Skip to main content
Log in

Efficient randomized tensor-based algorithms for function approximation and low-rank kernel interactions

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a method for multivariate function approximation using function evaluations, Chebyshev polynomials, and tensor-based compression techniques via the Tucker format. We develop novel randomized techniques to accomplish the tensor compression, provide a detailed analysis of the computational costs, provide insight into the error of the resulting approximations, and discuss the benefits of the proposed approaches. We also apply the tensor-based function approximation to develop low-rank matrix approximations to kernel matrices that describe pairwise interactions between two sets of points; the resulting low-rank approximations are efficient to compute and store (the complexity is linear in the number of points). We present an adaptive version of the function and kernel approximation that determines an approximation that satisfies a user-specified relative error over a set of random points. We extend our approach to the case where the kernel requires repeated evaluations for many values of (hyper)parameters that govern the kernel. We give detailed numerical experiments on example problems involving multivariate function approximation, low-rank matrix approximations of kernel matrices involving well-separated clusters of sources and target points, and a global low-rank approximation of kernel matrices with an application to Gaussian processes. We observe speedups up to 18X over standard matrix-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No new data was generated as part of this study.

References

  1. U.S. hourly precipitation data, https://catalog.data.gov/dataset/u-s-hourly-precipitation-data

  2. Ahmadi-Asl, S., Abukhovich, S., Asante-Mensah, M.G., Cichocki, A., Phan, A.H., Tanaka, T., Oseledets, I.: Randomized algorithms for computation of Tucker decomposition and higher order SVD (HOSVD). IEEE Access 9, 28684–28706 (2021)

    Article  Google Scholar 

  3. Ahmadi-Asl, S., Caiafa, C.F., Cichocki, A., Phan, A.H., Tanaka, T., Oseledets, I., Wang, J.: Cross tensor approximation methods for compression and dimensionality reduction. IEEE Access 9, 150809–150838 (2021)

    Article  Google Scholar 

  4. Barnes, J., Hut, P.: A hierarchical O(n log n) force-calculation algorithm. Nature 324(6096), 446–449 (1986)

    Article  Google Scholar 

  5. Bebendorf, M., Kunis, S.: Recompression techniques for adaptive cross approximation. The Journal of Integral Equations and Applications, pp. 331–357 (2009)

  6. Benner, P., Khoromskaia, V., Khoromskij, B.N.: Range-separated tensor format for many-particle modeling. SIAM J. Sci. Comput. 40(2), A1034–A1062 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bigoni, D., Engsig-Karup, A.P., Marzouk, Y.M.: Spectral tensor-train decomposition. SIAM J. Sci. Comput. 38(4), A2405–A2439 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bingham, D.: Virtual library of simulation experiments: test functions and datasets, http://www.sfu.ca/ssurjano/index.html

  9. Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices. Lecture notes 21, 2003 (2003)

    MATH  Google Scholar 

  10. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numerica 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cambier, L., Darve, E.: Fast low-rank kernel matrix factorization using skeletonized interpolation. SIAM J. Sci. Comput. 41(3), A1652–A1680 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, C., Aubry, S., Oppelstrup, T., Arsenlis, A., Darve, E.: Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media. Modelling and Simulation in Materials Science and Engineering 26(4), 045007 (2018)

    Article  Google Scholar 

  13. Constantine, P.G., Diaz, P.: Global sensitivity metrics from active subspaces. Reliability Engineering & System Safety 162, 1–13 (2017)

    Article  Google Scholar 

  14. Corona, E., Rahimian, A., Zorin, D.: A tensor-train accelerated solver for integral equations in complex geometries. J. Comput. Phys. 334, 145–169 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 21 (4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dolgov, S., Kressner, D., Strössner, C.: Functional Tucker approximation using Chebyshev interpolation. SIAM J. Sci. Comput. 43(3), A2190–A2210 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, K., Eriksson, D., Nickisch, H., Bindel, D., Wilson, A.G.: Scalable log determinants for Gaussian process kernel learning. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

  18. Drmač, Z., Saibaba, A.K.: The discrete empirical interpolation method: canonical structure and formulation in weighted inner product spaces. SIAM Journal on Matrix Analysis and Applications 39(3), 1152–1180 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fong, W., Darve, E.: The black-box fast multipole method. J. Comput. Phys. 228(23), 8712–8725 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gaß, M., Glau, K., Mahlstedt, M., Mair, M.: Chebyshev interpolation for parametric option pricing. Finance Stochast. 22(3), 701–731 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD (2013)

