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Abstract
Physics-informed neural networks approximate solutions of PDEs by minimizing
pointwise residuals. We derive rigorous bounds on the error, incurred by PINNs in
approximating the solutions of a large class of linear parabolic PDEs, namely Kol-
mogorov equations that include the heat equation and Black-Scholes equation of
option pricing, as examples. We construct neural networks, whose PINN residual
(generalization error) can be made as small as desired.We also prove that the total 2-
error can be bounded by the generalization error, which in turn is bounded in terms
of the training error, provided that a sufficient number of randomly chosen training
(collocation) points is used. Moreover, we prove that the size of the PINNs and the
number of training samples only grow polynomially with the underlying dimension,
enabling PINNs to overcome the curse of dimensionality in this context. These results
enable us to provide a comprehensive error analysis for PINNs in approximating
Kolmogorov PDEs.

Keywords Physics-informed neural networks Deep learning
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1 Introduction

Background and context Partial differential equations (PDEs) are ubiquitous as
mathematical models in the sciences and engineering. Explicit solution formulas
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for PDEs are not available except in very rare cases. Hence, numerical methods,
such as finite difference, finite element and finite volume methods, are key tools in
approximating solutions of PDEs. In spite of their well-documented successes, it is
clear that these methods are inadequate for a variety of problems involving PDEs.
In particular, these methods are not suitable for efficiently approximating PDEs with
high-dimensional state or parameter spaces. Such problems arise in different con-
texts ranging from PDEs such as the Boltzmann, Radiative transfer, Schrödinger and
Black-Scholes type equations with very high number of spatial dimensions, to many-
query problems, as in uncertainty quantification (UQ), optimal design and inverse
problems, which are modelled by PDEs with very high parametric dimensions.

Given this pressing need for efficient algorithms to approximate the afore-
mentioned problems, machine learning methods are being increasingly deployed in
the context of scientific computing. In particular, deep neural networks (DNNs), i.e.
multiple compositions of affine functions and scalar nonlinearities, are being widely
used. Given the universality of DNNs in being able to approximate any continuous
(measurable) function to desired accuracy, they can serve as ansatz spaces for solu-
tions of PDEs, as for high-dimensional semi-linear parabolic PDEs [7], linear elliptic
PDEs [16, 36] and nonlinear hyperbolic PDEs [24, 25] and references therein. More
recently, DNN-inspired architectures such as DeepOnets [4, 19, 22] and Fourier Neu-
ral operators [21] have been shown to even learn infinite-dimensional operators,
associated with underlying PDEs, efficiently.

A large part of the literature on the use of deep learning for approximating PDEs
relies on the supervised learning paradigm, where the DNN has to be trained on
possibly large amounts of labelled data. However, in practice, such data is acquired
from either measurements or computer simulations. Such simulations might be very
computationally expensive [24] or even infeasible in many contexts, impeding the
efficiency of the supervised learning algorithms. Hence, it would be very desirable to
find a class of machine learning algorithms that can approximate PDEs, either with-
out any explicit need for data or with very small amounts of data. Physics-informed
neural networks (PINNs) provide exactly such a framework.

Physics-informed neural networks (PINNs) PINNs were first proposed in the 1990s
[6, 17, 18] as a machine learning framework for approximating solutions of differen-
tial equations. However, they were resurrected recently in [33, 34] as a practical and
computationally efficient paradigm for solving both forward and inverse problems
for PDEs. Since then, there has been an explosive growth in designing and apply-
ing PINNs for a variety of applications involving PDEs. A very incomplete list of
references includes [1, 13, 14, 23, 26–29, 32, 35, 40] and references therein.

We briefly illustrate the idea behind PINNs by considering the following general
form of a PDE:

0 0 for 0 (1.1)

Here, is compact and are the differential and boundary operators,
0 is the solution of the PDE, 0 specifies

the (spatial) boundary condition and is the initial condition.
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We seek deep neural networks 0 (see (2.6) for a definition),
parameterized by , constituting the weights and biases, that approximate the
solution of (1.1). To this end, the key idea behind PINNs is to consider pointwise
residuals, defined for any sufficiently smooth function 0 as,

0
(1.2)

for , , 0 . Using these residuals, one measures how well a
function satisfies resp. the PDE, the boundary condition and the initial condition
of (1.1). Note that for the exact solution 0.

Hence, within the PINNs algorithm, one seeks to find a neural network , for
which all residuals are simultaneously minimized, e.g. by minimizing the quantity,

2

0

2

0

2

2 . (1.3)

However, the quantity , often referred to as the population risk or generaliza-
tion error [29] of the neural network involves integrals and can therefore not be
directly minimized in practice. Instead, the integrals in (1.3) are approximated by
numerical quadrature, resulting in,

2

1

2 2

1

2

2

1

2 . (1.4)

Here, one samples quadrature points in space-time to construct data sets
, and , and are suitable quadrature

weights for . Thus, the generalization error is approximated by the
so-called training loss or training error [29],

2 2 2 2 (1.5)

where , and a stochastic gradient descent algorithm is to used to
approximate the non-convex optimization problem,

argmin 2 (1.6)

and is the trained PINN that approximates the solution of the PDE (1.1).
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Theory for PINNs Given this succinct description of the PINNs algorithm, the
following fundamental theoretical questions arise immediately,

Q1. Given a tolerance 0, does there exist a neural network ,

parametrized by a such that the corresponding generalization error
(population risk) (1.3) is small, i.e. ?

Q2. Given a PINN with small generalization error, is the corresponding total
error small, i.e. is , for some , for some
suitable norm . , and with being the solution of the PDE (1.1)?

The above questions are of fundamental importance as affirmative answers to them
certify that, in principle, there exists a (physics-informed) neural network, corre-
sponding to the parameter , such that the resulting PDE residual (1.2) is small, and
consequently also the overall error in approximating the solution of the PDE (1.1).

Moreover, the smallness of the generalization error can imply that the train-
ing error (1.5), which is an approximation of the generalization error, is also
small. Hence, in principle, the (global) minimization of the optimization problem
(1.6) should result in a proportionately small training error.

However, the optimization problem (1.6) involves the minimization of a non-
convex, very high-dimensional objective function. Hence, it is unclear if a global
minimum is attained by a gradient-descent algorithm. In practice, one can evaluate
the training error for the (local) minimizer of (1.6). Thus, it is natural to
ask if,

Q3. Given a small training error and a sufficiently large training set , is
the corresponding generalization error also proportionately small?

An affirmative answer to question Q3, together with question Q2, will imply that the
trained PINN is an accurate approximation of the solution of the underlying
PDE (1.1). Thus, answering the above three questions affirmatively will constitute
a comprehensive theoretical investigation of PINNs and provide a rationale for their
very successful empirical performance.

Given the very large number of papers exploring PINNs empirically, the rigor-
ous theoretical study of PINNs is in a relative state of infancy. In [37], the authors
prove a consistency result for PINNs, for linear elliptic and parabolic PDEs, where
they show that if 0 for a sequence of neural networks ,
then 0, under the assumption that one adds a specific -
regularization term to the loss function, thus partially addressing question Q3 for
these PDEs. However, this result does not provide quantitative estimates on the
underlying errors. A similar result, with more quantitative estimates for advection
equations is provided in [38].

