hk

p

)(
hk

p

)
CkR, (5.8)

which leads to the condition “hk2R/p sufficiently small” for quasioptimality. The
condition “hk2R sufficiently small” is indeed the observed sharp condition for qua-
sioptimality of the h-FEM when p = 1 — see, e.g. [31, Fig. 8] — but in this case, the
total number of degrees of freedom grows like (kR)2d ; i.e. the h-FEM with p = 1
suffers from the pollution effect.

Regarding 2 and 3: uH 2 satisfying the bound (5.2), which is kR better than the
corresponding bound (2.8) on u, allows us to obtain the condition “hk/p sufficiently
small” for making the first term on the right-hand side of (5.7) small, as opposed to
the condition “hk2R/p sufficiently small” for making the right-hand side of (5.8)
small.
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When p is fixed, to make the second term on the right-hand side of (5.7) small,
we need “kR(hk)p sufficiently small”, and the same condition is obtained if we use
the approximation result of Assumption 4.1 to approximate uA instead of that of
Assumption 4.3 (i.e. if we ignore the fact that uA is analytic, and just use that uA ∈
Hs(BR) for every s > 0). The recent polynomial-approximation results of [23] show
that, for fixed p, η(Hh,p) ≥ CkR(hk)p (or, more generally, η(Hh,p) ≥ CCsol(hk)p,
where Csol is defined by (2.6)). That is, for fixed p, the condition “kR(hk)p suffi-
ciently small” is the sharp condition for ensuring that η(Hh,p) is sufficiently small,
and this condition is observed empirically to be the sharp condition required for
the Galerkin method to be quasi-optimal with constant independent of k (see, e.g.
[11, Figs. 3, 5, and 8] for p = 1, 2, 3, 4); i.e. the h-FEM suffers from the pollution
effect.

Since uA is analytic, we can take p → ∞ in the second term on the right-hand
side of (5.7), with, importantly, the approximation result of Assumption 4.3 con-
trolling the dependence of the constant on p (as highlighted in the “Motivation for
Assumption 4.3” paragraph in Section 4). The growth of kR is then removed by the
exponential decrease of (hk/σp)p when hk/(σp) < 1. Note that if kR were replaced
by (kR)M for any fixed M > 0, then this growth would also be removed by the expo-
nential decrease of (hk/σp)p when hk/(σp) < 1. Since kR in (5.7) comes from
Csol, the hp-FEM results in [4, 16, 21, 22, 32, 36, 37] all involve the assumption that
Csol is polynomially bounded in kR.

6 Recap of results about the Fourier transform
and Fourier multipliers

6.1 The Fourier transformFk

Given k > 0, let

Fkφ(ξ) :=
∫

Rd

exp
( − ikx · ξ

)
φ(x) dx; (6.1)

i.e. Fk is the standard Fourier transform with frequency variable scaled by k. The
reason for including this scaling is that Fk is then tailor-made to work in the weighted
Sobolev spaces Hs

k (see Section 6.2).
Let S (Rd) be the Schwartz space of rapidly decreasing, C∞ functions; i.e.

S (Rd) :=
{
φ ∈ C∞(Rd) : sup

x∈Rd

∣∣xα∂βφ(x)
∣∣ < ∞ for all multiindices α and β

}
.

Let S ∗(Rd) be the space of continuous linear functionals on S (Rd). Recall that
Fk : S (Rd) → S (Rd) (see, e.g. [41, Page 72], [47, Proposition 13.15]); then Fk :
S ∗(Rd) → S ∗(Rd) via the definition that 〈Fkφ, ψ〉 := 〈φ,Fkψ〉 for φ ∈ S ∗(Rd)

and ψ ∈ S (Rd), where 〈·, ·〉 is the duality pairing between S ∗(Rd) and S (Rd). In
the next subsection, we consider 〈ξ〉sFkφ for φ ∈ S ∗(Rd) and 〈ξ〉 := (1 + |ξ |2)1/2;
this is defined as an element of S ∗(Rd) by 〈〈ξ〉sFkφ, ψ〉 := 〈Fkφ, 〈ξ〉sψ〉 for ψ ∈
S (Rd) (see, e.g. [47, Propositions 13.14 and 13.17]).
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We recall the Fourier inversion theorem

F−1
k ψ(x) :=

(
k

2π

)d ∫

Rd

exp
(
ikx · ξ

)
ψ(ξ) dξ,

the property
Fk

(( − ik−1∂
)α

φ
)
(ξ) = ξα Fkφ(ξ), (6.2)

and Plancherel’s theorem

‖φ‖L2(Rd ) =
(

k

2π

)d/2

‖Fkφ‖L2(Rd ) . (6.3)

