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Abstract
We study the complexity of high-dimensional approximation in the L2-norm when
different classes of information are available; we compare the power of function eval-
uations with the power of arbitrary continuous linear measurements. Here, we discuss
the situation when the number of linear measurements required to achieve an error
ε ∈ (0, 1) in dimension d ∈ N depends only poly-logarithmically on ε−1. This cor-
responds to an exponential order of convergence of the approximation error, which
often happens in applications. However, it does not mean that the high-dimensional
approximation problem is easy, the main difficulty usually lies within the depen-
dence on the dimension d. We determine to which extent the required amount of
information changes if we allow only function evaluation instead of arbitrary lin-
ear information. It turns out that in this case we only lose very little, and we can
even restrict to linear algorithms. In particular, several notions of tractability hold
simultaneously for both types of available information.
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1 Exposition

We want to approximate real- or complex-valued functions defined on some
(nonempty) set D, and belonging to a space F . We assume that F is a separable
Banach space of functions defined on D, such that function evaluation f �→ f (x) is
continuous on F for each x ∈ D and F is continuously embedded in L2 = L2(D, μ)

for some measure μ. Formally, the approximation problem is given as

APP : F → L2, APP(f ) := f,

which might be understood as a continuous embedding into L2. The class of all
spaces F satisfying the assumptions above will be denoted by A. In particular, for
each F ∈ A we have some associated nonempty set D, measure μ on D and
continuous embedding APP.

We approximate APP by using functionals from the class �std consisting of all
function evaluations, or from the class �all = F ∗ of all continuous linear functionals.

Below BF denotes the closed unit ball in F . Let us define, for n ∈ N, the

• n-th linear sampling width as

en(F, L2) := inf
x1,...,xn∈D
ϕ1,...,ϕn∈L2

sup
f ∈BF

∥
∥
∥f −

n
∑

i=1

f (xi) ϕi

∥
∥
∥

L2
,

• n-th sampling width as

gn(F, L2) := inf
x1,...,xn∈D
φ : Rn→L2

sup
f ∈BF

∥
∥
∥f − φ(f (x1), . . . , f (xn))

∥
∥
∥

L2
,

• n-th linear width as

an(F, L2) := inf
T : L2→L2
rank(T )≤ n

sup
f ∈BF

∥
∥f − Tf

∥
∥

L2
,

• n-th Gelfand width as

cn(F, L2) := inf
φ : Rn→L2
N∈(F ∗)n

sup
f ∈BF

∥
∥f − φ ◦ N(f )

∥
∥

L2
.

These quantities represent the minimal worst case errors that can be achieved
with linear or nonlinear algorithms using at most n function values or linear
measurements, respectively.

We also define the information-based complexity of the problem APP for the
classes �std and �all, respectively, as the minimal number of evaluations from �std

or �all necessary to obtain the absolute precision of approximation at most ε, i.e., as

nstd(ε, F ) := min
{

n : gn(F, L2) ≤ ε
}
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and

nall(ε, F ) := min
{

n : cn(F, L2) ≤ ε
}

.

Note that, since gn(F, L2) ≤ en(F, L2), we have

nstd(ε, F ) ≤ min
{

n : en(F, L2) ≤ ε
} =: nstd-lin(ε, F ),

and all our upper bounds are proven for nstd-lin(ε, F ). There is a lot of literature on
the size of these quantities for specific classes F . We refer to the monographs [10,
33, 35, 36, 42, 43, 45] for more details and literature on the subject.

Here, we are specifically interested in the comparison of these quantities for gen-
eral classes F . That is, since nall(ε, F ) ≤ nstd(ε, F ) is obvious for all F ∈ A, we ask
for an upper bound on nstd(ε, F ) based on knowledge of the function nall(ε, F ). How-
ever, it is known that such a bound cannot hold without certain assumptions on F ,
see [36, Chapter 26] and references therein, and even then, the involved “constants”
depend in a non-trivial way on F . One approach to obtain qualitative statements on
the relation of the complexities is to consider a whole sequence of spaces (Fd)d∈N,
where d can be interpreted as the dimension of the underlying domain. We then
assume a certain bound on nall(ε, Fd), depending only on ε ∈ (0, 1) and d ∈ N, and
ask for an upper bound on nstd(ε, Fd), hopefully not much worse than the bound on
nall(ε, Fd).