In [27, 29], the authors provide a strategy for answering questions Q2 and Q3
above. They leverage the stability of solutions of the underlying PDE (1.1) to bound
the total error in terms of the generalization error (question Q2). Similarly, they use
accuracy of quadrature rules to bound the generalization error in terms of the training
error (question Q3). This approach is implemented for forward problems correspond-
ing to a variety of PDEs such as the semi-linear and quasi-linear parabolic equations
and the incompressible Euler and the Navier-Stokes equations [29], radiative transfer
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equations [28], nonlinear dispersive PDEs such as the KdV equations [1] and for
the unique continuation (data assimilation) inverse problem for many linear elliptic,
parabolic and hyperbolic PDEs [27]. However, these works suffer from two essen-
tial limitations: first, question Q1 on the smallness of generalization error is not
addressed and second, the assumptions on the quadrature rules in [27, 29] are rather
stringent and in particular, the analysis does not include the common choice of using
random sampling points in , unless an additional validation set is chosen. Thus, the
theoretical analysis presented in [27, 29] is incomplete and this sets the stage for the
current paper.

Aims and scope of this paper Given the above discussion, our main aims in this paper
are to address the fundamental questions Q1, Q2 and Q3 and to establish a solid
foundation and rigorous rationale for PINNs in approximating PDEs.

To this end, we choose to focus on a specific class of PDEs, the so-called Kol-
mogorov equations [31] in this paper. These equations are a class of linear, parabolic
PDEs which describe the space-time evolution of the density for a large set of
stochastic processes. Prototypical examples include the heat (diffusion) equation and
Black-Scholes type PDEs that arise in option pricing. A key feature of Kolmogorov
PDEs is the fact that the equations are set in very high dimensions. For instance,
the spatial dimension in a Black-Scholes PDE is given by the number of underly-
ing assets (stocks), upon which the basket option is contingent, and can range up to
hundreds of dimensions.

Our motivation for illustrating our analysis on Kolmogorov PDEs is twofold.
First, they offer a large class of PDEs with many applications, while still being lin-
ear. Second, it has already been shown empirically in [29, 30, 39] that PINNs can
approximate very high-dimensional Kolmogorov PDEs efficiently.

Thus, in this paper,

– We show that there exist neural networks, approximating a class of Kolmogorov
PDEs, such that the resulting PINN generalization error (1.3), and the total error,
can be made as small as possible. Moreover, under suitable hypothesis on the
initial data and the underlying exact solutions, we will show that the size of these
networks does not grow exponentially with respect to the spatial dimension of
the underlying PDE. This is done by explicitly constructing networks using a
representation formula, the so-called Dynkin’s formula, that relates the solutions
of the Kolmogorov PDE to the generator and sample paths for the underlying
stochastic process.

– We leverage the stability of Kolmogorov PDEs to bound the error, incurred by
PINNs in 2-norm in approximating solutions of Kolmogorov PDEs, by the
underlying generalization error.

– We provide rigorous bounds for the generalization error of the PINN approximat-
ing Kolmogorov PDEs in terms of the underlying training error (1.5), provided
that the number of randomly chosen training points is sufficiently large. Further-
more, the number of random training points does not grow exponentially with
the dimension of the underlying PDE. We use a novel error decomposition and
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standard Hoeffding’s inequality type covering number estimates to derive these
bounds.

Thus, we provide affirmative answers to questions Q1, Q2 and Q3 for this large class
of PDEs. Moreover, we also show that PINNs can overcome the curse of dimension-
ality in approximating these PDEs. Hence, our results will place PINNs for these
PDEs on solid theoretical foundations.

The rest of the paper is organized as follows: In Section 2, we present prelimi-
nary material on linear Kolmogorov equations and describe the PINNs algorithm to
approximate them. The generalization error and total error (questions Q1 and Q2) are
considered in Section 3 and the generalization error is bounded in terms of training
error (question Q3) in Section 4.

2 PINNs for linear Kolmogorov equations

2.1 Linear Kolmogorov PDEs

In this paper, we will consider the following general form of linear time-dependent
partial differential equations,

1
2Trace for all 0

0 for all
for all 0 .

(2.1)

where and are affine functions, denotes the gradi-
ent and the Hessian (both with respect to the space coordinates). For definiteness,
we set 0 1 . PDEs of the form (2.1) are referred to as Kolmogorov equa-
tions and arise in a large number of models in science and engineering. Prototypical
examples of Kolmogorov PDEs include,

1. Heat Equation: Let 0 and , where 0 is the thermal diffu-
sivity of the medium and is the -dimensional identity matrix. This results in
the following PDE for the temperature ,

1

0 . (2.2)

Here, describes the initial heat distribution. Suitable boundary data complete
the problem.

2. Black-Scholes equation: If both and in (2.1) are linear functions, we obtain
the Black-Scholes equation, which models the evolution in time of the price
of an option that is based on underlying stocks . Up to a straightforward
change of variables, the corresponding PDE is given by (see, e.g. [31]),
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1 1

0 .

(2.3)
Here, the are stock volatilities, the coefficients model the correlation
between the different stock prices, is an interest rate and the initial con-
dition is interpreted as a payoff function. Prototypical examples of such
payoff functions are max 0 (basket call option),
max max 0 (call on max) and analogously for put options.

Our goal in this paper is to approximate the classical solution of Kolmogorov
equations with PINNs. We start with a brief recapitulation of neural networks below.

2.2 Neural networks

We denote by be an (at least) twice continuously differentiable activation
function, like tanh or sigmoid. For any , we write for that

1 . We formally define a neural network below,

Definition 1 Let 0 , and 0 . Let be a
twice differentiable function and define

(2.4)
For , we define and 1

for 1 and we define 1 by

1 .
(2.5)

We denote by 0 the function that satisfies for all 0 that

1 1 (2.6)

where in the setting of approximating Kolmogorov PDEs (2.1) we set 0 1 and
.

We refer to as the realization of the neural network associated to the parameter
with layers with widths 0 1 , of which the middle 1 layers are

called hidden layers. For 1 , we say that layer has width , i.e. we say
that it consists of neurons, and we refer to and as the weights and biases
corresponding to layer . If 3, we say that is a deep neural network (DNN).
The total number of neurons in the network is given by the sum of the layer widths,

0 . Note that the weights and biases of neural network with are
bounded by .
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2.3 PINNs

As already mentioned in the introduction, the key idea behind PINNs is to mini-
mize pointwise residuals associated with the Kolmogorov PDE (2.1). To this end, we
define the differential operator associated with (2.1),

[ ]
1

1

2
1

2 (2.7)

for any 2 . Next, we define the following residuals associated with (2.1),

[ ] 0

0

0 .

(2.8)

The generalization error for a neural network of the form (2.6), approximating the
Kolmogorov PDE is then given by the formula (1.3), but with the residuals defined
in (2.8).

Given the possibly very high-dimensional domain of (2.1), it is natural to use
random sampling points to define the loss function for PINNs 2 as
follows,

2 1

1

2

2 1

1

2 2 1

1

2

2 2 2 2

(2.9)
where the training data sets, , and ,
are chosen randomly, independently with respect to the corresponding Lebesgue
measures and the residuals are defined in (2.8).

A trained PINN is then defined as a (local) minimum of the optimization
problem (1.6), with loss function (2.9) (possibly with additional data and weight reg-
ularization terms), found by a (stochastic) gradient descent algorithm such as ADAM
or L-BFGS.