6.2 Sobolev spaces weighted with k

The natural spaces in which to study solutions of the Helmholtz equation are Sobolev
spaces with derivatives weighted with k, as in (2.5). On R

d , these are naturally
defined using Fk . For s ∈ R, let

Hs
k (Rd) :=

{
u ∈ S ∗(Rd), 〈ξ〉sFku ∈ L2(Rd)

}
, where 〈ξ〉 := (1 + |ξ |2)1/2,

and let
∣∣∣∣∣∣u

∣∣∣∣∣∣2
Hs

k (Rd )
:=

(
k

2π

)d ∫

Rd

〈ξ〉2s |Fku(ξ)|2 dξ . (6.4)

Because of (6.2), up to dimension-dependent constants,
∣∣∣∣∣∣u

∣∣∣∣∣∣
Hs

k (Rd )
defined by (6.4)

is equivalent to ‖u‖Hs
k (Rd ) defined by (2.5) (with BR replaced by R

d ).

6.3 Fourier multipliers

The Fourier multiplier given by a function a is
(
a(k−1D)v

)
(x) := F−1

k

(
a(·)(Fkv)(·))(x); (6.5)

i.e. we multiply the Fourier transform of v by a, and then apply the inverse Fourier
transform. The rationale for the notation a(k−1D) is that, by (6.2), if D := −i∂ then
Fk maps k−1D to ξ . Our motivation for studying Fourier multipliers is that (i) the
operator −k−2� − 1 is one: by the derivative rule (6.2), −k−2� − 1 = p(k−1D)

where p(ξ) := |ξ |2 − 1, and (ii) the functions uH 2 and uA in our proof of Theorem
5.1 are defined by Fourier multipliers acting on u (see (7.3) below).

We say that a is a Fourier symbol of order m if there exists C > 0 such that

|a(ξ)| ≤ C〈ξ〉m for all ξ ∈ R
d , (6.6)

where recall that 〈ξ〉 := (1 + |ξ |2)1/2. We use the (non-standard) notation that a ∈
(FS)m.

Example 6.1 (Examples of Fourier symbols and multipliers)

(i) If a(ξ) = 1, then a ∈ (FS)0 with a(k−1D)v(x) = v(x) (since F−1
k Fk = I ).

(ii) If p(ξ) := |ξ |2 − 1 then p ∈ (FS)2 with p(k−1D)v = (−k−2� − 1)v.
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(iii) If χ is bounded and has compact support, then χ ∈ (FS)−N for all N ≥ 1 and
1 − χ ∈ (FS)0.

Theorem 6.2 (Composition and mapping properties of Fourier multipliers) If a ∈
(FS)ma and b ∈ (FS)mb then the following properties hold.

(i) ab ∈ (FS)ma+mb .
(ii) a(k−1D)b(k−1D) = (ab)(k−1D) = (ba)(k−1D) = b(k−1D)a(k−1D).

(iii) a(k−1D) : Hs
k (Rd) → H

s−ma

k (Rd) and, with C the constant in (6.6), for all
s ∈ R and k > 0,

∣∣∣∣∣∣a(k−1D)
∣∣∣∣∣∣

Hs
k (Rd )→H

s−ma
k (Rd )

≤ C; (6.7)

i.e. a(k−1D) is bounded uniformly in both k and s as an operator from Hs
k to H

s−ma

k .

Proof Part (i) follows directly from the definition (6.6), part (ii) follows directly from
the definition (6.5) and the fact that multiplication in C is commutative, and part (iii)
follows from the definitions of

∣∣∣∣∣∣ · ∣∣∣∣∣∣
Hs

k (Rd )
(6.4) and a(k−1D)v (6.5).

The key result from this section used in the proof of the bound Eq. 5.2 on uH 2 is
the following.

Theorem 6.3 (Factoring an “elliptic” Fourier multiplier out of another) Suppose that
a ∈ (FS)ma , b ∈ (FS)mb , and there exists c > 0 such that

|b(ξ)| ≥ c〈ξ〉mb for ξ ∈ supp a. (6.8)

Then

a(k−1D) = q(k−1D)b(k−1D) (6.9)

where q ∈ (FS)ma−mb is defined by q(ξ) := a(ξ)/b(ξ).

Proof The fact that q is in (FS)ma−mb follows from the fact that a ∈ (FS)ma and
the bound (6.8). The result (6.9) then follows from part (ii) of Theorem 6.2.

We now combine Theorem 6.3 and the mapping property (6.7) to obtain the fol-
lowing result (which we use in the proof of Corollary 2.3); we highlight that a similar
combination of these results in used in Section 7 in the proof of the bound (5.2)
on uH 2 .

