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Abstract
We propose an Extended Hybrid High-Order scheme for the Poisson problem with
solution possessing weak singularities. Some general assumptions are stated on the
nature of this singularity and the remaining part of the solution. The method is formu-
lated by enriching the local polynomial spaces with appropriate singular functions.
Via a detailed error analysis, the method is shown to converge optimally in both dis-
crete and continuous energy norms. Some tests are conducted in two dimensions for
singularities arising from irregular geometries in the domain. The numerical simula-
tions illustrate the established error estimates, and show the method to be a significant
improvement over a standard Hybrid High-Order method.

Keywords Hybrid High-Order methods · Enriched scheme · Error analysis ·
Singular solution · Polytopal meshes
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1 Introduction

This century has seen a growing interest in so-called polytopal methods for the dis-
cretisation of elliptic problems. These methods extend the classical finite element
method to generic polytopal grids. A short list of such methods includes discon-
tinuous Galerkin and hybridisable discontinuous Galerkin methods [13, 16, 21],
multi-point flux approximation finite volume methods [1], hybrid mimetic mixed
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methods [27], virtual element methods [3, 7, 12, 14], weak Galerkin methods [32],
and polytopal finite elements [33]. The Hybrid High-Order (HHO) method is a recent
addition to these techniques, and also benefits from being of arbitrary order and
dimension independent. Additionally, HHO methods allow for static condensation
of the system matrix, and depend on polynomial reconstructions which account for
the physics of the problem. For a comprehensive discussion of the method and its
applications, we refer the interested reader to the monograph [19].

Hybrid High-Order methods have been used to model diffusion and diffusion-
advection-reaction equations [22, 23], elasticity problems [10, 20], Leray Lions and
p-Laplace equations [17, 19], and the Stokes and Navier-Stokes equations [11, 19,
24]. The method has also been shown to be robust on highly irregular grids consist-
ing of elements with arbitrarily many small faces [26] and on skewed meshes such
that each element possesses a linear map to an an isotropic element [25]. All of these
schemes, however, rely on error estimates which assume certain regularity of the
exact solution. This is typical of high-order approximations which require high-order
regularity to obtain optimal approximation rates. On non-smooth domains (such as
regions with non-convex corners or those possessing cracks), it is expected that the
exact solution to elliptic problems will contain weak singularities [28]. This lack of
regularity is well documented in the finite element literature and is typically over-
come through enriched approximations based on the partition of unity method [6, 30].
The extended finite element method [8, 31] is one such method, originally designed
to handle discontinuities in crack growth models. In particular, by enriching the local
spaces with basis functions that are discontinuous across the crack, the method allows
for optimal approximation without the need for mesh refinement near the discontinu-
ity. A similar approach was taken for polygonal finite elements [34]. More recently,
an enriched virtual element method for the Poisson problem was designed in [9];
however, no estimates of the error were given. Following this work, the same authors
have proposed in [9] an enriched VEM for a linear elasticity fracture problem. The
Hybrid High-Order method is closely linked (cf. [19, Section 5.5]) to the noncon-
forming virtual element method (NCVEM) [5]. The recent article [4] designs an
enriched NCVEM for harmonic singularities arising from irregular domains in two
dimensions. Moreover, the enriched NCVEM is capable of handling highly irregu-
lar harmonic singularities, including those arising from cracked domains. While the
assumptions we make in Assumption 2 do not cover cracked domains, the method
presented here is robust for all other boundary singularities and has the particular
advantage of not requiring the singular functions to be harmonic. This can be particu-
larly useful if the irregularity of the problem is due to singularities in the source term,
and not due to non-smooth domains. We also note that the analysis carried out in
this paper does not require that inverse inequalities hold for the enriched polynomial
spaces.

In this paper, we propose an Extended Hybrid High-Order (XHHO) method for
the Poisson problem. The work is presented dimension independent, and capable
of handling arbitrary singular functions satisfying Assumption 2. Specifically, we
assume the exact solution consists of a ‘weakly singular’ part lying in a finite dimen-
sional singular space. The local polynomial spaces on the mesh elements and faces
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are enriched with the appropriate singular space. By then adjusting the local projec-
tors and potential reconstruction accordingly, an optimal XHHO scheme is developed
that mimics the standard method [19, Section 2]. However, the analysis is far more
involved as we can no longer rely on the Lebesgue/Sobolev embeddings and discrete
trace inequalities that apply to polynomial spaces. In Section 3, we provide a thor-
ough error analysis of the scheme under minimal regularity assumptions. The paper
is concluded with an analysis of the choice of stabilisation term in Section 4 and a
discussion on the implementation of the scheme, its numerical limitations, and some
benchmark tests in Section 5.

1.1 Model problem

Let us consider the typical Dirichlet problem in a polytopal domain � ⊂ R
d , d ≥ 2:

find u ∈ H 1
0 (�) such that

a(u, v) = �(v), ∀ v ∈ H 1
0 (�), (1.1)

where a(u, v) := (∇u, ∇v)�, �(v) := (f, v)� for some f ∈ L2(�). Here and in the
following, (·, ·)X is the L2-inner product of scalar- or vector-valued functions on a
set X for its natural measure. To ease the analysis, we consider only homogeneous
Dirichlet boundary conditions in this paper. However, the scheme extends quite natu-
rally to more general Dirichlet and Neumann problems. Such an extension is outlined
in [19, Section 2.4].

Consider a partition of the domain � into a mesh Mh = (Th,Fh) where the set
of mesh elements Th are a set of disjoint polytopes such that � = ⋃

T ∈Th
T and the

set of mesh faces Fh form the mesh skeleton
⋃

T ∈Th
∂T = ⋃

F∈Fh
F . A detailed

definition of this structure can be found in [19, Definition 1.4]. The parameter h

denotes the maximal element diameter h := maxT ∈Th
hT where, for X = T ∈ Th or

X = F ∈ Fh, hX denotes the diameter of X. We shall also collect the set of faces
attached to an element T ∈ Th in the set FT := {F ∈ Fh : F ⊂ T }. Similarly,
the set containing the one or two elements attached to a face F ∈ Fh is defined as
TF := {T ∈ Th : F ⊂ ∂T }. For each T ∈ Th, we denote by n∂T the unit normal
directed out of T , and its restriction to a face F ∈ FT is given by nT F = n∂T |F . We
further make the following assumption on the mesh inline with that stated in [26].

Assumption 1 (Connected by star-shaped sets) There exists a constant � > 0 such
that for every h ∈ H, each T ∈ Th and F ∈ Fh is connected by star-shaped sets with
parameter � (see [19, Definition 1.41]).

It is worth noting that Assumption 1 is independent of the size of and number of
faces in each mesh element. Thus, as in [26], all error estimates in this work remain
robust with respect to small and numerous faces.

A typical Hybrid High-Order discretisation of problem (1.1) relies on piecewise
Hk+2-regularity of the solution where k ≥ 0 is the polynomial degree of the face
unknowns. We consider here an exact solution of the form u = ur + ũ where ur
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denotes the ‘regular part’ and ũ ∈ W(Th) where W(Th) is a finite dimensional,
‘weakly singular’, enrichment space such that the following assumption holds.