3 Bounds on the approximation error for PINNs

In this section, we will first answer the question Q1 for the PINNs approximating
linear Kolmogorov equation (2.1), i.e. our aim will be to construct a deep neural
network (2.6) for approximating (2.1), such that the corresponding generalization
error (1.3) is as small as desired.

Recalling that the Kolmogorov PDE is a linear parabolic equation with smooth
coefficients, one can use standard parabolic theory to conclude that there exists
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a unique classical solution of (2.1) and it is sufficiently regular, for instance
0 for some 2 for sufficiently regular domains and assum-

ing suitable boundary conditions. As is a classical solution, the residuals (2.8),
evaluated at , vanish, i.e.

0 0 0 0 (3.1)

for all .
Moreover, one can use recent results in approximation theory, such as those pre-

sented in [5, 9, 10] and references therein, to infer that one can find a deep neural
network (2.6) that approximates the solution in the 2 -norm (see Appendix A.1
for an introduction to Sobolev spaces), and therefore yields an approximation for
which the PINN residual is small. For instance, one appeals to the following theorem
(more details, including exact constants and bounds on the network weights, can be
derived from the results in [5]).

Theorem 1 Let 0, with 2 and let 0 1
0 be the solution of a linear Kolmogorov PDE (2.1). Then, for every 0
there exists a tanh neural network with two hidden layers of width at most

2 such that .

Proof It follows from [5, Theorem 5.1] that there exists a tanh neural network
with two hidden layers of width at most 2 such that

2 0 1 0 . (3.2)

By virtue of the nature of linear Kolmogorov PDEs (2.1) it follows immediately
that 2 0 1 0 . Using a standard trace inequality, one finds similar
bounds for the and . From this, it follows directly that .

Hence, is a neural network for which the generalization error (1.3) can be made
arbitrarily small, providing an affirmative answer to Q1. However, from Theorem
1, we observe that the size (width) of the resulting deep neural network , grows
exponentially with spatial dimension for (2.1). Thus, this neural network construc-
tion clearly suffers from the curse of dimensionality. Hence, this construction cannot
explain the robust empirical performance of PINNs in approximating Kolmogorov
equations (2.1) in very high spatial dimensions [29, 30, 39]. Therefore, we need a
different approach for obtaining bounds on the generalization error that overcome
this curse of dimensionality. To this end, we rely on the specific structure of the Kol-
mogorov equations (2.1). In particular, we will use Dynkin’s formula, which relates
Kolmogorov PDEs to Itô diffusion SDEs.

In order to state Dynkin’s formula, we first need to introduce some notation. Let
0 be a stochastic basis, a compact set and, for every

, let 0 be the solution, in the Itô sense, of the following
stochastic differential equation,

0 0 (3.3)
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where is a standard -dimensional Brownian motion on 0 .
The existence of is guaranteed by Lemma 7. Dynkin’s formula relates the
generator of , given in, e.g. [31],

1

1

2
1

2 (3.4)

with the initial condition 2 and differential operator (2.7) of the cor-
responding Kolmogorov PDE (2.1). Equipped with this notation, we state Dynkin’s
formula below,

Lemma 1 (Dynkin’s formula) For every , let be the solution to a lin-
ear Kolmogorov SDE (3.3) with affine and . If

2 with bounded first partial derivatives, then it holds that
where is defined as

0
for 0 . (3.5)

Proof See Corollary 6.5 and Section 6.10 in [15].

Our construction of a neural network with small residual (2.8) relies on emulating
the right hand side of Dynkin’s formula (3.5) with neural networks. In particular,
the initial data and the generator will be approximated by suitable tanh neural
networks. On the other hand, the expectation in (3.5) will be replaced by an accurate
Monte Carlo sampling. Our construction is summarized in the following theorem,

Theorem 2 Let 0 and let 2. For every , let 0 1 ,
5 with bounded first partial derivatives, let 0 be a

probability space and let 2 1 0 be a function that satisfies

[ ] 0 for all 0 .
(3.6)

Moreover, assume that for every 0, there exist tanh neural networks
and with respectively and

neurons and weights that grow as and for and
0 such that

2 and 2 . (3.7)

Then, there exist constants 0 such that for every 0 and ,
there exist a constant 0 (independent of ) and a tanh neural network
with at most max 5 3 2 neurons and weights that grow at most as

max 8 6 for 0 such that

2 0 1 0 2 0 .

(3.8)
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Moreover, is defined as

max sup
0

1 (3.9)

where is the solution, in the Itô sense, of the SDE (3.3), 2 is independent of
and is as in Definition 2 in Appendix A.2.

Proof Based on Dynkin’s formula of Lemma 1, we will construct a tanh neural net-
work, denoted by for some , and we will prove that the PINN
residual (2.8) of is small. To do so, we need to define intermediate approx-
imations and . In this proof, 0 will denote a constant that will be
updated throughout and can only depend on , , , , and , i.e. not on nor
. In particular, the dependence of on the input dimension will be of interest.

We will argue that the final value of will depend polynomially on and (3.9).
Because of the third point of Lemma 7, the quantity within the maximum in the def-
inition of (3.9) is finite for every individual and hence the maximum of
this quantity over 0 1 will be finite as well, where denotes the -
th -dimensional unit vector for every 1 . As a result of the fourth point of
Lemma 7 it then follows that . Moreover, if depends polynomially on ,
then so will , as itself depends polynomially on . For notational simplicity, we
will not explicitly keep track of the dependence of on and . Moreover, we will
write and , we will denote by 2 the norm 2 0 and by

the Euclidean norm in dimensions. All auxiliary lemmas needed for the proof
can be found in Appendix A.2. Finally, we observe that

max sup
0

max sup
0

1

1

max 1
1

(3.10)

hence the left-hand side also grows at most polynomially in and .

Step 1: from u to uN In the first step, we approximate the temporal integral in (3.5)
by a Riemann sum, that can be readily approximated by neural networks. To this end,
let be defined by max 0 min 1 . Then, we define for ,

1

. (3.11)

We first define 0 and calculate for 0 0 1 ,

0
. (3.12)

Next, we make the observation that there exist constants (that only depend
on the coefficients of and ) and functions , and (that linearly depend on
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and its derivatives) such that

1 1 1

(3.13)

for any -dimensional stochastic process . If we define to be random variable
that is uniformly distributed on , we can use the Lipschitz continuity of and the
definition of (3.9) to see that

sup
0

0

2

sup
0

0

2

2 .

(3.14)
In the above, the constant depends polynomially on the coefficients of and
(through the Lipschitz constant of ) and also polynomially on (because of

(3.9)).
Similarly, we find using Lemma 7 and the generalized Hölder inequality with
0 such that 1 1 1

2 ,

sup
0

0 0

2 1 2

sup
0

0

1

0

1

sup
0

1

0

1

sup
0

0

1

1

(3.15)

where the polynomial dependence on is guaranteed by (3.10). Using also the fact
that

sup
0

1

sup
0

2
1 2

sup
0

2 1 2

(3.16)
we can find that

sup
0

0 0 0

2 1 2

1
.