    MATH  Google Scholar 

  22. Gorodetsky, A., Karaman, S., Marzouk, Y.: A continuous analogue of the tensor-train decomposition. Comput. Methods Appl. Mech. Eng. 347, 59–84 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H-matrices. Computing 70(4), 295–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. Journal of computational physics 73(2), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Greengard, L., Strain, J.: The fast Gauss transform. SIAM J. Sci. Stat. Comput. 12(1), 79–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Griebel, M., Harbrecht, H.: Analysis of tensor approximation schemes for continuous functions. arXiv:1903.04234 (2019)

  27. Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices. Computing 62(2), 89–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hackbusch, W.: Hierarchical matrices: algorithms and analysis, vol. 49 Springer (2015)

  30. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive H2-matrices. Computing 69(1), 1–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hashemi, B., Trefethen, L.N.: Chebfun in three dimensions. SIAM J. Sci. Comput. 39(5), C341–C363 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ho, K.L., Greengard, L.: A fast semidirect least squares algorithm for hierarchically block separable matrices. SIAM Journal on Matrix Analysis and Applications 35(2), 725–748 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Khoromskaia, V., Khoromskij, B.N.: Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation. Comput. Phys. Commun. 185(12), 3162–3174 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Khoromskaia, V., Khoromskij, B.N.: Tensor numerical methods in quantum chemistry. De Gruyter (2018)

  36. Khoromskaia, V., Khoromskij, B.N.: Prospects of tensor-based numerical modeling of the collective electrostatics in many-particle systems. Comput. Math. Math. Phys. 61(5), 864–886 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Khoromskaia, V., Khoromskij, B.N.: Reduced higher order SVD: ubiquitous rank-reduction method in tensor-based scientific computing. arXiv:2201.12663 (2022)

  38. Khoromskij, B.N.: Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110(1), 1–19 (2012)

    Article  Google Scholar 

  39. Khoromskij, B.N.: Tensor numerical methods in scientific computing. De Gruyter (2018)

  40. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, M., Bi, W., Kwok, J.T., Lu, B.-L.: Large-scale Nyström kernel matrix approximation using randomized SVD. IEEE Transactions on Neural Networks and Learning Systems 26(1), 152–164 (2014)

    Google Scholar 

  42. Litvinenko, A., Keyes, D., Khoromskaia, V., Khoromskij, B.N., Matthies, H.G.: Tucker tensor analysis of Matérn functions in spatial statistics. Computational Methods in Applied Mathematics 19(1), 101–122 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, H., Ong, Y.-S., Shen, X., Cai, J.: When Gaussian process meets big data: a review of scalable GPs. IEEE Transactions on Neural Networks and Learning Systems 31(11), 4405–4423 (2020)

    Article  MathSciNet  Google Scholar 

  44. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. CRC press (2002)

  45. Minster, R., Saibaba, A.K., Kilmer, M.E.: Randomized algorithms for low-rank tensor decompositions in the Tucker format. SIAM Journal on Mathematics of Data Science 2(1), 189–215 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rai, P., Kolla, H., Cannada, L., Gorodetsky, A.: Randomized functional sparse Tucker tensor for compression and fast visualization of scientific data. arXiv:1907.05884 (2019)

  47. Rakhuba, M., Oseledets, I.V.: Grid-based electronic structure calculations: the tensor decomposition approach. J. Comput. Phys. 312, 19–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sauter, S.A., Schwab, C.: Boundary element methods. In: Boundary Element Methods, Springer, pp. 183–287 (2010)

  49. Si, S., Hsieh, C.-J., Dhillon, I.: Memory efficient kernel approximation. In: International Conference on Machine Learning, PMLR, pp. 701–709 (2014)

  50. Sun, Y., Guo, Y., Luo, C., Tropp, J., Udell, M.: Low-rank tucker approximation of a tensor from streaming data. SIAM Journal on Mathematics of Data Science 2(4), 1123–1150 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Szyld, D.B.: The many proofs of an identity on the norm of oblique projections. Numerical Algorithms 42(3-4), 309–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Takahashi, T., Coulier, P., Darve, E.: Application of the inverse fast multipole method as a preconditioner in a 3D Helmholtz boundary element method. J. Comput. Phys. 341, 406–428 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Trefethen, L.: Multivariate polynomial approximation in the hypercube. Proceedings of the American Mathematical Society 145(11), 4837–4844 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Trefethen, L.N.: Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics. SIAM, Philadelphia, PA (2013)

    Google Scholar 

  55. Wilson, A., Nickisch, H.: Kernel interpolation for scalable structured Gaussian processes (KISS-GP). In: International Conference on Machine Learning, PMLR, pp. 1775–1784 (2015)