In the present paper, we allow arbitrary Banach spaces of functions Fd , but we
assume that nall(ε, Fd) depends only poly-logarithmically on ε−1. That is, we assume
that there exist Ad, Bd > 0 such that

nall(ε, Fd) ≤ Ad

(

1 + ln ε−1
)Bd

for all 0 < ε ≤ 1, (1)

and study how this translates into bounds on nstd(ε, Fd). Note that the above
bound (1) on the complexity implies that

cn(Fd, L2) ≤ e exp(−(n/Ad)1/Bd ) for all n ≥ Ad, (2)

whereas (2) implies that (1) holds with +1 added on the right hand side. The assump-
tion (1) is therefore equivalent to the existence of a (possibly nonlinear) algorithm
based on arbitrary linear information that converges exponentially fast. We will show
that in this case, we do not lose much when we only allow linear algorithms and
function evaluations as information. One of our main results may be stated as follows.

Theorem (see Corollary 5) Assume that Fd ∈ A for every d ∈ N and

nall(ε, Fd) ≤ c dq (1 + ln ε−1)p

for some p, c > 0, q ≥ 0, and all ε ∈ (0, 1). Then

nstd-lin(ε, Fd) ≤ C dq (1 + ln d)p (1 + ln ε−1)p

for all ε ∈ (0, 1) and d ∈ N, and some C > 0 that depends only on c, p and q.
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This shows that every Banach space that is assumed to be approximable in high
dimensions (in the above sense) with an exponential order by some algorithm and
information can practically already be treated with linear algorithms based on func-
tion values. In particular, this improves upon Theorem 26.21 from [36] and solves
Open Problem 128 therein. Let us add that we do not know if the additional (1+ln d)p

is necessary.
There are many appearances of the assumption (1) in the literature. Besides the

detailed study of certain weighted Hilbert spaces of analytic functions [8, 24, 25,
30, 47], it appears naturally in the context of approximation with (increasingly flat)
Gaussian kernels [12, 17, 26, 41], or in tensor product approximations [14, 16],
or for certain smoothness spaces on complex spheres [7]. Moreover, it is a typical
assumption for the construction of greedy bases [4, 5, 15]. Let us also add that there
is quite some study on the stability of algorithms that can achieve an exponential
convergence, see [1–3, 39] for details.

When it comes to the study of the tractability of the problem, i.e., the precise
dependence of the error on the dimension, especially when we only allow function
evaluations, there is much less to cite and we are only aware of the Hilbert space ref-
erences from above. As an explicit example, let us mention the Gaussian space on
R

d with reproducing kernel K(x, y) = exp(−‖x −y‖d
2), which satisfies a relation of

the form (1) for L2-approximation with respect to the Gaussian probability measure
μ, see [41]. In the Hilbert case, there are some general results which make the situ-
ation somewhat simpler. For example, it is known that linear algorithms are always
optimal and one may work with the singular value decomposition of the embedding
APP. We refer to [33, Chapter 4] and [36, Chapter 26].

A bit more is known in the case of algebraic tractability, i.e., when the complexity
depends polynomially on ε−1 instead of ln ε−1. In addition to general Hilbert space
results, see [36, Chapter 26], and characterizations for weighted Korobov spaces,
see [11], there are also quite sharp results for the classical smoothness spaces Ck(�d)

of k-times differentiable functions on certain d-dimensional domains, possibly for
k = ∞. See [27, 34, 46] for details on approximation, and [20–23] for numerical
integration in the same classes. However, a comparison as proven here in the case
of exponential convergence is not possible in this case, see the end of Section 2. In
any case, it is open to determine the precise behavior of nstd(ε, Fd) for most classical
spaces, while nall(ε, Fd) is more often known.

Our results are based on the following (special case of) Theorem 3 from [9], see
also [18, 28, 29, 32, 44], which allows us to treat more general classes of functions.

Theorem 1 For each 0 < r < 2, there is a universal constant b ∈ N, depending
only on r , such that the following holds. For all F ∈ A and n ≥ 2, we have

ebn(F, L2) ≤
⎛

⎝
1

n

∑

k≥n

ak(F, L2)
r

⎞

⎠

1/r

.

