
https://doi.org/10.1007/s10444-022-09925-7

Tensor rank bounds for point singularities inR3

C. Marcati1,3 ·M. Rakhuba2 ·Ch. Schwab3

Received: 23 September 2020 / Accepted: 7 January 2022 /
© The Author(s) 2022

Abstract
We analyze rates of approximation by quantized, tensor-structured representations of
functions with isolated point singularities in R

3. We consider functions in countably
normed Sobolev spaces with radial weights and analytic- or Gevrey-type control of
weighted semi-norms. Several classes of boundary value and eigenvalue problems
from science and engineering are discussed whose solutions belong to the count-
ably normed spaces. It is shown that quantized, tensor-structured approximations
of functions in these classes exhibit tensor ranks bounded polylogarithmically with
respect to the accuracy ε ∈ (0, 1) in the Sobolev space H 1. We prove exponen-
tial convergence rates of three specific types of quantized tensor decompositions:
quantized tensor train (QTT), transposed QTT and Tucker QTT. In addition, the
bounds for the patchwise decompositions are uniform with respect to the position
of the point singularity. An auxiliary result of independent interest is the proof of
exponential convergence of hp-finite element approximations for Gevrey-regular
functions with point singularities in the unit cube Q = (0, 1)3. Numerical examples
of function approximations and of Schrödinger-type eigenvalue problems illustrate
the theoretical results.
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1 Introduction

Recent years have seen the emergence of structured numerical linear algebra in
scientific computing and data science. We mention only formatted matrix algebras,
such as H-matrices (e.g., [33] and the references there) and tensor formats (e.g., [32,
43, 46, 62, 67] and the references there). To date, the impact of these methods was,
first and foremost, on the corresponding scientific computing applications: being
abstracted from fast multipole methods, formatted computational matrix algebras
impact directly the numerical solution of elliptic and parabolic partial differential
equations (see, e.g., [6, 27, 35]). Numerical tensor algebras, derived from quantum
chemistry (e.g., [6, 72] and the references there) have obvious applications in data
science, where massive n-way data naturally arises and needs to be efficiently han-
dled numerically. Furthermore, tensor-structured formats have, in recent years, been
linked to deep neural networks (see [45, 51] and the references there). We now com-
ment on more specific developments in these areas which are directly related to the
present paper, and the mathematical results obtained in it.

We are concerned with the approximation of functions with isolated point singu-
larities using tensor-structured representations. In particular, we approximate, using
quantized tensor decompositions, three-dimensional arrays of coefficients associated
with the finite element projection of functions over trilinear Lagrange basis functions.

Quantization refers to the reshaping of an array of coefficients of size 2 ×2 ×2
into a multidimensional array of size 2×· · ·×2. The application of tensor decomposi-
tions (e.g., the Tensor-Train decomposition [65], which leads to the QTT—quantized
tensor train decomposition, introduced in [42, 64]) to such an array can lead to a
reduction in complexity and number of parameters.

The number of parameters in a decomposition is related to the rank of the
decomposition—i.e., the generalization of matrix rank to multi-dimensional arrays.
Having a priori knowledge that a function of interest, e.g., the solution to a par-
tial differential equation, can be approximated by a low-rank tensor decomposition,
allows for the application of tensor-structured algorithms that avoid working with full
2 × 2 × 2 arrays of coefficients.

In particular, here we consider functions in weighted Sobolev spaces with radial
weights and analytic- or Gevrey-type control of weighted semi-norms. Such func-
tions arise in a variety of scientific applications: nonlinear Schrödinger equations
(e.g., [11, 13] and the references there), Hartree-Fock and density functional theory
equations, continuum models of point defects [53], blowup solutions in evolution
equations with critical nonlinearity (e.g., [70] and the references there) to name but a
few.

The main result of the present paper is exponential convergence of tensor-
structured approximations of point singularities in R

3, i.e., they admit tensor
ranks bounded polylogarithmically with respect to the accuracy ε ∈ (0, 1) of the
approximation, measured in the Sobolev space H 1.
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An auxiliary result of independent interest is the exponential convergence of hp-
finite element (FE) approximations for the class of functions considered. Due to the
piecewise polynomial structure of hp-FE approximants, we can obtain their quan-
tized representations with exact rank bounds that depend only on the dimensions of
hp-spaces. This, in turn, leads to the desired rank bounds of the functions of interest.

One of the advantages of using quantized tensor decompositions—compared with
the direct application of hp-FE approximations—is the relative ease of implemen-
tation. The adaptation of the number of parameters in the decomposition to the
approximated function is based on well-known numerical linear algebra tools such
as QR and SVD decompositions. Moreover, there exist open source codes with
the implementation of basic linear algebra operations including solution of linear
systems, which can be used independently of a particular application.

Note also that we do not need to know a priori the type and exact location of the
singularity of the solution to solve PDEs in quantized tensor-structured formats. The
nonlinear structure of the decomposition allows for an “automatic” adaptation of the
tensor compressed representation to the regularity of the function. This is by contrast
to hp methods, where mesh and polynomial degree refinements are programmed
explicitly depending on the type of singularity. Furthermore, while the mesh of an
hp space has to be constructed so that the refinement happens towards the singular
point, this a priori knowledge is not necessary in the computation of quantized tensor-
structured representation.

1.1 Tensor-structured function approximation

With the availability of efficient numerical realizations of tensor-structured numeri-
cal linear algebra, a new perspective has been opened towards computational function
approximation. Here, one compresses arrays of function values in tensor formats;
early work in this direction is [78], and [43] contains a bibliography with a large
list of ensuing developments based on this idea. An (incomplete) list of references
contains [37, 42, 44, 61, 66] where tensor rank bounds for specific functions have
been obtained, both analytically and computationally, in the so-called quantized ten-
sor train (QTT) format. QTT-formatted numerics for electron structure computations
were presented in [41]. An analysis of approximation properties of tensor networks
for classes of functions of finite differentiability as expressed by membership in
classical Sobolev and Besov spaces of finite order has recently been presented in
[1–3].

Subsequently, and more directly related to the present work, rather than rank
bounds for individual functions, tensor rank bounds for solution classes of elliptic
PDEs in one and two spatial dimensions were obtained in [36, 38, 40, 58]. In [40],
in particular, it was proved first that functions in countably normed, analytic func-
tion classes in polygons D ⊂ R

2 admit QTT-structured tensor approximations with
tensor ranks bounded polylogarithmically in terms of the approximation accuracy ε.
The key mathematical argument in the references cited above is based on analytic
regularity results for solutions of elliptic PDEs in polytopal domains. Such regularity
results, implying solutions belong to countably normed spaces, have been obtained
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in the past two decades for several broad classes of (boundary value and eigenvalue
problems of) elliptic PDEs, in [4, 55, 59].

1.2 Contributions

In this work, we obtain rank bounds for the QTT approximation of functions in
weighted analytic and Gevrey classes with point and edge singularities. Specifically,
we prove polylogarithmic growth of QTT ranks with respect to the accuracy of the
approximation. To obtain the bounds, we approximate functions from the weighted
Gevrey class by continuous, piecewise polynomial functions on dyadic partitions
which are geometrically refined towards the singular supports. These piecewise poly-
nomial approximants are subsequently re-interpolated and compressed to the QTT
format. The resulting rank bounds follow from the low-rank structure of piecewise
polynomial functions, and the exponential convergence of the piecewise polynomial
approximations.