Assumption 2 (Assumptions on the enrichment space) We assume that every ψ ∈
W(Th) satisfies the following conditions:

(A1) ∀T ∈ Th, ψ ∈ H 1(T ),
(A2) ∀T ∈ Th, �ψ ∈ L2(T ),
(A3) ∀T ∈ Th, ∀F ∈ FT , ∇ψ · nT F ∈ L2(F ).

As mentioned, we assume throughout this paper that the exact solution to (1.1) can
be written as the sum of a regular part and an element of W(Th). More specifically,
for some k ∈ N, we define the solution space to be

Vk+2(�) := {w ∈ H 1
0 (�) : �w ∈ L2(�), w ∈ Hk+2(Th) + W(Th)}, (1.2)

where we denote by Hk+2(Th) the broken Sobolev space

Hk+2(Th) := {w ∈ L2(�) : w|T ∈ Hk+2(T ) ∀T ∈ Th},
and assume that the exact solution satisfies u ∈ Vk+2(�). We note here that Assump-
tion 2 does not require the enrichment function to be harmonic. Such a case is
considered in Section 5.5.

Remark 1 We note that the conditions on both the regular part and the singular part
are purely local and the only global conditions enforced on the exact solution are
those of u ∈ H 1

0 (�) and �u ∈ L2(�).

2 Discrete problem

On each T ∈ Th, we define the discrete space

P
k+1
x (T ) := P

k+1(T ) + W(T ), (2.1)

where W(T ) denotes the restriction to T of W(Th), and P
k+1(T ) denotes the space

of polynomials on T of degree no more than k + 1, k ∈ N. The extended elliptic
projector on the space Pk+1

x (T ) is defined as the unique π
1,k+1
x,T : H 1(T ) → P

k+1
x (T )

such that for all v ∈ H 1(T )

(∇(v − π
1,k+1
x,T v), ∇w)T = 0, ∀ w ∈ P

k+1
x (T ) (2.2)

and

(v − π
1,k+1
x,T v, 1)T = 0. (2.3)

Analogous to [19, Section 2.1], we wish to define a discrete space Uk
x,T , a recon-

struction operator pk+1
x,T : Uk

x,T → P
k+1
x (T ), and an interpolator I k

x,T : H 1(T ) →
Uk

x,T such that pk+1
x,T ◦ I k

x,T = π
1,k+1
x,T . Due to the regularity assumptions on the
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enrichment space, the following integration by parts formula holds for all v ∈ H 1(T )

and w ∈ P
k+1
x (T ),

(∇v, ∇w)T = −(v, �w)T + (v, ∇w · n∂T )∂T . (2.4)

To introduce projectors to (2.4), we first define the local discrete spaces

P
k
�(T ) := P

k(T )+�W(T ) and P
k∇(F ) := P

k(F )+
∑

T ∈TF 3

∇W(T ) ·nT F . (2.5)

Remark 2 A common application of the method designed in this paper is to irregu-
larities in the solution arising from corners in the domain. In such cases, the singular
functions considered are harmonic (see Section 5) and the space P

k
�(T ) coincides

with the polynomial space P
k(T ).

Remark 3 Much of the time, the gradient of an enrichment function ψ ∈ W(Th) is
continuous across each face F ∈ Fh and the definition of Pk∇(F ) is equivalent to

P
k∇(F ) := P

k(F ) + ∇W(Th) · nF

for an arbitrary normal nF to the face F . However, definition (2.5) is still well defined
for discontinuous enrichment functions. As the space P

k(F ) is defined independent
of any particular T ∈ Th, it is essential in such cases to include the Neumann traces
from both elements T ∈ TF attached to the face F . This is particularly useful when
considering locally enriched schemes. Further discussion on this matter is given in
Section 5.3.

The discrete broken space on an element boundary is defined as

P
k∇(FT ) := {v ∈ L1(∂T ) : v|F ∈ P

k∇(F ) ∀F ∈ FT }.
It follows from Assumptions (A2) and (A3) that

P
k(T ) ⊂ P

k
�(T ) ⊂ L2(T ) and P

k(FT ) ⊂ P
k∇(FT ) ⊂ L2(∂T ).

We denote by π
0,k
�,T and π

0,k
∇,∂T the L2-orthogonal projectors on P

k
�(T ) and

P
k∇(FT ) respectively. Thus, it follows from (2.2) and (2.4), as well as the inclusions

�P
k+1
x (T ) ⊂ P

k
�(T ) and ∇P

k+1
x (T ) · n∂T ⊂ P

k∇(FT ), that for all v ∈ H 1(T ),

(∇π
1,k+1
x,T v, ∇w)T = −(π

0,k
�,T v, �w)T + (π

0,k
∇,∂T v, ∇w ·n∂T )∂T ∀w ∈ P

k+1
x (T ).

(2.6)

2.1 Local space

The local space of unknowns is defined to be

Uk
x,T := P

k
�(T ) × P

k∇(FT ). (2.7)
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For all vx,T = (vx,T , vx,∂T ) ∈ Uk
x,T , the reconstruction operator pk+1

x,T : Uk
x,T →

P
k+1
x (T ) is defined by

(∇pk+1
x,T vx,T , ∇w)T = −(vx,T , �w)T + (vx,∂T , ∇w · n∂T )∂T ∀ w ∈ P

k+1
x (T )

(2.8)
and

(vx,T − pk+1
x,T vx,T , 1)T = 0. (2.9)

Naturally, the interpolator is defined as I k
x,T v := (π

0,k
�,T v, π

0,k
∇,∂T v). By comparing

equations (2.6) and (2.8) as well as the closure condition (2.9), we observe the desired
commutation property

pk+1
x,T ◦ I k

x,T = π
1,k+1
x,T . (2.10)

Due to the L2-regularity of the unknown spaces, the local reconstruction and interpo-
lator mimic those defined in [19], and the formulation of the discrete problem follows
a standard procedure (albeit with non-standard analysis). The continuous form a(·, ·)
is approximated on each element by the discrete form ax,T : Uk

x,T × Uk
x,T → R

defined by

ax,T (ux,T , vx,T ) := (∇pk+1
x,T ux,T , ∇pk+1

x,T vx,T )T + sx,T (ux,T , vx,T ),

where sx,T : Uk
x,T × Uk

x,T → R is a stabilisation term satisfying the following
assumption. From hereon, we shall write f � g to mean f ≤ Cg where C is a
constant depending only on �, k and the mesh regularity parameter �.

Assumption 3 (Local stabilisation term) The stabilisation term sx,T is a symmetric,
positive semi-definite bilinear form that satisfies:

1. Coercivity. For all vx,T ∈ Uk
x,T , it holds that

h−2
T ‖vx,T − pk+1

x,T vx,T ‖2
T � ax,T (vx,T , vx,T ) (2.11)

and
h−1

T ‖vx,∂T − pk+1
x,T vx,T ‖2

∂T � ax,T (vx,T , vx,T ). (2.12)

2. Consistency. For all w = wr +ψ where wr ∈ Hk+2(T ) and ψ ∈ W(T ), it holds
that

sx,T (I k
x,T w, I k

x,T w) �
[
hk+1

T |wr |Hk+2(T )

]2
. (2.13)

Remark 4 For the case of regular, polynomial unknowns, the two coercivity con-
ditions (2.11) and (2.12) are equivalent to the single coercivity condition stated in
[26, Assumption 2]. However, we have to consider the two conditions here to account
for the lack of regularity of the solution.