Corollary 6.4 (Elliptic regularity) If (−k−2� + 1)v ∈ L2(Rd) then v ∈ H 2(Rd)

with ∣∣∣∣∣∣v
∣∣∣∣∣∣

H 2
k (Rd )

≤ ∥∥(−k−2� + 1)v
∥∥

L2(Rd )
.
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Proof We apply Theorem 6.3 with a(ξ) = 1 and b(ξ) = |ξ |2 +1, so that a(k−1D) =
I and b(k−1D) = −k−2� + 1. The theorem implies that q(ξ) := 〈ξ〉−2 ∈ (FS)−2

(this is also clear from the definition (6.6)). Then, by the mapping property (6.7),
∣∣∣∣∣∣v

∣∣∣∣∣∣
H 2

k (Rd )
= ∣∣∣∣∣∣q(k−1D)(−k−2� + 1)v

∣∣∣∣∣∣
H 2

k (Rd )
≤ ∥∥(−k−2� + 1)v

∥∥
L2(Rd )

.

7 Proof of Theorem 5.1

7.1 Definition of high- and low-frequency cut-offs

Let

χλ(ξ) = 1|ξ |≤λ(ξ) =
{

1 for |ξ | ≤ λ,

0 for |ξ | > λ.
(7.1)

We define the low-frequency cut-off �L by

�L := χλ(k
−1D); i.e. �Lv = F−1

k

(
χλ(·)(Fkv)(·)), (7.2)

by the definition (6.5) of a Fourier multiplier. We see that �L acting on a function
v returns the frequencies of v that are ≤ λ; hence, why we call it a low-frequency
cut-off.1 We define the high-frequency cut-off �H by

�H := I − �L = (1 − χλ)(k
−1D);

i.e. �H acting on a function v returns the frequencies of v that are ≥ λ.

7.2 Definition of uH2 and uA via the frequency cut-offs

Let u be as in Theorem 5.1; i.e. u is the outgoing solution of the Helmholtz equa-
tion (2.1). Let ϕ ∈ C∞

comp(R
d , [0, 1]) be equal to one on BR and vanish outside B2R ,

and set
uA := (

�L(ϕu)
)∣∣

BR
and uH 2 := (

�H (ϕu)
)∣∣

BR
. (7.3)

Since �L + �H = I , these definitions imply that, on BR , uA + uH 2 = ϕu = u;
i.e. (5.1) holds. This splitting contains the arbitrary parameter λ; we fix this when
proving the bound (5.2) on uH 2 .

7.3 Proof of the bound (5.3) on uA

The idea of the proof, in short, is that a function with a compactly supported Fourier
transform is analytic. Plancherel’s theorem (6.3), the derivative property (6.2), and
the definition of �L (7.2) imply that

∥∥∥(k−1∂)α
(
�Lϕu

)∥∥∥
L2(Rd )

= (
k

2π

)d/2 ‖(·)αχλ(·)Fk(ϕu)(·)‖L2(Rd ) . (7.4)

1The definition of Fk (6.1) implies that if Fkw is supported on |ξ | ≤ λ, then the “standard” Fourier
transform (i.e. with the transform variable not scaled by k) of w is supported for |ζ | ≤ λk.
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The definition of χλ (7.1) implies that
∣∣ξαχλ(ξ)

∣∣ ≤ λ|α| for all ξ ∈ R
d . Using this

fact in (7.4) and then (in this order) Plancherel’s theorem (6.3), the fact that ϕ = 0
outside B2R and ϕ ≤ 1 inside B2R , and the definition of Csol (2.6), we find that

∥∥∥(k−1∂)α
(
�Lϕu

)∥∥∥
L2(Rd )

≤
(

k

2π

)d/2

λ|α| ‖Fk(ϕu)‖L2(Rd ) ≤ λ|α| ‖ϕu‖L2(Rd )

≤ λ|α| ‖u‖L2(B2R) ≤ λ|α|Csol(k, 2R) ‖f ‖L2(BR) . (7.5)

By the definition (7.3) of uA,
∥∥∥(k−1∂)αuA

∥∥∥
L2(BR)

=
∥∥∥(k−1∂)α

(
�Lϕu

)∥∥∥
L2(BR)

≤
∥∥∥(k−1∂)α

(
�Lϕu

)∥∥∥
L2(Rd )

;

the bound (5.3) then follows from (7.5) with Csplit,A := λ. We make two remarks.

• The fact that �Lϕu ∈ Hs
k (Rd) for all s follows from the fact that χλ ∈ (FS)−N

for every N > 0 (from Part (iii) of Example 6.1) and the mapping property in Part
(iii) of Theorem 6.2; we give the direct proof above, however, to have explicit
control on the constants in the bound (to show that �Lϕu is actually analytic).

• The fact that uA comes from a function with a compactly supported Fourier
transform, and hence automatically is analytic, is one of the advantages of the
current splitting compared to the original splitting in [34] (see the discussion in
Section 7.5).