The principal novel contributions of this paper are therefore the exponential con-
vergence of hp approximation for weighted Gevrey classes, and the polylogarithmic
rank bounds of QTT approximations on the these classes.

First, we analyze approximation rates of tensor-structured approximations of
smooth functions with isolated point singularities. As compared to exponential con-
vergence results for analytic functions with point singularities, we here establish
exponential convergence of hp-finite element (FE) approximations on geometric
meshes of axiparallel quadrilaterals resp. hexahedra analogous to [20] also for
Gevrey-regular functions.

We then address tensor-formatted approximations. Generalizing results also in
two variables, in the present paper we extend the analysis in [40] to quantized, TT-
structured function approximation of functions from countably weighted, Gevrey-
type classes. The corresponding results in three spatial variables are novel. They also
extend the QTT rank bounds in [40] to Gevrey-d regular functions (see Remark 4).
They also constitute a building block for the derivation of corresponding QTT rank
bounds for edge and face singularities in three space dimensions, which we do not
detail here. In particular, we prove in three physical variables for analytic and Gevrey
functions with point singularities, for the classical tensor-format, asymptotic upper
bounds on quantized tensor ranks at prescribed accuracy ε which are better than
the corresponding bounds for the transposed TT format introduced in [40] (in two
dimensions).

We show numerical results indicating the correctness of the presently obtained
results, and also strongly suggesting that similar ranks are achieved in tensor-
formatted PDE solvers, provided the PDE solutions belong to the countably normed
classes introduced in Section 1.3.2.

1.3 Problem formulation

The tensor-formatted function approximation considered in this paper aims at estab-
lishing tensor rank bounds for functions in certain classes of locally smooth functions
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that admit a point singularity. In this paper, we confine ourselves to the case that the
function under consideration admits singular support consisting only of one isolated
point (we therefore speak of “point singularities”). Naturally, functions whose sin-
gular support comprises of a finite number of well-separated points can equally be
approximated in the tensor-formats discussed here, with the same tensor rank bounds,
by a localization and superposition argument.

Weighted Sobolev spaces for functions with isolated point singularities have been
introduced for the analysis of elliptic problems in polygonal domains, see [47], since
they allow for the extension of classical elliptic regularity theory to domains with
corners. For an overview of regularity results for elliptic boundary value problems in
conical domains, in weighted Sobolev spaces, we refer to the monographs [28, 48,
49, 60].

For elliptic boundary value problems in three space dimensions, weighted Sobolev
spaces that accommodate isolated point singularities have also proven important in
the mathematical regularity analysis of problems with singular potentials, such as
electron structure calculations in quantum physics and quantum chemistry, see, e.g.,
[21–23].

When a function is regular in weighted Sobolev spaces—specifically, when
analytic-type bounds can be derived on the norms of its derivatives—piecewise poly-
nomial approximations can be constructed, for example by hp finite elements which
converge exponentially (in terms of the number of parameters) [29, 30, 71, 73, 74].
This suggests the existence of an underlying low-rank structure in suitable tensor
formats; for this reason, we are here interested in the derivation of rank bounds for
functions that belong to weighted analytic- and Gevrey-type classes.

A theory of analytic regularity in weighted Sobolev spaces has been developed for
several classes of important physical problems and we mention an incomplete list.
Solutions to scalar elliptic problems with constant coefficients belong to analytic-
type weighted spaces [15, 16], as do the flow and pressure obtained with the
Stokes [31] and Navier-Stokes [59] equations in polygons. Furthermore, eigenfunc-
tions to three-dimensional linear [55] and nonlinear [54] Schrödinger equations are
weighted analytic. In quantum chemistry, the wave functions computed with the non-
relativistic Hartree-Fock models for electronic structure calculations are also analytic
in weighted Sobolev spaces [56, Section 7.4], [12], with point singularities at the
nuclei. We refer to Section 1.3.3 for some explicit examples in this sense. Other
instances of the occurrence of point singularities in otherwise smooth solutions com-
prise general relativity (see, e.g., [10, 79] and the references there) and solutions of
parabolic evolution equations with critical nonlinearity (see, e.g., [70] and the refer-
ences there). The results of the present work apply to all the problems cited above,
whose solutions are weighted analytic, in the spaces that we detail in Section 1.3.2
below.

We consider the following setting for quantized, tensor train (TT)-formatted func-
tion approximation in Q = (0, 1)3, with one point singularity at the origin, where the
functions belong to countably normed, weighted Sobolev spaces, where the weights
are powers of r = |x|, the Euclidean distance of the point x ∈ Q from the origin.
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1.3.1 Kondrat’ev-type weighted Sobolev spaces

For integer s ≥ 0, a real parameter γ ∈ R, and summability exponent 1 ≤ q < ∞,
we introduce the homogeneous weighted Sobolev spaces

Ks,q
γ (Q) = v ∈ Lq(Q) : r |α|−γ ∂αu ∈ Lq(Q), ∀α, |α| ≤ s

with seminorm

|w|Ks,q
γ (Q) =

⎛
⎝
|α|=s

r |α|−γ ∂αw q

Lq(Q)

⎞
⎠

1/q

, (1)

and norm

w Ks,q
γ (Q) =

s

k=0

|w|q
Kk,q
γ (Q)

1/q

.

Our focus will be mostly on non-homogeneous weighted Sobolev spaces (remark the
different weight exponent)

J s,q
γ (Q) = v ∈ Lq(Q) : rs−γ ∂αu ∈ Lq(Q), ∀α, |α| ≤ s ,

with norm

w J s,q
γ (Q) =

⎛
⎝
|α|≤s

rs−γ ∂αw q

Lq(Q)

⎞
⎠

1/q

.

In the following, we will always consider the case where q = 2, 0 < γ − 3/2 < 1,
and s > γ − 3/2. Under those hypotheses, as shown in [14, Proposition 3.18], the
above norm is equivalent to

w J s,2
γ (Q)

w 2
L2(Q)

+
s

k=1

|w|2Kk,2
γ (Q)

1/2

. (2)

Non-homogeneous spaces allow for functions with non trivial Taylor expansion at
the singularity and have been used, for this reason, in the analysis of problems in non
smooth domains with Neumann boundary conditions and of elliptic problems with
singular potentials. For a thorough analysis of the relationship between homogeneous
and non-homogeneous spaces, we refer the reader to [49] and [14].

1.3.2 Gevrey and analytic function classes

We define the weighted Kondrat’ev-type class of functions of infinite regularity

K∞,q
γ (Q) =

s∈N
Ks,q
γ (Q).

Evidently, C∞0 (Q) ⊂ K∞,q
γ (Q) Furthermore, for constants C,A > 0 and d ≥ 1, we

introduce the countably normed, homogeneous weighted Gevrey-type (analytic-type
when d = 1) class

K ,q
γ (Q;C,A, d) = v ∈ K∞,q

γ (Q) : |v|Ks,q
γ (Q) ≤ CAs(s!)d, for all s ∈ N0 .
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The countably normed, non-homogeneous weighted classes J∞,q
γ (Q) are then

defined as in the homogeneous case, while the non-homogeneous Gevrey/analytic
classes are given by

J ,q
γ (Q;C,A, d)= v∈J∞,q

γ (Q) : |v|Ks,q
γ (Q)≤CAs(s!)d, integer s > γ − 3/2 .

(3)
We write Ks,2

γ (Q) = Ks
γ (Q) and J s,2

γ (Q) = J s
γ (Q); similarly we omit the

summability exponent q when it equals 2 in the notation for the weighted Gevrey
classes.

