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Abstract
In this paper, we compute the spherical Fourier expansion coefficients for the restric-
tion of the generalised Wendland functions from -dimensional Euclidean space to
the 1 -dimensional unit sphere. We use results from the theory of special func-
tions to show that they can be expressed in a closed form as a multiple of a certain
3 2 hypergeometric function. We present tight asymptotic bounds on the decay rate
of the spherical Fourier coefficients and, in the case where is odd, we are able to
provide the precise asymptotic rate of decay. Numerical evidence suggests that this
precise asymptotic rate also holds when is even and we pose this as an open prob-
lem. Finally, we observe a close connection between the asymptotic decay rate of
the spherical Fourier coefficients and that of the corresponding Euclidean Fourier
transform.
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1 Introduction

Positive definite functions are frequently used in scattered data fitting algorithms
both in Euclidean space and on spheres: see [31]. The special case of the 2-sphere
is of importance in geostatistics where positive definite functions are used as covari-
ance functions of random fields on the surface of the earth, [8, 10, 15, 18] and [11].
The aim of this paper is to investigate the generalised Wendland functions, a parame-
terised family of compactly supported basis functions which, for a certain parameter
range, are strictly positive definite on . In the opening section, we present the
background to positive definite kernels defined on Euclidean space and on the unit

Communicated by: Robert Schaback

Janin Jäger
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sphere. We will pay particular attention to the restriction of Euclidean positive defi-
nite functions to the sphere and state an identity that connects the Fourier transform
of the Euclidean function to the spherical Fourier coefficients of its restriction to the
sphere. In Section 3, we introduce the family of generalised Wendland functions, set-
ting out their known properties including their Euclidean Fourier transforms and the
rates at which they decay. Then, in Section 4, we make use of the aforementioned
connection identity to derive an expression for the spherical Fourier coefficients of
the generalised Wendland functions restricted to the sphere. In the final section, we
examine the asymptotic rate of decay of the spherical Fourier coefficients where we
provide tight asymptotic bounds. In addition, when the functions are restricted to
an even dimensional sphere, we provide the precise asymptotic rate of decay and
present numerical results to suggest that the same decay holds for the restriction to
odd-dimensional spheres too.

The class of generalised Wendland functions, as their name suggests, contains the
original Wendland functions, which are popular in applications due to their simple
polynomial form. Many researchers have employed the original Wendland functions
on the sphere and, for these functions, the asymptotic behaviour of the spherical
Fourier coefficients has been addressed. However, as far as the authors are aware, a
precise formula for the coefficients has not previously been made available. A closed
form of the coefficients is necessary for the use of recently proposed numerical meth-
ods such as the stable computation via Hilbert-Schmidt SVD ([12, Chapter 13]) and
also for the spectral simulation of Gaussian random fields as described in [17].

Of the work that is related to ours, we mention [22, Proposition 3.1] which gives a
precise asymptotic form for the spherical Fourier coefficients of the original Wend-
land functions; however, the constant multiplying the decay factor is not explicitly
given. In addition, le Gia et al. [19, Section 6] have considered scaled versions of
positive definite functions and show that if their Fourier transforms decay at a polyno-
mial rate then, when restricted to the sphere, their corresponding Fourier coefficients
decay at the expected analogous rate; however, precise asymptotic rates are not given.

2 Radial and zonal kernels

Definition 2.1 A kernel is said to be strictly positive definite on a
domain if, for any 2 distinct locations x1 x the matrix

x x
1

(2.1)

is symmetric and positive definite.

For the class of radial kernels taking the form , we have the
following characterisation theorem (see [31, Theorem 6.18]).
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Theorem 2.2 A radial kernel x y x y with 0 such
that 1

1 0 is strictly positive definite in if and only if the
-dimensional Fourier transform

1 2

0
2

2 1 (2.2)

where denotes the Bessel function of the first kind with order , is non-negative
and not identically equal to zero.