  56. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable matrices. Numerical Linear Algebra with Applications 17(6), 953–976 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xu, K.: The Chebyshev points of the first kind. Appl. Numer. Math. 102, 17–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Xu, Z., Cambier, L., Rouet, F.-H., L’Eplatennier, P., Huang, Y., Ashcraft, C., Darve, E.: Low-rank kernel matrix approximation using skeletonized interpolation with endo- or exo-vertices. arXiv:1807.04787 (2018)

  59. Ye, X., Xia, J., Ying, L.: Analytical low-rank compression via proxy point selection. SIAM Journal on Matrix Analysis and Applications 41(3), 1059–1085 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196 (2), 591–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yu, W., Gu, Y., Li, Y.: Efficient randomized algorithms for the fixed-precision low-rank matrix approximation. SIAM Journal on Matrix Analysis and Applications 39(3), 1339–1359 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang, J., Saibaba, A.K., Kilmer, M.E., Aeron, S.: A randomized tensor singular value decomposition based on the t-product. Numerical Linear Algebra with Applications 25(5), e2179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

A.K.S. was supported, in part, by the National Science Foundation (NSF) through the grants DMS-1821149, DMS-1845406, and DMS-1745654. M.E.K. was supported, in part, by the National Science Foundation under Grants NSF DMS 1821148 and Tufts T-Tripods Institute NSF HDR grant CCF-1934553.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind K. Saibaba.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Gunnar J Martinsson

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix.: Proof of Theorem 1

Appendix.: Proof of Theorem 1

For each \(j = 1,\dots ,N\), let \(\mathbf {\Pi }_{j} = \mathbf {A}_{j}\mathbf {P}_{j}^{\top }\). Recall that \(\widehat {\boldsymbol {{\mathcal{M}}}} = \boldsymbol {{\mathcal{M}}} \times _{j=1}^{N} \mathbf {\Pi }_{j}\). Considering the term \(\boldsymbol {{\mathcal{M}}}-\widehat {\boldsymbol {{\mathcal{M}}}}\), we can add and subtract the terms \(\boldsymbol {{\mathcal{M}}} \times _{i=1}^{j} \mathbf {\Pi }_{i}\) for \(j = 1,\dots ,N-1\) as follows.

$$\begin{aligned} \boldsymbol{\mathcal{M}}-\widehat{\boldsymbol{\mathcal{M}}} &= \boldsymbol{\mathcal{M}}-\boldsymbol{\mathcal{M}} \times_{j=1}^{N} \mathbf{\Pi}_{j} \\ &= \boldsymbol{\mathcal{M}} \times_{1} (\mathbf{I}-\mathbf{\Pi}_{1}) + \boldsymbol{\mathcal{M}} \times_{1} \mathbf{\Pi}_{1} \times_{2} (\mathbf{I}-\mathbf{\Pi}_{2}) + {\dots} + \boldsymbol{\mathcal{M}} \times_{j=1}^{N-1} \mathbf{\Pi}_{j} \times_{N} (\mathbf{I}-\mathbf{\Pi}_{N}). \end{aligned}$$

Then, taking the Frobenius norm and applying the triangle inequality, we have

$$\|\boldsymbol{\mathcal{M}}-\widehat{\boldsymbol{\mathcal{M}}}\|_{F} \leq \sum\limits_{j=1}^{N} \| \boldsymbol{\mathcal{M}} \times_{i=1}^{j-1} \mathbf{\Pi}_{i} \times_{j} (\mathbf{I}-\mathbf{\Pi}_{j}) \|_{F}.$$

Using the linearity of expectations, we get

$$\mathbb{E}_{\{\mathbf{\Omega}\}_{k=1}^{N}} \|\boldsymbol{\mathcal{M}}-\widehat{\boldsymbol{\mathcal{M}}}\|_{F} \leq \sum\limits_{j=1}^{N} \mathbb{E}_{\mathbf{\Omega}_{j}} \| \boldsymbol{\mathcal{M}} \times_{i=1}^{j-1} \mathbf{\Pi}_{i} \times_{j} (\mathbf{I}-\mathbf{\Pi}_{j}) \|_{F}.$$
(18)

Now, consider the term \(\|\boldsymbol{\mathcal{M}} \times _{i=1}^{j-1} \mathbf {\Pi }_{i} \times _{j} (\mathbf {I}-\mathbf {\Pi }_{j}) \|_{F}\). We can use the submultiplicativity property ∥ABF ≤∥A2BF to obtain

$$\|\boldsymbol{\mathcal{M}} \times_{i=1}^{j-1} \mathbf{\Pi}_{i} \times_{j} (\mathbf{I}-\mathbf{\Pi}_{j}) \|_{F} \leq {\prod}_{i=1}^{j-1} \|\mathbf{\Pi}_{i}\|_{2} \| \boldsymbol{\mathcal{M}} \times_{j} (\mathbf{I}-\mathbf{\Pi}_{j})\|_{F}.$$
(19)