1.3.3 Model problems

We illustrate the scope of problems by listing several concrete boundary-value and
eigenvalue problems whose solutions are known to belong to the weighted analytic
classes Kγ (Ω) and Jγ (Ω). Although the focus here is on three-dimensional prob-

lems, we start by considering a polygon Ω ⊂ R
2 with n ≥ 3 straight sides and

corners ci , i = 1, . . . , n. In this setting, the space Kγ (Ω) contains the corner weight
function rP = n

i=1 |x − ci |, i.e., the seminorm (1) is replaced, for 1 ≤ q <∞, by

|w|Ks,q
γ (Ω) =

⎛
⎝
|α|=s

r
|α|−γ
P ∂αw

q

Lq(Ω)

⎞
⎠

1/q

.

Then, given an analytic (in Ω) external force field f , the Stokes equations

−ν u+ ∇p = f in Ω, ∇ · u = 0 in Ω

and the viscous, incompressible Navier-Stokes equations

− ν u+ (u · ∇)u+ ∇p = f in Ω, ∇ · u = 0 in Ω (4)

with homogeneous Dirichlet (“no-slip”) boundary conditions have been shown in
[31, 59] to admit solutions in Kγ (Ω) with γ > 3/2. Specifically, for the non-
linear boundary value problem (4) we require a “small data assumption” which is
well-known to ensure uniqueness of Leray-Hopf solutions, see, e.g., [25, Chapter IV,
Theorem 2.2]. See Remark 4 for further comments on the implication of the present
work on two-dimensional problems.

In the three-dimensional setting, energy minimization problems in quantum
physics/chemistry can be transformed into eigenvalue problems whose solutions are
in the weighted analytic class (3). We consider here a set of isolated point singulari-
ties situated at n nuclei in positions Ri ∈ R

3, i = 1, . . . , n, and function spaces with
weight function r such that r |x − Ri | in the vicinity of each Ri , and r 1 far
from all singularities resp. all nuclei.

A first example is given by a nonlinear Schrödinger equation with polynomial
nonlinearity. Consider a compact domain without boundary Ω (e.g., a periodic unit
cell) and a potential V such that there exists β < 2 and a constant AV > 0 such that

∀α ∈ N
3
0 : rβ+|α|∂αV L∞(Ω) ≤ A

|α|+1
V |α|! .
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Then, the eigenfunction u corresponding to the smallest eigenvalue (i.e., the “ground
state”) of the nonlinear Schrödinger equation

− 1

2
u+ V u+ |u|2u = λu, u L2(Ω) = 1 (5)

is in Jγ (Ω) for some γ > 3/2, see [56, Section 7.3]. Note that (5) is the Euler-
Lagrange equation of the minimization problem

inf
Ω

|∇v|2 + V v2 + 1

2
v4, v ∈ H 1(Ω), v L2(Ω) = 1 .

As a second example we consider the Hartree-Fock equation. Let VC be the poten-
tial of the Coulomb interaction exerted on electrons by nuclei with chargeZi assumed
to be pointlike and situated at positions Ri ∈ R

3, i = 1, . . . , n, i.e.,

VC(x) = −
n

i=1

Zi

|x − Ri | .

The Hartree-Fock model consists in finding the smallest N eigenvalues εi and the
corresponding L2(R3)-orthonormal eigenfunctions ψi , i = 1, . . . , N , such that

−1

2
+VC ψi+ 1

|x| ρΨ ψi−
N

j=1

1

|x| (ψjψi) ψj =εiψi, i=1, . . . , N

(6)
with ρΨ = N

i=1 ψ
2
i . Then, under some conditions on the potential VC so that the

solution exists [52], the eigenfunctions are weighted analytic:

ψi ∈ Jγ (R3), i = 1, . . . , N,

see [56, Section 7.4]. Problem (6) is the Euler-Lagrange equation of the minimization
problem (see [12, Section 9])

inf EHF(ψ1, . . . , ψN), ψi ∈ H 1(R3) :
R3
ψiψj = δij ,

where

EHF(ψ1, . . . , ψN) =
N

i=1 R3
|∇ψi |2 +

R3
VρΨ + 1

2 R3
ρΨ (x)

1

|x| ρΨ

− 1

2 R3 R3

τΨ (x, y)

|x − y| ,

with τΨ (x, y) = N
i=1 ψi(x)ψi(y).
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Remark 1 (Near-Singularity) While functions of the form (r ∈ R+, ω ∈ S2 spherical
coordinates)

ua(r, ω) = (r2 + a2)β/2v(ω), v analytic in S2 (7)

are, for real, nonzero values of a and for β > 0, formally (mathematically) smooth,
their behavior approaches that of functions with point singularities at the origin when
|a| 1. Specifically, if |a| ≤ amax , there exist positive constants C and A inde-
pendent of a such that ua ∈ Jγ (Q;C,A, 1) for γ < β + 3/2; hence, the bounds
obtained in the present paper allow for the derivation of rank bounds for the quantized
tensor-formatted approximations considered, which are uniform as the parameter
a ↓ 0 for functions of the form (7).

The same remark applies to certain merging point singularities as arise, for exam-
ple, in binary star or black hole models. Consider, e.g., two nuclei situated at locations
R1 = −εe1, R2 = εe1 in R

3 at distance 2ε for small ε > 0. Denoting by
ri = |x − Ri |, i = 1, 2, and r = |x|, we find v(x) = r2

1 + r2
2 = 2(r2 + ε2) i.e., once

more a function of the above form with a = ε.

1.4 Structure of this paper

In Section 2, we review the definitions and notation of quantized, tensor-structured
function approximation which are to be employed throughout the remainder of the
article, extending the concepts of [66]. In Sections 2.2–2.7, in particular, we intro-
duce the tensor train (TT), the quantized TT format (QTT), transposed quantized TT
format (QT3) and the Tucker quantized TT format (TQTT), some of which allow to
prove better rank bounds on functions with point singularities.

Section 3 introduces tools from numerical analysis which we require in the argu-
ments for the TT rank bounds for function approximation. Section 3.1 introduces
in particular the notion of “uniform background mesh” (never directly accessed in
the QTT formats) which is the basis for all quantized TT function representations.
Section 3.2 recapitulates several notions and auxiliary results from the theory of so-
called hp-approximation from [73, 74, 77]. Section 4 introduces a combined (quasi)
interpolation projector, which was introduced in [40] (in two dimensions) and which
is crucial in establishing the rank bounds. Section 5 then contains statements and
proofs of the main results of the present paper: tensor rank bounds for generic func-
tions in the various countably normed classes introduced in Section 1.3 above. These
bounds are obtained for functions with the singularity at a corner of the domain; they
are extended to the case of an internal singular point (and to a patchwise formulation
that allows for more complex domains) in Appendix B.

Section 6 presents detailed numerical experiments which exhibit actual TT rank
bounds in the various formats for model singular functions in three space dimensions.
The Section 7 provides a brief summary of the main results, and possible further
research directions. Appendix A contains (novel) auxiliary results on exponential
rates of convergence of hp-approximations for Gevrey-regular functions in R

3 with
point singularities, generalizing [20] to axiparallel geometric meshes of hexahedra
with 1-irregular edges and faces.
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2 Tensor-structured representations

The mathematical issue in tensor-formatted function approximation consists in
finding a compressed representation/approximation of three-way tensors

A ∈ R
2 ×2 ×2 ,

for ∈ N. All techniques that we examine are based on the Quantized Tensor
Train (QTT) representation, see, e.g., [38, 40, 42, 64, 66] and the references there.
In particular, we will analyze three tensor compressed representations, that we call
here (classic) QTT, transposed QTT (QT3), and Tucker QTT (TQTT) representation,
respectively. The difference between these schemes lies in the arrangement of the
three physical dimensions of the tensor A in the corresponding TT format in the fol-
lowing, after a brief introduction of QTT representations, we detail the three formats
mentioned.