7.4 Proof of the bound (5.2) on uH2

The idea of the proof is to use Theorem 6.3, using the fact that the Helmholtz oper-
ator is an elliptic Fourier multiplier (in the sense of (6.8)) on high frequencies, and
thus, if λ is sufficiently large, on the support of the high-frequency cut-off �H . By
the definition of uH 2 (7.3) and the equivalence of ‖ · ‖H 2

k
and

∣∣∣∣∣∣ · ∣∣∣∣∣∣
H 2

k
described in

Section 6.2,
∥∥uH 2

∥∥
H 2

k (BR)
= ‖�H (ϕu)‖H 2

k (BR) ≤ ‖�H (ϕu)‖H 2
k (Rd ) �

∣∣∣∣∣∣�H (ϕu)
∣∣∣∣∣∣

H 2
k (Rd )

,

where we use the notation that A � B if there exists C > 0, independent of k and R,
such that A ≤ CB. It is therefore sufficient to prove that

∣∣∣∣∣∣�H (ϕu)
∣∣∣∣∣∣

H 2
k (Rd )

� ‖f ‖L2(BR) for all k ≥ k0. (7.6)

Lemma 7.1 (“Ellipticity” of p(ξ) := |ξ |2 − 1 when |ξ | ≥ λ > 1) If λ ≥ λ0 > 1
then there exists C > 0 such that

∣∣|ξ |2 − 1
∣∣ ≥ C〈ξ〉2 for |ξ | ≥ λ. (7.7)

Proof It is straightforward to check that (7.7) holds with C := (1 + 2(λ2
0 − 1)−1)−1.
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Corollary 7.2 (Factoring out p(k−1D) from (1 −χλ)(k
−1D)) Let p(ξ) := |ξ |2 − 1.

If λ ≥ λ0 > 1, then there exists q ∈ (FS)−2 such that

(1 − χλ)(k
−1D) = q(k−1D)p(k−1D).

Proof By the definition (7.1) of χλ, supp(1−χλ) = {ξ : |ξ | ≥ λ}. The result follows
by applying Theorem 6.3 with a(ξ) := (1 − χλ)(ξ) and b(ξ) := p(ξ) = |ξ |2 − 1,
since (7.7) implies that the inequality (6.8) holds (i.e. b is elliptic on supp a).

We now use Corollary 7.2 and the mapping property (6.7) to prove the bound (7.6).
By the definition of uH 2 (7.3) and Corollary 7.2,
∣∣∣∣∣∣�H (ϕu)

∣∣∣∣∣∣
H 2

k
= ∣∣∣∣∣∣(1 − χμ

)
(k−1D)(ϕu)

∣∣∣∣∣∣
H 2

k
= ∣∣∣∣∣∣q(k−1D)p(k−1D)(ϕu)

∣∣∣∣∣∣
H 2

k

with q ∈ (FS)−2, and, by the mapping property (6.7),
∣∣∣∣∣∣q(k−1D)p(k−1D)(ϕu)

∣∣∣∣∣∣
H 2

k (Rd )
�

∥∥∥p(k−1D)(ϕu)

∥∥∥
L2(Rd )

;

the key point is that we now have the Helmholtz operator p(k−1D) on the right-
hand side, and we can start to relate this side to f = p(k−1D)u. For brevity, let
P := −k−2� − 1 = p(k−1D). Then

∣∣∣∣∣∣�H (ϕu)
∣∣∣∣∣∣

H 2
k (Rd )

� ‖P(ϕu)‖L2(Rd ) = ‖ϕPu + [P, ϕ]u‖L2(Rd )

≤ ‖f ‖L2(Rd ) + ‖[P, ϕ]u‖L2(Rd ) , (7.8)

where we have used the fact that ϕ ≡ 1 on supp f , and where the commutator [A, B]
is defined as AB − BA. By direct calculation,

[P, ϕ]u = −k−2(u�ϕ + 2∇ϕ · ∇u),

so that ∥∥[P, ϕ]u∥∥
L2(Rd )

� (kR)−1 ‖u‖H 1
k (B2R) , (7.9)

where we have used that the definition of ϕ in Section 7.2 implies that |∇ϕ| ∼ R−1

and |�ϕ| ∼ R−2. Therefore, by combining (7.8) and (7.9), and using (2.8) (with R

replaced by 2R), we have

‖�H (ϕu)‖H 2
k (Rd ) � ‖f ‖L2(Rd ) + (kR)−1 ‖u‖H 1

k (B2R) � ‖f ‖L2(Rd ) ,

which is the result (7.6).

