
https://doi.org/10.1007/s10444-022-09991-x

Approximation of functions from Korobov spaces
by deep convolutional neural networks

TongMao1 ·Ding-Xuan Zhou2

Received: 14 March 2022 / Accepted: 13 October 2022 /
© The Author(s) 2022

Abstract
The efficiency of deep convolutional neural networks (DCNNs) has been demon-
strated empirically in many practical applications. In this paper, we establish a theory
for approximating functions from Korobov spaces by DCNNs. It verifies rigorously
the efficiency of DCNNs in approximating functions of many variables with some
variable structures and their abilities in overcoming the curse of dimensionality.

Keywords Machine learning · Deep convolutional neural networks ·
Curse of dimensionality · Korobov spaces

Mathematics Subject Classification (2010) 68T07 · 41A25

1 Introduction

Deep neural networks (DNNs) demonstrate excellent performances in many fields of
science and technology these days. In particular, for functions with special properties
or structures, DNNs can often take advantage of these properties or structures to
improve the learning and approximation abilities of many classical tools remarkably
and break the “curse of dimensionality” (e.g., [3, 4, 10, 11, 13, 16, 18–20]).

Deep convolutional neural networks (DCNNs), as an important class of struc-
tured deep neural networks, are very efficient for tasks in many areas [7, 11] such
as speech recognition and computer vision. Compared with their practical success,

Communicated by: Rachel Ward

� Ding-Xuan Zhou
dingxuan.zhou@sydney.edu.au

Tong Mao
tongmao2-c@my.cityu.edu.hk

1 School of Data Science, City University of Hong Kong, Kowloon, Hong Kong

2 School of Mathematics and Statistics, University of Sydney, Sydney NSW 2006, Australia

Published online: 7 December 2022

Adv Comput Math (2022) 48:84

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-09991-x&domain=pdf
http://orcid.org/0000-0003-0224-9216
mailto: dingxuan.zhou@sydney.edu.au
mailto: tongmao2-c@my.cityu.edu.hk

the theory of DCNNs is far behind. Recently the universality of DCNNs is proved in
[21, 23] asserting that any continuous function on any compact subset of a Euclidean
space of the input data variable can be approximated to an arbitrary accuracy by a
DCNN with zero padding when the number of layers is large enough. The rates of
uniformly approximating functions from Sobolev spaces Wr,2 with r > d

2 + 2 are
obtained. It is further shown in [22] that every fully connected neural network (FNN)
can be realized by a downsampled DCNN with the same order of free parameters.
Inspired by this, we may expect that downsampled DCNNs can also make use of
special structures to improve rates of function approximation. In fact, it is true for
additive ridge functions [5] and radial functions [14].

All the above results for DNNs and CNNs present rates of type O(N− r
d) for

approximating functions of smoothness index r > 0 on subsets of the Euclidian space
R

d by neural networks with N free parameters. When d is large, the convergence is
rather slow. This is due to the isotropic nature of the function smoothness measured
with respect to all the variables.

The great success in practical applications dealing with data from spaces of
large dimensions d motivates us to expect faster convergence of deep learning algo-
rithms when the target function has some special structures involving the variables
x1, . . . , xd . One such variable structure considered in [16] for DNNs is measured by
Korobov spaces defined below in terms of mixed derivatives.

The purpose of this paper is to show that DCNNs perform excellently for approx-
imating in Lp (1 ≤ p ≤ ∞) functions from Korobov spaces involving mixed
derivatives of order 2.

In this paper, we use the ReLU activation function σ : R → R defined as

σ(x) = max{0, x}, x ∈ R.

For vectors, it acts componentwise.
Given a sequence a = (ak)k∈Z supported in {n1, . . . , m1} and another b = (bk)k∈Z

supported in {n2, . . . , m2}, the convolution of a and b is a sequence supported in
{n1 +n2, . . . , m1 +m2} given by (a∗b)i =∑k∈Z ai−kbk =∑m2

k=n2
ai−kbk for i ∈ Z.

Consider a sequence w = (wk)k∈Z supported in {0, 1, . . . , s} and x = (xk)k∈Z
supported in {1, 2, . . . , D} with s, D ∈ N. The convolution of w and x is a sequence
supported in {1, 2, . . . , D + s}, which can be expressed alternatively with possibly
nonzero terms by [(w ∗ x)i]D+s

i=1 = T w[xi]Di=1, where

T w := [wi−j]i=1,...,D+s,
j=1,...,D

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w0 0 0 0 . . . 0 0
w1 w0 0 0 . . . 0 0
...

...
. . .

. . .
. . .

...
...

ws ws−1 . . . w0 . . . 0 0

0 ws . . . w1
. . .

... 0
...

. . .
. . .

. . .
. . .

. . .
...

. 0 ws . . . w1 w0

. 0 ws . . . w1
...

. . .
. . .

. . .
...

0 0 ws

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1.1)

T. Mao, D.-X. Zhou84 Page 2 of 26

Here the (D + s) × D Toeplitz matrix T w is called a convolutional matrix. In
DCNNs, this is the connection matrix between layers.

For notational simplicity, for a sequence a = (ak)k∈Z, we use the notation [a]mn
to denote the vector [an, . . . , am]T ∈ R

m−n+1 in the rest of this paper (instead
of [ak]mk=n). We also say a sequence a = (ak)

∞
k=−∞ is represented by [a]mn =

[α1, . . . , αm−n+1]T if

ak =
{

αk−n+1, k ∈ {n, . . . , m},
0, otherwise.

(1.2)

Now we state deep convolutional neural networks and Korobov spaces of func-
tions vanishing on the boundaries.

Definition 1 Let x = (x1, . . . , xd) ∈ R
d be the input data vector, s, J ∈ N, {dj }Jj=1

given by d0 = d,

dj = dj−1 + s, j ∈ {1, . . . , J }.
The DCNN {h(j) : R

d → R
dj }Jj=1 with widths {dj }Jj=1, filters w := {w(j)}Jj=1

supported in {0, 1, . . . , s} and biases {b(j) ∈ R
dj }Jj=1 is defined by the following

composition

h(j)(x) = Aj ◦ . . . ◦ A1(x), j ∈ {1, . . . , J }, (1.3)

where for j = 1, . . . , J , Aj : R
dj−1 → R

dj is a map given by

Aj (v) = σ(T w(j)

v − b(j)), v ∈ R
dj−1 .

The classical DNNs have the same expression as (1.3) except that the connection
matrix T w(j)

is replaced by a dj ×dj−1 full matrix. As we can see, the free parameters

in the connection matrix T w(j)
come from the filters {wk}sk=0. While the number of

free parameters in the connection matrix is (dj−1 + s)dj−1 in a fully connected layer,

the number in the convolutional matrix T w(j)
is only s+1. This great reduction allows

DCNNs to have large depths.
For the deep CNNs of depth J , the hypothesis space is a set of functions defined

by

Hw,b
J =

⎧
⎨

⎩

dJ∑

k=1

ckh
(J)
k (x) : c ∈ R

dJ

⎫
⎬

⎭
. (1.4)

For k ∈ Z
d+, denote Dkf = ∂‖k‖1f

∂x
k1
1 ...∂x

kd
d

with ‖k‖1 =
d∑

j=1
kj and ‖k‖∞ = max

1≤j≤d
kj .

For any r ∈ N and 1 ≤ p ≤ ∞, the norm of a classical Sobolev space Wr,p([0, 1]d)

is defined as

‖f ‖Wr,p([0,1]d) = max‖k‖1=r

∥
∥
∥Dkf

∥
∥
∥

p
+ ‖f ‖p. (1.5)

Definition 2 For 1 ≤ p ≤ ∞, the Korobov space X2,p([0, 1]d) consists of
functions f ∈ Lp([0, 1]d) which vanish on the boundary of [0, 1]d and satisfy

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 3 of 26

Dkf ∈ Lp([0, 1]d) for any k ∈ Z
d+ with |k|∞ ≤ 2. The norm is given in terms of the

Lp-norm ‖f ‖p :=
(∫

[0,1]d |f (x)|pdx
)1/p

by

‖f ‖2,p =
∥
∥
∥
∥
∥

∂2df

∂x2
1 . . . ∂x2

d

∥
∥
∥
∥
∥

p

+ ‖f ‖p. (1.6)

Remark 1 The property of vanishing on the boundary satisfied by functions from the
Korobov space X2,p([0, 1]d) was required in the sparse grid method [1] for numer-
ical analysis to handle boundary elements. The DCNNs represented in terms of the
convolutional matrix (1.1) are ones with zero padding [24], meaning that we fill the
entries of x outside {1, . . . , D} by 0. This corresponds to the condition of vanish-
ing on the boundary for the approximated functions from the Korobov space. In our
approximation analysis, we also need a function expansion (6.1) in terms of a basis
of hat functions which naturally vanish on the boundary.