2.1 Notation

Throughout, we adopt the following notation, from [40]. Given n ∈ N indices
i1, . . . , in such that ij ∈ {0, . . . , kj − 1} for all j = 1, . . . , n, we write

i1 . . . in = i1

n

j=2

kj + i2

n

j=3

kj + · · · + in.

In what follows, the term tensor will generically denote a multi-dimensional array.
Furthermore, for an axiparallel d-dimensional (d ≤ 3) subset K ∈ Q, the space
Qp(K) is the tensor product space of d-variate polynomials in K of maximum poly-
nomial degree p in each variable. Furthermore, we will indicate by a colon “:”
a whole slice of a tensor. For example, given a four-dimensional tensor A ∈
R
n1×n2×n3×n4 with entries ai,j,k,l , we will write

Ai,:,:,l = {ai,j,k,l}j=1,...,n2,k=1,...,n3 ∈ R
n2×n3 .

2.2 Tensor train (TT) format

Tensor Trains (TT) [65], also known as Matrix Product States (MPS) in the
computational physics community [72], provide an efficient way to represent high-
dimensional tensors, provided these tensors have an underlying low-rank structure.
Let d 1, and consider the d-dimensional tensor

B ∈ R
n1×···×nd . (8)

The Tensor Train representation of the d-variate tensor B in (8) is given in terms of
the core tensors1

Uk : {0, . . . , nk − 1} → R
rk−1×rk k = 1, . . . , d,

1The cores Uk can be naturally considered as three-dimensional arrays Uk ∈ R
ri−1×ni×ri so that

Uk(ik) αk−1,αk
= Uk

αk−1,ik ,αk
, αk−1 = 1, . . . , rk−1, αk = 1, . . . , rk . Using the three-variate arrays
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where rk ∈ N (with the restriction r0 = rd = 1) and such that [65, Eq. (1.2)]

Bi1,...,id = U1(i1) · · ·Ud(id). (10)

Suppose for ease of presentation that ri = r and ni = n for all i. Then, the TT
representation (10) has

Ndof = O(dnr2)

parameters. The TT format is therefore an efficient decomposition if a d-way tensor
can be written as a tensor train with low ranks ri . Due to the equality in (10) the
representation we have introduced is an exact TT representation; in practice, a matrix
may not admit an exact low-rank TT representation, but a low-rank approximation
could instead be available.

2.3 Rank bound analysis of TT representations

To examine the issue of low-rank approximation of high-dimensional tensors, we
require the concept of unfolding matrices (“unfoldings” for short), used to derive
rank bounds on the TT representation of a tensor.

Definition 1 (Unfolding matrix) Let d ∈ N and ni ∈ N for i = 1, . . . , d . Given a
tensor B ∈ R

n1×···×nd , we define for all q = 1, . . . , d − 1 its unfolding matrices
B(q) ∈ R

n1···nq×nq+1···nd as

B
(q)

i1...iq ,iq+1...id
= Bi1,...,id , for all ik = 1, . . . , nk and k = 1, . . . , d

i.e., the matrix with row index given by the concatenation of the first q indices, and
column index given by the concatenation of the remaining ones.

In the case that the unfolding matrices of a tensor can be approximated by low-
rank matrices, then a low-rank TT approximation exists. This is made precise in the
following result.

Proposition 1 [65, Theorem 2.2] Let B ∈ R
n1×···×nd such that its unfolding matrices

B(q) can be decomposed as

B(q) = Rq + Eq, rankRq = rq, Eq
F ≤ εq, for all q = 1, . . . , d − 1.

There exists a tensor C with TT representation (10) and TT ranks rq such that

B − C 2
F ≤

d−1

q=1

ε2
q .

notation, the TT decomposition of B can be written as

Bi1,...,id =
r0

α0=1

· · ·
rd

αd=1

U1
α0,i1,α1

· · ·Ud
αd−1,id ,αd

, (9)

which is also used in [65, Eq. (1.3)]. For clarity of presentation, we use the representation (10), which is
more compact than (9) (and equivalent to it). We also do not distinguish between the mappings Uk and the
three-dimensional arrays Uk .
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The above theorem includes as a sub-case the rank bound of exact TT representa-
tion, by affirming the existence of an exact TT rank rq representation of a tensor with
unfolding matrix rank bounded by rq , q = 1, . . . , d − 1.

2.4 Quantized tensor train (QTT) format in one physical dimension

We introduce QTT representations in the simplified setting of QTT approximation of
vectors

v ∈ R
2 , (11)

for ∈ N. Generalizations to the multi-dimensional case will be the subject of the
next sections.

The QTT decomposition introduced in [42, 64] extends the use of the TT approx-
imation to the case of low-dimensional tensors with a large number of elements. To
do so, the low-dimensional tensor is reshaped into a high-dimensional one, which is
subsequently TT-(re)approximated. Applied to the vector in (11), algorithmically this
is achieved by reshaping it into the -dimensional tensor v such that

vi1,...,i = vi1...i ,

where ik ∈ {0, 1} for all k = 1, . . . , . The tensor v can then be represented in TT
form. We formalize this representation in the following definition.

Definition 2 (Univariate QTT decomposition) Given ∈ N and a vector v ∈ R
2 , v

admits a QTT representation with QTT ranks r0, . . . , r and QTT coresUi : {0, 1} →
R
ri−1×ri if

vi1...i = U1(i1) · · ·U (i ), for all (i1, . . . , i ) ∈ {0, 1} .

As before, the tensor cores can also be interpreted as three-way arrays in
R
ri−1×2×ri .

2.5 Classic QTT format in three physical space dimensions

The “classic QTT” format is the straightforward generalization of the univariate QTT
format in Definition 2 to the multivariate case.

In this way, a three-dimensional tensor A ∈ R
2 ×2 ×2 is reshaped into the tensor

Aqtt ∈ R

3 times

2×···×2 such that A
qtt
i1,...,i ,j1,...,j ,k1,...,k

= Ai1...i ,j1...,j ,k1...k
(12)

for all in, jn, kn ∈ {0, 1}, which is subsequently TT-decomposed.

Definition 3 (Classic QTT decomposition) Given A ∈ R
2 ×2 ×2 for an ∈ N,

we say that A admits a classic QTT decomposition with ranks r0, . . . , r3 and cores
U1, . . . , U , V 1, . . . , V , W 1, . . . ,W if

Ai1...i ,j1...,j ,k1...k
= U1(i1) · · ·U (i )V 1(j1) · · ·V (j )W 1(k1) · · ·W (k ) (13)
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for all in, jn, kn ∈ {0, 1}, and where

Un : {0, 1} → R
rn−1×rn , V n : {0, 1} → R

r +n−1×r +n ,
Wn : {0, 1} → R

r2 +n−1×r2 +n ,
(14)

for n = 1, . . . , . We have the restriction on the ranks r0 = r3 = 1.

We denote by Tqtt : R2 ×2 ×2 → R

3 times

2×···×2 the “classic QTT” tensorization given
by

Tqtt(A) = Aqtt, (15)

with Aqtt defined in (12).
The (classic) QTT decomposition is symbolically depicted in tensor network

format in Fig. 1a.

