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Abstract
In this paper, we study a geometric approach for constructing physical degrees of
freedom for sequences of finite element spaces. Within the framework of finite
element systems, we propose new degrees of freedom for the spaces PrΛ

k of
polynomial differential forms and we verify numerically their unisolvence.

Keywords Finite element system · High order · New degrees of freedom ·
Exterior differential calculus
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1 Introduction

Given a simplicial mesh of a domain in R
n, there are well-known finite-dimensional

spaces of differentials forms that are smooth on each simplex and compatible along
interfaces. They are known as Whitney forms [21] and, as analyzed in [6], they cor-
respond with the lowest order finite element spaces presented in [16, 17]. All these
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spaces and many others (such as Lagrange finite elements and discontinuous ones)
are instances of spaces of polynomial differential forms belonging to the two fami-
lies P−

r Λk and PrΛ
k . These families fit into the finite element exterior calculus [4]

framework, where everything is cast into the language of differential forms and the
concepts of differential complexes and commuting diagrams are used to study their
properties.

There are two standard choices of degrees of freedom for these discrete spaces: the
harmonic ones [9] and the moments [4]. It is well known that the associated interpo-
lators commute with the exterior derivative. A third possibility for the family P−

r Λk

has been proposed in [19]: the weights, which are integrals on specific subsimplices
of dimension k, called the small k-simplices. These latter degrees of freedom are
labeled as physical since they represent quantities physically meaningful such as cir-
culations if k = 1, fluxes if k = 2 or densities if k = n, for the considered field
intended as a k-form. On the numerical side, these weights are interesting because
they are a natural generalization to k > 0 of the evaluations at points. The evalua-
tions at the points of the principal lattice in the simplex are used in Lagrange finite
elements to define, when k = 0, a set of degrees of freedom from which we can
reconstruct an approximation of a scalar field, intended as a 0-form. The weights
have another remarkable property: for each k and from each simplex T , there is a
one-to-one correspondence between the canonical spanning family of P−

r Λk(T ) and
the small k-simplices; moreover, the subset of the such small k-simplices correspond-
ing to a basis (obtained from the spanning family removing the redundant elements)
yields unisolvent degrees of freedom. To the best of the author’s knowledge, physi-
cal degrees of freedom for the second family PrΛ

k have never been considered. The
aim of these pages is to fill this gap.

To this purpose, here we develop an abstract framework for physical degrees of
freedom in the context of finite element systems (FES). We recall that FES were
introduced in [10] and allow to construct mixed finite elements, generalizing those
of [7, 16, 17, 20]. In this work, in particular,

i We derive three contraints that must be satisfied by a unisolvent system of
physical degrees of freedom with commuting interpolator.

ii We recast the existing degrees of freedom for the first family P−
r Λk into this

framework.
iii We propose a physical system of degrees of freedom for the second family PrΛ

k

in two dimensions. The studied construction is inspired by the isomorphism

P̊r−kΛ
k(T ) ∼= P−

r−dim T Λdim T −k(T )

for a simplex T . As an interesting consequence, we obtain a geometrical inter-
pretation of the duality pairing between P̊r−kΛ

k and P−
r−nΛ

n−k as realization
of Lefschetz duality (see, e.g., [12] or [13]).

iv We verify numerically the unisolvence of the proposed physical degrees of
freedom for PrΛ

1 in two dimensions (known in the literature as the Brezzi-
Douglas-Marini finite element space in [7]). The numerical validation for k = 1
together with Theorem 5.1 allows to conjecture the unisolvence of this new
system of degrees of freedom for the second family PrΛ

k in two dimensions.
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The outline of this work is as follows. In Section 2, we recall the notation and the
main results of the abstract framework of FES which we will use in the following.
In Section 3, we include in this framework the physical degrees of freedom and
identify some necessary conditions on the choice of the k-cells to obtain unisolvent
degrees of freedom. In Section 4, we show that the overdetermining small simplices
proposed in [19] and the unisolvent ones suggested in [1] for the space P−

r Λk can be
recovered by using this technique. Finally, in Section 5, we propose physical degrees
of freedom for the spaces PrΛ

k in two dimensions and give a numerical evidence
for their unisolvence when k = 1.

2 Basic notation and abstract framework

In this section, we generalize the notions of simplex and simplicial complex. Then we
describe the abstract framework of Finite Element Systems introduced in [10]. This
framework includes as a special case both the spaces P−

r Λk and PrΛ
k for which we

are going to define new degrees of freedom.

2.1 Geometrical toolbox

Homological algebra A differential complex V • = {(V k, dk)k∈Z} is a (countable)
collection of vector spaces {V k}k∈Z equipped with linear operators dk : V k → V k+1,
called differentials and satisfying, for each k, the condition dk+1 ◦ dk = 0. Hence,
the range of dk is contained in the kernel of dk+1. The cohomology group HkV • is
the vector space defined by

HkV • = (ker dk : V k → V k+1)/(im dk−1 : V k−1 → V k).

A differential complex V • is usually represented via a diagram

· · · → V k−1 dk−1→ V k dk→ V k+1 → . . .

A complex V • is said to be exact at an index k if HkV • = {0}, or equivalently,
ker dk = im dk−1. A chain map between differential complexes V • = {V k, dk}k∈Z
and W • = {Wk, δk} is a collection of linear maps F • = {Fk : V k → Wk} such that,
for each k, the following diagram commutes :

V k V k+1

Wk Wk+1.

dk

gk gk+1

δk

If g• : V • → W • is a cochain map, it induces a sequence of linear maps

Hkg• : HkV • → HkW •,
[ω] �→ [gkω].
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If Hkg• is an isomorphism for each k, then we say that g• induces isomorphisms in
cohomology.

Differential geometry and exterior calculus Let now Ω be a manifold with Lipschitz
boundary embedded in R

n. We indicate by Λk(Ω) the set of differential k-forms over
Ω and by dk the exterior derivative acting on Λk(Ω). It is well known that dk is linear
and dk+1 ◦dk = 0. Therefore, the collection Λ•(Ω) := {Λk(Ω), dk} is a differential
complex, called the de Rham complex. Most often the superscript k in dk is dropped.
As a convention, the arrows starting or ending in 0 are the only possible ones to
initiate or finish the diagram. Arrows starting in R are, unless otherwise specified,
the maps taking a value to the corresponding constant function. Arrows ending in R

are integration of forms of maximal degree. Other unspecified arrows are instances
of the exterior derivative. Several times we will use Stokes theorem:∫

Ω

dω =
∫

∂Ω

ω, ω ∈ Λdim Ω−1(Ω).

Assume now that Ω is a bounded domain with Lipschitz boundary in R
n equipped

with the standard Euclidean metric. We can then introduce the Hodge star operator
∗k : Λk(Ω) → Λn−k(Ω) (see, e.g., [12]). Moreover, let � : Λ1(Ω) → C∞(Ω,Rn)

be the flat operator that, given a metric, transforms a 1-form into a vector. The cases
n = 2 and n = 3 are particularly interesting since we can rephrase the de Rham com-
plex in the language of vector calculus. For n = 3, we have the following commuting
diagram where the vertical arrows are isomorphisms:

0 Λ0(Ω) Λ1(Ω) Λ2(Ω) Λ3(Ω) 0

0 C∞(Ω) C∞(Ω,R3) C∞(Ω,R3) C∞(Ω) 0.

d

ι

d

�

d

�◦∗2 ∗3

grad curl div

The case n = 2 is trickier (and often source of confusion) since there are two ways
of passing from 1-forms to vector fields, giving rise to two equivalent de Rham
complexes:

0 C∞(Ω) C∞(Ω,R2) C∞(Ω) 0

0 Λ0(Ω) Λ1(Ω) Λ2(Ω) 0

0 C∞(Ω) C∞(Ω,R2) C∞(Ω) 0.

curl div

d

ι

ι

d

−�◦∗1

�

∗2

∗2

grad curl2

In the diagram above, curl := R ◦grad and curl2 := div◦R where R is the clockwise
rotation of π/2 in R

2. It follows that there are two Sobolev-de Rham complexes:

0 H 1(Ω) H(curl2, Ω) L2(Ω) 0,

0 H 1(Ω) H(div, Ω) L2(Ω) 0.

grad curl2

curl div
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The spaces H(div, Ω) and H(curl2, Ω) differ by a rotation of π/2 and the same
holds for the finite element spaces used to approximate them. For example, in [20]
and [7], the H(div) case is addressed, but the same spaces, rotated by π/2, can be
used to approximate H(curl2).