7.5 Discussion of the original proof of Theorem 5.1 in [34]

The original proof of Theorem 5.1 in [34, Section 3.2] is also based on the idea
of frequency cut-offs using the indicator function (7.1). However, in [34, Section
3.2], the frequency cut-offs are applied to the data f (as opposed to ϕu in our case).
Furthermore, the analysis in [34, Section 3.2] is based on writing the solution u to
the Helmholtz eqaution (2.1) satisfying the Sommerfeld radiation condition (2.2) as

u(x) = k2
∫

BR

�k(x, y) f (y) dy, (7.10)
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where �k(x, y) is the fundamental solution (satisfying (�y +k2)�k(x, y) = −δ(x−
y)) defined by

�k(x, y) := i

4
H

(1)
0

(
k|x − y|), d = 2, := eik|x−y|

4π |x − y| , d = 3.

The proof in [34, Section 3.2] then considers the function

vμ(x) := k2
∫

BR

�k(x, y) μ(|x − y|) f (y) dy,

where μ ∈ C∞
comp(R) with μ|[0,2R] = 1, supp μ ⊂ [0, 4R], and additionally the first

and second derivatives of μ satisfying certain bounds (see [34, Equation 3.27]). This
definition of μ implies that vμ|BR

= u|BR
. The advantage of studying vμ instead of

u is that v is the convolution of a compactly-supported kernel with f ; thus, v has
compact support and its Fourier transform is well defined. (In contrast, in the present
paper, we first multiply u by ϕ to ensure that Fk(ϕu) makes sense.) The analysis in
[34, Section 3.2 and Appendix A] then proceeds by studying the compactly supported
integral kernel in vμ and the Fourier transform of this kernel, with identities and
bounds on Bessel and Hankel functions needed when both d = 2 and d = 3.

7.6 Generalising Theorem 5.1 tomore-complicated Helmholtz problems

The proof of Theorem 5.1 above can be generalised to more-complicated Helmholtz
problems, involving variable coefficients and obstacles, using pseudodifferential
operators. Indeed, whereas the operator −k−2� − 1 is a Fourier multiplier (by Part
(ii) of Example 6.1), its variable coefficient analogue −k−2∇ · (A∇) − n is not; i.e.
one cannot write the Fourier transform of −k−2∇·(A∇v)−nv in terms of the Fourier
transform of v. Nevertheless, [32] proves Theorem 5.1, using the same ideas in the
proof above, with the Helmholtz equation (2.1) replaced by

k−2∇ · (A∇u) + nu = −f in R
d . (7.11)

This is achieved by replacing the Fourier multipliers in Section 6 by pseudodifferen-
tial operators (indeed, recall that one of the motivations for the development of the
theory of pseudodifferential operators in the 1960s was to study variable-coefficient
PDEs such as (7.11) using Fourier analysis). In particular, the pseudodifferential gen-
eralisation of the key result of Theorem 6.3 is the so-called elliptic parametrix (see,
e.g. [15, Proposition E.32]).

These ideas can also be used to prove an analogue of Theorem 5.1 when the
Helmholtz equation (with or without variable coefficients) is posed not in R

d but out-
side an impenetrable obstacle. In this case, the Fourier transform (6.1) is no longer
available; nevertheless, the functional calculus (essentially the idea of expanding in
eigenfunctions of the differential operator) can be used to define Fourier-type trans-
forms, tailored to the particular problem. The ideas of the proof of Theorem 5.1
can then be implemented in this situation (albeit with more technicalities, and the
requirement that the obstacle is analytic) (see [21, 22]).
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Remark 7.3 (The smoothness of the frequency cut-offs) The theory of pseudodif-
ferential operators is easiest when the symbols (i.e. the generalisation of the Fourier
symbols in (6.6)) are C∞. To ensure this, [32] assumes that the coefficients A and
n in (7.11) are C∞, and uses a smooth frequency cut-off; i.e. the indicator function
in (7.1) is replaced by χλ ∈ C∞

comp(R
d; [0, 1]) such that χλ(ξ) = 1 for |ξ | ≤ λ and

χλ(ξ) = 0 for, say, |ξ | ≥ 2λ. The reader can check that the proof in Section 7 goes
through as before with this smooth cut-off (with Csplit,A in Section 7.3 changed from
λ to 2λ).

Appendix A. Proof of Theorem 2.2

Lemma A.1 (Morawetz identity for the Helmholtz operator [43, Section I.2]) If

Lv := k−2�v + v and Mβ,αv := x · ∇v − ikβv + αv, (A.1)

with β and α real-valued C1 functions, then

2�(
Mβ,αv Lv

) = ∇ ·
[
2k−1�(

Mβ,αv k−1∇v
) + (|v|2 − k−2|∇v|2)x

]

−2�(
v (i∇β+k−1∇α) · k−1∇v

)−(
d−2α

)|v|2−(
2α−d+2

)
k−2|∇v|2. (A.2)

Proof This follows in a straightforward (but slightly involved) way by expanding the
divergence on the right-hand side; for this done step-by-step, see, e.g. [51, Proof of
Lemma 2.1].