(3.17)
As a result, we find that

2 1
. (3.18)

In a similar fashion, one can also find that

2 1
. (3.19)
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To obtain this result, one can use that for all and 0 it holds that

1

0 0 (3.20)

see Lemma 7. Using this, and writing , one can
calculate that is a linear combination of terms of the form

1
1 for 1 0 1 , 1 1

(with independent of ) and where is a linear combination of and its partial
derivatives and is a product of and and their derivatives. Using these obser-
vations and the fact that , one can obtain (3.19). Moreover, very similar yet
tedious computations yield,

1 0 1
. (3.21)

Step 2: from uN to uM,N We continue the proof by constructing a Monte Carlo
approximation of . For this purpose, we randomly draw for all
and define for every the random variable

1 1

. (3.22)

Using the same arguments as in the proofs of (3.18) and (3.19), we find for all
0 and 1 that,

1 1
2

and 1 .

(3.23)

Invoking Lemma 4, we find that

2
. (3.24)

Similarly, one can prove that

1 1
2

and 1 .

(3.25)

This can be proven using the same arguments as in the proof of (3.19). Using again
Lemmas 4 and 7, and in combination with our previous result, we find that there is
a constant 0 0 independent of (and with the same properties of in terms of
dependence on ) such that

max
0

max
0 1

1 0 2
0

(3.26)
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and therefore by Lemma 5 that

max
0

max
0 1 R

1 0 2
0 0.

(3.27)
The fact that this event has a non-zero probability implies the existence of some fixed

, 1 , such that for the function

1 1

(3.28)

it holds for all 1 that

1 0 2

0

and max
0

max
0 1

0.
(3.29)

Step 3: from uM,N to uM,N For every 0 and , let be a tanh
neural network such that

0 1 2 and 2
(3.30)

where 0 1 denotes the indicator function on 0 1 . The existence of this neural
network is guaranteed by Lemma 8. Moreover, for 1 max

0 0
,

we denote the multiplication operator 2 2 2 1 2 1
and every 0, we define 2 2 2 1 2 1 to be a tanh neural

network such that

2 2 2 2 1 2 1
. (3.31)

If we now in (3.28) replace and by and as from (3.7), by and
by , then we end up with the tanh neural network

1 1

.

(3.32)
A sketch of this network can be found in Fig. 1. In what follows, we will write 1 for
the partial derivative to the first component and we will write

1 0 2 0

3 0 and 4 0
. (3.33)
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Fig. 1 Flowchart to visualize the construction of the neural network

1 1

It holds that

2

1

1 0

1 1 2

2

1

1

1 1 2 3 4 2 . (3.34)

Using (3.30), we find that

1

1 0

1 1 2

2

2 . (3.35)

For the other term, we calculate using (3.7), (3.30) and (3.31) that

1 1 2 3 4 2 3 1 1 2 2

3 4 4

4 3 0 1 3 2

2

2 0 1 2 .
(3.36)
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Thus, we find that

2
(3.37)

Finally, we obtain a bound on 2. We simplify notation again by
setting

1 2

3 and 4 . (3.38)

We start off by calculating

1 1

3

1 1

1 .

(3.39)
Explicitly working out the above formula is straightforward, but tedious, and we omit
the calculations for the sake of brevity. From this, together with a repeated use of the
triangle inequality and (3.29), we find that

2
2 2

2

. (3.40)

Moreover, using similar tools as above we also find that

1 0
. (3.41)

Step 4: total error bound From the triangle inequality and inequalities (3.18), (3.29),
(3.37), (3.40) and (3.19), we get that

2 2 2 2

2 2 2

1
1

1 1 1
1

1
1

1
.

(3.42)
Similarly, the triangle inequality together with inequalities (3.21), (3.29) and (3.41)
gives us,

1 0

1
1

1
. (3.43)
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Combining this result with a multiplicative trace inequality (e.g. [11, Theorem
3.10.1]) provides us with the result

2 0

1
1

1
. (3.44)

Step 5: network size Recall that we need a tanh neural network with neu-
rons to approximate to an accuracy of 0. Similarly for approximating , we
need a tanh neural network with neurons.

We first determine the complexity of the network sizes in terms of . We set
, , 2 and 1. The network will consist of multiple

sub-networks, as illustrated in Fig. 1. The first part constructs copies of ,
leading to a subnetwork with 2 neurons. Next, we need

copies of . From Lemma 8 it follows that for each copy, one needs a subnetwork

with two hidden layers of width
1

2 1
3

1 for any 0. One can calculate

that copies of this lead to a width of 1 1
2 1

3
1 5 3 . The

subnetwork approximating consists of neurons. We assume
that the subnetworks to approximate the identity function have a size that is negligible
compared to the network sizes of the other parts [5]. Combining these observations
with the fact that depends polynomially on and , we find that there exists
a constant 0 such that the number of neurons of the network is bounded by

max 5 3 2 .
By assumption, the weights of and scale as . From [5, Corollary

3.7], it follows that the weights of scale as 1 2 . Finally, from Lemma 8, the

weights of scale as
1

1
6

1 8 6 . Hence, the weights of the

total network grow as max 8 6 , where we possibly adapted
the size of .

Remark 1 Some of the parts of the proof of Theorem 2 can be of independent interest.
For example, the construction of (3.11) and (3.28) is not specific to neural
networks and can be applied to different settings. In particular, (3.26) provides an
error estimate for a Monte Carlo approximation (3.22) of based on Dynkin’s
formula.

Remark 2 For the Black-Scholes equation (2.3), the initial condition is to be inter-
preted as a payoff function. Note that any mollified version of the payoff functions
mentioned in Section 2.1 satisfies the regularity requirements of Theorem 2. More-
over, because of their compositional structure, these payoff functions and their
derivatives can be approximated without the curse of dimensionality. Hence, the
assumption (3.7) is satisfied as well.

Theorem 2 reveals that the size of the constructed tanh neural network, approxi-
mating the underlying solution of the linear Kolmogorov equation (2.1), and whose
PINN residual is as small as desired (3.8), grows with increasing accuracy, but at
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a rate that is independent of the underlying dimension . Thus, it appears that this
neural network overcomes the curse of dimensionality in this sense.

However, Theorem 2 reveals that the overall network size grows polynomially in
. It could be that this constant grows exponentially with dimension. Consequently,

the overall network size will be subject to the curse of dimensionality. Given this
issue, we will prove that at least for a subclass of Kolmogorov PDEs (2.1), only
grows polynomially on . This is for example the case when the coefficients and
are both constant functions.

Theorem 3 Assume the setting of Theorem 2 and assume that and are both
constant. Then, there exists a constant 0 such that for every 0 and ,
there exists a tanh neural network with max 5 3 2 neurons and
weights that grow as max 8 6 for small and large such that

2 0 1 0

2 0 .
(3.45)

Proof We show that when and are both constant functions, the constant ,
as defined in (3.9), grows only polynomially in . It is well-known that in this set-
ting the solution process to the SDE (3.3) is given by , where

0 is a -dimensional Brownian motion. The fact that only grows poly-
nomially in then follows directly from the Lévy’s modulus of continuity (Lemma
6). The corollary then is a direct consequence of Theorem 2.