Let now γ be a smooth oriented curve embedded in Ω ⊂ R
2 (denote by ιγ the

embedding), e.g., γ = ∂Ω , and let tttγ be its tangent vector field. Define the normal
vector field as nnnγ := Rtttγ . For a 1-form ω ∈ Λ1(Ω), it holds

ι∗γ ω = (�ω)�γ · tttγ = (−� ∗1 ω)�γ · nnnγ , (2.1)

that is, the pull-back of ω to a curve corresponds with the tangential or the normal
component of the associated proxy field, depending on the chosen isomorphism.

Cellular homology Let xxx0, . . . , xxxn be n+1 points in R
n set in general position. Their

convex hull T = [xxx0, . . . , xxxn] is an n-simplex. Denote by λ0, . . . , λn its barycentric
coordinates. For each k = 0, . . . , n, for each 0 ≤ i0 < i1 < · · · < ik ≤ n, the
convex hull of xxxi0 , . . . , xxxik is a k-subsimplex S of T . We will write S = [xxxi0 , . . . , xxxik ]
and S ≤ T to indicate that S is a subsimplex of T . This motivates the following
definition: for some nonnegative integer k ≤ n define

�0(k, n) := {σ : {0, . . . , k} → {0, . . . , n} | σ(i) < σ(i + 1) ∀i = 0, . . . , k − 1}.
We denote by R(σ ) the range of σ . To each σ ∈ �0(k, n), we can associate the
k-subsimplex of T :

Sσ := [xxxσ(0), . . . , xxxσ(k)].
With a mild abuse of notation we will write for S = Sσ , R(S) := R(σ ). For example,
if T = [xxx0,xxx1,xxx2] is a 2-simplex (i.e., a triangle), then its edges are S(01) = [xxx0,xxx1],
S(02) = [xxx0,xxx2], and S(12) = [xxx1,xxx2]. Given σ ∈ �0(k, n), let σc ∈ �0(n−k−1, n)

be the unique element such that R(σ ) ∪ R(σ c) = {0, 1, . . . , n}. If k = n, then σc is
just the empty map. For σ ∈ �0(k, n), we write

dλσ = dλσ(0) ∧ dλσ(1) ∧ · · · ∧ dλσ(k).

Definition 2.1 Let T be an n-simplex. For k = 0, . . . , n, let S = Sσ ≤ T for
σ ∈ �0(k, n). We define the associated Whitney k-form ωS = ωσ as

ωS := ωσ := k!
k∑

i=0

(−1)iλσ(i)dλσ(0) ∧ · · · ∧ d̂λσ(i) ∧ · · · ∧ dλσ(k),

where the widehat means that the underlying term is omitted.

For a subsimplex S of T , will denote by trT ,S the pull-back associated with the inclu-
sion ιS,T : S → T . The generalization of a simplex is a cell, which we now define.
Denote by B

k the unit ball in R
k and by S

k−1 its boundary.

Definition 2.2 Let Ω be a metric space. A k-dimensional cell is a closed subset T of
Ω for which there is a Lipschitz bijection

L : Bk → T
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with a Lipschitz inverse. For k ≥ 1, we denote by ∂T the boundary of T , that is
∂T := L(Sk−1). We define the interior of T as T̊ := T \ ∂T . For k = 0, T is a point,
∂T = ∅ and T̊ = T 1.

Note that the definition of the boundary does not depend on the chosen bi-Lipschitz
isomorphism L. In this work, we will consider only “flat,” cells, that is, a 0-cell is a
point, a 1-cell is an edge, a 2-cell is a polygon, and so on.

Definition 2.3 A cellular complex is a pair (Ω, T ) where Ω is a compact metric
space and T is a finite set of cells in Ω such that:

– Distinct cells in T have disjoint interiors.
– The boundary of any cell in T is a union of cells in T .
– The union of all cells in T is Ω .

When the metric space Ω is understood, we will just write T . We assume that each
cell T ∈ T has been oriented (as a manifold with corners). If T is an oriented cell,
we denote by −T the same cell, but with the opposite orientation. Given T ∈ T k+1

and S ∈ T k define their relative orientation or incidence number o(T , S) as 1 if S

is outward oriented compared to T , −1 if it is inward oriented and 0 otherwise. The
following result is Proposition 5.2 in [8].

Lemma 2.1 Let T be a cellular complex. The intersection of two cells in T is a
union of cells in T .

In this work, a simplicial complex is a cellular complex such that each cell is a simplex
and the intersection of two cells is a cell (not just a union of cells).

Denote by T k the set of k-cells in T . A k-chain c is a formal linear combinations
(over R) of k-cells, that is

c =
∑

T ∈T k

cT T , cT ∈ R.

The set Ck(T ) of all k-chains is a finite dimensional real vector space and its dimen-
sion equals the number of k-cells. The boundary operator ∂k : Ck(T ) → Ck−1(T )

is defined on k-cells as

∂kT :=
∑

S∈T k−1

o(T , S)S,

and extended by linearity on k-chains. The dual space of Ck(T ) is denoted by
Ck(T ) and it is called the space of k-cochains, that is a k-cochain is a linear func-
tion Ck(T ) → R. The coboundary operator δ• is simply the dual of the boundary
operator, i.e., δk := (∂k+1)

∗. It is easy to check that C•(T ) := {Ck(T ), δk}k∈Z

1This is consistent with equipping T with its intrinsic topology, instead of the one inherited from the
ambient space
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is a differential complex. Let now (Ω, T ) be a cellular complex, with Ω smooth
Riemannian manifold with corners. We define the de Rham map as

R(k) : Λk → Ck(T )

ω �→
{
c �→

∫
c

ω

}
.

Stokes theorem implies that de Rham map is a chain map from Λ•(Ω) to C•(T ).
Let now Ω ′ be a closed submanifold of Ω (e.g., Ω ′ = ∂Ω) and define

Λk(Ω, Ω ′) := {ω ∈ Λk(Ω) | ι∗Ω ′ω = 0}.
If (Ω ′, T ′) is a cellular complex and T ′ ⊂ T , then we can define the space of relative
k-chains as Ck(T , T ′) := Ck(T )/Ck(T ′). We denote its dual space by Ck(T , T ′),
that is the space of relative k-cochains. As noted in [15], we can view this space as
the subspace of Ck(T ′) made of cochains that vanish on each cell of T ′, that is the
cochains supported by T \ T ′. It is easy to check that the coboundary operator maps
this space into itself: if φ ∈ Ck(T ) such that φ(T ) = 0 for each cell T ∈ T ′, then
∂T is a chain carried by T ′ and therefore

(δφ)(T ) = φ(∂T ) = 0.

Moreover, we can define a “ relative de Rham map,”

Λk(Ω, Ω ′) → Ck(T , T ′)

ω �→
{
[c] �→

∫
c

ω

}
(2.2)

which is well defined and is a chain map.

2.2 Finite element systems

In this section, we make use of the abstract framework of finite element systems [8,
9] (see also Section 7 in [14]).

Definition 2.4 Let Ω be a polyhedral domain in R
n and let T be a cellular complex

over Ω . A finite element system (FES) X is a choice, for each T ∈ T and for each
k ∈ Z≥0, of a finite dimensional subspace Xk(T ) of Λk(T ) such that:

– if S, T ∈ T , S ≤ T then the pull-back trT ,S := ι∗S,T by the inclusion ιS,T : S →
T , induces a map

trT ,S : Xk(T ) → Xk(S); (2.3)

– for any simplex T ∈ T , for each k ∈ Z≥0, the exterior derivative maps Xk(T )

into Xk+1(T );

Let now T be a simplicial triangulation. The global discrete space is constructed as

Xk(T ) := {ω ∈
⊕
T ∈T

Xk(T ) | trT ,SωT = ωS, ∀S, T ∈ T , S ≤ T }, (2.4)

Using the FES framework to derive new physical degrees of freedom... Page 7 of 31 17



that is, Xk(T ) is the subset of single valued elements of
⊕

T ∈T Xk(T ). This defini-
tion holds in particular for any subtriangulation T ′ of T . An important example is
the boundary ∂T of a simplex T .

Definition 2.5 Let X be finite element system, then:

– if, for any simplex T ∈ T , the space X0(T ) contains the constant functions on
T and the complex

0 → R
ι→ X0(T )

d→ . . .
d→ Xdim T (T ) → 0 (2.5)

is exact, then we will say that X is locally exact.
– if, for each T ∈ T , for each k ∈ Z≥0, the map trT ,∂T : Xk(T ) → Xk(∂T ) is

onto, we will say that X admits extensions. The kernel of this map is denoted by
X̊k(T ). That is,

X̊k(T ) := {ω ∈ Xk(T ) | trT ,∂T ω = 0}.