2.6 Transposed order QTT format in three physical space dimensions

In the transposed order QTT format (referred to as “QT3” format) introduced first
in [40], after reshaping the tensor A as in (12), the indices from the different (three)
physical dimensions are regrouped together, resulting in a tensor

Aqt3 ∈ R

times

8×···×8 such that A
qt3

i1j1k1,...,i j k
= Ai1...i ,j1...,j ,k1...k

(16)

for all in, jn, kn ∈ {0, 1}. The tensor Aqt3 is subsequently TT-decomposed, as
specified in the next definition.

Fig. 1 Tensor networks for the QTT (a), transposed QTT (QT3) (b), and Tucker QTT (TQTT) representa-
tions (c). Each node represents a tensor with edges in the network indicating indices. An edge connecting
two nodes is a contracted index (corresponding to tensor multiplication). This can be seen comparing the
networks with equations (13), (17), and (20)
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Definition 4 (Transposed order QTT) Let ∈ N and let A ∈ R
2 ×2 ×2 . The tensor

A admits a transposed QTT decomposition with tensor ranks r0, . . . , r and cores
U1, . . . , U if

Ai1...i ,j1...,j ,k1...k
= U1(i1j1k1) · · ·U (i j k ), (17)

for all in, jn, kn ∈ {0, 1}, and where Un : {0, . . . , 7} → R
rn−1×rn , for n = 1, . . . , .

We have the restriction on the ranks r0 = r = 1.

We denote by Tqt3 : R2 ×2 ×2 → R

times

8×···×8 the “transposed QTT” tensorization
given by

Tqt3(A) = Aqt3, (18)

with Aqt3 defined in (16).
A representation of the transposed order QTT decomposition in tensor network

format is given in Fig. 1b.

2.7 Tucker QTT

The Tucker QTT (TQTT) decomposition is a combination of the Tucker and the QTT
decompositions, first considered in [18]. A tensor A ∈ R

2 ×2 ×2 is represented in
the Tucker decomposition if

Aijk =
R1

β1=1

R2

β2=1

R3

β3=1

Gβ1β2β3Uβ1(i)Vβ2(j)Wβ3(k),

where R1, R2, R3 ∈ N are the Tucker ranks, the tensor G ∈ R
R1×R2×R3 is the Tucker

core and the Tucker factors U,V,W can be considered as matrices U ∈ R
2 ×R1 ,

V ∈ R
2 ×R2 , W ∈ R

2 ×R3 . In the TQTT decomposition, the factor matrices U,V,W
are given by QTT decompositions, where, e.g., for U , only one of the QTT cores
depends on the corresponding column number β1:

Uβ1(i) = U1
β1
(i1)U

2(i2) . . . U (i ), i = i1 . . . i ,

Vβ2(j) = V 1
β2
(j1)V

2(j2) . . . V (j ), j = j1 . . . j ,

Wβ3(k) = W 1
β3
(k1)W

2(k2) . . .W (k ), k = k1 . . . k .
(19)

We denote the QTT ranks of U,V,W as {r0, r1, . . . , r }, {s0, s1, . . . , s } and
{t0, t1, . . . , t } with the constraints r0 = R1, s0 = R2, t0 = R3 and r = s = t = 1.

Definition 5 (Tucker QTT (TQTT) representation) Let ∈ N and letA ∈ R
2 ×2 ×2 .

A admits a Tucker QTT decomposition with Tucker ranks R1, R2, R3 and QTT ranks
r0, r1, . . . , r , s0, . . . , s , t0, . . . , t if there exist a Tucker core G ∈ R

R1×R2×R3 and
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QTT cores U1, . . . , U , V 1, . . . , V , W 1, . . . ,W defined as in (19) such that

Ai1...i ,j1...,j ,k1...k

=
R1,R2,R3

β1,β2,β3=1

Gβ1,β2,β3U
1
β1
(i1)U

2(i2) . . . U (i )

V 1
β2
(j1)V

2(j2) . . . V (j )W 1
β3
(k1)W

2(k2) . . .W (k ).

(20)

2.8 Degrees of freedom

Supposing for ease of notation that rn = rqtt for the classic QTT representation,
rn = rqt3 for the transposed one, and rn = sn = tn = rtqtt andR1 = R2 = R3 = R for
Tucker QTT, the number Ndof of parameters in the QTT representations is bounded
as

Ndof =

⎧⎪⎨
⎪⎩

2 (3 − 2)r2
qtt + 2rqtt = O( r2

qtt) classic QTT

8 ( − 2)r2
qt3 + 2rqt3 = O( r2

qt3) transposed QTT

R3 + 6 ( − 2)r2
tqtt + (R + 1)rtqtt = O(R3 + r2

tqtt + Rrtqtt) Tucker QTT.
(21)

3 Functional setting

Our analysis will require the introduction of two different meshes and of two respec-
tive finite element spaces in the cube Q. The first one is a uniform tensor product
mesh with distance between nodes given by h = 2− . This mesh contains 2 nodes
in every physical direction; given a function f defined over Q, the point values of
f at the mesh points can be grouped in a three-dimensional tensor of dimension
2 × 2 × 2 , which can be QTT-approximated in the formats introduced in the pre-
vious section. Note that, in practice, one does not need to compute the values of the
function at all 23 mesh points, see, e.g., [63], as this would undermine the efficiency
of tensor compressed methods. For this reason, the background mesh is also referred
to as “virtual” mesh in the literature, see for example [38–40, 68].

Furthermore, tensor-formatted closed forms of some discrete differential operators
exist, see, e.g., [37, 42, 44]. This can be used to discretize certain partial differential
equations in quantized tensor format, as it will be shown in the sequel. The space of
(tensor-formatted) functions on the uniform mesh is the space of Q1 finite elements,
i.e., the tensor product of one-dimensional Lagrange functions associated with mesh
nodes.

The second finite dimensional space we introduce is the auxiliary hp space. This
space is introduced here only for proving tensor rank bounds of the QTT-structured
approximation. It is never accessed during numerical computation in the tensor for-
mats. The hp space is, in particular, an H 1-conforming finite element space, on a
mesh with elements geometrically refined towards the origin. The polynomial degree
of functions in the hp space is, instead, increasing polynomially with the number of
geometric mesh layers. This is made more precise in Section 3.2 below. The role of
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the auxiliary hp finite element approximation is to provide an exponentially conver-
gent, continuous and piecewise polynomial approximation on a bisection geometric
partition which is compatible with the background mesh in theQ1-approximation for
generic functions in the weighted Sobolev space Jγ (Q).

A function in v ∈ Jγ (Ω) can then be approximated—with exponential
accuracy—by its projection vhp into the hp space. By re-interpolating vhp on the
background mesh and QTT-compressing the resulting tensor, we establish existence
of quantized, tensor-structured approximations with polylogarithmic bounds on the
QTT ranks and the number of QTT parameters. The quasi-interpolation operator from
v to its representation on the background mesh is introduced in Section 3.3.

For simplicity, we will consider here functions that have zero trace on the part of
the boundary not abutting at the origin, i.e., on

Γ = {(x1, x2, x3) ∈ ∂Q : x1x2x3 = 0} .

We denote by H 1
Γ (Q) the subspace of H 1(Q) functions with zero trace on Γ . We

then fix γ ∈ R such that γ − 3/2 ∈ (0, 1), two constants CX, AX > 0, and a
regularity exponent d ≥ 1 and denote by

X = Jγ (Q;CX,AX, d) ∩H 1
Γ (Q)

the weighted space of Gevrey-d-regular functions with zero trace on Γ that will be
considered henceforth.