Remark 3 We did not specify the boundary conditions explicitly in either Theorems
2 or 3. The reason lies in the fact that Dynkin’s formula (Lemma 1) holds with as
domain. Therefore, we implicitly use the trace of the true solution at the bound-
ary of as the Dirichlet boundary condition. A similar approach has been used
in, e.g. [8, 12], where the Feynman-Kac formula is used to construct a neural net-
work approximation for the solution to Kolmogorov PDEs. This assumption is quite
reasonable as Black-Scholes type PDEs (2.3) are specified in the whole space. In
practice, one needs to put in some artificial boundary conditions, for instance by
truncating the domain. To this end, one can use some explicit formulas such as the
Feynman-Kac or Dynkin’s formula to (approximately) specify the boundary condi-
tion (see [39] for examples). Another possibility is to consider periodic boundary
conditions as Dynkin’s formula also holds in this case.

Thus, we have been able to answer question Q1 by showing that there exists a
neural network, for which the PINN residual (generalization error) (1.3) is as small
as desired. In this process, we have also answered Q2 for this particular tanh neural
network as the bound (3.43) clearly shows that the overall error (in the 2-norm and
even 1-norm) of the tanh neural network is arbitrarily small.

Although in this particular case, an affirmative answer to question Q2 was a by-
product of the proof of question Q1, it turns out that one can follow the recent paper
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[29] and leverage the stability of Kolmogorov PDEs to answer question Q2 in much
more generality, by showing that as long as the generalization error is small, the
overall error is proportionately small. We have the following precise statement about
this fact. It holds for any twice continuously differentiable function and is therefore
directly applicable to tanh neural networks and PINNs.

Theorem 4 Let be a (classical) solution to a linear Kolmogorov equation (2.1)
with 1 and 2 , let 2 0 and let the
residuals be defined by (2.8). Then,

2
2 0 1

2
2 0

2
2

2 2 0 3
2
2 0 (3.46)

where 0 1 0 , 1 0 div 1 ,

2 1 2 0 and 3

1 0 .

Proof Let . Integrating over and rearranging terms gives

1

2
2 1

2 Trace (3.47)

where all integrals are to be interpreted as integrals with respect to the Lebesgue
measure on , resp. , and where denotes the Jacobian matrix, i.e. the transpose
of the gradient with respect to the space coordinates. For the first term of (3.47), we
observe that Trace 1 and also that

2 2

(3.48)
for any 1 , where denotes the unit normal on . Next, we define

1 2
1

2 0

2

1
0

3

1 0
. (3.49)
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From this and by using integration by parts, we find that

Trace

1

1

1

2
2 1

2
2

1
0

2

2
2 3

2
2.

(3.50)
For the second term of (3.47), we find that

1

2
2 1

2
2div

1

2
2

1

2
div 2 1

2
2 (3.51)

Finally, we find for the third term of the right-hand side of (3.47) that

1

2
2 1

2
2. (3.52)

Integrating (3.47) over the interval 0 0 , using all the previous inequalities
together with Hölder’s inequality, we find that

2 2
1

0

2
1 2

0

2

2
0

2

3 div 1
0

2 . (3.53)

Using Grönwall’s inequality and integrating over 0 then gives

0

2 3 div 1 2
1

0

2
1 2

0

2
2

0

2 . (3.54)

Renaming the constants yields the statement of the theorem.

We can now apply this theorem to PINNS by setting , cf. (1.6). It is easy
to observe that 1 3 1 , as these constants only depend on the coefficients of the
Kolmogorov PDE. On the other hand, the constant 2 depends on the PINN approxi-
mation and needs to be evaluated for each individual approximation. For instance,
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for the PINN , constructed in Theorem 2, it is straightforward to observe from
the arguments presented in the proof of Theorem 2 that 2 . This is however
not guaranteed in general. In practice, one could therefore add 2 to the loss function
of the PINN to ensure that, e.g. 2 1 .

The bound (3.46) clearly shows that controlling the generalization error (1.3) as
well as 2 suffices to control the 2-error for the PINN approximating the Kol-
mogorov equations (2.1). In particular, combining Theorems 4 with 2 then proves that
it is possible to approximate solutions to linear Kolmogorov equations in 2-norm at
a rate that is independent of the spatial dimension , hence providing an answer to
question Q2.

4 Generalization error of PINNs

Having answered the questions Q1 and Q2 on the smallness of the PINN resid-
ual (generalization error (1.3)) and the total error for PINNs approximating the
Kolmogorov PDEs (2.1), we turn our attention to question Q3, i.e. given small train-
ing error (2.9) and for sufficiently many training samples , can one show that
the generalization error (1.3) (and consequently the total error by Theorem 4) is
proportionately small?

To this end, we start with the observation that the PINN residual as well training
error (2.9) has three parts, two data terms corresponding to the mismatches with the
initial and boundary data and a residual term that measures the amplitude of the PDE
residual. Thus, we can embed these two types of terms in the following very general
set-up: let be compact and let , be functions
for all . We can think of as the ground truth for the initial or boundary data
for the PDE (2.1) and be the corresponding restriction of approximating PINNs
to the spatial or temporal boundaries. Similarly, we can think of 0 as the PDE
residual, corresponding to the exact solution of (2.1) and is the interior PINN
residual (first term in (2.8)), for a neural network with weights . Let be the
training set size and let 1 be the training set, where each is
independently drawn according to some probability measure on . We define the
(squared) training error, generalization error and empirical risk minimizer as

2 1

1

2 2 2

argmin 2 (4.1)

where we restrict ourselves to the (squared) 2-norm only for definiteness, while
claiming that all the subsequent results readily extend to general -norms for 1

. It is easy to see that the above set-up encompasses all the terms in the
definitions of the generalization error (1.3) and training error (2.9) for PINNs.

Our first aim is to decompose this very general form of generalization error in
(4.1) as,
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Lemma 2 Let and compact. Then, it holds that
2 sup 2 2 sup 2 2

sup 2 2 2. (4.2)

Proof Since is compact, there exist for every 0 a natural number
and parameters 1 such that for all there exists 1 such

that . For every 1 , it holds that

2 2 2 2 2

2 2 2. (4.3)

This error decomposition holds in particular for argmin .
Using that and then majorizing gives the bound from the statement.

Note that we have leveraged the compactness of the parameter space in (4.2)
to decompose the generalization error in terms of the training error ,
the so-called generalization gap, i.e. sup 2 2 and error terms that
measure the modulus of continuity of the generalization and training errors. From
this decomposition, we can intuitively see that these error terms can be made suit-
ably small by requiring that the generalization and training errors are, for instance,
Lipschitz continuous. Then, we can use standard concentration inequalities to obtain
the following very general bound on the generalization error in terms of the training
error,

Theorem 5 Let L 0, , compact, a probability
space, and let and be functions for all

. Let , 1 be iid random variables, 1
and let be a minimizer of 2. Let 2 2 0 for
all and and let 2 and 2 be Lipschitz
continuous with Lipschitz constant L. For every 0, it holds that

1 if
2

2 4
ln

2 L

2
ln

1
. (4.4)

Proof For arbitrary 0, set
2

2L and let 1 be a -covering of with
respect to the supremum norm. Then, it holds that can be bounded by 2 L 2

and moreover

sup 2 2 sup 2 2 .

(4.5)
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Then, it holds for every 1 that

2 2 2 2 2

2 2 2. (4.6)

Next, we define a projection that maps to a unique with
argmin and we define the following events for 1 ,

2 2 2

2 2 2

1 2 2 2 and .