The idea of the proof of Theorem 2.2 is to integrate the identity (A.2) over Rd

with v = u, α = (d − 1)/2, and β defined piecewise as β = R for r ≤ R and
β = r for r ≥ R. The choice β = constant and α = (d − 1)/2 means that the non-
divergence terms on the right-hand side of (A.2) become −|u|2 − k−2|∇u|2; this is
where we get ‖u‖2

H 1
k (BR)

from. The choice β = r deals with the contribution from

infinity (although this is not immediately clear from (A.2)). We therefore first look
at the special case of (A.2) with β = r .

Lemma A.2 (Special case of (A.2) [42, Equation 1.2]) With Lv and Mβ,αv as in
Lemma A.1, show that if α ∈ R, then, with vr = x · ∇v/r ,

2�(
Mr,αvLv

) = ∇ ·
[
2k−1�(

Mr,αv k−1∇v
) +

(
|v|2 − k−2|∇v|2

)
x
]

− ∣∣k−1vr − iv
∣∣2

+(
2α − (d − 1)

)(|v|2 − k−2|∇v|2) − k−2(|∇v|2 − |vr |2
)
. (A.3)

Proof This follows from (A.2) by choosing β = r and writing the term involving
∇β as

−2�(
ivk−1vr

) = −2�(
(−iv)k−1vr

) = |v|2 + k−2|vr |2 − ∣∣k−1vr − iv
∣∣2

using the identity −2�(z1z2) = |z1|2 + |z2|2 − |z1 + z2|2.
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To integrate (A.3) over R
d \ BR , we integrate it over BR1 \ BR and then send

R1 → ∞. In preparation for this, we look at the boundary term on ∂BR1 .

Lemma A.3 Let

Qr,α(v) := 2k−1�(
Mr,αv k−1∇v

) + (|v|2 − k−2|∇v|2)x. (A.4)

If u is an outgoing solution of Lu = 0 in R
d \ BR0 , then, for all α ∈ R,

∫

�∂BR1

QR1,α(u) · x̂ → 0 as R1 → ∞. (A.5)

The proof of Lemma A.3 requires the following classic result.

Theorem A.4 (Atkinson–Wilcox expansion (see, e.g. [13, Theorem 3.7])) If u ∈
H 1

loc(R
d \ BR0) is an outgoing solution of k−2�u + u = 0 in R

d \ BR0 for some
R0 > 0, then there exist smooth functions Fn such that, for any R1 > R0,

u(x) = eikr

r(d−1)/2

∞∑

n=0

Fn(x/r)

rn
for r := |x| ≥ R1 (A.6)

where the sum in (A.6) (and all its derivatives) converges absolutely and uniformly.

Proof of Lemma A.3 By the definitions of Qr,α(v) (A.4) and Mr,αv (A.1),

Qr,α(u) · x̂ = rk−2
(

2�
(

ur

(
ur − iku + α

r
u
))

+ k2|u|2 − |∇u|2
)

= rk−2
(

|ur |2 + 2�
(

ur

(
−iku + α

r
u
))

+ k2|u|2 − (|∇u|2 − |ur |2
))

= rk−2
( |Mr,αu|2

r2
+ α2 |u|2

r2
− (|∇u|2 − |ur |2

))
, (A.7)

where we have again used the identity 2�(z1z2) = |z1 +z2|2 −|z1|2 −|z2|2. We now
claim that the term in large brackets in (A.7) is O(r−d−1); if this is true, then

∫

�∂BR1

QR1,α(u) · x̂ = O

(
1

R1

)
as R1 → ∞,

and thus (A.5) follows. By the Atkinson–Wilcox expansion (A.6), |u|2 = O(r1−d)

and r−2|Mr,αu|2 = O(r−d−1). To prove the result, therefore, we only need to show
that |∇u|2 − |ur |2 = O(r−d−1). The quantity |∇u|2 − |ur |2 equals |∇Su|2 where ∇S

is the surface gradient on |x| = r , which satisfies ∇Su = ∇u− x̂ur . This differential
operator is equal to 1/r multiplied by an operator acting only on x̂, i.e. the angular
variables; thus, |∇Su|2 is O(r−d−1) and the proof is complete.