We will say that a finite element system X is compatible if both conditions hold.
The following result is Proposition 2.2. in [9].

Lemma 2.2 Assume that, for any T ∈ T with S ∈ ∂T , for each k = 0, . . . , dim S,
there exists a linear mapping

extkS,T : X̊k(S) → Xk(T ),

which is a right inverse of the trace operator, that is

trT ,SextkS,T ω = ω, ∀ω ∈ X̊k(S),

and, for S, S′ ∈ ∂T , dim S = dim S′, S �= S′

trT ,S′extkS,T ω = 0

then X admits extensions. We will call extkS,T an extension operator.

Assume moreover that, for each S ≤ T , we have extension operators extkS,T :
X̊k(S) → Xk(T ) such that they satisfy for ω ∈ X̊k(S) and S′ ≤ T with dim(S′) =
dim (S):

trS′extkS,T ω =
{

ω if S = S′,
0 otherwise.

(2.6)

The following result is Proposition 4.20 in [4].

Lemma 2.3 Fix k ∈ {0, . . . , dim T }. Assume that we have extension operators as in
Eq. 2.6 and that ∑

S≤T

extkS,T ηS = 0, (2.7)

for some family of ηS ∈ X̊k(S), S ≤ T . Then each ηS vanishes.
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As a consequence, the space Xk(T ) admits the following geometrical decomposition

Xk(T ) =
⊕
S≤T

extkS,T X̊k(S)

Such decomposition is important in practice since it leads to a local basis for the (on
the left-hand side) space Xk(T ) consisting of elements extkS,T w, where S ≤ T and w

ranges over a basis for the (right-hand-sided) space X̊k(S).

Example 2.1 We consider the following two spaces of polynomial differential forms
defined in [4]

P−
r Λk(T ) := Pr−1(T ) · Wk(T ),

Pr−kΛ
k(T ) := Pr−k(T ) ⊗ AltkRdim T ,

where Wk(T ) is the space of Whitney forms and Ps(T ) = ∅ for s < 0. The spaces
P−

r Λk and Pr−kΛ
k are finite element systems.2 They are locally exact (see [4] for a

proof) and they have extension operators (see, e.g., [14])

extkS,T : P̊r−kΛ
k(S) → Pr−kΛ

k(T ),

ext−,k
S,T : P̊−

r Λk(S) → P−
r Λk(T ),

for each S, T ∈ T , S ≤ T ; therefore, we conclude from Lemma 2.2 that they admit
extensions. In particular, for each T ∈ T , they admit the following geometrical
decompositions (see [4] and [14]):

P−
r Λk(T ) =

⊕
S≤T

ext−,k
S,T P̊

−
r Λk(S), (2.8)

Pr−kΛ
k(T ) =

⊕
S≤T

extkS,T P̊r−kΛ
k(S). (2.9)

Example 2.2 We detail the case k = 0 (see also Section 2.3 of [5]). For both families
of spaces recalled in Example 2.6, we have X0(T ) = Pr (T ). Let I(r, n) be the set
of multi-indices

I(r, n) = {ααα = (α0, . . . , αn) , αi ∈ Z≥0,
∑

i

αi = r} .

and S(ααα) = {i , αi �= 0}. To define the extension operator, for each S = Sσ

subsimplex of T , let λS
0 , . . . , λS

dim S be its barycentric coordinates. We will use the
notation

(λS)ααα := (λS
0 )α0 . . . (λS

n)αn .

Then the set

BP̊r (S) := {(λS)ααα | ααα ∈ I(r, dim S), S(ααα) = {0, . . . , dim S}}

2Note that PrΛ
k is a finite element system too, but it is not locally exact. Therefore, from now on when

we refer to the “second family,” of polynomial differential forms, we will mean Pr−kΛ
k .

Using the FES framework to derive new physical degrees of freedom... Page 9 of 31 17



is a basis for P̊r (S), the space of polynomials of degree r on S that vanish on the
boundary of S. In fact, if S is an simplex, then the map p �→ λS

0 . . . λS
dim Sp is an

isomorphism between Pr−dim S−1(S) and P̊r (S). In particular, it maps the monomial
basis of Pr−dim S−1(S) onto BP̊r (S). Then we define the extension operator

extS,T : P̊r (S) → Pr (T ),

(λS)ααα �→ (λT )σ◦ααα, (2.10)

where σ ◦ ααα is the element in I(r, n) such that, for i = 0, . . . , n:

(σ ◦ ααα)i =
{

ασ(j) if i = σ(j) for some j = 0, . . . , dim S,

0 otherwise.

It follows that

extS,T BP̊r (S) = {λααα | ααα ∈ I(r, n), S(ααα) = R(σ )}.
Now we verify condition (2.6): if S′ is a simplex different from S but with the same
dimension, then there exists a vertex xxxj that belongs to S but not to S′. It follows that
S′ is a subsimplex of the face Fj∗ opposite to xxxj , which lays on the hyperplane λj =
0. On the other side if λααα ∈ BP̊r (S), then αj > 0. It follows that trS′extS,T BP̊r (S) =
0. Therefore, we obtain the geometrical decomposition

Pr (T ) =
⊕
S≤T

extS,T P̊r (S).

We have also the following property (Proposition 5.7 in [8]).

Lemma 2.4 Assume that we have extension operators. Then the exactness (2.5) is
equivalent to the combination of the following two properties, for each T ∈ T :

– The space X0(T ) contains the constant functions;
– the complex

0 → X̊0(T )
d→ . . .

d→ X̊dim T (T )

∫
→ R → 0 (2.11)

is exact.

2.3 Degrees of freedom

Definition 2.6 A system of degrees of freedom (sysdof) W is a choice, for each T ∈
T , for each k ∈ Z≥0 of a finite dimensional subspace W̊ k(T ) of Λk(T )∗, where the
superscript ∗ indicates the dual.

If S ≤ T , then each φ ∈ W̊ k(S) extends trivially to Λk(T )∗ via the map

W̊ k(S) → Λk(T )∗

φ �→ φ ◦ trT ,S .

With an abuse of notation, for each T ∈ T , we will consider W̊ k(T ) as a subspace of
Λk(Ω)∗. We recall the following definition (e.g., see [8]).
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Definition 2.7 A sysdof W is said to be unisolvent for a finite element system X if,
for each T ∈ T , for each k ∈ Z≥0, the map

Xk(T ) →
⊕
S≤T

W̊ k(S)∗,

ω �→ {
φ �→ φ(trT ,Sω)

}
S≤T

, (2.12)

is an isomorphism. If the map (2.12) is injective, but not surjective, then we say that
the sysdof is overdetermining. Finally, we say that W is minimal if

dim Xk(T ) =
∑
S≤T

dim W̊ k(S)∗.

We have the following result (Proposition 2.5 in [9])

Lemma 2.5 Let W be a sysdof and let X be a finite element system. The following
are equivalent:

– W is unisolvent;
– X admits extensions, and for each simplex T ∈ T , the map

X̊k(T ) → W̊ k(T )∗,
ω �→ {φ �→ φ(ω)} (2.13)

is an isomorphism.
– For each T ∈ T , the map X̊k(T ) → W̊ k(T )∗ is injective and W is minimal.

Example 2.3 Let T be a simplex of arbitrary dimension and let η be a polynomial
(dim T − k)-form. Denote by φη the functional

φη : ω �→
∫

T

ω ∧ η, ω ∈ Λk(T ).

For the finite element systems P−
r Λk and Pr−kΛ

k defined in Example 2.6, the
standard systems of degrees of freedom are given respectively by the spaces

W̊−,k
r (T ) := {φη | η ∈ Pr−dim T +k−1Λ

dim T −k(T )}, (2.14)

W̊ k
r−k(T ) := {φη | η ∈ P−

r−dim T Λdim T −k(T )}. (2.15)

As proved in [4], these sysdofs are unisolvent. As observed in [14], the unisolvence
is equivalent to the following isomorphisms:

P̊−
r Λk(T ) � Pr−dim T +k−1Λ

dim T −k(T ), (2.16)

P̊r−kΛ
k(T ) � P−

r−dim T Λdim T −k(T ). (2.17)

Note that for k = 0, the spaces on the left-hand side in Eqs. 2.16 and 2.17 are both
equal to P̊r (T ) and the right-handed ones to Pr−dim T −1(T ).
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Example 2.4 In the case k = 0, both sysdofs reduce to

(W̊−,0
r (T ) = ) W̊ 0

r (T ) :=
{
ω �→

∫
T

ω η volT | η ∈ Pr−dim T −1(T )

}
.