We let denotes the class of continuous functions associated to the strictly
positive definite radial kernel via x y x y where x y . If we
assume that (2.2) is positive for all 0 then we can appeal to the theory of
radial basis functions (see [31]) to deduce the following result.

Theorem 2.3 Let 1 denote a fixed spatial dimension and be a strictly positive
definite radial kernel on with 0 for all 0. Define

2
2

2

(2.3)

where is a norm induced by the inner product

. (2.4)

Then is a real Hilbert space with inner product and reproducing kernel .

Remark 2.4 We note that if there exist positive constants 1 2 such that

1

1 2
2

1 2
0 (2.5)

where 2 then the space in (2.3) is a reproducing kernel Hilbert space which
is isomorphic to the Sobolev space

2
2 2 1 2 .

Furthermore, under the same assumption, it can be shown that and are
norm-equivalent (see [32]).

We now consider the spherical case. We let 1 1 denote
the 1 -dimensional unit sphere. Then, for any points 1 we write

cos to denote their dot-product where denotes the transpose of a vector
and is the angular distance between the two points.

The zonal kernel induced by any continuous function
1 1 possesses a Fourier-type expansion in spherical harmonics

0 1

(2.6)
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where 1 is a real orthonormal basis for the space of spherical
harmonics of degree and the collection 1 0 forms a
real orthonormal basis for 2

1 .
Using Schoenberg’s [30] pioneering work, it can be shown that if the expansion

coefficients are positive for 0, then is a strictly positive definite kernel on
1. This simple condition is sufficient for our purposes but the reader may consult

[7] for a careful investigation of the necessary and sufficient conditions.
Spherical harmonics provide a Fourier analysis for the sphere. In particular, every

2
1 has an associated spherical Fourier expansion

0 1

where
2

1
1

1 .

The following theorem is the spherical analogue of Theorem 2.3.

Theorem 2.5 Let 2 denotes a fixed spatial dimension and a strictly positive
definite zonal kernel on 1 for which the Fourier expansion coefficients are
strictly positive for all 0. Define

2
1 2

0 1

2

(2.7)

where is a norm induced by the inner-product

0 1

.

Then is a real Hilbert space with inner product and reproducing kernel
.

Remark 2.6 We note that if there exist positive constants 1 2 such that

1

1 2
2

1 2
0 (2.8)

where 1
2 then the space defined in the previous theorem is norm

equivalent to the Sobolev space

1
2

1 1

0 1

1 2 2 .

We let 1 denotes the class of continuous functions associated to the strictly
positive definite zonal kernel via (2.6). The class 1 is important in the
field of spatial statistics where certain elements can be proposed as correlation func-
tions that induce geodesically isotropic covariance functions. The notation used in
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the spatial statistics literature can easily be retrieved from that presented above.
Specifically, the addition theorem for spherical harmonics [16, equation (1.24)] states

1 1

2 2

2 2 1
1 (2.9)

where denotes the -Gegenbauer polynomial of degree 1 denotes the
surface area of 1 and denotes the dimension of the space of spherical
harmonics of degree given by

0 1 and 2 2
3

2
. (2.10)

Using this, we can see that if belongs to 1, then it satisfies

cos
0

2 2 cos
2 2 1

0 (2.11)

where following Daley and Porcu [9], the sequence 0 in (2.11) is called
the 1 -Schoenberg sequence. This sequence is related to the spherical Fourier
coefficients (2.6), using (2.9), by

1
0 1 2 . (2.12)

In the framework of Gaussian random fields 1 that are contin-
uously indexed over 1 we suppose has constant mean and covariance function

1 2 cov 1 2 , for 1 2
1. If belongs to 1 and addi-

tionally satisfies 1 cos 0 1, then it can be proposed as a correlation
function that induces a geodesically isotropic covariance function via

1 2
2

1 2 1 2
1 (2.13)

where 2 0 is the variance of . A wide range of parametric families of correlation
functions have been proposed for applications in spatial statistics, see for instance,
[8, 10, 15] and [11].