2 Main results

The following theorem to be proved in Section 6 is our first main result. The theorem
gives rates for approximating functions from X2,p([0, 1]d) by deep convolutional
neural networks.

Theorem 1 Let d ∈ N, 1 ≤ p ≤ ∞ and f be a function in X2,p([0, 1]d) that
satisfies ‖f ‖2,p ≤ 1. For any N ≥ 216, there exists a deep neural network of depth

J ≤
(

168

s − 1
+ 2

)
(
log2 d

)
d2(log2 N)N

constructed in Definition 1 associated with a filter sequence w = {wj }Jj=1 and a bias

sequence b = {bj }Jj=1 such that

inf
{
‖f w,b

J − f ‖p : f
w,b
J ∈ Hw,b

J

}
≤
(
(
log2 N

)
(

3− 1
p

)
(d−1) + 1

)

N
−
(

2− 1
p

)

.

(2.1)
The number of free parameters of the CNN is bounded as

N ≤ 13385d2(log2 d)2(log2 N)2N . (2.2)

What is nice about the bounds for the depth and number of free parameters is the
slow growth of their dependence on the data dimension d.

The following complexity analysis is an immediate consequence of Theorem 1
with p

2p−1 = 1
2 for p = ∞. When approximating functions from X2,∞([0, 1]d),

DCNNs perform as well as the DNN constructed in [16] (up to a multiplication by
|log ε|).

T. Mao, D.-X. Zhou84 Page 4 of 26

Corollary 1 Let d ∈ N, 1 ≤ p ≤ ∞ and f be a function in X2,p([0, 1]d) that
satisfies ‖f ‖2,p ≤ 1. For any ε > 0, there exists a DCNN of depth

J = O
(

ε
− p

2p−1 |log2 ε|
(

p
2p−1 +1

)
(d−1)+1

)

constructed in Definition 1 associated with a filter sequence w = {wj }Jj=1 and a bias

sequence b = {bj }Jj=1 such that

inf
{
‖f w,b

J − f ‖p : f
w,b
J ∈ Hw,b

J

}
≤ ε. (2.3)

The number of free parameters of the DCNN satisfies

N = O
(

ε
− p

2p−1 |log2 ε|
(

p
2p−1 +1

)
(d−1)+2

)

.

Proof Choosing N =
⌈

23(d−1)ε
− p

2p−1 |log2 ε| p
2p−1 +1

⌉
in Theorem 1, we know

‖f w,b
J − f ‖p ≤ 2−3(d−1)ε|log2 ε|−

(
3− 1

p

)
(d−1)|2 log2 ε|

(
3− 1

p

)
(d−1)

≤ ε.

We also see that the depth can be bounded as

J ≤
(

168

s − 1
+ 2

)
(
log2 d

)
d2(log2 N)N

≤
(

168

s − 1
+ 2

)
(
log2 d

)
d2(6d − 3)23(d−1)

[

ε
− p

2p−1 |log2 ε|
(

p
2p−1 +1

)
(d−1)+1

]

.

The number of free parameters can be bounded as

N ≤ 13385d2(log2 d)2(log2 N)2N

≤ 13385d2(log2 d)2(6d − 3)223(d−1)

[

ε
− p

2p−1 |log2 ε|
(

p
2p−1 +1

)
(d−1)+2

]

.

This proves the desired bounds.

Let us demonstrate the role of Korobov spaces in measuring smoothness by the
following example.

Example 1 Let g be a piecewise quadratic polynomial on R given by

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x2, if x ∈ [0, 1
3],

−2(x − 1
2)2 + 1

6 , if x ∈ (1
3 , 2

3),

(1 − x)2, if x ∈ [2
3 , 1],

0, if x /∈ [0, 1].
(2.4)

Then g ∈ C1(R) and g′′ exists almost everywhere as

g′′(x) =
⎧
⎨

⎩

2, if x ∈ (0, 1
3)
⋃

(2
3 , 1),

−4, if x ∈ (1
3 , 2

3),

0, if x /∈ (−∞, 0)
⋃

(1, ∞).

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 5 of 26

Hence g ∈ X2,∞([0, 1]). For 1 ≤ p ≤ ∞ and 0 < t < 1
3 ,

g′′(x + t) − g′′(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2, if x ∈ (−t, 0),

−6, if x ∈ (1
3 − t, 1

3),

6, if x ∈ (2
3 − t, 2

3),

−2, if x ∈ (1 − t, 1),

0, if x ∈ (−∞, −t)
⋃

(0, 1
3 − t)

⋃
(1

3 , 2
3 − t)

⋃
(2

3 , 1 − t)
⋃

(1, ∞).

It follows that ‖g′′(·+ t)− g′′‖Lp(R) = 2
1
p (2p + 6p)

1
p t

1
p . Then g ∈ W

2+ 1
p

,p
(R) and

g /∈ Wr,p(R) for any r > 2 + 1
p

.

For d ∈ N, we define f1 and f2 on [0, 1]d by

f1(x) =
d∑

j=1

g(xj), f2(x) =
d∏

j=1

g(xj), x ∈ [0, 1]d .

We see that Dkf1 ∈ Lp([0, 1]d), Dkf2 ∈ Lp([0, 1]d) for 1 ≤ p ≤ ∞ and |k|∞ ≤ 2.
Hence f1, f2 ∈ X2,p([0, 1]d). However, f1 /∈ Wr,p([0, 1]d) and f2 /∈ Wr,p([0, 1]d)

for r > 2 + 1
p

.

3 Comparisons and discussion

Although there is a large classical literature on approximation by shallow networks
[9, 15, 17], the recent success of deep learning gives strong reasons to use deep
neural networks instead of shallow ones [4, 6, 12, 18, 19, 25]. The most important
reason is the curse of dimensionality: deep neural networks often break the curse
of dimensionality since they can make use of special structures or properties of the
function classes, while shallow neural networks usually cannot. Our result can be
regarded as evidence of breaking the curse of dimensionality in approximation by
deep neural networks. For functions from Hölder spaces Wr,∞([0, 1]d), it is known
that the optimal rate of approximation by neural networks is O(N− r

d), where N is
the number of free parameters. Then a rate O(N−2) is possible only when r ≥ 2d,
whereas for functions from the Korobov space X2,∞([0, 1]d) the approximation rate
is O(N−2). As we can see from Example 1, the restriction on the smoothness of
functions from Korobov spaces is much weaker: Hölder spaces require the essential
boundedness of all derivatives of order 2d:

Dkf ∈ L∞([0, 1]d), ∀k = (k1, . . . , kd) ∈ Z
d+ satisfying

d∑

j=1

kj ≤ 2d,

while the Korobov space X2,∞([0, 1]d) only requires that of

∂2df

∂x2
1 . . . ∂x2

d

.

T. Mao, D.-X. Zhou84 Page 6 of 26

In the literature, theory of deep CNNs has been established for various problems. It
was shown in [21] functions with Fourier transform f̂ satisfying

∫
Rd |f̂ (ω)||ω2|dω <

∞ can be approximated by CNNs of depth J in the rate O(J− 1
2 − 1

d). Then it was
found that deep CNNs approximate optimally functions with some special structures,
such as ridge functions [5], radial functions, and functions with polynomial features
[14], which is much faster than FNNs. In this paper, we consider a function class in
another perspective: the Korobov space defined by the regularity in terms of mixed
derivatives instead of some special composite structures or properties.

It was also shown in [22] that a downsampled DCNN with at most 8 times free
parameters can realize the same output of an FNN. However, when constructing deep
neural networks to approximate functions, the networks are often sparse, and it is
often possible that the neurons share common weights in most of the layers [16, 20]
(which is called parameter sharing in [8]). From our construction, we can see that
in some cases DCNNs do not need to be designed with specified sparsity. They can
automatically make use of the sparsity and reduce the number of free parameters
remarkably. One reason for this phenomenon is that DCNNs benefit from the orderli-
ness of DNNs to carry out the sparsity. Another reason is that convolutions naturally
share weights, so we do not need to treat each layer as a fully connected one and
produce a large number of weights.