To prove the unisolvence, we check the third condition in Lemma 2.5. We start by
proving the injectivity of the map P̊r (T ) → W̊ 0

r (T )∗. Let ω ∈ P̊r (T ) and assume
that ∫

T

ω η volT = 0 ∀η ∈ Pr−dim T −1(T ).

Since the restriction of ω to the boundary of T is zero, then the barycentric coordi-
nates of T divide ω, i.e., ω = λ0 . . . λdim T ϕ for some ϕ ∈ Pr−dim T −1(T ). Then,
taking η = ϕ, it follows that∫

T

λ0 . . . λdim T ϕ2 volT = 0.

Since λ0 . . . λdim T is strictly positive in the interior of T , it follows that ϕ = 0 and
consequently ω = 0. Minimality follows from the dimension count:∑

S≤T

dim W̊ 0
r (S) =

∑
S≤T

dimPr−dim S−1(S)

=
n∑

j=0

(
n + 1
j + 1

)(
r − 1

j

)

=
n∑

j=0

(
n + 1
n − j

)(
r − 1

j

)
=
(

n + r

n

)
= dimPr (T ).

We compare now briefly the finite element systems with the classical approach
by [11] used, e.g., in [4]. In the classical theory of finite elements, one has a local
space Xk(T ) ⊂ Λk(T )∗ and a space of functionals Wk(T ) ⊂ Λk(T )∗ only for
top-dimensional cells T . The degrees of freedom are said to be unisolvent if the map

Xk(T ) → Wk(T )∗,
ω �→ {φ �→ φ(ω)}

is an isomorphism. Notice that we still do not know anything about how to con-
struct the global space Xk(T ). If we furthermore assume that the Wk(T ) admits a
geometrical decomposition

Wk(T ) =
⊕
S≤T

W̊ k(S), (2.18)

then we can define the global space Xk(T ) as the set of forms ω in L2Λk(Ω) such
that:

– The restriction ω�T of ω to a top-dimensional cell T belongs to Xk(T );
– If S is a common subcell of two top-dimensional cells T and T ′, then, for each

φ ∈ W̊ k(S), φ(trSω�T ) = φ(trSω�T ′).
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Therefore, it is the geometrical decomposition (2.18) that determines the degree of
inter-element continuity. Moreover, we set Xk(S) := trSXk(T ) for each S ≤ T , so
that condition (2.3) is true almost by definition. If the geometrical decomposition
(2.18) is chosen in such a way that, for each S ≤ T , the map (2.13) is an isomorphism,
then (2.18) induces a geometrical decomposition of the space Xk(T ) itself:

Xk(T ) =
⊕
S≤T

extkS,T X̊k(S). (2.19)

This path seems quite twisted: (i) degrees of freedom should reflect the nature (and
global regularity properties) of the fields they represent, (ii) satisfy the geometri-
cal decomposition (2.18), and (iii) the map (2.13) be an isomorphism. On the other
side, in finite element systems, the spaces Xk(T ) (where now T is a cell of arbitrary
dimension) are chosen carefully to satisfy the geometrical decomposition (2.19) and
then the spaces W̊ k(S) are chosen in such a way that the map (2.13) is an isomor-
phism. In particular note that the definition of the global space Xk(T ) is intrinsic and
does not depend on the degrees of freedom. This observations will be of key impor-
tance in the introduction of physical degrees of freedom. We show the differences in
the two approaches with an example.

Example 2.5 For k = 0, let T be a top-dimensional simplex and X0(T ) = Pr (T ).
Let F0

r (T ) be the principal lattice of order r of T , that is, the set of points with
barycentric coordinates: (α0

r
, . . . ,

αdim T

r

)
,

for (α0, . . . , αdim T ) = ααα ∈ I(r, n). Let us define W 0
r (T ) ⊂ C0(T )∗ as the space

spanned by the evaluations on F0
r (T ), that is

W 0
r (T ) := span{ω �→ ω(s) | s ∈ F0

r (T )}.
It is well known that a polynomial of degree r on T is uniquely determined by
its values on F0

r (T ) and therefore the map Pr (T ) → W 0
r (T )∗ is an isomorphism.

Moreover, the space W 0
r (T ) admits the following geometrical decomposition

W 0
r (T ) :=

⊕
S≤T

W̊ 0
r (S),

with
W̊ 0

r (S) := span{ω �→ ω(s) | s ∈ F̊0
r (S)}, F̊0

S = F0
r (S) ∩ S̊.

With this geometrical decomposition, it follows that the global space Pr (T ) is the
space of functions ω in L2(Ω) such that:

– on each n-simplex T of T , ω�T ∈ Pr (T );
– if S is a common subsimplex of the n-simplices T and T ′ then, for each s ∈

F̊0
r (T ), then ω�T (s) = ω�T ′(s).

Therefore, the geometrical decomposition of the degrees of freedom guarantees that a
function in Pr (T ) is continuous. Finally, for each subsimplex S of T , the space Pr (S)

is just the restriction of Pr (T ) to S and the map P̊r (S) → W̊ 0
r (S)∗ is an isomorphism.
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If we identify W 0
r (T ) with Pr (T )∗, then the geometrical decomposition of W 0

r (T )

induces a geometrical decomposition of the space Pr (T ) itself.
On the other side, in the framework of finite element systems, for a simplex T

(now of arbitrary dimension), we set X0(T ) = Pr (T ). The associated global space
Pr (T ) is defined as the set of functions ω in L2(Ω) such that:

– for each simplex, of any dimension, of T , ω�T ∈ Pr (T );
– if S is a subsimplex of T , then (ω�T )�S = ω�S .

The two definitions of Pr (T ) are equivalent, in the sense that they produce the same
space, but the former involves degrees of freedom, while the latter does not. More-
over, we have seen in Example 2.2 that Pr (T ) admits a geometrical decomposition
that does not need degrees of freedom to be defined or proved. Finally, the spaces
W̊ 0

r (T ) for T ∈ T constitute a unisolvent sysdofs.

2.4 Interpolators

For a finite element system X, an interpolator is a collection of projection operators
�k(T ) : Λk(T ) → Xk(T ), which commute with the trace operator. An unisolvent
system of degrees of freedom defines an interpolator by requiring

φ(�k(T )ω) = φ(ω) for each φ ∈ Wk(T ).

We are interested in commuting (with the exterior derivative) interpolators, that is we
want the following diagram to be commutative:

Λk(T ) Λk+1(T )

Xk(T ) Xk+1(T ).

d

�k(T ) �k+1(T )

d

We take the following lemma from [8].

Lemma 2.6 Assume that X is a finite element system that is locally exact and admits
extensions. Assume moreover which W is a unisolvent sysdof. Then the induced
interpolators commute with the exterior derivative if and only if for each T ∈ T ,
k = 1, . . . , dim T , for each φ ∈ W̊ k+1(T ) we have

φ ◦ d ∈
⊕
S≤T

W̊ k(S). (2.20)

Example 2.6 It is easy to check that the sysdofs Eqs. 2.14 and 2.15 satisfy condition
Eq. 2.20. We give the proof for the first one. Let η ∈ Pr−dim T +kΛ

dim T −k−1(T ) and
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let φη be the associated functional in W̊ k+1(T ). Then, Stokes theorem implies that,
for ω ∈ Λk(T ),

φη ◦ d(ω) =
∫

T

dω ∧ η

=
∑

S∈�dim T −1(T )

o(T , S)

∫
S

ω ∧ trSη + (−1)k+1
∫

T

ω ∧ dη

=
∑

S∈�dim T −1(T )

o(T , S) φtrSη(ω) + (−1)k+1φdη(ω).

Since we have trSη ∈ Pr+k−1−dim T +1Λ
dim T −k−1(S) = Pr+k−1−dim SΛdim S−k(S)

and dη ∈ Pr−dim T +k−1Λ
dim T −k(T ), then φtrSη ∈ W̊ k(S) and φdη ∈ W̊ k(T ), so that

condition (2.20) is satisfied.

3 Physical degrees of freedom

The natural generalization of the degrees of freedom described, for k = 0, in Example
2.5 is to consider, for any k > 0, integrals of k-forms on particular sets of k-cells (see
an example of such k-cells for r = 3 in Fig.1, with k = 0 on the left, and k = 1, 2 on
the right).