Some examples of stabilisation terms satisfying Assumption 3 are given in
Section 4.

The definition (2.2) of the extended elliptic projector and the consistency (2.13)
infer for all ψ ∈ W(T ) the identities

π
1,k+1
x,T ψ = ψ and sx,T (I k

x,T ψ, I k
x,T ψ) = 0, (2.14)
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which, together with (2.10) and the definition of ax,T , yield

ax,T (I k
x,T ψ, I k

x,T v) = a(ψ, v) ∀v ∈ H 1(T ). (2.15)

Equation (2.15) shows the scheme to be exact on elements of W(T ). More generally,
ψ can be replaced by an arbitrary w ∈ P

k+1
x (T ) in equations (2.14) and (2.15) which,

as in standard HHO, shows consistency on the discrete space.

2.2 Global space

The global space of unknowns is defined as

Uk
x,h,0 :=

{
vx,h = ((vx,T )T ∈Th

, (vx,F )F∈Fh
) : vx,T ∈ P

k
�(T ) ∀T ∈ Th,

vx,F ∈ P
k∇(F ) ∀F ∈ Fh , vx,F = 0 ∀F ⊂ ∂�

}
. (2.16)

For any vx,h ∈ Uk
x,h,0, we denote its restriction to an element T by vx,T =

(vx,T , vx,∂T ) ∈ Uk
x,T (where, naturally, vx,∂T is defined from (vx,F )F∈FT

). We also
denote by vx,h the piecewise function satisfying vx,h|T = vx,T for all T ∈ Th. The
global problem reads: find ux,h ∈ Uk

x,h,0 such that

ax,h(ux,h, vx,h) = (f, vx,h)� ∀vx,h ∈ Uk
x,h,0, (2.17)

where

ax,h(ux,h, vx,h) :=
∑

T ∈Th

ax,T (ux,T , vx,T ).

We endow the global space Uk
x,h,0 with the norm

‖vx,h‖a,x,h := ax,h(vx,h, vx,h)
1
2 .

We shall also denote by I k
x,h and pk+1

x,h the global operators whose restrictions to an

element T are given by I k
x,T and pk+1

x,T respectively. The global stabilisation term is
defined as

sx,h(ux,h, vx,h) :=
∑

T ∈Th

sx,T (ux,T , vx,T ).

3 Error analysis

Providing a robust error analysis is often the pitfall of enriched schemes as many
tools available for polynomial spaces (such as discrete trace and inverse inequalities)
no longer apply. The lack of H 1-regularity of the element unknowns in P

k
� means

we cannot consider their gradients or traces. We are also restricted to considering
approximation properties of the extended elliptic projector only in the H 1-seminorm.
Despite these shortcomings, we are able to show consistency of the scheme and
provide estimates for the discrete and continuous energy errors.
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We first make note of the following continuous trace inequality (cf. [26]): for all
T ∈ Th, v ∈ H 1(T ),

hT ‖v‖2
∂T � ‖v‖2

T + h2
T |v|2

H 1(T )
. (3.1)

The following lemma is also crucial to the consistency of the scheme.

Lemma 1 (Characterisation of Vk+2(�)) For all w ∈ Vk+2(�), F ∈ Fh, F �⊂ ∂�,

∇w · nT1F + ∇w · nT2F = 0, (3.2)

where {T1, T2} = TF .

Proof The proof is analogous to that of [21, Lemma 1.24] once we note that for all
w ∈ Vk+2(�) we have: �w ∈ L2(�), w ∈ H 1(�), and ∇w · n∂T ∈ L2(∂T ) for all
T ∈ Th.

Theorem 2 (Consistency error) Let w = wr + ψ ∈ Vk+2(�) with wr ∈ Hk+2(Th)

and ψ ∈ W(Th). The consistency error is given by the linear form Eh(w; ·) :
Uk

x,h,0 → R defined for all vx,h ∈ Uk
x,h,0 via

Eh(w; vx,h) := −(�w, vx,h)� − ax,h(I
k
x,hw, vx,h).

The consistency error satisfies
∣
∣Eh(w; vx,h)

∣
∣ � ‖vx,h‖a,x,hh

k+1|wr |Hk+2(Th). (3.3)

Proof Consider

− (�w, vx,h)� =
∑

T ∈Th

−(�w, vx,T )T

=
∑

T ∈Th

−(�w, vx,T )T + (∇w · n∂T , vx,∂T )∂T ,

where we justify introducing the term
∑

T ∈Th

(∇w · n∂T , vx,∂T )∂T =
∑

T ∈Th

∑

F∈FT

(∇w · nT F , vx,F )F

=
∑

F∈Fh

∑

T ∈TF

(∇w · nT F , vx,F )F = 0

due to equation (3.2) and the homogeneous condition (2.16) on the discrete space.
Due to the commutation property (2.10), the discrete form is given by

ax,h(I
k
x,hw, vx,h) =

∑

T ∈Th

[
(∇π

1,k+1
x,T w, ∇pk+1

x,T vx,T )T

]
+ sx,h(I

k
x,hw, vx,h)

=
∑

T ∈Th

[
−(�π

1,k+1
x,T w, vx,T )T + (∇π

1,k+1
x,T w · n∂T , vx,∂T )∂T

]

+sx,h(I
k
x,hw, vx,h).
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Therefore,

Eh(w; vx,h) + sx,h(I
k
x,hw, vx,h)

=
∑

T ∈Th

[
−(�(w − π

1,k+1
x,T w), vx,T )T + (∇(w − π

1,k+1
x,T w) · n∂T , vx,∂T )∂T

]

=
∑

T ∈Th

[
−(�(wr − π

1,k+1
x,T wr), vx,T )T + (∇(wr − π

1,k+1
x,T wr) · n∂T , vx,∂T )∂T

]
,

(3.4)

where ψ has been eliminated via the invariance (2.14) of π
1,k+1
x,T . Let us denote by

π
1,k+1
T the elliptic projector [19] on the polynomial space P

k+1(T ) ⊂ P
k+1
x (T ). On

each element T ∈ Th, we introduce the elliptic projector as follows,

−(�(wr − π
1,k+1
x,T wr), vx,T )T + (∇(wr − π

1,k+1
x,T wr) · n∂T , vx,∂T )∂T

= −(�(wr − π
1,k+1
T wr), vx,T )T + (∇(wr − π

1,k+1
T wr) · n∂T , vx,∂T )∂T

−(�(π
1,k+1
T wr −π

1,k+1
x,T wr), vx,T )T +(∇(π

1,k+1
T wr −π

1,k+1
x,T wr) · n∂T , vx,∂T )∂T .