More work can be done about DCNNs to see how they make use of different
structures. Since the work [2] relies heavily on locally Taylor polynomials, one may
expect DCNNs to also perform efficiently for learning spatially sparse functions.

4 Two basic blocks of CNNs

In this section, we construct two groups of deep CNNs, which represent two basic
blocks in the construction of f

w,b
J . Throughout the paper, we use notations ak =

[a, . . . , a] or ak = [a, . . . , a]T for vectors of k identical components a ∈ R.
Before introducing these deep CNNs, we specify the following fact: zeros at

the beginning or end will make no difference to the result of the convolution.
Mathematically, let α, β be sequences supported in {1, . . . , l1} and {0, . . . , l2}, and

a = (αk−n1

)
k∈Z , b = (βk−n2

)
k∈Z

with n1, n2 ∈ Z+. Then with L = l1 + l2 + n1 + n2 + m1 + m2 for m1, m2 ∈ Z+,
there holds

[a ∗ b]L1 = [0n1+n2 , (α ∗ β)1, . . . , (α ∗ β)l1+l2, 0m1+m2]. (4.1)

This reflects the shift-invariance of convolutions, which is believed to ensure the
super efficiency of DCNNs.

4.1 Representing shallow networks by DCNNs

The following lemma was proved in [21]. We apply (4.1) and give the following
version for convenience.

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 7 of 26

Lemma 1 Let s, m, n ∈ N and M > 0. For any sequence W supported in {0, . . . , n},
B supported in {1, . . . , m + n}, there exist J ≤

⌈
n

s−1

⌉
, filters w = {w(j)}Jj=1, each

supported in {0, 1, . . . , s}, and biases b = {b(j) ∈ R
dj }Jj=1 with b(j) of the form

b(j) = [b(j)

1 , . . . , b
(j)

s−1, b
(j)
s , . . . , b

(j)
s︸ ︷︷ ︸

dj −2s

, b
(j)

dj −s+2, . . . , b
(j)
dj

]T , j = 1, . . . , J − 1,

(4.2)
such that

[
w(1) ∗ · · · ∗ w(J)

]J s

0
=

⎡

⎢
⎢
⎢
⎣

W0
...

Wn

0J s−n

⎤

⎥
⎥
⎥
⎦

and for any input

ẑ =
[
0L1, ž

T , 0L2

]T ∈ [−M, M]L1+m+L2,

the last layer of the deep CNN with filters w and biases b is

h(J)(ẑ) = σ

⎛

⎝

⎡

⎣
0L1

[z ∗ W − B]m+n
1

0L2+J s−n

⎤

⎦

⎞

⎠ , (4.3)

where z is the sequence supported and identical to ž on {1, . . . , m}.
The number of free parameters in this network is bounded by

(4s + 1)J + L1 + L2 + m. (4.4)

4.2 Approximating quadratic polynomials by DCNNs

Definition 3 Let u, L ∈ N. The hat function and its iterations, tooth functions, are
defined as

S(x) = 2σ(x) − 4σ

(

x − 1
2

)

+ 2σ(x − 1),

Su(x) = S ◦ · · · ◦ S︸ ︷︷ ︸
u folds

(x), x ∈ R
L.

We denote
Tu = 2−uSu

and the sum of tooth functions as

Ru(x) :=
u∑

j=1

Tj (x).

For convenience, we also define

T0(x) = x, R0(x) ≡ 0L.

Using the functions above, Yarotsky [20] proved that the univariable quadratic
polynomial f (x) = x2 with L = 1 can be approximated with accuracy 2−V for V ∈

T. Mao, D.-X. Zhou84 Page 8 of 26

N by a deep fully connected network with O(V) layers and O(V) free parameters.
The following lemma shows that this process can be replaced by a deep CNN with
O(V) layers and O(V 2) free parameters.

Lemma 2 Let L1, L, L2 ∈ N. For any V ∈ N there exists a deep CNN
{
h(j) :

R
L1+L+L2 → R

dj
}K
j=1 such that for any input ŷ = [0L1 , y

T , 0L2]T ∈ [0, 1]
L1+L+L2 , the last layer is

h(K)(ŷ) =
[
0LV

, yT , 07L, yT − (RV (y))T , 0L′
V

]T
, (4.5)

where y = [y1, . . . , yL]T , the zero vectors are set consistent, and K is bounded as

K ≤ (7V + 15)L

s − 1
+ 3V + 2. (4.6)

Furthermore, only 3V +2 bias vectors do not satisfy the restriction (4.2). The number
of free parameters in this network is bounded in terms of dimension dim

(
ŷ
) = L +

L1 + L2 of ŷ by

N ≤ (6V + 10)(7V + 15)L + (3V + 2)(3V + 5)s + (3V + 2)dim
(
ŷ
)

. (4.7)

The proof of this lemma is given in Appendix.
In many cases, when [20, Proposition 2] or its method can be applied, Lemma 2

also works. As an example, we can use Lemma 2 to prove DCNNs (without down-
samplings) of depth J can approximate almost optimally (up to a logarithmic term)
functions from the Sobolev space Wr,∞ with rate O

(
J−r/d (log J)2).

5 Constructing deep CNNs for approximation

In this section, we introduce the standard nodal point basis of the Korobov space [1]
to deduce our approximation scheme. This basis consists of functions of the form
d∏

j=1
φij ,lj (xj), where

{
φij ,lj

}
are hat functions.

To realize such a basis function by deep CNNs, we first use O(N) convolutional
layers to construct univariable basis functions, then we introduce O(N log N) lay-

ers to compute the approximations of the products
d̃∏

j=1
φij ,lj (xj). Finally, a linear

combination gives an approximation of f , which gives our construction.

5.1 Generating univariable basis functions by deep CNNs

We first introduce a standard basis in [1]. Let i, l, n ∈ N and

φ(x) =
{

1 − |x|, if x ∈ [−1, 1],
0, otherwise.

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 9 of 26

Define

φl,i(x) = φ

(
x − xl,i

hl

)

, 1 ≤ i ≤ 2l − 1,

where hl = 2−l and xl,i = ihl .

-1 1

1

φ

(a)

11
2

1

φ1,1

(b)

1
4

1
2

3
4

1

1
φ2,1

φ2,2

φ2,3

(c)

1
φ3,1

φ3,2 φ3,6

φ3,7

1
8

1
4

1
2

7
8

1

(d)

Figure (a) for φ, Figures (b), (c), (d) for φl,i .
For any i, l ∈ N

d , let 2l := (2l1 , . . . , 2ld) ∈ N
d ,

I l :=
d∏

j=1

{
1, 3, 5, . . . , 2lj − 1

}

be the set of integer vectors with positive odd entries, and

φl,i(x) :=
d∏

j=1

φlj ,ij (xj), i = (i1, . . . , id) ∈ I l .

Now we choose n = nN := max

{

n′ ∈ N : ∑

|l|1≤n′+d−1
#I l ≤ N

}

for N ∈ N where

#I l denotes the number of elements of the set I l . By [1, Lemma 3.6], n satisfies

log2

(
N

(log2 N)d−1

)

≤ n ≤ log2 N . (5.1)

For notational simplicity, let

N ′ = N ′
n := #{φl,i(x) : |l|1 ≤ n + d − 1, i ∈ I l},

T. Mao, D.-X. Zhou84 Page 10 of 26

then 215 ≤ N/2 ≤ N ′ ≤ N . We also denote a bijection

μ : {1, . . . , N ′} → {φl,i(x) : |l|1 ≤ n + d − 1, i ∈ I l}.
For each k ∈ {1, . . . , N ′}, we also use a notation μ(k)j to denote the index (lj , ij),
where (l, i) is the image μ(k).

We first construct the univariable hat functions

{φlj ,ij (xj) : |l|1 ≤ n + d − 1, i ∈ I l, 1 ≤ j ≤ d}
by deep CNNs.