(4.7)
Note that (4.5) and (4.6) imply that and thus . Next, by the
definition of it holds that induces a partition on and thus 1. As

2 0 and 2 2 for all , Hoeffding’s
inequality (Lemma 14) proves that 1 exp 2 4 2 . Combining this
with the observation that 1 then proves that

1 1

1
1

1 1 exp
2 4

2
1

2 L

2
exp

2 4

2
.

(4.8)
As a consequence, it holds that

2

2 4
ln

2 L

2
ln

1 2 2 2 1

1 . (4.9)

The bound on the generalization error in terms of the training error (4.4) is a
probabilistic statement. It can readily be recast in terms of averages by defining the
so-called cumulative generalization and training errors of the form,

2 2 2 2 . (4.10)

Here, is the induced product measure on the training set . We
have the following ensemble version of Theorem 5;

Corollary 1 Assume the setting of Theorem 5. It holds that

if
2 2

4
ln

4 L

2
ln

2
2

. (4.11)
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Proof Let 2 2. Using (the last step of the proof of)

Theorem 5 with
2

2 then gives that
1 2

2
1 2

2

2

2

2

2
2 (4.12)

provided that 2 2

4 ln 4 L
2 ln 2

2 .

As a first example for illustrating the bounds of Theorem 5 (and Corollary 1), we
apply it to the estimation of the generalization errors, corresponding to the spatial
and temporal boundaries, in terms of the corresponding training errors (2.9). These
bounds readily follow from the following general bound.

Corollary 2 Let , 1, 2, let be a probability measure
on 0 1 , let 1 1 be a function and let

, be tanh neural networks with at most 1 hidden layers,
width at most and weights and biases bounded by . For every 0 1, it holds
for the generalization and training error (4.1) that,

1 if
64 3 2 6 4

4
ln

4 5 4
.

(4.13)

Proof Using the inverse triangle inequality and the fact that 2 2

for , we find for that

2 2

4 1

4 1 (4.14)

where we used that for every and it holds that
1 . Combining this with Lemmas 11 and 15 proves that the Lipschitz constant of the
map is at most 8 4 . We can then use Corollary 1 with ,
L 8 4 and 8 2 2 (from (4.1)). Moreover, one can calculate
that every has at most 2 1 weights and 1 1 biases,
such that 2 2. Next, we make the estimate

2

2 4
ln

4 L

2
ln

2
2

32 4 4

4
2 2 ln

29 4 3 2

4

64 3 2 6 4

4
ln

4 5 4
. (4.15)

Next, we will apply the above general results to PINNs for the Kolmogorov equa-
tion (2.1). The following corollary provides an estimate on the (cumulative) PINN
generalization error and can be seen as the counterpart of Corollary 2. It is based
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on the fact that neural networks and their derivatives are Lipschitz continuous in the
parameter vector, the proof of which can be found in Appendix B. Consequently, the
PINN generalization error is Lipschitz as well (cf. Lemma 16).

Corollary 3 Let , 1, 2, with and let
0 1 , be tanh neural networks, at most 1 hidden layers, width

at most and weights and biases bounded by . For let the PINN gen-
eralization and training errors for linear Kolmogorov PDEs (cf. Section 2.1)
and let 0 be such that 2 2 0 for all and .
Assume that max max and define the constants

max 1
1 1

. (4.16)

Then, for any 0, it holds that

if
24 2 2 2

4
ln 4 6 7

2
. (4.17)

Proof Setting max 1 1 1 , we can

use Corollary 1 with , , L 25 2 2 7 2 4 6 1 6 6 (cf.
Lemma 16) and 2 2 (cf. proof of Corollary 2). We then calculate

ln
4 L

2
ln

2
2

6 ln 4 6 7
2

12 2 2 ln 4 6 7
2

.

(4.18)

Remark 4 Corollary 3 requires bounds on the training errors and the gen-
eralization errors of the PINN. Lemma 16 provides such bounds, given by

4 7 2 3 3 32 and 2 . Although the values for
and are of reasonable size, the value for is likely to be a large overestimate. It
might makes sense to consider the approximation

max (4.19)

for some randomly sampled and .

Combining Corollary 3 with Theorem 4 allows us to bound the 2-error of the
PINN in terms of the (cumulative) training error and the training set size. The follow-
ing corollary proves that a well-trained PINN on average has a low 2-error provided
that the training set is large enough. It is also possible to prove a similar probabilistic
statement instead of a statement that holds on average.
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Corollary 4 Let be a (classical) solution to a linear Kolmogorov equation (2.1)

with 1 and 1 , a trained PINN, let

and denote the interior, spatial and temporal cumulative training error, cf. (1.3)
and let 1, 2 and 3 be the constants as defined in Theorem 4. If the training set
sizes are chosen as in (4.17) of Corollary 3 for any 0, then

0 0

2

1
2 2

2 3
2

3 2 . (4.20)

Proof This is a direct consequence of Corollary 3 and the proof of Theorem 4 (in
particular, one needs to take the expectation of all training sets before applying
Hölder’s inequality in the proof of Theorem 4).

Remark 5 If we assume that the optimization algorithm used to minimize the training
loss finds a global minimum, then one can prove that the cumulative training errors
in (4.20) are small if the training set is large enough. To see this, first observe that
for the network that was constructed in Theorem 2 it holds that
and are all of order . Since is not correlated with the training data
, one can use a Monte Carlo argument to find for any 0 that

if 2 2 (4.21)

and as a consequence that . If the optimization algorithm reaches a
global minimum, the training loss of will be upper bounded by that of .
Therefore, it also holds that .

Remark 6 Note that the constant 2 in (4.20), as defined in Theorem 4, can in general
depend on the PINN. In practice, one could therefore add 2 to the loss function of
the PINN to ensure that, e.g. 2 1 .

Thus, in Corollaries 3 and 4, we have answered the question Q3 by proving that a
small training error and a sufficiently large number of samples, as chosen in (4.17),
suffice to ensure a small generalization error (and total error). Moreover, the number
of samples only depends polynomially on the dimension. Therefore, it overcomes the
curse of dimensionality.

5 Discussion

Physics-informed neural networks (PINNs) are widely used in approximating both
forward as well as inverse problems for PDEs. However, there is a paucity of rigorous
theoretical results on PINNs that can explain their excellent empirical performance.
In particular, one wishes to answer the questions Q1 (on the smallness of PINN resid-
uals), Q2 (smallness of the total error) and Q3 (smallness of the generalization error
if the training error is small) in order to provides rigorous guarantees for PINNs.
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In this article, we aimed to address these theoretical questions rigorously. We do
so within the context of the Kolmogorov equations, which are linear parabolic PDEs
of the general form (2.1). The heat equation as well as the Black-Scholes equation
of option pricing are prototypical examples of these PDEs. Moreover, these PDEs
can be set in very high-dimensional spatial domains. Thus, in addition to providing
rigorous bounds on the PINN generalization error and total error, we also aimed to
investigate whether PINNs can overcome the curse of dimensionality in this context.

To this end, we answered question Q1 in Theorem 2, where we constructed a neu-
ral network (see Fig. 1) for which the PINN residual (generalization error) can be
made as small as possible. Our constuction relied on emulating Dynkin’s formula
(3.5). Under suitable assumptions on the initial data as well as on the underlying
stochastic process (cf. (3.9) and Theorem 3), we are also able to prove that the
size of the constructed only grew polynomially, in input spatial dimension. Thus,
we were able to show that this neural network was able to overcome the curse of
dimensionality in attaining as small a PINN residual as desired.