(3.5)

As π
1,k+1
T wr − π

1,k+1
x,T wr ∈ P

k+1
x (T ), we may invoke the definition (2.8) of the

potential reconstruction to write

−(�(π
1,k+1
T wr − π

1,k+1
x,T wr), vx,T )T +(∇(π

1,k+1
T wr − π

1,k+1
x,T wr) · n∂T , vx,∂T )∂T

= (∇(π
1,k+1
T wr − π

1,k+1
x,T wr), ∇pk+1

x,T vx,T )T . (3.6)

Consider also

−(�(wr−, π
1,k+1
T wr), vx,T )T + (∇(wr − π

1,k+1
T wr) · n∂T , vx,∂T )∂T

= −(�(wr − π
1,k+1
T wr), vx,T − pk+1

x,T vx,T )T − (�(wr − π
1,k+1
T wr), pk+1

x,T vx,T )T

+(∇(wr − π
1,k+1
T wr) · n∂T , vx,∂T )∂T

= −(�(wr − π
1,k+1
T wr), vx,T − pk+1

x,T vx,T )T + (∇(wr − π
1,k+1
T wr), ∇pk+1

x,T vx,T )T

+(∇(wr − π
1,k+1
T wr) · n∂T , vx,∂T − pk+1

x,T vx,T )∂T , (3.7)

where we have introduced the term pk+1
x,T vx,T and integrated by parts. Combining

(3.5), (3.6), and (3.7) yields

−(�(wr − π
1,k+1
x,T wr), vx,T )T + (∇(wr − π

1,k+1
x,T wr) · n∂T , vx,∂T )∂T

= −(�(wr − π
1,k+1
T wr), vx,T − pk+1

x,T vx,T )T + (∇(wr − π
1,k+1
x,T wr), ∇pk+1

x,T vx,T )T

+(∇(wr − π
1,k+1
T wr) · n∂T , vx,∂T − pk+1

x,T vx,T )∂T . (3.8)

By the definition (2.2) of the extended elliptic projector, we have that

(∇(wr − π
1,k+1
x,T wr), ∇pk+1

x,T vx,T )T = 0. (3.9)

Design and analysis of the Extended Hybrid High-Order... Page 9 of 25 45



Therefore, combining (3.4), (3.8), and (3.9) yields

Eh(w; vx,h) = −sx,h(I
k
x,hw, vx,h)+

∑

T ∈Th

[
−(�(wr − π

1,k+1
T wr), vx,T −pk+1

x,T vx,T )T

+ (∇(wr − π
1,k+1
T wr) · n∂T , vx,∂T − pk+1

x,T vx,T )∂T

]
,

and thus

∣
∣Eh(w; vx,h)

∣
∣ ≤

∑

T ∈Th

∣
∣
∣sx,T (I k

x,T w, vx,T )

∣
∣
∣+

∑

T ∈Th

∣
∣
∣(�(wr −π

1,k+1
T wr), vx,T −pk+1

x,T vx,T )T

∣
∣
∣

+
∑

T ∈Th

∣
∣
∣(∇(wr − π

1,k+1
T wr) · n∂T , vx,∂T − pk+1

x,T vx,T )∂T

∣
∣
∣ . (3.10)

By a Cauchy–Schwarz inequality, the coercivity condition (2.11), and the approxi-
mation properties of the elliptic projector [19, Theorem 1.48],

∣
∣
∣(�(wr − π

1,k+1
T wr), vx,T − pk+1

x,T vx,T )T

∣
∣
∣

≤ ‖�(wr − π
1,k+1
T wr)‖T ‖vx,T − pk+1

x,T vx,T ‖T

� |wr − π
1,k+1
T wr |H 2(T )hT ax,T (vx,T , vx,T )

1
2

� hk+1
T |wr |Hk+2(T )ax,T (vx,T , vx,T )

1
2 . (3.11)

Similarly, by a Cauchy–Schwarz inequality, the continuous trace inequality (3.1), and
(2.12),

∣
∣(∇(wr − π

1,k+1
T wr) · n∂T , vx,∂T − pk+1

x,T vx,T )∂T

∣
∣

≤ ‖∇(wr − π
1,k+1
T wr)‖∂T ‖vx,∂T − pk+1

x,T vx,T ‖∂T

�
(

h
− 1

2
T |wr − π

1,k+1
T wr |H 1(T ) + h

1
2
T |wr − π

1,k+1
T wr |H 2(T )

)

h
1
2
T ax,T (vx,T , vx,T )

1
2

� hk+1
T |wr |Hk+2(T )ax,T (vx,T , vx,T )

1
2 , (3.12)

where we have again invoked the approximation properties of the elliptic projec-
tor. The stabilisation term is bounded using a Cauchy–Schwarz inequality and the
consistency condition (2.13),

∣
∣
∣sx,T (I k

x,T w, vx,T )

∣
∣
∣ ≤ sx,T (I k

x,T w, I k
x,T w)

1
2 sx,T (vx,T , vx,T )

1
2

� hk+1
T |wr |Hk+2(T )ax,T (vx,T , vx,T )

1
2 . (3.13)

Substituting (3.11), (3.12), and (3.13) into (3.10) yields
∣
∣Eh(w; vx,h)

∣
∣ �

∑

T ∈Th

hk+1
T |wr |Hk+2(T )ax,T (vx,T , vx,T )

1
2 .

The proof follows from a discrete Cauchy–Schwarz inequality and noting that hT ≤
h for all T ∈ Th.
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The proof of the consistency error given above is significantly more detailed than
that of regular HHO given in [19, Section 2.2]. The reason for this is partly due the
limited regularity of element unknowns, vx,T ∈ L2(T ). However, even if we were to
assume H 1-regularity to arrive at the equation

Eh(w; vx,h) + sx,h(I k
x,hw, vx,h) = ∑

T ∈Th

[
(∇(wr − π

1,k+1
x,T wr), ∇vx,T )T

+(∇(wr − π
1,k+1
x,T wr) · n∂T , vx,∂T − vx,T )∂T

]
,

this is still not useful. The first term does not equate to zero as vx,T /∈ P
k+1
x (T ) in

general. Moreover, there is no guarantee that ‖∇(wr −π
1,k+1
x,T wr) ·n∂T ‖∂T will scale

appropriately. Thus, the extra and lengthy details in the proof of Theorem 2 appear
necessary.

Theorem 3 (Energy error) Let u = ur + ũ ∈ Vk+2(�) be the exact solution to the
continuous problem (1.1) where ur ∈ Hk+2(Th) and ũ ∈ W(Th). Let ux,h ∈ Uk

x,h,0
be the solution to the discrete problem (2.17). The following energy error estimates
hold:

‖ux,h − I k
x,hu‖a,x,h + |pk+1

x,h ux,h − u|H 1(Th) � hk+1|ur |Hk+2(Th). (3.14)

Proof By the coercivity conditions (2.12) and (2.11), as well as the homogeneous
conditions on the discrete space, it is clear that ‖ · ‖a,x,h describes a norm on Uk

x,h,0.
As such, we infer from the Third Strang Lemma [18] that

‖ux,h − I k
x,hu‖a,x,h ≤ sup

vx,h �=0

|Eh(u; vx,h)|
‖vx,h‖a,x,h

.