Now we introduce the first group of deep CNN layers. Let P = ⌈log2 d
⌉ ∈ N,

then 2P−1 < d ≤ 2P . Set

φlj ,ij (xj) ≡ 1, ∀|l|1 ≤ n + d − 1, i ∈ I l, d + 1 ≤ j ≤ 2P ,

then

φl,i(x) =
2P
∏

j=1

φlj ,ij (xj), ∀x ∈ [0, 1]d .

Notice that for 1 ≤ j ≤ d,

φlj ,ij (xj) = σ

(

1 − σ

(
xj − xlj ,ij

hlj

)

− σ

(
xlj ,ij − xj

hlj

))

.

For each l satisfying |l| ≤ n + d − 1 and i ∈ I l , we take 4 vectors in R
d2P

as

W0,l,i =
⎡

⎢
⎣

W0,l,i,1
...

W0,l,i,2P

⎤

⎥
⎦ , Ŵ0,l,i =

⎡

⎢
⎣

Ŵ0,l,i,1
...

Ŵ0,l,i,2P

⎤

⎥
⎦ ,

B0,l,i =
⎡

⎢
⎣

B0,l,i,1
...

B0,l,i,2P

⎤

⎥
⎦ , B̂0,l,i =

⎡

⎢
⎣

B̂0,l,i,1
...

B̂0,l,i,2P

⎤

⎥
⎦

where for j = 1, . . . , d ,

W0,l,i,j =
⎡

⎢
⎣

0d−j
1

hlj

0j−1

⎤

⎥
⎦ , Ŵ0,l,i,j =

⎡

⎢
⎣

0d−j

− 1
hlj

0j−1

⎤

⎥
⎦ ,

and

B0,l,i,j =
[

2n+d1d−1
xlj ,ij

hlj

]

, B̂0,l,i,j =
[

2n+d1d−1

− xlj ,ij

hlj

]

,

while for j = d + 1, . . . , 2P , the vectors are 0d .
Now we take L1 = L2 = 0, m = d, M = 1, W be represented by

[W]2d2P N ′−1
0 = [WT

0,μ(1), . . . , W
T
0,μ(N ′), Ŵ

T
0,μ(1), . . . , Ŵ

T
0,μ(N ′)]T ,

B by

[B]2d2P N ′+d−1
1 = [BT

0,μ(1), . . . , B
T
0,μ(N ′), B̂

T
0,μ(1), . . . , B̂

T
0,μ(N ′), 0d−1]T

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 11 of 26

and ž = x according to Lemma 1, we know that there exist J0 ≤
⌈

2d2P N ′−1
s−1

⌉
, filters

{w(j)}J0
j=1 and biases {b(j)}J0

j=1 satisfying (4.2) such that

h(J0)(x) = σ

([
[z ∗ W − B]2d2P N ′+d−1

1
0J0s+1−2d2P N ′

])

=
[
H0,μ(1), . . . , H0,μ(N ′), Ĥ0,μ(1), . . . , Ĥ0,μ(N ′), 0J0s+d−2d2P N ′

]T
,

(5.2)
where H0,μ(k) = H0,l,i is given by means of the bijection μ as

HT
0,l,i =

[
HT

0,l,i,1,H
T
0,l,i,2, . . . , H

T
0,l,i,2P

]
, Ĥ T

0,l,i =
[
Ĥ T

0,l,i,1, Ĥ
T
0,l,i,2, . . . , Ĥ

T
0,l,i,2P

]
,

with

H0,l,i,j =
⎧
⎨

⎩

[

0d−1, σ

(
xj −xlj ,ij

hlj

)]T
, if 1 ≤ j ≤ d,

0T
d , if d + 1 ≤ j ≤ 2P ,

Ĥ0,l,i,j =
⎧
⎨

⎩

[

0d−1, σ

(
xlj ,ij

−xj

hlj

)]T
, if 1 ≤ j ≤ d,

0T
d , if d + 1 ≤ j ≤ 2P .

The number of free parameters from the input layer x to the J0-th layer is bounded
by (4.4) as

N1 ≤ (4s + 1)J0 + d ≤ 18d2P N ′ + d + 4s − 8. (5.3)

The explicit expressions of H0,l,i,j and Ĥ0,l,i,j follow from direct computations,
using the facts |xj /hli | ≤ 2l ≤ 2d+n−1 and σ(t) = 0 for t ≤ 0. This gives the first
group of J0 layers.

For the second group of convolutional layers, we take L1 = 0, m =
2d2P N ′, L2 = J0(s − 2) + d − 2d2P N ′, M = 2d+n−1, W be represented by

[W]d2P N ′
0 = [−1, 0d2P N ′−1, −1]T ,

B by

[B]3d2P N ′
1 = [0d2P N ′ , −1d2P N ′ , 0d2P N ′]T ,

and

ž =
[
H0,μ(1), . . . , H0,μ(N ′), Ĥ0,μ(1), . . . , Ĥ0,μ(N ′)

]T
,

in compliance with Lemma 1, and know that there exist J1 ≤ J0 +
⌈

d2P N ′
s−1

⌉
, filters

{w(j)}J1
j=J0+1 and biases {b(j)}J1

j=J0+1 satisfying (4.2) such that

h(J1)(x) = σ

([[
W ∗ η(J0)(x) − B

]3d2P N ′
1

0J1s+d−3d2P N ′

])

= [0d2P N ′ , H1,μ(1), . . . , H1,μ(N ′), 0J1s+d−2d2P N ′]T ,

(5.4)

T. Mao, D.-X. Zhou84 Page 12 of 26

where each H1,l,i ∈ [0, 1]d×2P
and the jd-th component satisfies

(
H1,l,i

)
jd

=
⎧
⎨

⎩

σ

(

−σ

(
xj −xlj ,ij

hlj

)

− σ

(
xlj ,ij

−xj

hlj

)

+ 1

)

= φlj ,ij (xj), if 1 ≤ j ≤ d,

1 = φlj ,ij (xj), if d + 1 ≤ j ≤ 2P .

Using (4.4), we see that the number of free parameters for this second group of
J1 − J0 convolutional layers is bounded by

N2 ≤ (4s + 1)(J1 − J0) + J0s + d ≤ 13d2P N ′ + d + 5s − 1. (5.5)

5.2 Approximating products exponentially by deep CNNs

In this subsection, we use Lemma 2 to construct next groups of convolutional layers
by induction to realize an approximation ×̃ of the product function (t1, t2)
→ t1t2

satisfying
∣
∣×̃(t1, t2) − t1t2

∣
∣ = O

(
1

2U

)
.

Definition 4 Let ×̃ = ×̃(U) be a map ×̃ : R
2 → R defined by

×̃(x, y) = (id − RU)

(
x + y

2

)

− 1

4
(id − RU) (x) − 1

4
(id − RU) (y), (5.6)

where id is the identity function, and

U = ⌈3 + log2 d + 2 log2 N ′⌉ . (5.7)

For vectors x, y with equal dimension, ×̃ acts componentwise.
For any k ∈ {1, . . . , N ′} and r ∈ {1, . . . , 2P }, define

(k, 1, r; x) = φμ(k)r (xr) = φlr ,ir (xr),

where (l, i) = (l1, . . . , ld , i1, . . . , id) is the image μ(k).
For Q ∈ {2, . . . , P + 1} and r ∈ {1, . . . , 2P−Q+1}, define

(k, Q, r; x) = ×̃ (
(k, Q, 2r − 1; x),
(k, Q, 2r; x)) .

Now we are ready to construct CNNs realizing the approximate products

(k, Q, r; x) by induction on Q = 2, 3, . . . , P based on the hat functions φ�r ,ir (x)

with Q = 1. Suppose that for some Q ≤ P , we have

h(JQ)(x)T = [0T
LQ

, HT
Q,μ(1), . . . , H

T
Q,μ(N ′), 0

T
L′

Q
], (5.8)

where LQ L′
Q ∈ Z+, each HQ,μ(k) ∈ [0, 1]d×2P

and its d × 2Q−1 × r-th component
is

(HQ,μ(k))d×2Q−1×r =
(k, Q, r; x), r = 1, 2, . . . , 2P−Q+1.