A source of functions from 1 can easily be accessed by taking , then

using the relation 2 2 for 1 one can define its

restriction to 1 by

2 2 . (2.14)

In this regard, we have the following formula [23, Theorem 4.1] which links the
spherical Fourier coefficients of to the radial Fourier transform

2 2
2

2
where

0

2 . (2.15)

In the spatial statistic literature, the above approach is known as the chordal dis-
tance based model. It has received constructive criticism around its flexibility, mainly
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due to the fact that the chordal (Euclidean) distance underestimates the angular
distance between points on the sphere (see [26] and [15] for further discussion).

3 The generalisedWendland functions

We will investigate a family of parameterised basis functions that is generated by a
truncated power function. Specifically, we choose a support parameter 0 and
define

0 1
1 for 0 1

0 for 1

and consider

1

2 1

1
1
0

2 2
1
d 0 (3.16)

where 0 0 and denote the Gamma function. We note that is

compactly supported on 0 1 .

This class is a subclass of the Buhmann functions originally introduced in [4] (see
also [34]). This specific class was first studied by Zastavnyi in [33]. Applications of
this function class as covariance functions of Gaussian random fields are discussed
in [3].

For a certain selection of the and parameters, we can recover, from formula
(3.16), both the original Wendland functions and also the so-called missingWendland
functions. It is for this reason that elements of this family are referred to as the gener-
alised Wendland functions. The original Wendland functions are recovered when the
space dimension is odd, is a positive integer and 1

2 i.e. the
smallest integer that still allows positive definiteness. In this case, one can show that

1

where is a polynomial of degree . The missing Wendland functions are recov-
ered when the space dimension is even, and 2 i.e. once again the
smallest integer that still allows positive definiteness. The missing Wendland func-
tions have two polynomial components, one with a logarithmic multiplier

log
1 1 2

and one with a square root multiplier 1 2 (see [29]).

The -dimensional Fourier transform of was computed in [5] and is given by

2
1 2

2
1

2 2

2
(3.17)

where

1

2
and

2 1

2
(3.18)
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and where 1 2 denotes the hypergeometric function (see [1, 15.1.1]).
Hypergeometric functions will feature heavily in this work and so we briefly remind
the reader that a general hypergeometric function is defined by

1

1 0

1

1
(3.19)

where

1 1 for 1 (3.20)

denotes the Pochhammer symbol, with 0 1.

It is known (see [5]) that 0 if and only if . Thus, with such a

choice, induces a strictly positive definite and compactly supported radial
kernel on . The following formula, taken from [14], provides the asymptotic
behaviour for 1 2 hypergeometric functions for large argument

1 2 1
2

2

4

2

2 2

1
2

1 2

2
21

1
2

cos
2

2 1 .

Setting 2 and , we deduce that

1 2
2

1
2

2

4 2

2 2

1
2

2

2 1

2 1
cos

2
(3.21)

as .
Using (3.17) and (3.18), we can also deduce that

2

2

2

1
2

2

2
1 cos

2
. (3.22)

For 1, it is the first term that determines the asymptotic decay and we
can conclude that

2

2

2 1

2
as . (3.23)

For the case 1, the first and second terms need to be considered for the
asymptotic decay and we can conclude that

2 1

2

2 1

2
1

1

2 1
cos as . (3.24)
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To investigate the native space, we assume 0 to be fixed. We know from the

definition of the asymptotics that is equivalent to

1 for .

Since both and are strictly positive and continuous for 0, we can
deduce that for any arguments larger than some 0 0, the infinum, 1 0 and
supremum, 2 0, of are well defined. This proves that

1 2
2

2 1

2

2 0 1 (3.25)

and

1
2 1

2

2 1

2 1 1
2 1 cos

2 0 1.