Assume then that, for each simplex T ∈ T , for each k, we have a finite set of k-
cells F̊k(T ) = {s1, s2, . . . }3 contained in T and such that distinct cells have disjoint
interiors. For each simplex T ∈ T , define

W̊ k(T ) := span

{
φ : ω �→

∫
s

trT ,sω | s ∈ F̊k(T )

}
. (3.1)

These degrees of freedom are called physical since they have a natural physical inter-
pretation: e.g., for k = 1, they are the work done by a force (a 1-form) along a line (a
1-cell).

In this section, we will derive some constraints (i.e., necessary conditions) on
the choice of the sets of k-cells that must be satisfied to obtain overdetermining or
unisolvent sysdofs such that the associated interpolator commutes with the exterior
derivative.

A first condition that the sets F̊k(T ) must satisfy is the following one:

Constraint 1 For each T ∈ T , for each k = 0, . . . , dim T

|F̊k(T )| ≥ dim X̊k(T ),

where |·| indicates the cardinality.

We prove now the necessity of this constraint.

3 In this work, we use the lower case s to denote “small” cells, to distinguish them from the simplices of
the mesh T , which are indicated by the capital letters S and T .
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Lemma 3.1 If W̊ k(T ) has the form (3.1), then dim W̊ k(T ) = |F̊k(T )|. In particular,
if the sysdof W is overdetermining then Constraint 1 holds. If W is unisolvent, then
Constraint 1 holds with the equality.

Proof Clearly dim W̊ k(T ) ≤ |F̊k(T )|. Assume by contradiction that the inequality
is strict. Then there exists s ∈ F̊k(T ) such that, for each ω ∈ Λk(T ), it holds∫

s

trsω =
∑

s′∈F̊k(T )\{s}
βs′
∫

s′
trs′ω (3.2)

for some βs′ ∈ R. Let now ω̂ ∈ Λk(T ) such that
∫

s′
trs′ ω̂ =

{
1 if s = s′,
0 otherwise.

Inserting ω̂ into expression (3.2), we obtain 1 = 0, which is a contradiction.

The following condition is necessary to guarantee that the interpolator associated
to the degrees of freedom defined in Eq. 3.1 commutes with the exterior derivative.

Constraint 2 For each T ∈ T , the union

F•(T ) :=
⋃
S≤T

dim S⋃
k=0

F̊k(S).

is a cellular complex.

Lemma 3.2 Let W be a unisolvent physical sysdof, that is, each W̊ k(T ) has the form
(3.1). Then the associated interpolator commutes with the exterior derivative if and
only if Constraint 2 is satisfied.

Proof Let T be a cell in T and let φ ∈ W̊ k+1(T ) for k ∈ Z≥0 be defined as

φ(ω) =
∫

s

trsω, s ∈ F̊k+1(T ),

for ω ∈ Xk+1(T ). Stokes theorem implies that, for ω ∈ Xk(T ), it holds

φ(dω) =
∫

s

trsdω =
∫

s

dtrsω =
∫

∂s

tr∂sω.

Now, noticing that

⊕
S≤T

W̊ k(S) = span

⎧⎨
⎩ω �→

∫
s

trsω | s ∈
⋃
S≤T

F̊k(S)

⎫⎬
⎭

it is easy to see that condition (2.20) is satisfied if and only if ∂s is a union of cells in⋃
S≤T F̊k(S), i.e., if and only if Constraint 2 is satisfied.
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We have thus proved that if a physical sysdof W is unisolvent or overdetermin-
ing, it satisfies necessarily Constraint 1 and 2. If it is unisolvent, then it satisfies the
following additional constraint.

Constraint 3 For each T ∈ T , the union of all dim T -dimensional cells F̊ (dim T )(T )

covers T .

Recall that Ck(F•(T )) denotes the space of k-cochains over F•(T ). If T ′ is a
subtriangulation of T , then, Constraint 2 implies that

F•(T ′) :=
⋃

T ∈T ′

dim T⋃
k=0

F̊k(T )

is a cellular complex, then it make sense to consider chains and cochains over
F•(T ′).

Theorem 3.1 Let W be a unisolvent physical sysdof and assume that the associated
interpolator commutes with the exterior derivative. Then Constraint 3 holds.

Proof If each W̊ k(T ) is of the form (3.1), then the map (2.12) is an isomorphism for
each k if and only if the de Rham map R• = {Rk}k∈Z≥0 defined as

Rk : Xk(T ) → Ck(F•(T )),

ω �→
{
c �→

∫
c

trcω

}
,

is an isomorphism. If this is the case then R• induces isomorphisms in cohomology,
and therefore

dim HkC•(F•(T )) =
{

1 if k = 0,

0 otherwise.

Since this is true for each T ∈ T , then Constraint 3 must hold.

We have proved that if a physical sysdof is unisolvent, it satisfies necessarily Con-
straint 1 (with equality), 2, and 3. The reversed implication, whether the Constraint 1
(with equality), 2, and 3 yield in particular unisolvence, is an open question.

4 Physical degrees of freedom forP−
r Λk

In this section, we consider the compatible finite element system Xk = P−
r Λk and

the overdetermining physical degrees of freedom introduced in [19]. We recall which
are the usual spanning families for the spaces P−

r Λk(T ) and we will assign a k-cell
to each element of the family. The resulting physical degrees of freedom are overde-
termining, mirroring the fact that the spanning families have linear dependencies.
Removing redundant elements from the spanning families in order to obtain bases
yields unisolvent degrees of freedom, see an example for k = 1 in [18]. It is also
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possible to work with spanning families provided that their linear dependencies are
taken into account in the construction of the bases as explained in [3].

4.1 Small simplices

We start by recalling some notation introduced in Example 2.2. Let T be an n-
simplex, with barycentric coordinates λ0, . . . , λn. For s, n nonnegative integers, we
recall that I(s, n) is the set of multi-indices ααα = (α0, . . . , αn) such that αi ∈ Z≥0
and

∑n
i=0αi = s. We will use the notation

λααα := λ
α0
0 . . . λαn

n .

Definition 4.1 Le T be an n-simplex and let ααα ∈ I(r − 1, n) for r ∈ Z>0. Then sααα

is the small n-simplex contained in T defined as sααα = {zααα(x), x ∈ T }, where

zααα : x �−→ zααα(x) = 1

r

n∑
i=0

[λi(x) + αi] xi .

Let xxxααα
0 , . . . , xxxααα

n be the vertices of sααα and let σ ∈ �0(k, n) for 0 ≤ k ≤ n. Define sααα
σ

as the small k-simplex spanned by xxxααα
σ(0), . . . , xxx

ααα
σ(k).

See Fig. 1 for an example with r = 3.

4.2 Bases and spanning families

In this section, we summarize which are the canonical spanning families for the
spaces P−

r Λk(T ) and P̊−
r Λk(T ) for an n-simplex T . In particular, we show how one

can extract a basis from them. These results are stated clearly in [14] but they were
already known in [4]. Let T be an n-simplex. The sets

SP−
r Λk(T ) := {λαααωσ | ααα ∈ I(r − 1, n), σ ∈ �0(k, n)},

SP̊−
r Λk(T ) := {λαααωσ ∈ SP−

r Λk(T ) | S(ααα) ∪ R(σ ) = {0, . . . , n}}
are spanning families for the spaces P−

r Λk(T ) and P̊−
r Λk(T ) respectively. In gen-

eral, they are not linearly independent sets. For example, if T is a 2-simplex,
then

SP̊−
2 Λ1(T ) := {λ0ω

(12), λ1ω
(02), λ2ω

(01)} (4.1)

and a direct computation shows that λ0ω
(12) − λ1ω

(02) + λ2ω
(01) = 0. Therefore,

one has to introduce a constraint to remove some elements and obtain a linearly

Fig. 1 Example of small
k-simplices, k = 0 (left), and
k = 1, 2 (right), for r = 3. The
nodes of the principal lattice of
degree r in T coincide with the
small nodes. In blue, the small
triangle s(1,0,1); in red, the small
edge s

(0,2,0)
(02)
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Fig. 2 Overdetermining degrees
of freedom for P−

4 Λk(T ),
where T is a 2-simplex

independent set. The sets

BP−
r Λk(T ) := {λαααωσ ∈ SP−

r Λk(T ) | minS(ααα) ≥ minR(σ )},
BP̊−

r Λk(T ) := {λαααωσ ∈ SP̊−
r Λk(T ) | minR(σ ) = 0, }

are bases of the spaces P−
r Λk(T ) and P̊−

r Λk(T ) respectively (see [14]). Returning
to example (4.1), we have that

BP̊−
2 Λ1(T ) = {λ1ω

(02), λ2ω
(01)} � SP̊ −

2 Λ1(T ).

In other words, the constraint removes the element λ0ω
(12) from the set SP̊ −

2 Λ1(T ).