3.1 Low order background FE space X

We introduce the so-called “background” (sometimes also referred to as “virtual”)
FE space discussed above. Here, it will consist of the space of continuous, piecewise
trilinear functions on a uniform mesh of axiparallel hexahedral elements of size 2−
(so-called Q1-FEM), which we now introduce.

3.1.1 Uniform backgroundmeshT

InQ = (0, 1)3, we introduce the uniform mesh T with nodes xi,j,k ∈ 2− N
3
0∩Q̄, for

(i, j, k) ∈ {0, . . . , 2 }3. For a refinement level ∈ N, we write Ij = (2− j, 2− (j +
1)), j = 0, . . . , 2 − 1. Then, T = {Ii × Ij × Ik : i, j, k = 0, . . . , 2 − 1}.

3.1.2 Background finite element space

For (i, j, k) ∈ {0, . . . , 2 − 1}3, we denote by ϕi,j,k the locally trilinear, continuous
nodal Lagrange functions which satisfy

ϕi,j,k(xm,n,p) = δimδjnδkp, (i, j, k) ∈ {0, . . . , 2 − 1}3, (m, n, p) ∈ {0, . . . , 2 }3,
where δim denotes the Kronecker delta symbol for indices i and m.

The space of continuous, locally trilinear Lagrange functions on the (background)
mesh T is

X = span{ϕi,j,k : (i, j, k) ∈ {0, . . . , 2 − 1}3}.
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Note that the basis functions ϕi,j,k and the space X are algebraic tensor products of
the corresponding univariate functions, resp. spaces. We remark that for every v ∈ X
holds v|Γ = 0.

Remark 2 X contains functions that vanish on Γ . We limit ourselves to this case for
simplicity of notation; the extension of our analysis to functions with nonzero trace
on Γ involves additional technicalities. We refer to [40] for the two-dimensional case.

3.1.3 Lagrange interpolation operatorI

We denote by I the Lagrange interpolation operator on the uniform tensor mesh T .
I.e., I : C(Q̄)→ X is defined as

I v (x) =
(i,j,k)∈{0,...,2 −1}3

v(xi,j,k)ϕi,j,k(x), x ∈ Q̄ .

3.1.4 Analysis and synthesis operators

For ∈ N, A : X → R
2 ×2 ×2 and S : R2 ×2 ×2 → X are the analysis and

synthesis operators, such that

(A v )i,j,k = v (xi,j,k), (S v)(x) =
2 −1

i,j,k=0

vi,j,kϕi,j,k(x). (22)

3.2 Auxiliary hp space

We obtain the QTT rank bounds on TT-formatted approximations by comparison
with hp-approximations. To this end, we introduce the hp-FE spaces. We start with
1-irregular meshes of axiparallel hexahedra with geometric refinement towards the
singularity of the function of interest (“geometric meshes” for short).

3.2.1 Geometric mesh

Let ∈ N. For i = 0, . . . , , let

J1,i = (2i− −1, 2i− ) and J0,i = (0, 2i− ).

Then, for k ∈ {0, . . . , } and a, b, c ∈ {0, 1}, define the non-overlapping cubes

Kabc,k = Ja,k × Jb,k × Jc,k

see Fig. 2.
Denoting N = {001, . . . , 111}, the auxiliary geometric mesh is given by

G = {Kn,k, k ∈ {1, . . . , }, n ∈ N } ∪K000,0.
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Fig. 2 Elements Kn,j , for fixed , for j = k, k+ 1, and for n ∈ {001, . . . , 110}. Element K111 not visible
in this projection

Element K000,0 has one vertex coinciding with the origin. We collect all elements at
the same refinement level in mesh layers

L0 = {K000,0}, Lj = {Kn,j , n ∈ N } for j = 1, . . . , . (23)

We also introduce the one- and two-dimensional versions of the geometric mesh as

G2d = {Kn,k, k ∈ {1, . . . , }, n ∈ {01, 10, 11}} ∪K00,0,

where Kab,k = Ja,k × Jb,k , and

G1d = {J1,k, k ∈ {1, . . . , }} ∪ J0,0, (24)

see Fig. 3.

Fig. 3 Univariate geometric mesh G1d (left) and bivariate geometric mesh G2d (right) with subdivision
ratio 1/2
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We remark that for q ∈ N, k = 1, . . . , 2q−1, j = 1, . . . , q−1, and for all integer
> q

I
q
k ⊂ J

q

1, log2 k +1 J
q

1,j = J1, −q+j .

Furthermore, for p = 1, . . . , q − 1 and all m = p + 1, . . . , q − 1, there holds

J
q

1,p ⊂ J
q

0,m.

3.2.2 hp space

The hp space is formally introduced as

X
,p

hp = {v ∈ H 1(Q) : v|
K
n,j

∈ Qp(Kn,j ),

for all n ∈ N , j = 1, . . . , and n = 000, j = 0}. (25)

Note that, as a consequence of the existence of a continuous hp approximation to
functions in J∞γ (Q) proved in Appendix A and in [73], the spaceX ,p

hp is well defined
by (25).

3.2.3 hp approximation

We provide a brief presentation of (novel) hp-interpolation error bounds which are
exponential in the number of degree of freedom for functions in the Gevrey-type
classes K ,q

γ (Q;C,A, d), J ,q
γ (Q;C,A, d) defined in Section 1.3.2. We consider

here axiparallel, geometric partitions of Q = (0, 1)3 into hexahedral elements;
this entails, of course, irregular nodes and faces so that hp-interpolants are to be
constructed in a two-stage process: first, an elementwise hp-(quasi)interpolant with
analytic error bounds and second, polynomial face jump liftings which preserve the
analytic bounds. We refer to the Appendix and to, e.g., [73] for details on this.

In the analytic case, i.e., when d = 1 such exponential error bounds are well-
known (e.g., [73]). However, for d > 1, these bounds are novel; for regular geometric
meshes of tetrahedra, corresponding bounds have recently been established in [20].

We introduce in Appendix A the projector Π ,p
hp : J∞γ (Q) → X

,p
hp , defined for

γ > 3/2. We recall here that given a function v ∈ J∞γ (Q), for γ > 3/2, then

Π
,p

hp v ∈ H 1(Q) ∩ C(Q̄), i.e., the projector is conforming in H 1(Q). Furthermore
for all u ∈ Jγ (Q;C,A, d), with γ > 3/2, there exist p d, and positive Chp, bhp

(depending on C,A, d) such that for every ∈ N holds

u−Π
,p

hp u H 1(Q) ≤ Chp exp(−bhp ), (26)

and dim(X ,p
hp ) p3 3d+1, see Proposition 3 in Appendix A.

3.3 Quasi interpolation operatorP

We recall that
X = v ∈ Jγ (Q;CX,AX, d) : v|Γ = 0 ,
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where Γ = {(x1, x2, x3) ∈ ∂Q : x1x2x3 = 0} and for γ > 3/2, positive constants
CX and AX, and Gevrey exponent d ≥ 1. We also fix p d such that (26) holds
and define the quasi-interpolation operator P : X→ X as

P u = I Π
,p

hp u. (27)

4 Quasi interpolation error

We give here (specifically, in Proposition 2) an estimate on the error introduced by
the quasi-interpolation operator P defined in Section 3.3. We start by estimating,
in the following lemma, the error introduced by interpolating the hp projection of a
function in X.