(3.26)
If we assume that 0 1 then, for any 0, we have that

0 1 2 1
1
2
0

2
2 2

0 1
2
0

2 1 2

and thus

0
1

1 2

1
2

1
1
2
0

1

1 2
1 0 1.

From (3.25) we can now deduce that

1
2 1

1 2
2

2 1

1 2 0 1

where

1
2

2
1 and 2

2

2
1

1
2
0

2.

The above inequality can be extended to 0 (albeit with potentially different

constants) since is strictly positive and continuous on 0 0 . For the case
, we can perform the same first step on (3.26) to show

1
2 1

1 2
1

cos

2 1
2

2 1

1 2
1

cos

2 1

for 0. Now using 1 cos 1 and that 1, we can simplify the above
to write

1
2 1

1 2
2

2 1

1 2 0 1
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where 1 and 2 are positive constants given by

1 1
1

2 1 1 and 2 1
1

2 1 2.

Again, the inequalities can be extended to 0 due to the continuity of the positive
Fourier transform on 0 0 .

Summarising, we have proven that for 1, there exist positive constants
1 2 such that

1
2 1

1 2
2

2 1

1 2
0. (3.27)

We remark that the constants 1 and 2 are not necessarily fully independent of the
choice of ; however, the given bounds allow us to use Theorem 2.3 and Remark 2.4
to deduce that when x y x y defines a reproducing kernel
of a Hilbert space that is norm equivalent to the Sobolev space .

For details on the influence of the scaling parameter on the bounding constants,
we refer the reader to [32] Lemma 1, [6] Lemma 4.8 and also the recent paper [28].

4 GeneralisedWendland functions for the sphere

In this section, we will consider the restriction of to the 1 -dimensional
unit sphere 1. Using (2.14) and (2.6), we can write

2 2
0 1

. (4.28)

We note that the support condition of the restriction can be recast in terms of
angular distance (between 1) as

0 2 2 cos
1

1
1

2 2
cos 1.

Thus, we need only consider the range 1
2 for the support parameter; the

case 1
2 ensures that the restricted function is globally supported on the entire

sphere, whereas 1
2 ensures that it is supported on a spherical cap of radius

cos 1 1 1
2 2 .

Theorem 4.7 The spherical Fourier coefficients of the generalised Wendland func-
tion with 1

2 are given by

2
1

2

1
2

2 1 3 2

3
2

1
2

1
2

1
2 2

1

4 2

(4.29)
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where, in analogy with (3.18), we have that

1

2
and 1

2

2
1
2 1

2 1

2 1
. (4.30)

Proof In view of (2.15), we need to evaluate

0

2

2 0

2
1 2

2
1

2 2

2
using 3.17 .

The following identity is from [20, Section 6.2 (41)]

2 2 1 2 2
1 2

1
2

1 2 1
2

and it allows us to express as an integral involving the product of two 1 2
hypergeometric functions.

2 22 1 2

0

2 1
1 2

1
2

1 2 1
2

1 2
2

1
2 2

2
.

(4.31)
The next identity holds for 0 1 and it is taken from [27, 2.22.2.1]

1 1
1

1

1

0

1 1 1 1

1
.

(4.32)

Setting 0 1 1 2 and 1
2 , we have

1 2
2

1
2 2

2

1
2

1
2

1

0

1 1
1

2 0 1
2 2

2
.

Substituting this into (4.31) gives

1
2

2 22 1 2 1
2

1

0

1 1
1

2

(4.33)

S. Hubbert, J. JägerPage 10 of 213



where

0

2 1
0 1

2 2

2
2

1 2

1
2

1 2 1
2 .

(4.34)
The next identity, which holds for is taken from [21, 5.1b]

0

1
0 1

1
2 2

1 2
1

2 2

1

2
2 2 1

2 1 2
3 2

2 1 2 2

1 2 1

2

2

1

2

2 1 1 2
2 1 1 2

3 2
1

1 2 1 2

2

2
.