Combining with the consistency error (3.3) yields the estimate

‖ux,h − I k
x,hu‖a,x,h � hk+1|ur |Hk+2(Th). (3.15)

Consider on each element T ∈ Th the triangle inequality,

|pk+1
x,T ux,T − u|H 1(T ) ≤ |pk+1

x,T ux,T − π
1,k+1
x,T u|H 1(T ) + |π1,k+1

x,T u − u|H 1(T )

= |pk+1
x,T (ux,T − I k

x,T u)|H 1(T ) + |π1,k+1
x,T ur − ur |H 1(T )

≤ ax,T (ux,T − I k
x,T u, ux,T −I k

x,T u)
1
2 + |π1,k+1

T ur −ur |H 1(T ),

where π
1,k+1
x,T is replaced by π

1,k+1
T due to orthogonal projectors minimising their

respective norms and π
1,k+1
T ur ∈ P

k+1
x (T ). Squaring, summing over all T ∈ Th, and

invoking the approximation properties of the elliptic projector yield

|pk+1
x,h ux,h − u|2

H 1(Th)
� ‖ux,h − I k

x,hu‖2
a,x,h +

[
hk+1|ur |Hk+2(Th)

]2
.

The proof is complete by applying the estimate (3.15).
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4 Stabilisation

In this section, we give an example of a stabilisation term satisfying the coercivity
and consistency properties of Assumption 3. We first give below an extension of
[19, Lemma 2.11] to the extended discrete spaces considered here. The difference
operators δk

x,T : Uk
x,T → P

k
�(T ) and δk

x,∂T : Uk
x,T → P

k∇(FT ) are defined via

δk
x,T vx,T := vx,T −π

0,k
�,T pk+1

x,T vx,T and δk
x,∂T vx,T := vx,∂T −π

0,k
∇,∂T pk+1

x,T vx,T .

Lemma 4 (Dependency of sx,T ) For sx,T to satisfy the consistency condition (2.13),
it is necessary (but not sufficient) that sx,T depends on its arguments only through
δk
x,T and δk

x,∂T .

Proof Consider a symmetric, positive semi-definite bilinear form sx,T that satisfies
condition (2.13). Thus, for all w = wr + ψ ∈ P

k+1
x (T ) with wr ∈ P

k+1(T ) and
ψ ∈ W(T ),

sx,T (I k
x,T w, I k

x,T w) �
[
hk+1

T |wr |Hk+2(T )

]2 = 0.

Therefore, by a Cauchy–Schwarz inequality,

sx,T (I k
x,T w, vx,T ) = 0

for all vx,T ∈ Uk
x,T . Thus,

sx,T (ux,T , vx,T ) = sx,T (ux,T , vx,T − I k
x,T pk+1

x,T vx,T )

= sx,T (ux,T − I k
x,T pk+1

x,T ux,T , vx,T − I k
x,T pk+1

x,T vx,T ).

The proof is complete by noting that

vx,T − I k
x,T pk+1

x,T vx,T = (δk
x,T vx,T , δk

x,∂T vx,T ).

A stabilisation term satisfying Assumption 3 is obtained setting

sx,T (ux,T , vx,T ) := h−2
T (δk

x,T ux,T , δk
x,T vx,T )T + h−1

T (δk
x,∂T ux,T , δk

x,∂T vx,T )∂T .
(4.1)

Lemma 5 (Coercivity) The stabilisation term defined by (4.1) satisfies the coercivity
conditions (2.11) and (2.12).

Proof Consider by a triangle inequality, and the inclusion P
k(T ) ⊂ P

k
�(T ) along

with the minimisation of π
0,k
�,T on P

k
�(T ),

h−2
T ‖vx,T − pk+1

x,T vx,T ‖2
T

� h−2
T ‖vx,T − π

0,k
�,T pk+1

x,T vx,T ‖2
T + h−2

T ‖π0,k
�,T pk+1

x,T vx,T − pk+1
x,T vx,T ‖2

T

≤ sx,T (vx,T , vx,T ) + h−2
T ‖π0,k

T pk+1
x,T vx,T − pk+1

x,T vx,T ‖2
T

� sx,T (vx,T , vx,T ) + |pk+1
x,T vx,T |2

H 1(T )
= ax,T (vx,T , vx,T ),
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where the final inequality follows from the approximation properties of the L2-
orthogonal projector on P

k(T ) [19, Theorem 1.4.5]. Similarly, by a triangle inequal-
ity and noting that Pk(T )|∂T ⊂ P

k∇(FT ) (so to replace π
0,k
∇,∂T with π

0,k
T ),

h−1
T ‖ vx,∂T − pk+1

x,T vx,T ‖2
∂T

� h−1
T ‖vx,∂T − π

0,k
∇,∂T pk+1

x,T vx,T ‖2
∂T + h−1

T ‖π0,k
∇,∂T pk+1

x,T vx,T − pk+1
x,T vx,T ‖2

∂T

≤ sx,T (vx,T , vx,T ) + h−1
T ‖π0,k

T pk+1
x,T vx,T − pk+1

x,T vx,T ‖2
∂T

� sx,T (vx,T , vx,T ) + h−2
T ‖π0,k

T pk+1
x,T vx,T − pk+1

x,T vx,T ‖2
T + |π0,k

T pk+1
x,T vx,T − pk+1

x,T vx,T |2
H 1(T )

� sx,T (vx,T , vx,T ) + |pk+1
x,T vx,T |2

H 1(T )
= ax,T (vx,T , vx,T ),

where we have used the continuous trace inequality (3.1) and again invoked the
approximation properties of the L2-orthogonal projector.

Lemma 6 (Consistency) The stabilisation term defined by (4.1) satisfies the consis-
tency condition (2.13).

Proof By the definition of sx,T , the commutation property (2.10), and the bounded-
ness of orthogonal projectors, it holds that

sx,T (I k
x,T w, I k

x,T w) = h−2
T ‖π0,k

�,T w − π
0,k
�,T π

1,k+1
x,T w‖2

T + h−1
T ‖π0,k

∇,∂T w − π
0,k
∇,∂T π

1,k+1
x,T w‖2

∂T

≤ h−2
T ‖w − π

1,k+1
x,T w‖2

T + h−1
T ‖w − π

1,k+1
x,T w‖2

∂T .

By the continuous trace inequality (3.1) and a Poincaré inequality due to the zero
mean value of w − π

1,k+1
x,T w, we infer that

sx,T (I k
x,T w, I k

x,T w) � h−2
T ‖w − π

1,k+1
x,T w‖2

T + |w − π
1,k+1
x,T w|2

H 1(T )

� |w − π
1,k+1
x,T w|2

H 1(T )
.

We note the inclusion P
k+1(T ) ⊂ P

k+1
x (T ) and invoke the invariance and minimisa-

tion properties of orthogonal projectors to conclude that

|w − π
1,k+1
x,T w|2

H 1(T )
= |wr − π

1,k+1
x,T wr |2H 1(T )

≤ |wr − π
1,k+1
T wr |2H 1(T )

.

The proof then follows from the approximation properties of the elliptic projector
[19, Theorem 1.48].