Next, we answered question Q2 in Theorem 4 by leveraging the stability of Kol-
mogorov PDEs to bound the total error (in 2) for PINNs in terms of the underlying
generalization error.

Finally, question Q3 that required one to bound the generalization error in terms
of the training error was answered by using an error decomposition, Lipschitz con-
tinuity of the underlying generalization and training error maps and concentration
inequalities in Corollary 3, where we derived a bound on the generalization error in
terms of the training error and for sufficiently many randomly chosen training sam-
ples (4.17). Moreover, the number of training samples only grew polynomially in the
dimension, alleviating the curse of dimensionaly in this regard.

Although we do not present numerical experiments in this paper, we point the
readers to [39] and the forthcoming paper [30], where a large number of numerical
experiments for PINNs in approximating both forward and inverse problems for
Kolmogorov type and related equations are presented. In particular, these experi-
ments reveal that PINNs overcome the curse of dimensionality in this context. These
findings are consistent with our theoretical results.

At this stage, it is instructive to contrast our results with related works. As men-
tioned in the introduction, there are very few papers where PINNs are rigorously
analyzed. When comparing to [37], we highlight that the fact that the authors of
[37] used a special bespoke Hölder-type regularization term that penalized the gra-
dients in their loss function. In practice, one trains PINNs in the 2 (or 1) setting
and it is unclear how relevant the assumptions of [37] are in this context. On the
other hand, we use the natural training paradigm for PINNs and prove rigorously that
overall errors can be made small. Comparing with [29], we observe that the authors
of [29] only address questions Q2 and (partially) Q3, but in a very general setting.
It is not proved in [29] that the total error can be made small. We do so here. More-
over, we also provide the first bounds for PINNs, where the curse of dimensionality
is alleviated.

It is an appropriate juncture to compare our results with a large number of
articles demonstrating the alleviation of the curse of dimensionality for neural net-
works approximating Kolmogorov type PDEs (see [3, 8] and references therein).
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We would like to point out that these articles consider the supervised learning
paradigm, where (possibly large amounts of) data needs to be provided to train the
neural network for approximating solutions of PDEs. This data has to be gener-
ated by either expensive numerical simulations or the use of representation formulas
such as the Feynman-Kac formulas, which requires solutions of underlying SDEs.
In contrast, we recall that PINNs do not require any data in the interior of the
domain and thus are very diferent in design and conception to supervised learning
frameworks.

We would also like to highlight some limitations of our analysis. We showed
in Theorem 2 that network size in approximating solutions of general Kolmogorov
equation (2.1) depended on the rate of growth the quantity , defined in (3.9).
We were also able to prove in Theorem 3 that only grew polynomially (in
dimension) for a subclass of Kolmogorov PDEs. Extending these results to general
Kolmogorov PDEs is an open question. Moreover, it is worth repeating (see Remark
4) that the constants in our estimates are clearly not optimal and might be significant
overestimates (see [29] for a discussion on this issue).

Finally, we point out that although we focussed our results on the large and impor-
tant class of Kolmogorov PDEs in this paper, the methods that we developed will be
very useful in the analysis of PINNs for approximating PDEs. In particular, the use of
smoothness of the underlying PDEs solutions and their approximation by Tanh neu-
ral networks (as in [5]), to build PINNs with small PDE residuals can be applied to
a variety of linear and non-linear PDEs. Similarly, the error decomposition (4.2) and
Theorem 5 (Corollary 1) are very general and can be used in many different contexts,
to bound PINN generalization error by training error, for sufficiently many random
training points. We plan to apply these techniques for the comprehensive error anal-
ysis of PINNs for approximating forward as well as inverse problems for PDEs in
forthcoming papers.

Appendix A: Additional material for Section 3

A.1 Sobolev spaces

Let , 0, 1 and let be open. For a function
and a (multi-)index 0 we denote by

1
1

(A.1)

the classical or distributional (i.e. weak) derivative of . We denote by the
usual Lebesgue space and for we define the Sobolev space as

for all 0 with . (A.2)
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For , we define the following seminorms on ,

1

for 0 (A.3)

and for we define

max for 0 . (A.4)

Based on these seminorms, we can define the following norm for ,

0

1

(A.5)

and for we define the norm

max
0

. (A.6)

The space equipped with the norm is a Banach space.
We denote by the space of functions that are times continuously

differentiable and equip this space with the norm .

A.2 Auxiliary results

We introduce some results related to the analysis of stochastic differential equations
and random variables in general. We start by introducing notation cf. [2, Definition
2.1.3].

Definition 2 Let be a measure space and let 0. For every -
measurable function R , we define

1

. (A.7)

Lemma 3 Let 2 , , let be a probability space, and let
1 , be i.i.d. random variables with [ 1 ] . Then,

it holds that

[ 1]
1

1

1

2
1

[ 1] 1
1 . (A.8)

Proof This result is [8, Corollary 2.5].
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Lemma 4 Let 2 , , let and be probability
spaces, and let for every the maps 1 , be i.i.d.
random variables with 1 . Then, it holds that

1
1

1

1

2
1

1 1

1

.

(A.9)

Proof The proof involves Hölder’s inequality, Fubini’s theorem and Lemma 3. The
calculation is as in [8, Eq. (226)].

Lemma 5 Let 0, let be a probability space, and let be a
random variable that satisfies [ ] . Then, it holds that 0.

Proof This result is [8, Proposition 3.3].

Lemma 6 (Lévy’s modulus of continuity) For 0 1 a Brownian motion, it
holds almost surely that

lim sup
0

sup
0 1 2 log 1

1. (A.10)

Proof This result is due to [20] and can be found in most probability theory
textbooks.

Lemma 7 Let 0, 2, , let 0 be a stochastic
basis and let 0 be a standard -dimensional Brownian motion
on 0 . Let 0 and let and

be affine functions. Then, there exists an up to indistinguishability
unique 0 -adapted stochastic process 0 , which satisfies

1. that for all 0 it holds -a.s. that

0 0
(A.11)

2. that sup 0 ,

3. that for all 0 1
2 that

sup
0

(A.12)

4. for all , 0 and it holds that

1

0 0 . (A.13)
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Proof Properties (1)-(3) are proven in [2, Theorem 4.5.1]. Property (4) follows from
Proposition 2.20 in [8] and Lemma 3.4 in [3].

Lemma 8 Let min 1 max 0 . For every 2 and

0 there exists a tanh neural network with two hidden layers,
1

2 1
3

1

neurons and weights growing as
1

1
6

1 such that

2
and 2. (A.14)

Proof We first approximate with a function that is twice continuously differen-
tiable,

0
2

2
1
2

2

2
2 cos 2

2

2
2

2
2

2 1
2

2
1
2 1

2

2
2 cos 1

2 1
2

2 1
2

2

1 1
2

2 .

(A.15)

It is easy to prove that 2 . Next, we calculate the derivative of ,

0
2

2
1
2 1 sin 2

2

2
2

2

1
2

2 1
2

2
1
2 1 sin 1

2 1
2

2 1
2

2

0 1
2

2 .