We observe that, since 1
2 and 0 1 this identity can be used to evaluate

. Specifically, setting

2 1
2

1
2

1
1

2
1 and 2

we find that

1

2

2 1 1 2 1
2

1
2 0

3 2
1 1 1
3
2 2 4 2

2 2 1 1 1
2

1
2

1
2

1
2

3 2

1
2

1
2

1
2

1
2

1
2

4 2
. (4.35)

We observe that the first term vanishes due to the appearance of 0 in the denom-
inator of the multiplier. Furthermore, the 3 2 function in the second term collapses
to a 2 1 variety due to the duplication of 1

2 in the defining parameters. Thus, we are
left with

2 2 1 1

1
2

1
2

2 1

1
2

1
2

1
2

4 2
. (4.36)
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Inserting this into (4.33), we find that

1
2

2 22 1 2 1
2

2 2 1 1

1
2

1
2

1

0
1

1
2

3
2 2 1

1
2

1
2

1
2

4 2

1
2 2

2 1 1
2

1

0
1

1
2

3
2 2 1

1
2

1
2
1

2
4 2

where, in the final line, we have used the duplication formula for the Gamma function
[1, 6.1.18]

2
22 1 1

2
(4.37)

with 1
2 . Using (4.32) to replace the integral in the last equation, where we

set 2, 1, 1
2 ,

1
2 , 1

1
2 , 2

1
2 , 1

1
2 and

1
4 2 , we find

1
2

1
2

2 1 3 2

1
2

1
2

1
2

1
2 2

1

4 2
. (4.38)

Recalling the definition of (3.18), the multiplier of the 3 2 hypergeometric
function is given by

2 1

2

1
2

1
2

2 1

1

2 1

2
1
2 1

2 1

2 1

1
2

.

Thus, appealing to (2.15), we can conclude that

2
1

2

1
2

2 1 3 2

3
2

1
2

1
2

1
2 2

1

4 2
.

5 Asymptotic decay of ( )
, (m)

In this section, we investigate the asymptotic behaviour of the spherical Fourier coef-
ficients of the generalised Wendland function. We take two approaches to this. First,
we make use of the upper and lower bounds on the Euclidean Fourier transform (3.27)
together with the Equation (2.15) to derive tight asymptotic bounds. Second, in the
case where is odd, we provide the precise asymptotic decay rate of the spherical
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Fourier coefficients by using known large parameter asymptotic results for hyperge-
ometric series. In addition, we present numerical evidence which suggests that the
same precise asymptotic decay rate holds when is even and leave this as an open
problem.

5.1 Tight asymptotic bounds

The connection of the decay of the Fourier transform and the decay of the spher-
ical Fourier coefficients was studied in [24]. We employ their results to prove the
following:

Theorem 5.8 There exist positive constants 1 2 such that the spherical Fourier
coefficients of the generalised Wendland functions defined in (4.28)
satisfy

1

2
2

2 1
2

2
2

2 1
(5.39)

for all provided that 0 and 1
2 . As in the Euclidean case, this

asymptotic behaviour implies that the zonal kernel is the reproducing

kernel for a Hilbert space that is norm equivalent to the Sobolev space
1
2 1 .

Proof We recall that the spherical Fourier coefficients of the generalised Wendland
functions are given by

2 2
2

2
where

0

2

and further, from (3.27), that there exists positive constants 1 2 such that

1
2 1

1 2
2

2 1

1 2
0

1

2
and 0.

The radial function whose -dimensional Fourier transform (2.2) coincides with
1 2 where 2 is the Matern basis function (see [12] Section 3.1.1) and
is given by

1

2 1
2

2
(5.40)

where denotes the modified Bessel function of the second kind of order
[1, Equation (9.6.22)].