Designing alternate stabilisation terms proves difficult due to the limited regularity
of the unknowns. However, if we assume that �W(T ) ⊂ P

k(T ) (so that the element
unknowns are polynomials), the stabilisation terms

s∇
x,T (ux,T , vx,T ) := (∇δk

x,T ux,T , ∇δk
x,T vx,T )T +h−1

T (δk
x,∂T ux,T , δk

x,∂T vx,T )∂T , (4.2)

s∂
x,T (ux,T , vx,T ) := h−1

T ((δk
x,∂T − δk

x,T )ux,T , (δk
x,∂T − δk

x,T )vx,T )∂T (4.3)
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as defined in [26, Section 4] both satisfy Assumption 3. While this may at first seem
contrived, it is quite natural to consider a singular enrichment function with zero
Laplacian (see Section 5) which clearly satisfies the aforementioned condition.

5 Implementation and numerical tests

As mentioned in the introduction, singular solutions to (1.1) can arise from corners
in the boundary of an otherwise smooth domain. In particular, at non-convex corners,
we cannot even assume H 2-regularity of the solution [cf. 28]. Moreover, singula-
rities on the boundary can arise from irregular boundary data, or a transition from
Dirichlet to Neumann data. For simplicity, we consider here a domain � ⊂ R

2 with
one re-entrant corner located at the origin. Thus, after a possible rotation of coordi-
nates, the domain � corresponds with the region {(x1, x2) = (r cos θ, r sin θ)| r >

0, 0 < θ < ω} in some neighbourhood of the origin, where π < ω ≤ 2π is the angle
of the re-entrant corner. For each j ∈ N, we define a function

uj =
{

r
jπ
ω sin(

jπ
ω

θ) if jπ
ω

�∈ Z

r
jπ
ω (ln r sin(

jπ
ω

θ) + θ cos( jπ
ω

θ)) if jπ
ω

∈ Z

. (5.1)

Given a source term f ∈ Hk(�), there exist numbers cj such that the solution to the
homogeneous Dirichlet problem (1.1) satisfies

u −
∑

1≤j< ω
π

(k+1)

cjuj ∈ Hk+2(�0), (5.2)

where �0 ⊂ � is some open neighbourhood of the origin. We refer the reader to
[28, Chapter 5], which is dedicated to proving (5.2) and equivalent results on polyg-
onal domains with generic boundary data. Each singular function uj clearly satisfies
Assumptions (A1) and (A2) (the latter due to �uj = 0). On an edge F ∈ Fh

containing the singular point r = 0, the least regular function (j = 1) satisfies
∇u1 ·nF ∈ Lp(F ) for all p < ω

ω−π
. Therefore, Assumption (A3) holds true provided

that ω < 2π (corresponding to a cracked domain).
In practice, to assure Hk+2-regularity in a polygonal domain, singular functions

require to be defined at every corner. However, for computational simplicity, we con-
sider only one singular function defined at the re-entrant corner. In particular, we
consider here an L-shape domain � = (−1, 1)2 \ [0, 1]2 and exact solution

u = sin(πx1) sin(πx2) + ψ,

where ψ = rα sin(α(θ − π
2 )), α = π

ω
= 2

3 and π
2 ≤ θ ≤ 2π . Naturally, we

define the enrichment space as W(Th) = span{ψ}. We remark that the exact solution
considered does not have homogeneous boundary conditions. However, as mentioned
in the introduction, the extension of the XHHO scheme to inhomogeneous boundary
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data follows seamlessly. Indeed, if we consider the inhomogeneous condition u = gD

on ∂�, we define ux,h,D = ((0)T ∈Th
, (ux,F ,D)F∈Th

) ∈ Uk
x,h where

ux,F ,D =
{

π
0,k
∇,F gD if F ⊂ ∂�

0 otherwise
.

The inhomogeneous problem is given by finding ux,h,0 ∈ Uk
x,h,0 such that

ax,h(ux,h,0, vx,h) = (f, vx,h)� − ax,h(ux,h,D, vx,h) ∀vx,h ∈ Uk
x,h,0,

and the discrete solution is given by ux,h = ux,h,0 + ux,h,D .

5.1 Basis functions

The Extended Hybrid High-Order scheme designed in this paper requires the com-
putation of spaces P

k+1
x (T ) and P

k
�(T ) on each element T ∈ Th, and of the space

P
k∇(F ) on each face F ∈ Fh. As the Laplacian of the singular function is 0, i.e.

�W(Th) = {0}, it holds that Pk
�(T ) = P

k(T ) ⊂ P
k+1
x (T ). Therefore, on each

mesh element, we define basis functions for the space P
k+1
x (T ) and consider Pk

�(T )

a subspace.

Consider monomial basis functions, {φj
T }dim{Pk+1(T )}

j=1 and {φj
F }dim{Pk(F )}

j=1 , in locally
scaled coordinates for the respective polynomial spaces. On each mesh element, we
write the extended space as

P
k+1
x (T ) = span

{
(φ

j
T )

dim{Pk+1(T )}
j=1 , ψ

}
, (5.3)

and we then L2-orthonormalise the basis functions following a Gram-Schmidt pro-
cess. It is natural to define a basis for the enriched space on the mesh faces
as

P
k∇(F ) = span

{
(φ

j
F )

dim{Pk(F )}
j=1 , ∇ψ · nF

}
, (5.4)

for some choice of normal vector nF . However, there may exist certain faces F ∈ Fh

such that this choice of basis is not linearly independent. Consider a unit normal to
a face F ∈ Fh defined by nF = (cos θn, sin θn) for some constant angle θn. Taking
the scalar product with ∇ψ ,

∇ψ · nF = αrα−1 sin
(
θn − θ + α

(
θ − π

2

))
. (5.5)

If θ ≡ const then θn = θ + (2j + 1)π
2 , for an integer j ∈ N. Substituting into (5.5)

yields

∇ψ · nF = ±αrα−1 cos
(
α

(
θ − π

2

))

which is identically 0 if θ ≡ (6j−1)π
4 for some j ∈ N. Thus, as we only consider

π
2 ≤ θ ≤ 2π , the basis for Pk∇(F ) defined by (5.4) is linearly independent except
along faces such that θ = const = 5π

4 (for which P
k∇(F ) = P

k(F )). The bases on
each face are then also L2-orthonormalised via a Gram-Schmidt process.
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5.2 Integration rules

It is well known that classical Gauss-Legendre quadrature rules suffer from large
errors and numerical instability near a singularity. To design an alternate numeri-
cal integration rule, we make use of the fact that ψ is a homogeneous function of
degree α. Thus, we can use a homogeneous integration rule (as described in [15])
to rewrite the volumetric integrals on the boundary. In particular, we consider the
integral

∫
T

ψφ
j
T for some 1 ≤ j ≤ dim{Pk+1(T )}. As φ

j
T is a monomial in local

coordinates x̃ = x−x0
hT

, it is homogeneous in x − x0. By Euler’s homogeneous func-

tion theorem, ∇ψ · x = αψ and ∇φ
j
T · (x − x0) = qφ

j
T , where q is the degree of the

monomial φ
j
T . Therefore,
∫

∂T

ψφ
j
T x · n∂T =

∫

T

ψφ
j
T ∇ · x +

∫

T

x · ∇(ψφ
j
T )

= (d + α + q)

∫

T

ψφ
j
T +

∫

T

ψx0 · ∇φ
j
T ,

which yields

(d + α + q)

∫

T

ψφ
j
T =

∑

F∈FT

xF · nT F

∫

F

ψφ
j
T −

∫

T

ψx0 · ∇φ
j
T ,

where xF is an arbitrary point in the face F . As each component of ∇φ
j
T is a

monomial of degree q − 1, the above process can be repeated iteratively until the
whole integral is described on the boundary. For edges that do not pass through the
singular point r = 0, the integral

∫
F

ψφ
j
T can be accurately approximated using

Gauss-Legendre quadrature. On edges F ∈ Fh with θ ≡ const (which include
edges passing through the origin), the integral can be computed exactly. Consider the
arc-length parametrisation x = (r cos(θ), r sin(θ)), R0 ≤ r ≤ R1 and write

∫

F

ψφ
j
T =

∫ R2

R1

ψ(x(r))φ
j
T (x(r)) dr .