Additionally, we use the following fundamental result from [38], see also [6, 31].
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Theorem 2 For all F ∈ A and n ≥ 1, we have

an(F, L2) ≤ (

1 + √
n

)

cn(F, L2).

Remark 3 We would like to stress that the proof of Theorem 1 in [9] is non-
constructive, and we do not know how to explicitly construct evaluation points
x1, . . . , xbn ∈ D together with some ϕ1, . . . , ϕbn ∈ L2 satisfying

sup
f ∈BF

∥
∥
∥f −

bn
∑

i=1

f (xi) ϕi

∥
∥
∥

L2
≤

⎛

⎝
1

n

∑

k≥n

ak(F, L2)
r

⎞

⎠

1/r

.

However, for problems with known operators T achieving the infimum as in the
definition of linear widths an(F, L2), we are able to specify algorithms utilizing
i.i.d. sampling of evaluation points from some known distribution, and satisfying
inequalities similar to the one above with high probability, see Theorem 8 of [29].

2 Exponential tractability of approximation

The notions of tractability are defined as follows. Let us fix, for every d ∈ N, some
space Fd ∈ A. For each Fd ∈ A we have some associated set Dd equipped with
a measure μd , and a continuous embedding APPd : Fd → L2(Dd , μd). The index
d ∈ N is an arbitrary parameter, but it usually stands for the dimension of the domain
Dd . A multivariate approximation problem is simply a sequence of embeddings

ÃPP = (

APPd : Fd → L2(Dd , μd)
)

d∈N.

Moreover, tractability notions are defined relative to the considered class of infor-
mation operations, i.e., we can consider tractability for �std or �all. Therefore, for
x ∈ {std, all}, we say that ÃPP is

• exponentially strongly polynomially tractable (EXP-SPT) for the class �x if and
only if

nx(ε, Fd) ≤ C (1 + ln ε−1)p

for some C, p > 0 and for all d ∈ N and ε ∈ (0, 1),
• exponentially polynomially tractable (EXP-PT) for the class �x if and only if

nx(ε, Fd) ≤ C dq (1 + ln ε−1)p

for some C, p, q > 0 and for all d ∈ N and ε ∈ (0, 1),
• exponentially quasi-polynomially tractable (EXP-QPT) for the class �x if and

only if
nx(ε, Fd) ≤ C exp(t (1 + ln d)(1 + ln(1 + ln ε−1)))

for some C, t > 0 and for all d ∈ N and ε ∈ (0, 1),
• exponentially uniformly weakly tractable (EXP-UWT) for the class �x if and

only if for all α, β > 0 we have

lim
d+ε−1→∞

ln nx(ε, Fd)

d α + (1 + ln ε−1)β
= 0,
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• exponentially weakly tractable (EXP-WT) for the class �x if and only if

lim
d+ε−1→∞

ln nx(ε, Fd)

d + (1 + ln ε−1)
= 0.

It is easy to see that we have the following logical relation between the tractability
notions defined above

EXP-SPT =⇒ EXP-PT =⇒ EXP-QPT =⇒ EXP-UWT =⇒ EXP-WT.

For a multivariate approximation problem we prove that exponential strong
polynomial tractability (EXP-SPT), exponential polynomial tractability (EXP-PT),
exponential uniform weak tractability (EXP-UWT) and exponential weak tractability
(EXP-WT) for the class �all are each equivalent to the corresponding tractabil-
ity property for the class �std. Moreover, exponential quasi-polynomial tractability
(EXP-QPT) for �all implies exponential uniform weak tractability (EXP-UWT) for
�std, i.e, the next tractability notion in the tractability hierarchy considered here.
Whether the equivalence of exponential quasi-polynomial tractability (EXP-QPT)
for the classes �all and �std holds remains an open problem.

These equivalences are in sharp contrast to the results for algebraic tractability.
See, e.g., [19, 37, 40] for examples where the problem is algebraically tractable for
�all but the curse of dimensionality holds for �std. In particular, [37, Example 5]
shows that for the tensor product Ws

2,d of certain univariate periodic Sobolev spaces,

s > 1/2, we have QPT for �all, but the curse of dimensionality for �std.