Lemma 1 Let ∈ N, u ∈ X, I : C(Q̄) → X and ,p
hp : X → X

,p
hp defined in

Sections 3.1.3 and 3.2.3, respectively. Then there exist constants C, bI > 0 such that

Id−I Π
,p

hp u H 1(Q) ≤ C exp(−bI ).

Proof There holds

Id−I Π
,p

hp u 2
H 1(Q)

=
j=0 K∈Lj

Id−I Π
,p

hp u 2
H 1(K)

, (28)

where the mesh layers Lj are defined in (23). The quantity on the right-hand side of
this equation is an upper bound for the error of interpolation over a uniform mesh of
axiparallel cubes of edge length 2− . The axiparallel cubes Kn,j are affine equivalent

to the reference element K = (−1, 1)3. Furthermore, since u ∈ X, by Remark 8 in

the Appendix there holds Π
,p

hp u |Γ
= 0. Hence there exists C > 0 such that, for

all (n, j) ∈ N × {1, . . . , } ∪ (000, 0) and for all

Id−I Π
,p

hp u H 1(Kn,j )
≤ C2− |Π ,p

hp u|H 2(Kn,j )
.

By the polynomial inverse inequality

|v|H 2(K) ≤ C
p2

hK
|v|H 1(K),

where v is a polynomial of degree p and hK is the diameter of K (see, e.g., [24, 77]),
recalling that an elementKn,j ∈ Lj is an axiparallel cube with diameter hj 2− +j )
and using a triangle inequality, there exists a constant C > 0 independent of and of
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p such that

2− |Π ,p
hp u|H 2(Kn,j )

≤ C2− h−1
j p2| ,p

hp u|H 1(Kn,j )

≤ C2−jp2| ,p
hp u|H 1(Kn,j )

≤ C2−jp2 |u|H 1(Kn,j )
+ |u− ,p

hp u|H 1(Kn,j )
.

Since γ > 1, there exists a uniform constant C such that, on each Kn,j ,

2( −j)(γ−1) ≤ Cr
1−γ
|
K
n,j

.

From this last inequality and (2)

2−j |u|H 1(Kn,j )
≤ C2− (γ−1)−j (2−γ ) u J 1

γ (Kn,j )
. (29)

Combining (28) to (29), there exists a constant C > 0 such that for all holds

Id−I Π
,p

hp u 2
H 1(Q)

≤ C

j=0 K∈Lj

2−2jp4 |u|H 1(K) + |u−Π
,p

hp u|H 1(K)

2

≤ Cp4

⎛
⎜⎝
j=0 K∈Lj

2−2 (γ−1)−2j (2−γ ) u 2
J 1
γ (K)

+ |u−Π
,p

hp u|2
H 1(Q)

⎞
⎟⎠ .

Then, by (26) and since p d,

Id−I Π
,p

hp u 2
H 1(Q)

≤ C 4d 2−2 min(γ−1,1) u 2
J 1
γ (Q)

+ C2
hpe

−2bhp .

Absorbing the terms algebraic in into the exponential by a change of constant
concludes the proof.

Proposition 2 Let 0 < ε0 < 1 and u ∈ X . Then for all 0 < ε ≤ ε0 there exists
∈ N such that

u−P u H 1(Q) ≤ ε,

whereP u ∈ X is defined in (27) and there exists C > 0 independent of ε such that

≤ C |log ε| .

Proof By a triangle inequality, Lemma 1, and Proposition 3 (recalled above in (26)),

u−P u H 1(Q) ≤ u−Π
,p

hp u H 1(Q) + (Id−I )Π
,p

hp u H 1(Q) ≤ C exp(−b ),

where C and b are independent of . The choice = b−1 log C
ε

and adjusting the
value of C concludes the proof.
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5 QTT-formatted approximation of u ∈ Jγ (Q)

We now state and prove our main results. For Gevrey-regular functions in Q =
(0, 1)3 with point singularity at the origin, and for each of the three tensor formats
(QTT, QT3, TQTT), we prove bounds on the ranks which are sufficient to achieve a
prescribed approximation accuracy ε ∈ (0, 1) in the normH 1(Q). This is the relevant
norm for linear, second order, elliptic PDEs.

5.1 Tensor rank bounds for QTT approximation

Lemma 2 Let 0 < ε0 < 1 and u ∈ X. Then, for all 0 < ε ≤ ε0 there exist ∈ N

and vqtt = P u such that u − vqtt H 1(Q) ≤ ε and vqtt admits a QTT-formatted
representation with

Ndof ≤ C| log ε|4d+3

degrees of freedom, for C > 0 independent of ε.

Proof We consider the unfolding matrices V (q) of Tqtt(A (vqtt)), with Tqtt defined
in (15) and A in (22). We first consider the case q ∈ {1, . . . , − 1}. In this case,

V
(q)

ξ1,ξ2ηζ
= vqtt(xξ1ξ2,η,ζ

),

for ξ1 = 0, . . . , 2q − 1, ξ2 = 0, . . . , 2 −q − 1, and for η, ζ = 0, . . . , 2 − 1. Now,
introduce the reference line S1 as S1 = (0, 1)×{0}×{0}. For each element K ∈ Gq1d,
we denote its left and right endpoints as yK0 and yK1 , so that (yK0 , y

K
1 ) = K . On S1,

we introduce a geometric mesh

GqS1
= K × {0} × {0}, K ∈ Gq1d ,

and the univariate discontinuous FE space

X
q
S1
= v ∈ L∞(S1) : v|K ∈ Qp(K) for all K ∈ GqS1

and v is right continuous at the nodes of Gq1d .

We require the function to be right continuous at its discontinuity points, i.e., for any

two neighboring intervals K and K with y
K

0 < y
K

1 = y
K

0 < y
K

1 and a function
v ∈ Xq

S1
such that

v = v in K

v in K ,

we have v(y
K

1 ) = v(y
K

0 ) = v (y
K

0 ). We also consider the affine transformation

ϕijk : (x1, x2, x3)→ (x1 + 2− i, x2 + 2− j, x3 + 2− k),

so that, for all ξ1 = 0, . . . , 2q − 1, ξ2 = 0, . . . , 2 −q − 1, and η, ζ = 0, . . . , 2 − 1,

ϕ−1
ξ2ηζ

(xξ1ξ2,η,ζ
) = (2−qξ1, 0, 0).
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Now, for all ξ1 ∈ {0, . . . , 2q − 1},
xξ1ξ2,η,ζ

∈ ϕξ2ηζ
(S1) = I

q
ξ1
× {2− η} × {2− ζ }.

Then, for each ξ2 ∈ {0, . . . , 2 −q−1} and for each η, ζ ∈ {0, . . . , 2 −1} there exists
a piecewise polynomial pξ2ηζ

∈ Xq
S1

such that

vqtt xξ1ξ2,η,ζ
= vqtt ◦ ϕξ2ηζ

ϕ−1
ξ2ηζ

xξ1ξ2,η,ζ

= vqtt ◦ ϕξ2ηζ
(2−qξ1, 0, 0)

= pξ2ηζ
(2−qξ1, 0, 0)

for all ξ1 = 0, . . . , 2q−1. The piecewise polynomial pξ2ηζ
is constructed as follows.