Note that \(\mathbf {\Pi }_{j}\mathbf {Q}_{j} \mathbf {Q}_{j}^{\top } = \mathbf {Q}_{j} \mathbf {Q}_{j}^{\top }\), meaning that \(\mathbf {I}-\mathbf {\Pi }_{j} = (\mathbf {I}-\mathbf {\Pi }_{j})(\mathbf {I}-\mathbf {Q}_{j}\mathbf {Q}_{j}^{\top })\). We can then rewrite each term \(\|\boldsymbol{\mathcal{M}} \times _{j} (\mathbf {I}-\mathbf {\Pi }_{j})\|_{F}\) as

$$\begin{aligned} \| \boldsymbol{\mathcal{M}} \times_{j} (\mathbf{I}-\mathbf{\Pi}_{j})\|_{F} &= \| \boldsymbol{\mathcal{M}} \times_{j} (\mathbf{I}-\mathbf{\Pi}_{j})(\mathbf{I}-\mathbf{Q}_{j} \mathbf{Q}_{j}^{\top})\|_{F} \\ &\leq \|\boldsymbol{\mathcal{M}} \times_{j} (\mathbf{I}-\mathbf{Q}_{j}\mathbf{Q}_{j}^{\top})\|_{F} \|\mathbf{I}-\mathbf{\Pi}_{j}\|_{2}. \end{aligned}$$
(20)

We note that \(\boldsymbol\Pi_{j} \neq \mathbf{I}\) since rank \((\boldsymbol\Pi_{j})\) ≤ rank (Qj) = rt + p < n, and \(\boldsymbol\Pi_{j} \neq \mathbf{0}\) since Qj has orthonormal columns and \(\mathbf {P}_{j}^{\top } \mathbf {Q}_{j}\) is invertible. Therefore, using the main result of [51], \(\| \mathbf{I} - \boldsymbol\Pi_{j} \|_{2} = \| \boldsymbol\Pi_{j} \|_{2}\). Then using [18, Lemma 2.1], \(\|\mathbf {I}-\mathbf {\Pi }_{j}\|_{2} = \|\mathbf {\Pi }_{j}\|_{2} = \|(\mathbf {P}_{j}^{\top }\mathbf {Q}_{j})^{-1}\|_{2} \leq g(n,\ell ).\) Combining this result with (19) and (20), we obtain

$$\begin{aligned} \|\boldsymbol{\mathcal{M}} \times_{i=1}^{j-1} \mathbf{\Pi}_{j} \times (\mathbf{I}-\mathbf{\Pi}_{j})\|_{F} &\leq \left(g(n,\ell)\right)^{j} \|\boldsymbol{\mathcal{M}} \times_{j} (\mathbf{I}-\mathbf{Q}_{j}\mathbf{Q}_{j}^{\top})\|_{F} \\ &= \left(g(n,\ell)\right)^{j} \|(\mathbf{I}-\mathbf{Q}_{j}\mathbf{Q}_{j}^{\top})\mathbf{M}_{(j)}\|_{F}. \end{aligned}$$

The last equality comes by unfolding the term \(\boldsymbol {{\mathcal{M}}} \times _{j} (\mathbf {I}-\mathbf {Q}_{j}\mathbf {Q}_{j}^{\top })\) along mode-j. By taking expectations and applying [62, Theorem 3], we have

$$\begin{aligned} \mathbb{E}_{\mathbf{\Omega}_{j}}\|\boldsymbol{\mathcal{M}} \times_{i=1}^{j-1} \mathbf{\Pi}_{j} \times_{j} (\mathbf{I}-\mathbf{\Pi}_{j})\|_{F} &\leq (g(n,\ell))^{j} \mathbb{E}_{\mathbf{\Omega}_{j}} \|(\mathbf{I}-\mathbf{Q}_{j}\mathbf{Q}_{j}^{\top})\mathbf{M}_{(j)}\|_{F} \\ &\leq (g(n,\ell))^{j} \left(\left(1+\frac{r_{t}}{p-1} \right) {\sum}_{i=r_{t}+1}^{n} {\sigma_{i}^{2}}\left(\mathbf{M}_{(j)}\right)\right)^{1/2}. \end{aligned}$$

Combining this result with (18), we obtain the desired bound.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saibaba, A.K., Minster, R. & Kilmer, M.E. Efficient randomized tensor-based algorithms for function approximation and low-rank kernel interactions. Adv Comput Math 48, 66 (2022). https://doi.org/10.1007/s10444-022-09979-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09979-7

Keywords

Mathematics Subject Classification (2010)

Navigation