We show how to construct the convolutional layers for realizing the approximate
products for Q + 1. First applying Lemma 1 to L1 = LQ, m = d2P N ′, L2 =
L′

Q, M = 1, W represented by

[W]d2P N ′+d2Q−1

0 = [1, 0d2P N ′−1,
1

2
, 0d2Q−1−1,

1

2
]T ,

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 13 of 26

B by

[B]2d2P N ′+d2Q−1

1 = [02d2P N ′ , 2d2Q−1

]
,

and

ž =
[
HT

Q,μ(1), . . . , H
T
Q,μ(N ′)

]T
,

we know there exist JQ+1,1 ≤ JQ+
⌈

d2P N ′+d2Q−1

s−1

⌉
, {w(j)}JQ+1,1

j=JQ+1 and {b(j)}JQ+1,1
j=JQ+1

such that

h(JQ+1,1)(x) = σ

⎛

⎜
⎝

⎡

⎢
⎣

0LQ

[z ∗ W − B]2d2P N ′+d2Q−1

1
0L′

Q+(JQ+1,1−JQ)s−(2d2P N ′+d2Q−1)

⎤

⎥
⎦

⎞

⎟
⎠ .

=
[
0T
LQ

, HT
Q,μ(1), . . . , H

T
Q,μ(N ′), Ĥ

T
Q,μ(1), . . . , Ĥ

T
Q,μ(N ′), 0

T
L′

Q+1,1

]T
,

where L′
Q+1,1 = L′

Q + (JQ+1,1 − JQ

)
s − 2d2P N ′, ĤQ,μ(k) ∈ [0, 2]d×2P

and for

r ∈ {1, . . . , 2P−Q} the d × 2Q−1 × 2r-th component of ĤQ,μ(k) is the half sum
(HQ,μ(k))d×2Q−1×2r + (HQ,μ(k))d×2Q−1×(2r−1) given by

(ĤQ,μ(k))d×2Q−1×2r = 1

2
(
(k, Q, 2r; x) +
(k, Q, 2r − 1; x)) .

Again by (4.4), the number of free parameters for these JQ+1,1 − JQ convolutional
layers is bounded in terms of the width dim

(
h(JQ)(x)

)
by

N3(Q ≤ (4s + 1)(JQ+1,1 − JQ) + dim
(
h(JQ)(x)

)

≤ 9(d2P N ′ + d2Q−1) + dim
(
h(JQ)(x)

)
+ 4s + 1. (5.9)

Then we take L1 = LQ, L = 2d2P N ′, L2 = L′
Q+1,1, V = U in Lemma 2,

and we can see there exist LU = LU(Q), L′
U = L′

U(Q) ∈ Z+, {w(j)}JQ+1,2
j=KQ+1 and

{b(j)}JQ+1,2
j=KQ+1 such that

h(JQ+1,2)(x) =
[

0LU
, HT

Q,μ(1), . . . , H
T
Q,μ(N ′), Ĥ

T
Q,μ(1), . . . , ĤQ,μ(N ′), 014d2P N ′ ,

(
(id − RU) (HQ,μ(1))

)T
, . . . ,

(
(id − RU) (HQ,μ(N ′))

)T
,

(
(id − RU) (ĤQ,μ(1))

)T
, . . . ,

(
(id − RU) (ĤQ,μ(1))

)T
, 0L′

U

]T
,

where

JQ+1,2 − JQ+1,1 ≤ 2(7U + 15)d2P N ′

s − 1
+ 3U + 2

and the number of free parameters of these convolutional layers is bounded by (4.7)
as

N4(Q) ≤ 2(6U + 10)(7U + 15)d2P N ′ + (3U + 2)(3U + 5)s + (3U + 2)dim
(
h(JQ)(x)

)
.

(5.10)

T. Mao, D.-X. Zhou84 Page 14 of 26

Finally, another application of Lemma 1 with L1 = LU(Q), m =
18d2P N ′, L2 = L′

U(Q), M = 1, W represented by

[W]d2P N ′+d2Q−1

0 = [1, 0d2P N ′−1, −
1

4
, 02Q−1−1, −

1

4
]T ,

B by

[B]19d2P N ′+d2Q−1

1 = [217d2P N ′ , 02d2P N ′+2Q−1]T ,

and

ž =
[

HT
Q,μ(1), . . . , H

T
Q,μ(N ′), Ĥ

T
Q,μ(1), . . . , ĤQ,μ(N ′), 014d2P N ′ ,

(
(id − RU) (HQ,μ(1))

)T
, . . . ,

(
(id − RU) (HQ,μ(N ′))

)T
,

(
(id − RU) (ĤQ,μ(1))

)T
, . . . ,

(
(id − RU) (ĤQ,μ(1))

)T
]T

tells us that there exist JQ+1 ≤ JQ+1,2 +
⌈

d2P N ′+2Q−1

s−1

⌉
, {w(j)}JQ+1

j=JQ+1,2+1 and

{b(j)}JQ+1
j=JQ+1,2+1 such that

h(JQ+1)(x) = σ

⎛

⎝

⎡

⎣
0LU

[z ∗ W − B]19d2P N ′+d2Q−1

1
0L′

U +(JQ+1−JQ+1,2)s−d2P N ′−2Q−1

⎤

⎦

⎞

⎠

=
[

0LU +16d2P N ′+d2P N ′ , HT
Q+1,μ(1), . . . , H

T
Q+1,μ(N ′), 0L′

U +(JQ+1−JQ+1,2)s

]T

(5.11)

where HQ+1,μ(k) ∈ [0, 1]d×2P
and by direct computation the d × 2Q−1 × 2r-th

component of HQ+1,μ(k) is
(
(id − RU) (ĤQ,μ(k))

)

d×2Q−1×2r
− ((id − RU) (HQ,μ(k))

)
d×2Q−1×2r

− ((id − RU) (HQ,μ(k))
)
d×2Q−1×(2r−1)

= 1
2 (id − RU)

(
1
2 (
(k, Q, 2r; x) +
(k, Q, 2r − 1; x))

)

− 1
4 [(id − RU) (
(k, Q, 2r; x))] − 1

4 [(id − RU) (
(k, Q, 2r − 1; x))]
= ×̃ (
(k, Q, 2r; x),
(k, Q, 2r − 1; x))

=
(k, Q + 1, r; x).

The number of free parameters of these layers is bounded by

N5(Q) ≤ (4s + 1)(JQ+1 − JQ+1,2) + dim
(
h(JQ+1,2)(x)

)

≤ 9(d2P N ′ + d2Q−1) + dim
(
h(JQ+1,2)(x)

)+ 4s + 1.
(5.12)

Hence h(JQ+1) satisfies (5.8) with Q replaced by Q+1, LQ+1 = LU(Q)+16d2P N ′+
d2P N ′ and L′

Q+1 = L′
U(q) + (JQ+1 − JQ+1,2

)
s. This completes the induction

procedure. The final step of the procedure with Q + 1 = P + 1 gives

h(JP+1)(x)T = [0T
LP+1

, HT
P+1,μ(1), . . . , H

T
P+1,μ(N ′), 0

T
L′

P+1
], (5.13)

where for each μ(k), the d2P -th component of HP+1,μ(k) is
(
HP+1,μ(k)

)
d2P =
(k, P + 1, 1; x).

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 15 of 26

Let J = JP+1, and c ∈ R
dJ be the vector given by

[0LP+1, 0d2P −1, vμ(1), 0d2P −1, vμ(2), . . . , 0d2P −1, vμ(N ′−1), 0d2P −1, vμ(N ′), 0L′
P+1

]T ,

where

vl,i =
∫

[0,1]d

d∏

j=1

(
−2lj +1φlj ,ij (xj)

) ∂2df

∂x2
1 . . . ∂x2

d

(x)dx. (5.14)

Then

f
w,b
J (x) =

dJ∑

i=1

cih
(J)
i (x) =

N ′
∑

k=1

vμ(k)
(k, P + 1, 1; x) (5.15)

is the desired output function constructed by our deep CNN network.

5.3 Complexity analysis

We analyze the complexity of our CNN network by counting its depth and number
of free parameters. The depth is bounded as

J = J0 + (J1 − J0) +
P∑

Q=1

[
(JQ+1 − JQ+1,2) + (JQ+1,2 − JQ+1,1) + (JQ+1,1 − JQ)

]

≤ (7UP+16P+4)
s−1 d2P N ′ + (3U + 4)P + 2.

By means of the fact that P ≤ 1 + log2 d and U ≤ 3 log2 N ′, we have

J ≤
(

168

s − 1
+ 2

)
(
log2 d

)
d2(log2 N)N .