(A.16)

A straightforward calculation leads to the bound
2

. Finally,

one can easily check that is continuous and that 2 . An appli-

cation of [5, Theorem 5.1] on gives us for every 0 and large enough
the existence of a tanh neural network with two hidden layers and neu-

rons for which it holds that
1 1 2

1 2 . Because of

the nature of the construction of , the monotonous behaviour of the hyperbolic
tangent towards infinity and the fact that is constant outside 1 2 , the stronger

result that
1

1 2 holds automatically as well. As a

result we find that 2, 1 2 and

2
1 2 . If we choose

1
2 1

3
1 then
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we find that

and
2

. (A.17)

Moreover, [5, Theorem 5.1] tells us that the weights of grow as 2

1
1

6
1 . The statement then follows from applying the triangle inequal-

ity.

Appendix B: Lipschitz continuity in the parameter vector of a neural
network and its derivatives

In this section, we will prove that for any , a neural network and its correspond-
ing Jacobian and Hessian matrix are Lipschitz continuous in the parameter vector.
This property is of crucial importance to find bounds on the generalization error of
physics-informed neural networks, cf. Section 4. We first introduce some notation
and then state or results. The main results of this section are Lemmas 11 and 13.

We denote by be an (at least) twice continuously differentiable
activation function, like tanh or sigmoid. For any , we write for
that 1 . We use the definition of a neural network as in
Definition 1.

Recall that for a differentiable function the Jacobian matrix
is defined by

. (B.1)

For our purpose, we make the following the following convention. For any 1
, we define

1 1
1 . (B.2)

Similarly, for a twice differentiable function the Hessian matrix is
defined by

2

. (B.3)

Slightly abusing notation, we generalize this to vector-valued functions
. We write

2

(B.4)

where we identify 1 with to make the definitions consistent. Similarly,
if 1 , then should be interpreted as

1

. (B.5)

For any 1 , we write

1 1
1 1 . (B.6)
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Finally, we will use the notation and . The following
lemma presents a generalized version of the chain rule.

Lemma 9 Let and . Then, it holds that

. (B.7)

We now apply this formula to find an expression for in terms of and .

Lemma 10 It holds that
1

0

and

1
1 1 1 1 1 .

(B.8)

Proof The first statement is just the chain rule for calculating the derivative of a
composite function. We prove the second statement using induction. For the base
step, let 1. Then, and we have . For the induction step,
take 2 and assume that the statement holds for 1. Now, let

2 and 1 . Applying the generalized chain rule to
calculate 1 and using the induction hypothesis on gives the wanted
result.

Next, we formally introduce the element-wise supremum norm . Let ,
0 and 1 . Then, we define

max
1 1 1

max
1

1 . (B.9)

Let 0 and suppose that 1 . Then, it holds that

1

1

1

. (B.10)

Moreover, for 1 and it holds that .
The following lemma states that the output of each layer of a neural network is

Lipschitz continuous in the parameter vector for any input . The lemma is
stated for neural networks with a differentiable activation function, but can be easily
adapted for, e.g. ReLU neural networks.

Lemma 11 Let with 2, with and 1.
Moreover, let , max 1 and max 1 .
Then, it holds for 1 that

1 1 4 1 1 .
(B.11)
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Proof Let 0 denote the widths of the neural network, where 0 . Let
be arbitrary. First of all, it holds that

1 1 1 1 1 1

1 1 1 1

1 . (B.12)

Now, let 2 and define 1 1 and 1

1 . We find that

max 1

1 1 1 . (B.13)

A recursive application of this inequality then gives us for 1 that

1 1 1 1

1

1 1 1 1

1 1 1 1
2

1 1 1 1 1 1 1

1

4 1 1

(B.14)
where we used that 1 1 2 1 2 1 3 when

2 1 1.

Lemma 12 Let with 2, with and
1. Moreover, let , max 1 and

max 1 . Then, it holds for all 1 and
that

1 4 1 1 1 and (B.15)

2 1 4 1 1 1 . (B.16)

Proof Let be the th row of , let be the th row of and set
and . Let 1 1 and 1 1 . For 1 , we
have that

1 1 (B.17)

1 1 (B.18)
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and analogously for and . The triangle inequality and the Lipschitz
continuity of gives us that

1 1 1 .

(B.19)

Using that 4 2 2 1 (Lemma 11) for

2 and 1 , we get

1 4 1 1 1 (B.20)

for 2. One can check that the inequality also holds for 1.
For the Hessian matrix, the triangle inequality and the Lipschitz continuity of

gives us that

2 2 1

3 (B.21)

Using Lemma 11 again, we get

2 1 4 1 1 1
(B.22)

for 2. One can check that the inequality also holds for 1.

The following lemma states that the Jacobian and Hessian matrix of a neural
network are Lipschitz continuous in the parameter vector for any input .

Lemma 13 Let with 2, with and
1. Moreover, let , max 1 and

max 1 . Then, it holds that for all that

2 7 2 1 2 2 1 (B.23)

4 7 2 3 1 3 3 . (B.24)

Proof We will prove the formulas by repeatedly using the triangle inequality and
using the representations proven in Lemma 10. To do so, we need to introduce some
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notation. Define for 0 1 the object 2 such that

.
and

1 1

1

1 1.
(B.25)

In particular, 0 and 1 for all . To simplify notation, we write

1
1

1
1

1
1

1
1

1
1

1

1
. (B.26)

The triangle inequality and Lemma 10 then give that

1

1

1

1 . (B.27)

Observe that 1 0 for . Therefore,

1
1 1

1
1 1

1 1
2

1
2 1

2 2 1 . (B.28)

From Lemma 12, it follows that

1 2 1 4 1 1 1 (B.29)

Writing 1 1 we get

1

1 2 2 2 1 4 1 1 1

1

2 2 2 2 2 2 7 1 1

4 7 2 3 1 3 3 .

(B.30)
In an entirely similar fashion we obtain

1

1 1

2 7 2 1 2 2 1 . (B.31)
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Appendix C: Additional material for Section 4

Lemma 14 (Hoeffding’s inequality) Let 0, , let be a prob-
ability space and let 0 be independent random variables. Then, it
holds that

1

1

exp
2 2

2
. (C.1)

Lemma 15 Let and tanh . It holds that 1
2 and 2 1 2 . In addition, it holds that 1

and 4 3 3 1 and 2.

The following lemma provides estimate on the various PINN residuals. It is based
on the fact that neural networks and their derivatives are Lipschitz continuous in the
parameter vector, the proof of which can be found in Appendix B.

Lemma 16 Let , 1 and let 0 1 , be tanh
neural networks, at most 1 hidden layers, width at most and weights and
biases bounded by . Let the PINN generalization and training errors be
defined as in Section 2.3 for linear Kolmogorov PDEs (cf. Section 2.1). Assume that
max max . Let L denote the Lipschitz constant of ,
for and . Then, it holds that

L 25 2 max 1
1 1

2

7 2 4 6 1 6 6. (C.2)

Proof Without loss of generality, we only focus on , for . We see for

2max (C.3)

For and 0 , it follows from Lemma 11 that

4 1 1 (C.4)

and similarly using Lemma 13 that

1 1

1

4 1 1

1 7 2 3 1 3 32
(C.5)
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where we let denote the vector -norm of the vectorized version of a general
tensor (cf. (B.9)). Next, we calculate using again Lemma 13 (by setting 0) and
max max for that

max 4 7 2 2 3 3 3

max 2 (C.6)

where max 1 1 1 . Combining all the previous results
prove the stated bound.
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