3 Results

We now present our results. The first results are concerned with EXP-(S)PT and
EXP-QPT. Both are direct corollaries of the following theorem.

Theorem 4 Assume that F ∈ A satisfies

nall(ε, F ) ≤ A
(

1 + ln ε−1)B

for some B > 0 and A ≥ 1 and all ε ∈ (0, 1). Then

nstd(ε, F ) ≤ nstd-lin(ε, Fd) ≤ C
(

1 + ln ε−1)B

for all ε ∈ (0, 1), where

C = 3b A
(

ln(36A) (1 + B3)
)B

and b is the absolute constant from Theorem 1 in the case r = 1.

Proof Observe that the inequality

nall(ε, F ) ≤ A
(

1 + ln ε−1)B

implies that
cn(F, L2) ≤ e exp(−(n/A)1/B).
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We obtain from Theorem 2, and 1 + n1/2 ≤ 2n1/2, that

an(F, L2) ≤ 2 e n1/2 exp(−(n/A)1/B).

Applying first Lemma 8 and then Lemma 9 from the Appendix, we deduce that
∑

k≥n

ak(F, L2) ≤ 2 e
∑

k≥n

k1/2 exp(−(k/A)1/B)

≤ 6 A1/B B max(3B/2, 1) (n − 1)3/2−1/B exp(−((n − 1)/A)1/B)

for all n ≥ n0(A, B) := A max(3B/2, 1)B + 1. In particular, (an(F, L2)) ∈ 	1. It
follows from Theorem 1 that there exists an absolute constant b ∈ N such that

ebn(F, L2) ≤ n−1
∑

k≥n

ak(F, L2)

≤ 6 A1/B B max(3B/2, 1) (n − 1)1/2−1/B exp(−((n − 1)/A)1/B)

for all n ≥ n0(A, B).
In the case B ≤ 2 we have (n − 1)1/2−1/B ≤ A1/2−1/B , and thus

ebn(F, L2) ≤ 36 A1/2 exp(−((n − 1)/A)1/B).

If B > 2, then Lemma 10 with u = 1/2 − 1/B yields for any δ > 0 that

ebn(F, L2) ≤ 9 A1/2 B2 δ1−B/2 exp
(

((B/2 − 1)δ − 1)((n − 1)/A)1/B
)

and taking δ = 2/B yields

ebn(Fd, L2) ≤ 36 A1/2(B/2)B/2+1 exp

(

− 2

B

(
n − 1

A

)1/B
)

.

If we put B0 := max{B/2, 1}, we have for all B > 0 and n ≥ n0(A, B) the bound

ebn(Fd, L2) ≤ 36 A1/2B
B0+1
0 exp

(

− 1

B0

(
n − 1

A

)1/B
)

which is smaller than ε if

n ≥ ABB
0

(

ln
(

36 A1/2B
B0+1
0 ε−1

))B + 1.

Thus

nstd(ε, Fd) ≤ b max

{

ABB
0

(

ln
(

36 A1/2B
B0+1
0 ε−1

))B + 2, n0(A, B)

}

≤ 3b max

{

ABB
0 RB

(

1 + ln(ε−1)
)B

, A (3B0)
B

}

≤ 3b ABB
0 RB

(

1 + ln(ε−1)
)B

with

R := ln(36) + ln A

2
+ (B0 + 1) ln B0 ≤ ln(36A)B2

0

which gives the desired estimate.
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Corollary 5 Assume that Fd ∈ A for every d ∈ N and

nall(ε, Fd) ≤ c dq (1 + ln ε−1)p

for some p, c > 0, q ≥ 0, and all ε ∈ (0, 1). Then

nstd(ε, Fd) ≤ nstd-lin(ε, Fd) ≤ C dq (1 + ln d)p (1 + ln ε−1)p

for all ε ∈ (0, 1) and d ∈ N, and some C > 0 that depends only on c, p and q.
In particular, if ÃPP is exponentially (strongly) polynomially tractable for the

class �all then it is exponentially (strongly) polynomially tractable for �std.