4.3 Small k -cells

In this section, we will denote by F̊−,k
r (T ) the set F̊k(T ) to emphasize that we are

constructing a system of degrees of freedom for P̊−
r Λk(T ). For each simplex T , n :=

dim T = 0, 1, 2, we will define a bijection between SP̊−
r Λk(T ) (or BP̊−

r Λk(T )) and
F̊−,k

r (T ), k = 0, . . . , n. In the first case, we will obtain an overdetermining system
of degrees of freedom, that is, in general the de Rham map

Rk : P−
r Λk(T ) → Ck(F•(T )) (4.2)

will be only injective. In the second case, Eq. 4.2 will be an isomorphism.

Overdetermining degrees of freedom Let T be a n-simplex. For each S ≤ T , we
define F̊−,k

r (T ) in the following way. To each k-form λαααωσ ∈ SP̊−
r Λk(S), assign

the small k-simplex sααα
σ . An example for n = 2 and r = 4 is given in Fig. 2. Note that,

with this choices, if r > 1, we have

|F̊−,1
r (T )| = |SP̊−

r Λ1(T )| > |BP̊−
r Λ1(T )| = dim P̊−

r Λ1(T ),

therefore Constraint 1 is satisfied, but not with equality. It is easy to check that Con-
straint 2 is satisfied, while Constraint 3 is not because of the “holes”. Nevertheless,
the resulting system of degrees of freedom is overdetermining (for a proof see [9]).
On the other hand, one is left with the problem of extracting a unisolvent subspace
from W̊ 1(T ).

Minimal degrees of freedom We describe now a system of physical degrees of free-
dom which satisfies Constraints 1’ and 3. We limit ourselves to the two dimensional
case.
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– Case k = 0, n = 0, 1, 2. To each λαααωσ ∈ BP̊−
r Λ0(T ), assign the point sααα

σ . For
n = 0, 1, 2, F̊−,0

r (T ) is the set of points on the principal lattice of order r of T

which lay on the interior of T .
– Case k = n = 1. Assign to each λαααωσ ∈ BP̊−

r Λ1(T ) the small simplex sααα .
– Case k = 1, n = 2. Here to each λαααωσ ∈ BP̊−

r λ1(T ) assign the (small) edge
sααα
σ . In other words, the set F̊1

r (T ) is obtained by the overdetermining one by
removing the small edges parallel to the line λ0 = 0.

– Case k = 2, n = 2. The set F̊−,2
r (T ) is then uniquely determined by Constraint

2. We assign to each λαααωσ ∈ BP̊−
r Λ2(T ) the unique cell in F̊−,2

r (T ) containing
the small 2-simplex sααα .

Figure 3 gives an example of this construction for r = 4.
Now, for a 2-simplex T , we set F−,k

r (T ) := ⋃
S≤T F̊−,k

r (S) for k ≤ dim S,
k = 0, 1, 2. These k-cells coincide with those obtained by chopping those defined in
[1] as explained in [2]. The associated spaces

W−,k
r (T ) := span

{
φ : ω �→

∫
s

trT ,sω | s ∈ F−,k
r (T )

}

are indeed dual spaces of P−
r Λk(T ) for k = 0, 1, 2.

5 Physical degrees of freedom forPr−kΛ
k

In this section, we will consider the compatible finite element system Xk = Pr−kΛ
k .

We will discuss only the two-dimensional case. As in the previous section, for each
simplex T , we will associate a k-cell topologically contained in T to each element of

Fig. 3 Construction of the cellular complex F−.•
4 (T )
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a spanning family of P̊r−kΛ
k(T ) obtaining in this way a system of physical degrees

of freedom which is not minimal. Removing redundant elements from the spanning
families in order to obtain bases will result in minimal degrees of freedom. We will
motivate this choice and discuss why we conjecture the unisolvence of this system of
degrees of freedom. Numerical evidence of this fact is provided in the next section.

We start with an example consisting in a cellular complex (constraint 2 is thus
verified) which induces a system of physical degrees of freedom which satisfies
Constraint 1 with equality but not Constraint 3.

Consider the simplicial complex in Fig. 4 in a triangle T , for r = 3.
This complex satisfies Constraint 1 with equality but not Constraint 3. Indeed,

there are, respectively, 10 (= dimP3−0Λ
0(T )) small nodes, 3 × 3 + 3 (=

dimP3−1Λ
1(T )) small edges, and 3 (= dimP3−2Λ

2(T )) small triangles. On the other
hand, the complex of small simplices in Fig. 4a is topologically equivalent to the
union of a circle S

1 and a point c, the center of S1. Thus, T is contractible contrar-
ily to S

1 ∪ {c} which is not. In other words, we have the right number of degrees
of freedom, but the cohomology of the complex C•(F•(T )) is different from the
cohomology of X•(T ). It follows that the de Rham map

Rk : P3−kΛ
k(T ) → Ck(F•(T ))

cannot be an isomorphism for all k = 0, 1, 2. This example shows that having a
correct number of small simplices for the spaces Pr−kΛ

k(T ) is not the only condition
to fulfill. Intuitively, these cells have to be chosen in order to give a connected graph
that covers T completely (for example, see Fig. 4b), as we are going to explain in the
following.

5.1 Spanning families and bases

The discussion which follows is analogous to the one in Section 4.2. The sets

SPr−kΛ
k(T ) := {λαααdλσ | ααα ∈ I(r − k, n), σ ∈ �0(k − 1, n)},

SP̊ r−kΛ
k(T ) := {λαααdλσ ∈ SPr−kΛ

k(T ) | S(ααα) ∪ R(σ ) = {0, . . . , n}}
are spanning families for the spaces Pr−kΛ

k(T ) and P̊r−kΛ
k(T ) respectively. For

example, if T is a 2-simplex, the elements

λ0λ1λ2dλ0, λ0λ1λ2dλ1, λ0λ1λ2dλ2 (5.1)

Fig. 4 Two cellular complexes: a non admissible configuration (left), and an admissible configuration
(right)
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belong to SP̊3Λ
1(T ), but they satisfy

λ0λ1λ2dλ0 + λ0λ1λ2dλ1 + λ0λ1λ2dλ2 = 0.

Again, the introduction of constraints allows to remove the “redundant,” elements.
For example, the above constraint removes λ0λ1λ2dλ2 from the list (5.1). The sets

BPr−kΛ
k(T ) := {λαααdλσ ∈ SPr−kΛ

k(T ) | minS(ααα) /∈ R(σ )},
BP̊r−kΛ

k(T ) := {λαααdλσ ∈ SP̊r−kΛ
k(T ) | minS(ααα) /∈ R(σ )}

are bases of the spaces Pr−kΛ
k(T ) and P̊r−kΛ

k(T ) respectively (see [14]).

5.2 Small k -cells

In this section, we will denote by F̊k
r−k(T ) the set F̊k(T ) to emphasize that we are

constructing a system of degrees of freedom for P̊r−kΛ
k(T ).

To introduce physical degrees of freedom, we exploit the isomorphism (2.17).
Assume that we have a cellular complex F•

r (T ) such that the relative de Rham map
induces an isomorphism

P̊r−kΛ
k(T ) � Ck(F•

r (T ),F•
r (∂T )).

Then we combine this isomorphism with Eq. 2.17 and the unisolvent physical degrees
of freedom for the space P−

r Λk(T ), obtaining

Ck(F•
r (T ),F•

r (∂T )) � P̊r−kΛ
k(T ) � P−

r−dim T Λdim T −k(T )∗ � Ck(F−,•(T )).
(5.2)

The isomorphisms (5.2) suggest how these physical degrees of freedom can
be constructed: the cells in F̊k

r−k(T ) must be “dual,” with respect to those in

F−,dim T −k
r−dim T (T ). More precisely, consider the map

� : P̊r−kΛ
k(T ) → P−

r−dim T Λdim T −k(T ),

λαααdλσ �→ λααα−σc

ω(σc), (5.3)

where ααα − σc is the multi-index with components

(ααα − σc)i =
{

αi − 1 if i = σ(j) for some j = 0, . . . , dim T − k,

αi otherwise,

for i = 0, . . . , dim T . Since ααα ∈ I(r − k, dim T ) and σc ∈ �0(dim T − k, dim T ),
then

dim T∑
i=0

(ααα − σc)i = r − k − dim T + k − 1 = r − dim T − 1,

that is, ααα − σc ∈ I(r − dim T − 1, dim T ) and therefore � maps indeed P̊r−kΛ
k(T )

into P−
r−dim T Λdim T −k(T ). We show also that the map � sends BP̊r−kΛ

k(T ) to
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BP−
r−dim T Λdim T −k(T ). In fact, let ααα ∈ I(r − k, dim T ) and σ ∈ �0(k, dim T ) with

minS(ααα) /∈ R(σ ). Then minS(ααα−σc) ≥ minS(ααα), but minS(ααα) belongs to R(σ c)

and therefore minS(ααα) ≥ minR(σ c). Combining the two inequalities, we get that

minS(ααα − σc) ≥ minR(σ c),

that is, λααα−σc
ωσc

belongs to BP−
r−dim T Λdim T −k(T ). Moreover, it is shown in [14]

that the map � is an isomorphism. Our construction is as follows:

1. Start from an element λαααdλσ belonging to SP̊r−kΛ
k(T ) (resp. BP̊r−kΛ

k(T ));
2. Apply the map � to obtain an element �(λαααdλσ ) in SP−

r−dim T Λdim T −k(T )

(resp. BP−
r−dim T Λdim T −k(T )).