Given the upper bound of the depth J , for any j ≤ J , the width of the layer h(j)(x)

can be bounded as

dim
(
h(j)(x)

)
≤ d + J s ≤

(
168

s − 1
+ 2

)
(
log2 d

)
d2(log2 N)Ns + d.

The total number of free parameters in our network can be bounded as

N = N1 + N2 +
P∑

Q=1

[
N3(Q) + N4(Q) + N5(Q)

]+ dim
(
h(J)(x)

)

≤ [2(6U + 10)(7U + 15)P + 18P + 32] d2P N ′ + [(3U + 2)(3U + 5)P + 4P + 9] s

+ [(3U + 4)P + 1] dim
(
h(J)(x)

)+ P − 9.

Since N ≥ 216, we have N ′ ≥ 215, using the previous upper bounds and the fact that
s < d we can conclude

N ≤ 13385d2(log2 d)2(log2 N)2N . (5.16)

T. Mao, D.-X. Zhou84 Page 16 of 26

6 Estimating the approximation error

Now we carry out our error estimates. Take an intermediate function f
(1)
n defined on

[0, 1]d by

f (1)
n =

∑

|l|1≤n+d−1

∑

i∈I l

vl,iφl,i (6.1)

The basis of hat functions provides nice bounds [1] for the error term ‖f (1)
n − f ‖p

when f is from the Korobov space X2,p
([0, 1]d). Then we make use of the so-

called 0-in-0-out property of the map ×̃ applied in [16] in the case p = ∞ to bound
‖f (1)

n − f
w,b
J ‖p.

Proof of Theorem 1 A series expansion of f ∈ W 2,p
([0, 1]d) in terms of the basis{

φl,i

}
found in [1] (3.19) and (3.24) provides an expansion of the error function

f − f
(1)
n in Lp as

f − f (1)
n =

∑

|l|1>n+d−1

∑

i∈I l

vl,iφl,i . (6.2)

Observe that supp(φl,i)
⋂

supp(φl,i′) = ∅ for i �= i′. We first estimate in the case
p = ∞. By (6.1),

‖f − f
(1)
n ‖∞ ≤ ∑

|l|1>n+d−1
max
i∈I l

|vl,i | ≤ ∑

k>n+d−1
2−2kkd−1 ≤ 2 × 2−2nnd−1

≤ (log2 N
)3(d−1)

N−2,

(6.3)
where the second inequation follows from [1, Lemma 3.3].

It remains to estimate the distance between f
w,b
J and f

(1)
n . We claim that for Q ∈

{1, . . . , P + 1}, the functions {
(k, Q, r; ·)}2P−Q+1

r=1 satisfy
∣
∣
∣
∣
∣
∣

(k, Q, r; x) −

2Q−1×r∏

j=2Q−1×(r−1)+1

φμ(k)j (xj)

∣
∣
∣
∣
∣
∣
≤ 2Q−1 − 1

4dN2
, x ∈ [0, 1]d,

(k, Q, r; x) = 0 whenever
2Q−1×r∏

j=2Q−1×(r−1)+1
φμ(k)j (xj) = 0, and
(k, Q, r; x) ∈

[0, 1] for all x ∈ [0, 1]d .
We prove our claim by induction. The case Q = 1 is trivial since

(k, 1, r; x) = φμ(k)r (xr), r = 1, . . . , 2P .

Suppose that the claim is true for some Q ∈ {1, . . . , P }. Consider
(k, Q + 1, r; x)

with some r ∈ {1, . . . , 2P−Q}. By our construction,

(k, Q, r; x) = ×̃ (
(k, Q, 2r − 1; x),
(k, Q, 2r; x)) .

A direct computation shows that, on the domain [0, 1], the function id − RU is
exactly the linear interpolation of the univariable quadratic polynomial t2 at the points

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 17 of 26

{(
k

2U , (k
2U)2
)}2U

k=0
(see also [20]). Then for any t1, t2 ∈ [0, 1], there holds

×̃ (t1, t2) = 0 if t1t2 = 0 (6.4)

and
∣
∣×̃ (t1, t2) − t1t2

∣
∣

≤ ∣∣(id − RU) (
t1+t2

2) − (t1+t2
2)2

∣
∣+ 1

4 |(id − RU) (t1) − t2
1 | + 1

4 |(id − RU) (t2) − t2
2 |

≤ 1
2U + 1

4
1

2U + 1
4

1
2U ≤ 1

4dN2 .

Hence for any x ∈ [0, 1]d ,
∣
∣
∣
∣
∣

(k, Q + 1, r; x) −

2Q×r∏

j=2Q×(r−1)+1
φμ(k)j (xj)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣×̃ (
(k, Q, 2r; x),
(k, Q, 2r − 1; x)) −
(k, Q, 2r; x) ×
(k, Q, 2r−1; x)

∣
∣
∣
∣

+
∣
∣
∣
∣
∣

(k, Q, 2r; x)
(k, Q, 2r − 1; x) −

2Q−1×2r∏

j=2Q−1×(2r−2)+1
φμ(k)j (xj)

∣
∣
∣
∣
∣

≤ 1
4dN2 + 2 × 2Q−1−1

4dN2 = 2Q−1
4dN2 .

Furthermore, if
2Q×r∏

j=2Q×(r−1)+1
φμ(k)j (xj) = 0, then

2Q−1×(2r−1)∏

j=2Q−1×(2r−2)+1
φμ(k)j (xj) =

0 or
2Q−1×2r∏

j=2Q−1×(2r−1)+1
φμ(k)j (xj) = 0. By the induction hypothesis, this implies

(k, Q, 2r; x)
(k, Q, 2r − 1; x) vanishes and thereby

(k, Q + 1, r; x) = ×̃ (
(k, Q, 2r; x),
(k, Q, 2r − 1; x)) = 0.

Finally, it is easy to verify
(k, Q + 1, r; x) ∈ [0, 1], hence we complete the
induction and verify our claim. From the proved claim, we know that

∣
∣
∣
∣
∣
∣

(k, P + 1, 1; x) −

2P
∏

j=1

φμ(k)j (xj)

∣
∣
∣
∣
∣
∣
≤ 2P − 1

4dN2
≤ 1

N2

and supp (
(k, P + 1, 1; ·)) ⊆ supp(φμ(k)).
Since supp(φl,i)

⋂
supp(φl,i′) = ∅, we have

|f (1)
n (x) − f

w,b
J (x)| ≤ 1

N2

∑

l∈Nd

max
i∈I l

|vl,i | ≤ 1

N2

∞∑

k=1

2−2kkd−1 ≤ 1

N2
. (6.5)

Together with (6.3), f
w,b
J is a function constructed by a deep neural networks which

satisfies

‖f − f
w,b
J ‖∞ ≤

((
log2 N

)3(d−1) + 1
)

N−2. (6.6)

This completes the estimate in the case p = ∞.

T. Mao, D.-X. Zhou84 Page 18 of 26

Then, we turn to the case 1 ≤ p < ∞. Notice that

‖f ‖2,p =
∥
∥
∥
∥
∥

∂2df

∂x2
1 . . . ∂x2

d

∥
∥
∥
∥
∥

p

≤ 1.

By (6.2) we have

‖f − f (1)
n ‖p ≤

∑

|l|1>n+d−1

∥
∥
∥
∥
∥
∥

∑

i∈I l

vi,lφi,l

∥
∥
∥
∥
∥
∥

p

.

Since supp(φl,i)
⋂

supp(φl,i′) = ∅ for i �= i′, we have

∫
[0,1]d

∣
∣
∣
∣
∣

∑

j∈I l

vj ,lφj ,l

∣
∣
∣
∣
∣

p

dx = ∑

i∈I l

∫
supp(φl,i)

∣
∣
∣
∣
∣

∑

j∈I l

vj ,lφj ,l

∣
∣
∣
∣
∣

p

dx

= ∑

i∈I l

∫
supp(φl,i)

∣
∣vi,lφi,l

∣
∣p dx

≤
(

2
p+1

)d
2−|l|1 ∑

i∈I l

|vi,l |p,

where the last inequation is a consequence of [1, Lemma 3.1].
By the explicit expression (5.14) for the expansion coefficients {vl,i} and

[1, Lemma 3.1], for any l ∈ N
d and i ∈ I l , we have

|vl,i | = 2−|l|1−d

∣
∣
∣
∣
∫
[0,1]d φl,i(x)

∂2df

∂x2
1 ...∂x2

d

(x)dx

∣
∣
∣
∣ ≤ 2−|l|1−d‖φl,i‖q

∥
∥
∥
∥

∂2df

∂x2
1 ...∂x2

d

∥
∥
∥
∥

p

≤ 2−|l|1−d
(

2
q+1

) d
q

2− |l|1
q ,

where q is the dual number of p given by q = p
p−1 if p > 1 and q = ∞ if p = 1.