We now integrate (A.3) over BR1 \ BR , send R1 → ∞, and obtain an inequality
involving the boundary term on ∂BR .
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Lemma A.5 If u is an outgoing solution of Lu = 0 in R
d \ BR0 , for some R0 > 0,

then, for R > R0, ∫

∂BR

QR,(d−1)/2(u) · x̂ ≤ 0. (A.8)

Proof We integrate the identity (A.3) over BR1 \BR , where R1 > R, with v = u and
then use the divergence theorem

∫
D

∇ · F = ∫
∂D

F . The divergence theorem is valid
for F ∈ C∞(D) and D Lipschitz (see, e.g. [41, Theorem 3.34]); we can use it here
since, by elliptic regularity, u ∈ C∞(BR1 \ BR) (see, e.g. [41, Theorem 4.16]). This
results in
∫

∂BR1

QR1,α(u) · x̂ −
∫

∂BR

QR,α(u) · x̂ =
∫

BR1 \BR

−(
2α − (d − 1)

)(|v|2 − k−2|∇v|2)

+k−2(|∇v|2 − |vr |2
) + ∣∣k−1vr − iv

∣∣2. (A.9)

Setting α = (d −1)/2 eliminates the first term on the right-hand side of (A.9). Since
|vr | ≤ |∇v|, the remaining terms on the right-hand side of (A.9) are non-negative,
and thus ∫

∂BR1

QR1,(d−1)/2(u) · x̂ −
∫

∂BR

QR,(d−1)/2(u) · x̂ ≥ 0.

Sending R1 → ∞ and using (A.5), we obtain the result (A.8).

Proof of Theorem 2.2 The plan is to integrate the identity (A.2) over BR with v = u,
β = R, and α = (d − 1)/2, and then use the divergence theorem. We justify using
the divergence theorem just as we did at the beginning of the proof of Lemma A.3 to
find that if v ∈ C∞(D) then

∫

BR

2�(
MR,(d−1)/2v Lv

) =
∫

∂BR

2k−1�(
MR,(d−1)/2v k−1∇v

) + (|v|2 − k−2|∇v|2)x

−
∫

BR

(|v|2 + k−2|∇v|2). (A.10)

We now claim that (A.10) holds for v ∈ H 2(BR); this follows since C∞(D) is dense
in H 2(D) [41, Page 77], and, by the trace theorem (see, e.g. [41, Theorem 3.37]),
(A.10) is continuous in v with respect to the topology of H 2(BR) . By Corollary 2.3,
u ∈ H 2(BR), and thus (A.10) holds with v = u. Using in (A.10) the definition of
Q (A.4), the fact that u is an outgoing solution of the Helmholtz equation (2.1), and
Lemma A.5, we find that

−
∫

BR

2�(
MR,(d−1)/2uf

) + ‖u‖2
H 1

k (BR)
=

∫

∂BR

QR,(d−1)/2(u) · x̂ ≤ 0.

Thus

‖u‖2
H 1

k (BR)
≤ 2

∥∥MR,(d−1)/2u
∥∥

L2(BR)
‖f ‖L2(BR) . (A.11)
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By the inequality |a + b|2 ≤ 2|a|2 + 2|b|2, the fact that |ikr + α|2 = k2r2 + α2, and
the bound r ≤ R on BR ,

∥∥MR,(d−1)/2u
∥∥2

L2(BR)
≤ 2R2 ‖∇u‖2

L2(BR)
+ 2

(
(kR)2 + α2) ‖u‖2

L2(BR)

≤ 2k2R2
(

1 + α2

k2R2

)
‖u‖2

H 1
k (BR)

.

Using this in (A.11), and recalling that α = (d − 1)/2, we find that ‖u‖H 1
k (BR) ≤

C ‖f ‖L2(BR) with C the right-hand side of (2.7).
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31. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number
Part I: The h-version of the FEM. Comp. Math. Appl. 30(9), 9–37 (1995)

32. Lafontaine, D., Spence, E.A., Wunsch, J.: Wavenumber-explicit convergence of the hp-FEM for the
full-space heterogeneous Helmholtz equation with smooth coefficients. Comp. Math. Appl. 113, 59–
69 (2022)

33. Li, Y., Wu, H.: FEM and CIP-FEM for Helmholtz equation with high wave number and perfectly
matched layer truncation. SIAM J. Numer. Anal. 57(1), 96–126 (2019)

27   Page 24 of 25

http://arxiv.org/abs/2102.13081
http://arxiv.org/abs/2207.05542
http://arxiv.org/abs/2211.04757
http://arxiv.org/abs/2301.03574


The hp-FEM does not suffer from the pollution effect

34. Melenk, J.M., Sauter, S.: Convergence analysis for finite element discretizations of the Helmholtz
equation with Dirichlet-to-Neumann boundary conditions. Math. Comp 79(272), 1871–1914 (2010)