3. Associate to �(λαααdλσ ) a small (dim T − k)-cell s∗ as in Section 4.
4. Find a k-cell s topologically contained in T such that s ∩ s∗ is a single point.

We give now an example of this construction.

Example 5.1 In this example, we set n = 1, k = 1, and r = 3. Let us consider
an oriented segment E of extreme points x0, x1 and associated barycentric functions
λE

0 , λE
1 (namely, λE

0 , λE
1 are affine functions over E such that λE

i (xj ) = δij , being δij

the Kronecker symbol). So, x = λE
0 (x) x0 + λE

1 (x) x1 for any x ∈ E = [x0, x1]. Let
us consider the space X1(E) = P2 Λ1(E). The degrees of freedom for ω ∈ X1(E)

as defined in Eq. 2.15 are

w �−→
{∫

E

w · tE (λE
0 )2,

∫
E

w · tE λE
0 λE

1 ,

∫
E

w · tE (λE
1 )2

}

where w is the proxy of ω and tE is the unit vector associated with E. Indeed, η ∈
P−

2 Λ0(E) namely η is a polynomial function of degree 2 over E; thus, a basis of
these polynomials is the set { (λE

0 )2, λE
0 λE

1 , (λE
1 )2 }.

Now, let us start from P−
2 Λ0(E) = P2(E). A well-known choice of degrees of

freedom for this space is the value of a function at the end points x0, x1 and at one
internal point, say x̂ (e.g., the midpoint of E). Let x′ be a point in (x0, x̂) and x′′ be
a point in (x̂, x1). So, we have thus divided E into three segments

E = [ x0 , x′ ] ∪ [ x′ , x′′ ] ∪ [ x′′ , x1 ] ,

which are, in some sense, dual to the points x0, x̂, x1 (note that, in this example,
n = 1), and we can define new degrees of freedom as follows

w �−→
{∫

[ x0 , x′ ]
w · tE ,

∫
[ x′ , x′′ ]

w · tE ,

∫
[ x′′ , x1 ]

w · tE
}

.

More precisely, a basis of P̊2Λ
1(E) is given by

BP̊2Λ
1(E) = {(λE

0 )2dλ1, λ
E
0 λE

1 dλ1, (λ
E
1 )2dλ0}.
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In this case, the map � reads as follows:

� : BP̊2Λ
1(E) → BP−

r Λ0(E),

(λE
0 )2dλ1 �→ (λE

0 )2,

λE
0 λE

1 dλ1 �→ λE
0 λE

1 ,

(λE
1 )2dλ0 �→ (λE

1 )2.

To the three elements of BP−
2 Λ0(E), we associate the points x0, x̂, and x1

respectively. Finally, we write E as a union of three intervals

E = [ x0 , x′ ] ∪ [ x′ , x′′ ] ∪ [ x′′ , x1 ] ,

such that each interval contains only one point.

Isomorphism (5.2) suggests a geometrical interpretation of the isomorphism
(2.17): indeed, (5.2) induces the well-known Lefschetz duality (see, e.g., [13] or [12])

Hk(T , ∂T ) ∼= Hn−k(T ).

Not minimal degrees of freedom Since P̊rΛ
0(T ) = P̊−

r Λ0(T ) = P̊r (T ) when
dim T > 0, and, for a 1-simplex T , P̊r−1Λ

1(T ) = P̊−
r Λ1(T ), we will set F̊0

r (T ) :=
F̊−,0

r (T ) for any simplex T and F̊1
r−1(T ) := F̊−,1

r (T ) for a 1-simplex T . The only
cases that remain to be addressed are when T is a 2-simplex and k = 1 or 2. We
describe now in detail our construction. Consider the principal lattice L of order r

on T and the associated small simplices. Note that we can construct a principal lat-
tice L∗ of order r − 2 on the barycenters of the reversed triangles (see Fig. 5 for an
example).

Starting from λαααdλσ ∈ SP̊r−kΛ
k(T ), apply the � map defined in Eq. 5.3 to obtain

�(λαααdλσ ) ∈ BP−
r−2Λ

2−k(T ). Then, we associate to �(λαααdλσ ) a small (2 − k)-
simplex s∗ in L∗. Finally, we select a k-cell s which is dual to s∗, that is s ∩ s∗ is a
single point.

– For k = 1, note that for each small edge s∗ in L∗, there are two small edges of L

which share on point with s∗. For the sake of definiteness, if s∗ is parallel to the

Fig. 5 Principal lattice L∗ of
order 3 constructed on the
barycenters of the reversed
triangles of the principal lattice
L of order 5 on T
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Fig. 6 Internal small edges
chosen using the map γ

edge Eσ , we choose the small edge parallel to Eγ(σ) where we have defined the
map γ as

γ : �0(1, 2) → �0(1, 2),

(12) �→ (02),

(02) �→ (01),

(01) �→ (12).

Note that we could also have chosen the small edge parallel to Eγ −1(σ ). A
more direct way which produces the same result is to assign to each λαααdλσ ∈
SP̊r−1Λ

1(T ), the small edge sααα
γ (σ c) (see Fig. 6 for an example).

– If k = 2, the set F̊2
r−2(T ) is then uniquely determined by Constraint 2 and from

the requirement that each 2-cell contains a single point of the dual principal lat-
tice L∗. More precisely, we assign to each λαααdλσ ∈ SP̊r−2Λ

2(T ) the unique
cell in F̊2

r−2(T ) containing the point s∗, where s∗ in the point in L∗ relative to
�(λαααdλσ ).

Define now

F•
r (T ) :=

⋃
S≤T

dim S⋃
k=0

F̊k
r−k(S).

An example of this construction for r = 4 is given in Fig. 7. As for the spaces
P−

r Λk , there are holes, which in this case are triangles homothetic to T .

Fig. 7 Construction of not minimal degrees of freedom for P4−kΛ
k(T ), where T is a 2-simplex
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Fig. 8 Minimal degrees of freedom for P4−kΛ
k(T ), where T is a 2-simplex

Remark: Due to the presence of holes, as the white one in Fig. 7c, one could
argue that, from a homological point of view, T and the supports of degrees of free-
dom in F•

r (T ) shown in the same figure are not equivalent. In presence of holes, we
have indeed to think in terms of relative homology, as it was done in [19] for the
spaces P−

r Λk , that is considering homology groups of k-chains modulus the holes of
dimension k. Thus, equivalence holds.

Remark: We recall that the presence of holes is related with redundancies in
SP̊r−1Λ

1(T ), namely, the set of possible 1-cochains has bigger cardinality than that
of degrees of freedom for P̊r−1Λ

1(T ). As soon as redundancies are eliminated, holes
disappear too, as it occurs when we work with a minimal set of degrees of freedom.

Minimal degrees of freedom The same procedure with BPr−kΛ
k in place of

SPr−kΛ
k leads to a minimal system of degrees of freedom (see Fig. 8). Informally

this new set is obtained by the overdetermining one by removing the internal edges
parallel to the line λ1 = 0 and such that both their vertices belong to the interior of
the triangle (see Fig. 9).

5.3 Unisolvence

For a simplex T , let us consider the maps

P̊r−kΛ
k(T ) → W̊ k(T )∗,

ω �→ {φ �→ φ(ω)} , (5.4)

Fig. 9 Not minimal (left) and minimal (right) degrees of freedom for P5−kΛ
k(T ), where T is a 2-simplex
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for k = 0, . . . , dim T , where W̊ k(T ) is defined as in (3.1) with F̊k
r−k(T ) instead of

F̊k(T ). Condition 2 of Lemma 5 states that the sysdof is unisolvent if and only if
these maps are isomorphisms. In two dimensions, this is nontrivial only when T is a
2-simplex and k = 1, 2. Moreover, the following result holds true.