An integration by parts yields

rψ(x(r))φ
j
T (x(r))

∣
∣
∣
R2

r=R1
=

∫ R2

R1

ψφ
j
T

dr

dr
dr +

∫ R2

R1

r
d

dr
(ψφ

j
T ) dr

=
∫ R2

R1

ψφ
j
T dr+

∫ R2

R1

r(φ
j
T ∇ψ · dx

dr
+ ψ∇φ

j
T · dx

dr
) dr .

(5.6)

Noting that x = r dx
dr

, and again invoking the homogeneity results ∇ψ · x = αψ and

∇φ
j
T · (x − x0) = qφ

j
T , (5.6) is evaluated as

‖x‖ψ(x)φ
j
T (x)

∣
∣
∣
∣

v1

x=v0

= (1 + α + q)

∫ R2

R1

ψφ
j
T dr +

∫ R2

R1

ψx0 · ∇φ
j
T dr,
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where v0 and v1 are the vertices corresponding to r = R0 and r = R1 respectively.
Again, we may follow an iterative procedure for each component of

∫ R2
R1

ψx0·∇φ
j
T dr

to evaluate the entire integral
∫
F

ψφ
j
T on the vertices v0, v1.

The calculations of integrals involving gradients are marginally simpler as they
can be transformed directly onto the boundary via

∫

T

∇ψ · ∇φ
j
T =

∫

∂T

φ
j
T ∇ψ · n∂T ,

(due to �ψ = 0). Each edge integral is calculated using the process described above,
noting that each ∇ψ · nT F is a homogeneous function of degree α − 1.

5.3 Local enrichment

Far from the singular point r = 0, the enrichment function ψ is smooth. More pre-
cisely, for any open set V containing the point r = 0, ψ ∈ C∞(�\V ). As such,
away from the singularity, ψ can be efficiently approximated by a polynomial. This
can cause the local matrices appearing in the orthonormalisation process of the bases
(5.3) and (5.4) to be highly ill conditioned. Naturally, this leads us to consider a
scheme such that the unknown spaces are enriched near the singular point and are oth-
erwise polynomial spaces. We follow a similar approach to that taken in [4, Section
3.2].

Consider a parameter γ > 0 and define the set

Tγ := {T ∈ Th : ‖0 − xT ‖ < γ }, (5.7)

where we denote by xT the centroid of an element T . A cut-off function δγ : � → R

is defined by

δγ |T =
{

1 if T ∈ Tγ

0 otherwise
.

If u = ur +ψ , with ur ∈ C∞(�), we can write u = ur +ψ−δγ ψ+δγ ψ = ũr +δγ ψ

where ur + ψ − δγ ψ = ũr ∈ Hk+2(Th). Thus, we define the enrichment space
as W(Th) = span{δγ ψ}. As the assumptions on the enrichment space are all made
locally, W(Th) clearly still satisfies Assumption 2. Definitions (2.1) and (2.5) of the
discrete spaces then correspond to

P
k+1
x (T ) =

{
P

k+1(T ) + span{ψ} if T ∈ Tγ

P
k+1(T ) otherwise

P
k∇(F ) =

{
P

k(F ) + span{∇ψ · nF } if F ∈ Fγ

P
k(F ) otherwise

for an arbitrary normal nF , where

Fγ = {F ∈ Fh : TF ∩ Tγ �= ∅}.
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Fig. 1 Two members of the mesh sequence

5.4 Tests

As mentioned previously, we consider an L-shape domain � = (−1, 1)2 \ [0, 1]2 and
exact solution u = sin(πx1) sin(πx2) + rα sin(α(θ − π

2 )), α = 2
3 . The stabilisation

term defined by (4.1) is considered. As the element unknowns are polynomials, more
choices of stabilisation terms exist (see Section 4). A comparison between the various
stabilisation terms is carried out for the standard HHO method in [26, Section 5]. The
XHHO scheme is tested on a sequence of hexagonal meshes with maximum element
diameter h → 0. Two members of this family are plotted in Fig. 1 and the mesh data
is shown in Table 1.

The conditioning of the system poses a significant challenge to the scheme. This
is a common problem for enriched schemes and the matter is discussed in detail for

the enriched NCVEM [4]. For a T ∈ Th, let us denote by {φj
T }dim{Pk+1

x (T )}
j=1 the basis

for Pk+1
x (T ) prior to orthonormalising. The mass matrix is defined by

(MT )i,j = (φi
T , φ

j
T )T .

The maximum condition number of the element mass matrices is defined by C :=
maxT ∈Th

λT,max

λT,min
, where λT,max and λT,min denote the maximum and minimum eigen

values of MT respectively. The parameter C gives a measure of how linearly inde-
pendent the worst performing basis is. In Table 2, we present the maximum condition

Table 1 Parameters of the mesh
sequence h Nb. elements Nb. internal edges

0.3437 96 245

0.1949 341 940

0.1019 1,281 3,680

0.0514 4,961 14,560

0.0257 19,521 57,920
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Table 2 Maximum local condition number with h ≈ 0 : 0257

k = 0 k = 1 k = 2 k = 3

γ = 0 1.784 · 102 3.293 · 104 6.132 · 106 1.180 · 109

γ = 0.075 3.397 · 108 3.112 · 1011 1.743 · 1014 4.567 · 1017

γ = 0.15 2.755 · 109 1.521 · 1013 1.260 · 1018 7.646 · 1019

γ = 0.3 1.962 · 1010 3.718 · 1014 1.483 · 1019 1.282 · 1020

γ = 0.5 8.983 · 1010 2.315 · 1017 1.093 · 1020 1.282 · 1020

number on the finest mesh in the sequence with various values of k and γ (where
γ = 0 corresponds to an non-enriched scheme). It is clear that the conditioning of
the scheme is significantly worse for enriched schemes than non-enriched schemes
and gets progressively worse with increasing k and γ . We note that once C ∼ 1016

the orthonormalisation process (and thus the scheme itself) fails due to division by
numbers which are numerically zero.