Using the positivity of the integrand and the bounds on , it follows
that

1
2 1

2
2 1 (5.41)

where are the spherical Fourier coefficients of the Matern function restricted
to 1 given by

2 2

0

2
2

2
2 2

0 1 2
2

2
2

.
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Upper and lower bounds for the integral

0 1 2
2

were given in [24, Proposition 4.1]; setting the parameter 2
2 they provide,

for that

2 2 2 2

2
2

2 1
1

1
2

2

2 2

2
2

2 1
1

1
2

2

where, following an application of (4.37), the constant above is given by

2 1

22 3 2

2
1
2

.

The higher order terms on the bound can be removed by multiplying the lower bound
of the inequality by 1

2 and the upper bound by 2. Doing so, and using (5.41), we have
that

1

2
2

2 1
2

2
2

2 1
as

where

0 1
1

22 1

2 2 1
2 1

2 1

4
2 2 1

2 2
2 1

2.

Since all are positive and finite, the constants 1 2 can be further adapted
to 1 2, possibly depending on , and , such that (5.39) holds not only for

0 for some 0 1 but for all .

5.2 Precise asymptotic decay rate

Theorem 5.9 Let 3 denote an odd positive integer. The spherical Fourier coef-
ficients of the generalised Wendland functions ( 1 defined in
(4.28) exhibit the following precise asymptotic decay

2
1

2

2
1
2 1

2

2

2 1

1
2

2 1
(5.42)

provided that 0 and 1
2 .
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Proof The hypergeometric function appearing in the expression (4.29) for the
spherical Fourier coefficients is given by

3 2

3
2

1
2

1
2

1
2 2

1

4 2
. (5.43)

When 3 is odd then, due to the appearance of a negative integer in the upper coef-
ficient list, the series terminates and so it collapses to a hypergeometric polynomial
of the form

3 2
1 2

. (5.44)

In the case where 2 is even, the series does not terminate.
A survey of the literature in this area shows that there are very few known asymp-

totic results that apply to general 3 2 hypergeometric functions for large parameters.
Most of the known results apply to the case where the series terminates and, in this
regard, we are fortunate that the limiting behaviour of (5.44) as is cov-
ered in [13] where it is shown that provided none of the hypergeometric parameters

1 2 in (5.44) coincides with zero or with a negative integer, then with the
following definitions

2 1 2
1

2
and sin2 2 0 1 (5.45)

we have the following asymptotic results.
For 0 1

3 2
1 2

1 2

1 2

1 1
2

1
1

1 2
2 sin2 2 cos 2

cos2 2 2

2 1 .

(5.46)
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For 1

3 2
1 2

1 1 2

1 2

1
2

1
1

1 1 2 2 4

2 1
2

1
4 2 1

2 1
2

.

(5.47)

In our case, 3
2 1 1

2 1
1

2 2 2 and
1
4 2 . Since

1
2 , it is straightforward to check that these parameters satisfy

the conditions associated with the above asymptotic formulae. Thus, we can set

2
1

2
and sin2

2

1

4 2

and employ (5.46) and (5.47) to yield the following asymptotic results.
For 1

2

3 2

3
2

1
2

1
2

1
2 2

1

4 2

1
2 2 2 2 1

2
1

2
1

2

2 1
1

1
1

2

1
2 2 2 4 2 1

1
2

3
2

1
2

1
2

1
2

cos
2

2 2

1

2

1

1
2

1
2

.

(5.48)
We observe that since , we have that

1

2

1

2
2

1

2
2 1
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and so, in this case, the precise asymptotic decay of the hypergeometric function is
determined by the first term of (5.48) and is given by

3 2

3
2

1
2

1
2

1
2 2

1

4 2

1
2 2 2 2 1

2
1

2
1

2

2 1

2 1 2 1 1

1
2

2 1

2
1
2 1

2

1
2

2 1

1
2

2 1

(5.49)
where the first equality follows by applying the duplication formula (4.37) with

1
2 and 2 the final equality follows from the definition of 1

2
(4.30).