Therefore,
∥
∥
∥
∥
∥

∑

i∈I l

vi,lφi,l

∥
∥
∥
∥
∥

p

≤
{
(

2
p+1

)d
2−|l|1 ∑

i∈I l

[

2−|l|1−d
(

2
q+1

) d
q

2− |l|1
q

]p} 1
p

≤
(

2
q+1

) d
q
(

2
p+1

) d
p

2
−|l|1

(
1+ 1

q

)
−d ≤ 2

−
(

2− 1
p

)
|l|1

(6.7)

and

‖f − f
(1)
n ‖p ≤ ∑

|l|1>n+d−1
2
−
(

2− 1
p

)
|l|1 ≤ ∑

k>n+d−1
2
−
(

2− 1
p

)
k
kd−1

≤ 2 × 2
−
(

2− 1
p

)
n
nd−1 ≤ (log2 N

)
(

3− 1
p

)
(d−1)

N
−
(

2− 1
p

)

.

(6.8)

On the other hand,

‖f (1)
n − f

w,b
J ‖p ≤ ‖f (1)

n − f
w,b
J ‖∞ ≤ 1

N2
. (6.9)

Hence

‖f − f
w,b
J ‖p ≤

(
(
log2 N

)
(

3− 1
p

)
(d−1) + 1

)

N
−
(

2− 1
p

)

. (6.10)

This verifies the desired error bound (2.1).

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 19 of 26

The bounds for J and N were proved in Section 5.3 . The proof of Theorem 1 is
complete.

Appendix: Proof of Lemma 2

In this appendix, we prove Lemma 2.

Proof of Lemma 2 We show how the iterations of tooth functions can be realized by
DCNNs.

For the 1st step, we take in Lemma 1 that L1 = L1, m = L, L2 = L2, M = 1, W

represented by

[W]7L
0 = [1, 04L−1, 1, 03L]T ,

B by [B]8L
1 = 08L, and ž = y. Then we conclude there exist filters {w(j)}K0

j=1 and

biases {b(j)}K0
j=1 satisfying (4.2) such that

h(K0)(ŷ) =
⎡

⎣
0L1

[z ∗ W]8L
1

0n0

⎤

⎦ =
[
0L1 , y

T , 03L, yT , 03L, 0n0

]T
,

where K0 ≤
⌈

7L
s−1

⌉
and n0 = L2 + K0s − 7L.

For the u + 1-th step, we assume the Ku-th layer has the form

h(Ku)(ŷ) =
[
0L1,u

, yT , 03L, Tu(y)T , 02L, Ru(y)T , 0L2,u

]
. (6.1)

Notice h(K0) already has this form (see Definition 3).
Now following from Lemma 1 by letting L1 = L1,u, m = 8L, L2 = L2,u,

M = 1, W represented by

[W]2L
0 = [2, 0L−1, 4, 0L−1, 2]T ,

B by

[B]10L
1 = [42L, 03L,

(
2−u+1

)
2L

, 42L, 0L]T ,

and

ž =
[
yT , 03L, Tu(y)T , 02L, Ru(y)T

]
,

T. Mao, D.-X. Zhou84 Page 20 of 26

we find there exist filters {w(j)}Ku+1,1
j=Ku+1 and biases {b(j)}Ku+1,1

j=Ku+1 satisfying the
restriction (4.2) such that

h(Ku+1,1)(ŷ) = σ

⎛

⎝

⎡

⎣
0L1,u

[z ∗ W − B]10L
1

0L2,u+(Ku+1,1−Ku)s−2L

⎤

⎦

⎞

⎠

= σ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0L1,u

2y

4y

2y

0L

2Tu(y)

4Tu(y)

2Tu(y)

2Ru(y)

4Ru(y)

2Ru(y)

0nu+1,1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0L1,u

4L

4L

0L

0L

0L(
2−u+1)

L(
2−u+1)

L
4L

4L

0L

0nu+1,1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0L1,u

02L

2y

0L

2−uσ (2Su(y))

2−uσ (4Su(y) − 2L)

2−uσ (2Su(y) − 2L)

02L

2Ru(y)

0nu+1,1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where nu+1,1 = L2,u +(Ku+1,1 − Ku

)
s −2L and the number of layers Ku+1,1 −Ku

is bounded by
⌈

2L
s−1

⌉
.

Again, appealing Lemma 1 by letting L1 = L1,u + 2L, m = 8L, L2 = nu+1,1,

M = 2, W represented by

[W]2L
0 = [1, 0L−1, −1, 0L−1, 1]T ,

B by

[B]10L
1 = [0L, 43L, 0L, 42L, 0L, 42L]T ,

and

ž =
[

2yT , 0L, 2−uσ (2Su(y))T , 2−uσ (4Su(y) − 2L)T ,

2−uσ (2Su(y) − 2L)T , 02L, 2Ru(y)T
]

,

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 21 of 26

we find there exist filters {w(j)}Ku+1,2
j=Ku+1,1+1, biases {b(j)}Ku+1,2

j=Ku+1,1+1 satisfying the
restriction (4.2) such that

h(Ku+1,2)(ŷ) = σ

⎛

⎝

⎡

⎣
0L1,u+2L

[z ∗ W − B]10L
1

0nu+1,1+(Ku+1,2−Ku+1,1)s−2L

⎤

⎦

⎞

⎠

= σ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0L1,u+2L

2y

−2y

2y + 2−uσ (2Su(y))

−2−uσ (2Su(y)) + 2−uσ (4Su(y) − 2L)

2−uσ (2Su(y)) − 2−uσ (4Su(y) − 2L) + 2−uσ (2Su(y) − 2L)

2−uσ (4Su(y) − 2L) − 2−uσ (2Su(y) − 2L)

2−uσ (2Su(y) − 2L)

2Ru(y)

−2Ru(y)

2Ru(y)

0nu+1,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0L1,u+2L

0L

4L

4L

4L

0L

4L

4L

0L

4L

4L

0nu+1,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [0L1,u+2L, 2yT , 03L, 2Tu+1(y)T , 02L, 2Ru(y)T , 0nu+1,2+2L

]T
,

where nu+1,2 = nu+1,1 + (Ku+1,2 − Ku+1,1
)
s − 2L and the number of layers

Ku+1,2 − Ku+1,1 is bounded by
⌈

2L
s−1

⌉
.

Again we can deduce from putting L1 = L1,u +2L, m = 8L, L2 = nu+1,2 +2L,

M = 2, W represented by

[W]3L
0 = [1

2
, 03L−1,

1

2
]T ,

B by

[B]11L
1 = [03L, 1L, 06L, 1L]T ,

and

ž =
[
2yT , 03L, 2Tu+1(y)T , 02L, 2Ru(y)T

]T

T. Mao, D.-X. Zhou84 Page 22 of 26

in Lemma 1 that there exist filters {w(j)}Ku+1,2
j=Ku+1,1+1, biases {b(j)}Ku+1,2

j=Ku+1,1+1 satisfy-
ing the restriction (4.2) such that

h(Ku+1,3)(y) = σ

⎛

⎝

⎡

⎣
0L1,u+2L

[z ∗ W − B]11L
1

0nu+1,2+(Ku+1,3−Ku+1,2)s−3L

⎤

⎦

⎞

⎠

= σ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0L1,u+2L

y

02L

y

Tu+1(y)

02L

Ru(y) + Tu+1(y)

02L

Ru(y)

0nu+1,3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0L1,u+2L

0L

02L

1L

0L

02L

0L

02L

1L

0nu+1,3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [0L1,u+2L, yT , 03L, Tu+1(y)T , 02L, Ru+1(y)T , 0nu+1,3+3L

]T
,

where nu+1,3 = nu+1,2 + (Ku+1,3 − Ku+1,2
)
s − 3L and the number of layers

Ku+1,3 − Ku+1,2 is bounded by
⌈

3L
s−1

⌉
.