35. Melenk, J.M.: On generalized finite element methods. PhD thesis, The University of Maryland (1995)
36. Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of

the Helmholtz equation. SIAM J. Numer. Anal. 49, 1210–1243 (2011)
37. Melenk, J.M., Parsania, A., Sauter, S.: General DG-methods for highly indefinite Helmholtz prob-

lems. J. Sci. Comput. 57(3), 536–581 (2013)
38. Ma, C., Alber, C., Scheichl, R.: Wavenumber explicit convergence of a multiscale GFEM for

heterogeneous Helmholtz problems. arXiv:2112.10544 (2021)
39. Melenk, J.M., Sauter, S.A.: Wavenumber-explicit hp-FEM analysis for Maxwell’s equations with

transparent boundary conditions. Found. Comp. Math. 21(1), 125–241 (2021)
40. Melenk, J.M., Sauter, S.A.: Wavenumber-explicit hp-FEM analysis for Maxwell’s equations with

impedance boundary conditions. arXiv:2201.02602 (2022)
41. McLean, W.C.H.: Strongly Elliptic Systems and Boundary Integral Equations. CUP (2000)
42. Morawetz, C.S., Ludwig, D.: An inequality for the reduced wave operator and the justification of

geometrical optics. Comm. Pure Appl. Math. 21, 187–203 (1968)
43. Morawetz, C.S.: Decay for solutions of the exterior problem for the wave equation. Commun. Pure

Appl. Math. 28(2), 229–264 (1975)
44. Nicaise, S., Tomezyk, J.: Convergence analysis of a hp-finite element approximation of the time-

harmonic Maxwell equations with impedance boundary conditions in domains with an analytic
boundary. Numer. Methods Partial Differ. Equ. 36(6), 1868–1903 (2020)

45. Ohlberger, M., Verfurth, B.: A new heterogeneous multiscale method for the Helmholtz equation with
high contrast. Multiscale Model. Simul. 16(1), 385–411 (2018)

46. Peterseim, D.: Eliminating the pollution effect in Helmholtz problems by local subscale correction.
Math. Comput. 86(305), 1005–1036 (2017)

47. Sayas, F.-J., Brown, T.S., Hassell, M.E.: Variational Techniques for Elliptic Partial Differential
Equations: Theoretical Tools and Advanced Applications. CRC Press, Boca Raton (2019)

48. Sauter, S.A.: A refined finite element convergence theory for highly indefinite Helmholtz problems.
Computing 78(2), 101–115 (2006)

49. Schatz, A.H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math.
Comput. 28(128), 959–962 (1974)

50. Shannon, C.E.: Communication in the presence of noise. Proc. IRE 37(1), 10–21 (1949)
51. Spence, E.A., Kamotski, I.V., Smyshlyaev, V.P.: Coercivity of combined boundary integral equations

in high-frequency scattering. Comm. Pure Appl. Math 68(9), 1587–1639 (2015)
52. Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high

wave number. Part I: linear version. IMA J. Numer. Anal. 34(3), 1266–1288 (2014)
53. Whittaker, E.T.: On the functions which are represented by the expansions of the interpolation-theory.

Proc. R. Soc. Edinb. 35, 181–194 (1915)
54. Zhu, B., Wu, H.: Preasymptotic error analysis of the HDG method for Helmholtz equation with large

wave number. J. Sci. Comput. 87(2), 1–34 (2021)
55. Zhu, L., Wu, H.: Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with

high wave number. Part II: hp version. SIAM J. Numer. Anal. 51(3), 1828–1852 (2013)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Page 25 of 25    27

http://arxiv.org/abs/2112.10544
http://arxiv.org/abs/2201.02602

	The hp-FEM does not suffer from the pollution effect
	Abstract
	Introduction and motivation
	Plan of the paper

	The Helmholtz equation
	The model Helmholtz problem
	The variational formulation of the Helmholtz equation
	The k-dependence of the Helmholtz solution operator

	The Galerkin method and sufficient conditions for quasioptimality
	Recap of approximation results in hp-FEM spaces
	Discussion of Assumption 4.1
	Motivation for Assumption 4.3.
	Discussion of Assumption 4.3
	Approximation spaces satisfying Assumptions 4.1 and 4.3



	The splitting of the Helmholtz solution and the proof that the hp-FEM does not suffer from the pollution effect
	Statement of the splitting
	Discussion of the properties of uH2 and uA in Theorem 5.1

	The hp-FEM does not suffer from the pollution effect
	Discussion of the insight the splitting gives into the pollution effect

	Recap of results about the Fourier transform and Fourier multipliers
	The Fourier transform Fk
	Sobolev spaces weighted with k
	Fourier multipliers

	Proof of Theorem 5.1
	Definition of high- and low-frequency cut-offs
	Definition of uH2 and uA via the frequency cut-offs
	Proof of the bound (5.3) on uA
	Proof of the bound (5.2) on uH2
	Discussion of the original proof of Theorem 5.1 in MeSa:10
	Generalising Theorem 5.1 to more-complicated Helmholtz problems

	Appendix:  A. Proof of Theorem 2.2
	Declarations
	References