The asymptotic result for the spherical coefficients follows, in this case, directly from
their definition (4.29).

For 1
2

3 2

3
2

1
2

1
2

1
2 2

1

1
2 2

2
1

2
1

2

2 1
1

1
1

2

1
3

2
1

2 2
1

2 2 1

2 1
2

1
2

1
2 1 2

1
2

1

1
2

2
.

(5.50)

Applying [25, Equation (5.11.12)]

(5.51)
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with 1
2 we find that

1
2 2 1

1
2

1

1
2

2 1
.

Clearly, since we have that 2 1 2 2 1 2 1 and so the
asymptotic behaviour of the hypergeometric function is determined by the first term
of (5.50). Mirroring the concluding development in (5.49), we have that

3 2

3
2

1
2

1
2

1
2 2

1

1
2 2

2
1

2
1

2

2 1

2
1
2 1

2

1
2

1
2

2 1

1
2

2 1

and the asymptotic result for the spherical coefficients follows from (4.29).

The above result provides the precise asymptotic decay rate for the spherical
Fourier coefficients in the important case of restricting the generalised Wendland
functions to the 2-sphere 2, where there are enormous practical applications. One
immediate application is to investigate the use of the suitably normalised generalised
Wendland functions as a correlation model in the simulation of Gaussian random
fields on the surface of the earth. In particular, with the precise asymptotic decay rate
available, one can employ formula 6 of [2] to investigate the compatibility of the pro-
posed generalised Wendland family with other commonly used correlation models;
this is an obvious topic of future research. For the convenience of the reader, we state
the decay for the case 3 specifically

2
2

3
2 3

2
2 1

1 2 3
(5.52)

with 0, 2.
We have not established precise asymptotics for the case where the generalised

Wendland functions are restricted to the circle 1 and other odd-dimensional spheres;
large parameter asymptotics are, to the best of our knowledge, not available for
the non-polynomial case of the 3 2 hypergeometric function (5.43). The numerical
results in Tables 1, 2 and 3 show, for increasingly large values of the calcula-
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Table 1 Generalised Wendland parameters: 2 1 1
2 1

Precise formula for Asymptotic formula for

150 2.2287E 06 2.2060E 06

200 9.4002E 07 9.3297E 07

250 4.8114E 07 4.7839E 07

300 2.7854E 07 2.7712E 07

tion of the coefficients (for odd-dimensional spheres) using formula (4.29) and also
the value from the asymptotic formula (5.42). These computations were performed
using WOLFRAM MATHEMATICA V12 and they strongly suggest that the established
asymptotic behaviour from Theorem 5.9 also holds in the case where 2 is even.
These numerical findings lead us to make the following conjecture.

Conjecture 5.10 Let 2 denotes an even positive integer. The spherical Fourier
coefficients of the generalised Wendland functions ( 1 defined
in (4.28) exhibit the following precise asymptotic decay

2
1

2

2
1
2 1

2

2

2 1

1
2

2 1
. (5.53)

We conclude the paper by drawing the reader’s attention to the close connection
between the asymptotic formula for the decay of the Fourier transform of the gener-
alised Wendland functions and that of the associated spherical Fourier coefficients.
Recalling that 1

2 , we can define

2
1

2 1
2

2 1

2

then revisiting (3.24) and (5.42), we have that

1 2
and 2

1
2

1

1
2

2
.

Table 2 Generalised Wendland parameters: 4 1
2 1

Precise formula for Asymptotic formula for

100 4.1457E 11 4.0223E 11

200 6.6706E 13 6.5709E 13

400 1.0578E 14 1.0499E 14

800 1.6652E 16 1.6590E 16
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Table 3 Generalised Wendland parameters: 6 2 1
2 4

Precise formula for Asymptotic formula for

100 3.9103E 10 3.9959E 10

200 3.4127E 12 3.4018E 12

300 2.060E 13 2.0493E 13

400 2.7897E 14 2.7754E 14
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