Proof We use Theorem 4 with A = c dq + 1 and B = p.

We now turn to the assumption that ÃPP is exponentially quasi-polynomially
tractable for the class �all. This is the only case where we do not know if it implies
the same property for �std.

For convenience, let us write ln+(x) := 1 + ln(x).

Corollary 6 Assume that Fd ∈ A for every d ∈ N and

nall(ε, Fd) ≤ c exp
(

t · ln+ d · ln+ ln+ ε−1
)

for some c, t > 0 and all ε ∈ (0, 1). Then

nstd(ε, Fd) ≤ c exp
(

t · ln+ d ·
(

ln+ ln+ ε−1 + 4 ln
(

t ln+ d
) + C

))

for all ε ∈ (0, 1) and d > (e + 1
c
)1/t e−1, and some C > 0 that depends only on c.

In particular, if ÃPP is exponentially quasi-polynomially tractable for the
class �all, then it is exponentially uniformly weakly tractable for the class �std .

Proof Note that

c exp
(

t (1 + ln d) (1 + ln(1 + ln ε−1))
)

= c et d t
(

1 + ln ε−1
)t (1+ln d)

.

Hence, we can apply Theorem 4 with A = c et d t and B = t ln+ d, i.e., A = c eB .
Note that A, B ≥ 1 for d > (e + 1

c
)1/t e−1. We obtain that there exists an absolute

constant b > 0 such that

nstd(ε, F ) ≤ C
(

1 + ln ε−1)B

for all ε ∈ (0, 1), with

C = 3b A
(

ln(36A) (1 + B3)
)B ≤ 3b A (2B)3B (ln(36c) + B)B

≤ c exp
(

B
(

c′ + 4 ln(B)
))

where c′ > 0 only depends on c. This proves the bound.
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Now, since ln nstd(ε, Fd) depends only logarithmically on d and double-
logarithmically on ε−1, we obtain

lim
d+ε−1→∞

ln nstd(ε, Fd)

d α + (1 + ln ε−1)β
= 0

for all α, β > 0, i.e., ÃPP is exponentially uniformly weakly tractable for the
class �std.

We finally discuss EXP-UWT and EXP-WT.

Theorem 7 Assume that Fd ∈ A for every d ∈ N. If the problem ÃPP is expo-
nentially (uniformly) weakly tractable for the class �all, then it is exponentially
(uniformly) weakly tractable for the class �std.

Proof Assume that there are 0 < α, β ≤ 1 such that

lim
d+ε−1→∞

ln nall(ε, Fd)

dα + (1 + ln ε−1)β
= 0.

It is enough to show that

lim
d+ε−1→∞

ln nstd(ε, Fd)

dα + (1 + ln ε−1)β
= 0. (3)

By assumption, for every 0 < h ≤ 1/16, there is some v0 ∈ N such that

0 ≤ ln nall(ε, Fd)

dα + (1 + ln ε−1)β
≤ h

for all ε ∈ (0, 1) and d ∈ N with dα + (1 + ln ε−1)β ≥ v0. It follows that

cn(Fd, L2) ≤ e exp

(

−
(

ln n

h
− dα

)1/β
)

for all n ≥ exp(hv0). From Theorem 2, we get

an(Fd, L2) ≤ 2e exp

(

−
((

ln n

h
− dα

)1/β

− 1

2
ln n

))

.

For all n ≥ exp(2hdα) and h ≤ 1/16, we have
(

ln n

h
− dα

)1/β

− 1

2
ln n ≥ 1

2

(
ln n

h
− dα

)1/β

+ 1

8

ln n

h

and hence we have for all n ≥ max{exp(hv0), exp(2hdα)} that

an(Fd, L2) ≤ 2e exp

(

−1

2

(
ln n

h
− dα

)1/β
)

· n−1/(8h).
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It follows from Theorem 1 that for some absolute constant b ∈ N and all n ≥
max{exp(hv0), exp(2hdα)}, we have

ebn(Fd, L2) ≤ 1

n

∑

k≥n

ak(Fd, L2) ≤
∑

k≥n

ak(Fd, L2)

≤ 2e exp

(

−1

2

(
ln n

h
− dα

)1/β
)

∑

k≥n

k−1/(8h)

≤ 2e exp

(

−1

2

(
ln n

h
− dα

)1/β
)

,

where we again used that h ≤ 1/16. It follows that

nstd(ε, Fd) ≤ D exp
(

4h
(

(1 + ln ε−1)β + dα
))

for some absolute constant D > 0 and all ε ∈ (0, 1) and d ∈ N such that d + ε−1 is
sufficiently large. This implies

0 ≤ lim
d+ε−1→∞

ln nstd(ε, Fd)

dα + (1 + ln ε−1)β
≤ 4h.