Let Ku+1 = Ku+1,3, L1,u+1 = L1,u + 2L and L2,u+1 = nu+1,3 + 3L. This is
exactly the form (6.1). By repeating this process V times, from the input y we obtain

h(KV)(y) =
[
0L1,V

, yT , 03L, TV (y)T , 02L, RV (y)T , 0L2,V

]T
.

To realize (4.5), we only need to construct y − RV (y) by a deep CNN. Applying
Lemma 1 to L1 = L1,V , m = 8L, L2 = L2,V , M = 1, W represented by

[W]8L
0 = [1, 0L−1, −1, 07L−1, 1]T ,

B by

[B]16L
1 = [04L, 1L, 010L, 1L]T ,

and

ž =
[
yT , 03L, TV (y)T , 02L, RV (y)T

]T
,

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 23 of 26

we see that there exist filters {w(j)}Kj=KV +1, biases {b(j)}Kj=KV +1 satisfying the
restriction (4.2) such that

h(K)(y) = σ

⎛

⎝

⎡

⎣
0L1,V

[z ∗ W − B]16L
1

0L2,V +(K−KV +1)s−8L

⎤

⎦

⎞

⎠

= σ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0L1,V

y

−y

02L

TV (y)

−TV (y)

0L

RV (y)

y − RV (y)

06L

RV (y)

0nV +1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0L1,V

0L

0L

02L

1L

0L

0L

0L

0L

06L

1L

0nV +1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= [0L1,V
, yT , 07L, yT − RV (y)T , 07L, 0nV +1

]T
,

where nV +1 = L2,V +(K − KV) s−8L and the number of layers K−KV is bounded

by
⌈

8L
s−1

⌉
. This is exactly (4.5) with LV = L1,V and L′

V = nV +1.

We finally count the depth K and the number of free parameters N . At the first

step, K0 ≤
⌈

7L
s−1

⌉
+1. At the u+1-th step, Ku+1,1−Ku ≤

⌈
2L
s−1

⌉
, Ku+1,2−Ku+1,1 ≤

⌈
2L
s−1

⌉
, Ku+1,3 − Ku+1,2 ≤

⌈
3L
s−1

⌉
. At the last step, K − KV ≤

⌈
8L
s−1

⌉
. Therefore,

K ≤ (7V + 15)L

s − 1
+ 3V + 2.

The dimension of each bias b(j) are bounded by dim(b(j)) ≤ dK ≤ L+Ks. Then the
number of free parameters in these biases b(K0), b(K), b(Ku+1,1), b(Ku+1,2), b(Ku+1,3),
u = 1, . . . , p satisfies:

N6 ≤ (3V + 2)[dim
(
ŷ
)+ Ks].

Together with the number of free parameters in the other layers, we have

N7 ≤ (3V + 2)[dim
(
ŷ
)+ Ks] + 3Ks

≤ (6V + 10)(7V + 15)L + (3V + 2)(3V + 5)s + (3V + 2)dim
(
ŷ
)

.

This completes the proof of Lemma 2.

T. Mao, D.-X. Zhou84 Page 24 of 26

Acknowledgements The work described in this paper is supported partially by the Laboratory for AI-
Powered Financial Technologies, the Research Grants Council of Hong Kong (Projects # C1013-21GF and
#11308121), the Germany/Hong Kong Joint Research Scheme (Project No. G-CityU101/20), NSFC/RGC
Joint Research Scheme (RGC Project No. N CityU102/20 and NSFC Project No. 12061160462), and
Hong Kong Institute for Data Science.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Declarations

The authors have no other relevant financial or non-financial interests to disclose, except the sponsorships
stated in the section of Acknowledgements.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
2. Chui, C.K., Lin, S.B., Zhang, B., Zhou, D.X.: Realization of spatial sparseness by deep reLU nets

with massive data. IEEE Trans. Neural Netw. Learn. Syst. 33, 229–243 (2022)
3. Chui, C.K., Lin, S.B., Zhou, D.X.: Deep neural networks for rotation-invariance approximation and

learning. Anal. Appl. 17, 737–772 (2019)
4. Eldan, R., Shamir, O.: The power of depth for feedforward neural networks. In: 29th Annual

Conference on Learning Theory, PMLR, vol. 49, pp. 907–940 (2016)
5. Fang, Z., Feng, H., Huang, S., Zhou, D.X.: Theory of deep convolutional neural networks II: spherical

analysis. Neural Netw. 131, 154–162 (2020)
6. Feng, H., Hou, S.Z., Wei, L.Y., Zhou, D.X.: CNN models for readability of Chinese texts. Math.

Found. Comp. 5, 351–362 (2022)
7. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput.

18, 1527–1554 (2006)
8. Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep learning: Pruning and

growth for efficient inference and training in neural networks. J. Mach. Learn. Res. 22, 1–124 (2021)
9. Klusowski, J.M., Barron, A.R.: Approximation by combinations of reLU and squared reLU ridge

functions with �1 and �0 controls. IEEE Trans. Inf. Theory 64, 7649–7656 (2018)
10. Kohler, M., Krzyżak, A.: Nonparametric regression based on hierarchical interaction models. IEEE

Trans. Inf. Theory 63, 1620–1630 (2016)
11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural

networks. Commun. ACM 60, 84–90 (2012)
12. Liang, S., Srikant, R.: Why deep neural networks for function approximation? In: Proceedings of

international conference on learning representations (2017)
13. Lin, S.B.: Generalization and expressivity for deep nets. IEEE Trans. Neural Netw. Learn Syst. 30,

1392–1406 (2019)
14. Mao, T., Shi, Z.J., Zhou, D.X.: Theory of deep convolutional neural networks III: Approximating

radial functions. Neural Netw. 144, 778–790 (2021)
15. Mhaskar, H.N.: Approximation properties of a multilayered feedforward artificial neural network.

Adv. Comput. Math. 1, 61–80 (1993)

Approximation of functions from Korobov spaces by deep convolutional neural networks 84Page 25 of 26

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

16. Montanelli, H., Du, Q.: New error bounds for deep reLU networks using sparse grids. SIAM Journal
on Mathematics of Data Science 1, 78–92 (2019)

17. Pinkus, A.: Multilayer feedforward networks with a nonpolynomial activation function can approxi-
mate any function. Neural Netw. 6, 861–867 (1993)

18. Poggio, T., Mhaskar, H.N., Rosasco, L., Miranda, B., Liao, Q.: Why and when can deep—but not
shallow—networks avoid the curse of dimensionality: a review. Internat. J. Automation Comput. 14,
503–519 (2017)

19. Telgarsky, M.: Benefits of depth in neural networks. In: 29th Annual Conference on Learning Theory,
PMLR, vol. 49, pp. 1517–1539 (2016)

20. Yarotsky, D.: Error bounds for approximations with deep reLU networks. Neural Netw. 94, 103–114
(2017)

21. Zhou, D.X.: Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 48,
787–794 (2020)

22. Zhou, D.X.: Theory of deep convolutional neural networks: Downsampling. Neural Netw. 124, 319–
327 (2020)

23. Zhou, D.X.: Deep distributed convolutional neural networks: universality. Anal. Appl. 16, 895–919
(2018)

24. Zhou, D.X. In: Webster, J. (ed.): Deep Convolutional Neural Networks. Wiley Encyclopedia of Elec-
trical and Electronics Engineering, Hoboken (2021). https://doi.org/10.1002/047134608X.W8424

25. Zhu, X.N., Li, Z.Y., Sun, J.: Expression recognition method combining convolutional features and
Transformer, Math. Found. Comp., online first

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

T. Mao, D.-X. Zhou84 Page 26 of 26

https://doi.org/10.1002/047134608X.W8424

	Approximation of functions from Korobov spaces by deep convolutional neural networks
	Abstract
	Introduction
	Main results
	Comparisons and discussion
	Two basic blocks of CNNs
	Representing shallow networks by DCNNs
	Approximating quadratic polynomials by DCNNs

	Constructing deep CNNs for approximation
	Generating univariable basis functions by deep CNNs
	Approximating products exponentially by deep CNNs
	Complexity analysis

	Estimating the approximation error
	Appendix: : Proof of Lemma 2
	Declarations
	References