Theorem 5.1 The de Rham map R2 : P̊rΛ
2(T ) → C2(F•

r (T ),F•
r (∂T )) is an iso-

morphism if and only if the de Rham map R1 : P̊rΛ
1(T ) → C1(F•

r (T ),F•
r (∂T )) is

an isomorphism.

Proof The proof is similar to the one of the Five Lemma along the commuting dia-
gram, where the starting (resp., ending) horizontal map from (resp., to) 0 in the top
and bottom chains are omitted,

P̊rΛ
0(T ) P̊r−1Λ

1(T ) P̊r−2Λ
2(T ) R

C0(F•
r (T ),F•

r (∂T )) C1(F•
r (T ),F•

r (∂T )) C2(F•
r (T ),F•

r (∂T )) R

d0

R0

d1

R1 R2

∫
T

ι

δ0 δ1

since the two rows of the diagram are exact sequences and the vertical operators R0

and ι (which stands for the identity) are isomorphisms. If we assume that R2 is an
isomorphism, we can prove that R1 is surjective and injective. The other way around,
starting from R1 being an isomorphism and proving for R2 is analogous. The top and
bottom sequences involve finite dimensional spaces; it is hence sufficient to prove
that R1 is injective.

We thus show that R1 ω = 0 yields ω = 0. Let ω ∈ P̊r−1Λ
1(T ) such that

R1 ω = 0, then δ1(R1 ω) = 0, and by the commutativity of the diagram, we have that
R2(d1ω) = 0. We have assumed that R2 is an isomorphism, thus injective, that yields
d1ω = 0. The top sequence is exact, so it exists η ∈ P̊rΛ

0(T ) such that d0η = w.
The diagram commutes; we thus have δ0(R0η) = R1(d0η) = R1ω = 0. From
δ0(R0η) = 0, it results R0η = 0 thus η = 0, since R0 is injective. Consequently,
ω = 0.

The content of Theorem 2 is that the map (5.4) is an isomorphism for k = 2 if and
only if it is an isomorphism for k = 1. Proving that the map R2 is an isomorphism is
equivalent to showing that any polynomial in n = 2 variables of degree ≤ r , such that
its integrals are zero on

(
r+2

2

)
non-overlapping polygons that cover T , is identically

zero on T . A proof of this type of result can be found in [1] for a particular case. To
the best of the authors knowledge, the general case is an open problem. In the next
section, we provide numerical evidence of the unisolvence of the proposed degrees
of freedom for k = 1, by stating that, varying r , the Vandermonde matrices are
invertible. Motivated by these facts and by Theorem 2, we conjecture the following:
“The map (5.4) is an isomorphism for k = 1, 2.”
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5.4 Computational examples

In this section, let T be the standard 2-simplex and let E0, E1, and E2 be its edges.
The monomial basis of BPr−1Λ

1(T ) with elements λααα is here replaced by the
Bernstein basis with elements

r!
α0!α1! . . . αn!λ

ααα .

Let us denote by Ψ : Pr−1Λ
1(T ) → F1

r−1(T ) the map that associates to each
form ω of the basis the corresponding cell. Assume now that we have ordered the
elements of BPr−1Λ

1(T ) = {ω1, ω2, . . . } in such a way that the set

{ω1+(r+1)i , . . . , ωr+1+(r+1)i}
is a basis of extEi,T P̊r−1Λ

1(Ei), for i = 0, 1, 2, and, the set

{ω3(r+1)+1, . . . , ωdimPr−1Λ
1(T )}

is a basis of P̊r−1Λ
1(T ). Define the Vandermonde matrix Vr−1 = (Vr−1

ij ) as

Vr−1
ij =

∫
Ψ (ωi)

ωj .

For r = 2, 3, the entries of Vr−1 computed on the Bernstein basis are shown
below:

V1 = 1

8

⎛
⎜⎜⎜⎜⎜⎜⎝

3 1
1 3

3 1
1 3

3 1
1 3

⎞
⎟⎟⎟⎟⎟⎟⎠

,

V2 = 1

81

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

19 7 1
7 13 7
1 7 19

19 7 1
7 13 7
1 7 19

19 7 1
7 13 7
1 7 19

3 9 3 7 4 1 9 3
1 4 7 −3 3 3 9

−9 −3 1 4 7 3 3 −3 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that, as we could expect, the matrix Vr−1 has the following block structure:

Vr−1 =

⎛
⎜⎜⎝

Vr−1
ext O O O

O Vr−1
ext O O

O O Vr−1
ext O

∗ ∗ ∗ Vr−1
int

⎞
⎟⎟⎠ ,
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where O denotes a square matrix of zeroes, and the ∗ stands for a rectangular matrix
that is not necessarily filled in completely with zeroes. On the diagonal, we have
square blocks with entries, respectively,

(Vr−1
ext )ij =

∫
Ψ (ωi)

ωj , ωi, ωj ∈ BP̊r−1Λ
1(E),

and

(Vr−1
int )ij =

∫
Ψ (ωi)

ωj , ωi, ωj ∈ BP̊r−1Λ
1(T ).

On the diagonal, the blocks Vr−1
ext in Vr−1 are invertible: this is due to the fact that

the degrees of freedom on each edge of T describe completely the space associated
with this geometrical entity. To prove unisolvence is thus equivalent to prove that the
block Vr−1int is invertible. This is true for the values r = 2, 3, 4, ..., 11 we have
tested. For r = 4, we have, for example, that on the Berstein basis

V3
ext = 1

1024

⎛
⎜⎜⎝

175 67 13 1
65 109 67 15
15 67 109 65
1 13 67 175

⎞
⎟⎟⎠ ,

V3
int = 1

1024

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

76 30 28 6 4
56 72 32 24 8
24 8 72 32 56
18 28 18 52 28
6 4 30 28 76

−28 −52 −18 52 28 18
−4 −28 −6 28 76 30
−8 −32 −24 32 56 72

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In a finite element approach, the Vandermonde matrix Vr−1 has to be inverted to
construct the basis {wj } of the local discrete space, here Pr−kΛ

k(T ), in duality with
the selected set of dofs. The invertibility of the Vandermonde matrix V r−1 does not
depend on the basis {ωj } of Pr−kΛ

k(T ) which is used to compute the matrix, but
the condition number cond (Vr−1)) does. To guarantee the computation of the dual
basis for any choice of r , it is important to work with a basis {ωj } such that the
condition number of Vr−1 does not increase too fast with r . Bernstein basis fulfils
this latter requirement. Table 1 reports, for r = 2, . . . , 11, the condition number of
Vr−1 computed on the Bernstein basis and on the monomial one.

Concerning the non-admissible configuration at the beginning of Section 5,
another way to see that the set of small edges drawn in Fig. 4a cannot support an
unisolvent set of degrees of freedom for fields in P2Λ

1(T ) is to consider the internal
block V 2

int of the corresponding Vandermonde matrix, namely

V 2
int = 1

81

⎛
⎝ 6 −6

−6 6
−6 6

⎞
⎠ .

The determinant of this block is zero, as the third line is the sum of the first two, thus
yielding a singular global Vandermonde matrix.
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Table 1 Condition number of the matrix Vr−1 for r = 2, . . . , 11

r − 1 cond (Vr−1) with Bernstein basis cond (Vr−1) with monomial basis

1 2.0000 2.0000

2 7.4105 11.8276

3 21.1319 75.6558

4 59.5527 393.0213

5 169.2325 2.3819 ×103

6 474.8238 1.5598 ×104

7 1.3168 ×103 1.0006 ×105

8 3.6197 ×103 6.6383 ×105

9 9.8874 ×103 4.6183 ×106

10 2.6888 ×104 3.1695 ×107

6 Conclusions and future investigations

Many classical finite element spaces are just instances of the two families P−
r Λk ,

often referred to as the first or the trimmed one, and Pr−kΛ
k , known as the second

or the complete one. These two families are strictly related the one with the other
since we need the first family to construct degrees of freedom for the second and
vice versa. In this work, we have put the accent on the fact that the duality relations
(2.16) and (2.17) have a geometrical interpretation. Thanks to this geometrical point
of view, we have obtained new physical degrees of freedom for the second family
PrΛ

k in the two-dimensional case. Numerical results on the Vandermonde matrices
corresponding with the case k = 1 and different choices of r ≥ 1 are presented for
n = 2. They provide numerical evidence of the fact that the proposed new degrees of
freedom, for the second family, are unisolvent. The case n = 3 is under study.
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