Since h ∈ (0, 1/16) can be chosen arbitrarily close to 0, we obtain (3).
This allows us to conclude our statement. Indeed, for uniform weak tractability we

take arbitrary α and β from (0, 1), and for weak tractability we take α = β = 1.

Appendix Technical Lemmas

The following lemmas are used in the proofs of our results.

Lemma 8 Let A and B be arbitrary positive real numbers. For n ≥ A(B/2)B we
have the following inequality

∑

k≥n+1

k1/2 exp(−(k/A)1/B) ≤
∫ ∞

n

t1/2 exp(−(t/A)1/B)dt .

Proof It is enough to show that the function f : (0, ∞) → R given by f (t) =
t1/2 exp(−(t/A)1/B) is decreasing on (A(B/2)B, ∞). Indeed, for t > A(B/2)B we
have

f ′(t) =
(

exp

(
1

2
ln(t) − (t/A)1/B

))′
=

= exp

(
1

2
ln(t) − (t/A)1/B

) (
1

2t
− (1/AB)(t/A)1/B−1

)

< 0.
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Lemma 9 Let A and B be arbitrary positive real numbers. For every n ≥
A max(3B/2, 1)B we have the following inequality
∫ ∞

n

t1/2 exp(−(t/A)1/B)dt ≤ A1/B B max(3B/2, 1) n3/2−1/B exp(−(n/A)1/B).

Proof Using integration by substitution, with u = (t/A)1/B , we obtain that
∫ ∞

n

t1/2 exp(−(t/A)1/B)dt = A3/2 B �(3B/2, (n/A)1/B)

where, for a ∈ R and x > 0, �(a, x) = ∫ ∞
x

va−1 exp(−v)dv is the incomplete
gamma function.

It is known (see, e.g., Satz 4.4.3 in [13]) that for a ≥ 1 and x > a we have

�(a, x) ≤ a xa−1 exp(−x).

If, on the other hand, 0 < a < 1 and x > 1 then since va−1 ≤ xa−1 for v ≥ x we
have

�(a, x) = ∫ ∞
x

va−1 exp(−v)dv ≤ xa−1
∫ ∞
x

exp(−v)dv = xa−1 exp(−x).

Therefore, for every a > 0 and x > max(a, 1), the following bound holds

�(a, x) ≤ max(a, 1) xa−1 exp(−x).

Thus for n > A max(3B/2, 1)B , and taking a = 3B/2 and x = (n/A)1/B , we have
∫ ∞

n

t1/2 exp(−(t/A)1/B)dt ≤ A1/B B max(3B/2, 1) n3/2−1/B exp(−(n/A)1/B).

Lemma 10 For every A, B, n, δ, u > 0 we have the following inequality

nu exp
(

−(n/A)1/B
)

≤ Au δ−uB exp
(

(uBδ − 1)(n/A)1/B
)

.

Proof Let x = δ(n/A)1/B . Then nu = Au δ−uB xuB . Using the fact that ln(x) ≤ x

for all x > 0 we obtain that

ln(nu) = ln(Auδ−uB) + uB ln(x) ≤
≤ ln(Auδ−uB) + uBx = ln(Auδ−uB) + uBδ(n/A)1/B

Hence, taking exponentials of both sides we derive that

nu ≤ Auδ−uB exp(uBδ(n/A)1/B)

and thus

nu exp(−(n/A)1/B) ≤ Auδ−uB exp((uBδ − 1)(n/A)1/B)

as claimed.
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33. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol 1: Linear information,

volume 6 of EMS tracts in mathematics. European Mathematical Society (EMS), Zürich (2008)
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Zürich (2010)
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