Denote by ux,h ∈ Uk
x,h,0 the exact solution to the discrete problem (2.17). The

relative error of the scheme is determined via the following three quantities,

E0,Th
:=

[∑
T ∈Th

‖ux,T − π
0,k
�,T u‖2

T
∑

T ∈Th
‖π0,k

�,T u‖2
T

] 1
2

+
[∑

F∈Fh
hF ‖ux,F − π

0,k
∇,F u‖2

F
∑

F∈Fh
hF ‖π0,k

∇,F u‖2
F

] 1
2

E1,Th
:=

⎡

⎣

∑
T ∈Th

|pk+1
x,T ux,T − π

1,k+1
x,T u|2

H 1(T )
∑

T ∈Th
|π1,k+1

x,T u|2
H 1(T )

⎤

⎦

1
2

Ea,x,h := ‖ux,h − I k
x,hu‖a,x,h

‖I k
x,hu‖a,x,h

.

Unlike [4], we do not observe saturation in error rates as the condition number
gets large, but rather an instantaneous failure of the scheme. As such we would like
to choose a cut-off value γ that is as large as possible and does not result in sys-
tem failure. In Figs. 2 and 3, we test convergence of the scheme with k = 1 and
k = 2 respectively. The enriched scheme performs significantly better than the non-
enriched scheme, particularly in H 1-error (E1,Th

) and for higher polynomial degree
k. In Fig. 3, we test two cut-off values (γ = 0.075 and γ = 0.15). The larger cut-
off value performs slightly better in H 1-error; however, the scheme fails on the final
mesh.

A standard error estimate with respect to k for a classical HHO scheme is given by

‖uh − I k
hu‖a,h � hk+1

(k + 1)k
|u|Hk+2(Th) (5.8)

where the hidden constant is independent of k [cf. 2, Theorem 3.3]. Therefore, if

|u|Hk+2(Th)

(k + 1)k
≤ C (5.9)
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Fig. 2 Error vs h, k = 1

for some C independent of k, then the scheme should converge exponentially with
respect to k. In Fig. 4, we fix the mesh (the second mesh in Table 1) and test con-
vergence as k increases. In this case, the polynomial spaces are enriched only on
the element containing the singular point and on its faces. While convergence with
respect to k has not been proven in this work, equation (5.8) provides a benchmark to
compare the tests to. As such, we plot on a log-linear scale and include a line of slope
log h. Again, it is quite clear that the enriched scheme (albeit enriched on a single ele-
ment) performs much better than the non-enriched scheme. However, it is apparent
that even the enriched scheme does not converge exponentially. By only enriching the
element containing the singular point, there exist non-enriched elements which are
‘close’ to the singularity. As such, the Sobolev seminorms will grow quite quickly
as k increases. Therefore, a large k may be required before the boundedness (5.9) is
apparent. This explains why exponential convergence of the enriched scheme is not
observed in Fig. 4.

In Fig. 5, we consider two local enrichment schemes on a uniform Carte-
sian mesh with 48 elements. The elements which are enriched with the singular

Fig. 3 Error vs h, k = 2
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Fig. 4 Error vs k, h ≈ 0.195

functions are bordered in red. Due to the larger element diameters and ‘rounder’ ele-
ment geometries, we are able to consider a much larger radius of enrichment without
ill-conditioning causing the scheme to fail for large k. As such, the non-enriched ele-
ments are further from the singular point (particularly in scheme 2) so we expect the
high-order Sobolev seminorms to be smaller. We plot convergence of the schemes
with respect to k in Fig. 6. It appears that the locally enriched scheme 2 maintains
exponential convergence with respect to k in both L2 and energy error. This is simi-
lar to results in enriched NCVEM [4, Figure 18] where exponential convergence of a
globally enriched scheme on a coarse Voronoi mesh is observed. While the H 1 error
of scheme 2 does observe a minor saturation in convergence rate, the rate is con-
sistently better than hk . It appears that the convergence rate of scheme 1 becomes
slightly sub-optimal as k gets large due to the existence of non-enriched elements
closer to the singular point.

Fig. 5 Uniform Cartesian mesh with enriched elements bordered in red
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Fig. 6 Error vs k, Cartesian mesh, h ≈ 0.354

5.5 Oscillatory solution

We briefly consider here an application of the XHHO scheme to highly oscillatory
solutions of problem (1.1). If the source term consists of a highly oscillatory compo-
nent, it is expected that the solution will reflect this. In standard HHO, such details
can only be captured with either high-order approximations or fine meshes. The
XHHO method, however, is able to obtain improved error estimates by enriching the
local spaces with an oscillatory function.

Let us consider here a square domain � = (0, 1)2 and exact solution

u = sin(πx1) sin(πx2) + sin

(
1

r̂2 + ε

)

(5.10)

with r̂2 = (x1 − 0.5)2 + (x2 − 0.5)2 denoting the radial distance to the domain centre
and ε > 0 a small constant. We note that (5.10) does not actually define a singular
solution, thus the standard HHO method is expected to converge optimally. However,
as the multiplicative constants in the error depend on the (k + 2)-th derivative of the
solution, the error is expected to get very large as ε → 0.

The oscillatory component of (5.10) is denoted by

ψ := sin

(
1

r̂2 + ε

)

.

The enrichment space is naturally defined as W(T ) = span{ψ |T }. We note that as
�ψ �= 0 we are no longer able to consider Pk

�(T ) = P
k(T ). We take ε = 0.05 and

consider both non-enriched and locally enriched schemes (here, the local enrichment
process is identical to that described in Section 5.3, except with the singular point
taken as r̂ = 0 rather than r = 0). We consider a sequence of regular, triangular
meshes and plot the results in Figs. 7 and 8 for k = 0, 1. It is clear that while both
schemes converge optimally, the absolute error of the non-enriched scheme can be
several orders of magnitude worse than that of the locally enriched scheme.
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Fig. 7 Error vs h, k = 0

6 Conclusion

In this paper, we have introduced and analysed the Extended Hybrid High-Order
method for the Poisson problem. The method is shown to be robust, and capable of
handling generic singularities satisfying Assumption 2 in arbitrary dimensions. Opti-
mal error estimates are established in both H 1- and discrete energy norms. The error
analysis is backed up by numerical simulations which show the Extended Hybrid
High-Order method to be a viable technique for handling irregular solutions. The
method is also applicable to any situation where some aspects of the solution can be
(at least locally) determined. This is seen in Section 5.5 where the XHHO method is
applied to solutions possessing a highly oscillatory component. Indeed, the enrich-
ment function considered is actually smooth, yet a considerable improvement in
performance was observed which highlights the versatility of the method for any
cases where there is prior knowledge of the solution behaviour. The scheme also has
natural generalisations to more general linear elliptic problems of the form Lu = f .

The case of corner singularities is discussed and tested in detail in Section 5. The
schemes are shown to converge optimally and perform significantly better than stan-
dard HHO for solutions possessing a weak singularity at a re-entrant corner in two
dimensions. The XHHO method is capable of handling such irregularities for all but

Fig. 8 Error vs h, k = 1
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the limiting case of the slit domain. For such cases, further work into developing a
robust Hybrid High-Order method is required. In three dimensions, the singularities
arising from irregular geometries can be more complicated. Along an edge which
forms a non-convex corner in the domain, the singularity can be written as the product
of a smooth function and a weakly singular function whose behaviour perpendicular
to the edge is described by the two-dimensional case (cf. [29]). Again, this scheme is
capable of modelling such irregularity for all but the slit domain.
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