For each K = (yK0 , y
K
1 ) ∈ Gq1d \ (0, 2−q) the function vqtt ◦ ϕξ2ηζ

is a polynomial of

degree p with the first variable in the interval (yK0 − 2− ξ2 , yK1 − 2− ξ2), therefore, a
fortiori, denoting JK = (yK0 , y

K
1 − 2− ξ2)

vqtt ◦ ϕξ2ηζ
∈ Qp(J

K × {0} × {0}).
Hence, by extension, there exists a polynomial pK

ξ2ηζ
such that pK

ξ2ηζ
∈ Qp(K×{0}×

{0}) and
pK
ξ2ηζ

= vqtt ◦ ϕξ2ηζ
in JK × {0} × {0}.

When K = (0, 2−q), we let pK
ξ2ηζ

be any polynomial of degree p satisfying

pK
ξ2ηζ

(0, 0, 0) = (vqtt ◦ ϕξ2ηζ
)(0, 0, 0). Finally, pξ2ηζ

∈ X
q
S1

is defined piecewise as

pK
ξ2ηζ

in each element. Note that the property of right-continuity is crucial for the

exactness of the piecewise polynomial at mesh nodes.
Remarking that there exists a constant C > 0 such that for every p, q holds

dim(XS1
) ≤ Cqp and taking a basis {en}n of XS1

, we can write

V (q) = BW,

where Bξ1,n = en((2−qξ1, 0, 0)), for n = 1, . . . , dim(XS1
) and ξ1 as above, and W

is a dim(XS1
)× 23 −q matrix of coefficients. Hence, there exists C > 0 such that for

all q = 1, . . . , it holds

rq = rank(V (q)) ≤ dim(XS1
) ≤ C d+1.

We now consider the case where < q < 2 and denote q̃ = q − . Then,

V
(q)

ξη1,η2ζ
= vqtt(xξ,η1η2,ζ ),

for ξ, ζ = 0, . . . , 2 −1, η1 = 0, . . . , 2q̃−1, and η2 = 0, . . . , 2 −q̃−1. We introduce
the two-dimensional slice

S
q̃

2 = {0} × (0, 2−q̃ )× (0, 1),

with associated mesh

G q̃
S
q̃
2

= {{0} ×K for all K ∈ G2d such that K ⊂ (0, 2−q̃ )× (0, 1)},
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and the corresponding FE space

X
q̃

S
q̃
2

= {v ∈ H 1(S
q̃

2 ) : v|K ∈ Qp(K) for all K ∈ G q̃
S
q̃
2

}.

Consider the affine transformations

ψi,j : (0, x2, x3)→ (2− i, x2 + 2−q̃ j, x3).

Then, xξ,η1η2,ζ ∈ ψξ,η1(S
q̃

2 ). Moreover, for each ξ, η1 there exists a piecewise

polynomial pξη1
∈ Xq̃

S2
such that

vqtt ◦ ψξ,η1 ψξ,η1
−1
(xξ,η1η2,ζ ) = pξη1

(x0,η2,ζ )

for all η2 = 0, . . . , 2 −q̃ − 1 and ζ = 0, . . . 2 − 1, see Fig. 4.
Since dim(Xq̃

S2
) ≤ C p2, we obtain, reasoning as before,

rq = rank(V (q)) ≤ C p2 ≤ C 2d+1 q = + 1, . . . , 2 − 1.

It remains to consider q with 2 ≤ q < 3 . We sketch their treatment, which fol-
lows the same line of reasoning as in the preceding cases. Every row of the unfolding
matrix V (q) contains the evaluation of vqtt on 23 −q equispaced points belonging to a
line parallel to the z-axis. Hence, there exists a space of piecewise polynomials with
less than C(3 − q)p degrees of freedom such that each row of V (q) can be writ-
ten as linear combination of elements of the space, thus implying the existence of a
constant C > 0 such that

rq = rank(V (q)) ≤ C p ≤ C d+1 q = 2 , . . . , 3 − 1.

The proof is concluded by remarking that

Ndof ≤ C

3 −1

q=1

rqrq+1 ≤ C 4d+3,

choosing | log ε| and using Proposition 2.

Fig. 4 Slice Sq̃2 , with geometric

mesh G q̃S2
(in blue) and action of

domain mapping ψξ,η1
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Remark 3 In the proof of Lemma 2, we use a slightly different technique to treat
the cases q ∈ {1, . . . , } and q ∈ { + 1, . . . , 3 }: in the first, we show that the
columns of the unfolding matrices are point evaluations of piecewise polynomials,
while in the latter we show a similar result for the rows of the unfolding matrices. It
is possible to prove bounds on r1, . . . r by using the same procedure as the one used
for q ≥ 2 + 1: one would introduce the three-dimensional slice

S1 = (0, 2−q)× (0, 1)2,

the mesh
Gq
S1
= K ∈ Gq : K ⊂ S1 ,

and the space

X
q

S1
= v ∈ H 1(S

q

1 ) : v ∈ Qp(K), ∀K ∈ Gq
S1

.

Then, using the affine transformation

ϕξ1 : (x1, x2, x3)→ (x1 + 2−qξ1, x2, x3),

one obtains that for all ξ1 ∈ {1, . . . , 2q − 1},
vqtt ◦ ϕξ1 ∈ Xq

S1
,

which implies by the same reasoning as used in the proof that for q ∈ {1, . . . , }
rq ≤ C dimX

q

S1
≤ C p3.

This bound is weaker than the one obtained in the proof of Lemma 2 (and would
impact the final bound on Ndof).

The same effect would manifest itself if we changed the direction of the decom-
position in the case q ∈ {2 + 1, . . . , 3 }.

5.2 Rank bounds for transposed order QTT representations

Lemma 3 Let 0 < ε0 < 1 and u ∈ X. Then, for all 0 < ε ≤ ε0 there exists ∈ N

and vqt3 = P u such that u − vqt3 H 1(Q) ≤ ε and vqt3 admits a transposed QTT
representation with

Ndof ≤ C| log ε|6d+1

degrees of freedom, with C > 0 independent of ε.

Proof By Proposition 2, for all 0 < ε ≤ ε0 exists ∈ N such that u−P u H 1(Q) ≤
ε, with

≤ C| log ε|,
and C independent of ε. Let then q ∈ {1, . . . , − 1}; we consider the qth unfolding
matrix of the transposed QTT representation of vqt3, i.e., the qth unfolding matrix of

Tqt3(A (vqt3)), as defined in (18). This is the matrix with entries

U
(q)

ξ1η1ζ1,ξ2η2ζ2
= A (vqt3)ξ1ξ2,η1η2,ζ1ζ2

= vqt3(xξ1ξ2,η1η2,ζ1ζ2
) (30)
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with ξ1, η1, ζ1 ∈ {0, . . . , 2q − 1} and ξ2, η2, ζ2 ∈ {0, . . . , 2 −q − 1}. Following the
proof of Lemma 2, we introduce a reference cube

Sq = (0, 2−q)3

and a reference space
XSq = Qp(S

q).

Then, let ϕi,j,k be the map from the reference square to the space of points of the row
ijk of the unfolding matrix, i.e.,

ϕi,j,k : (x1, x2, x3)→ (x1 + 2−qi, x2 + 2−qj, x3 + 2−qk),

so that xξ1ξ2,η1η2,ζ1ζ2
∈ ϕξ1,η1,ζ1(S

q) for all ξ1, η1, ζ1 ∈ {0, . . . , 2q − 1}, see Fig. 5.
Remark that

xξ1ξ2,η1η2,ζ1ζ2 ξ1,η1,ζ1∈{0,...,2q−1}
ξ2,η2,ζ2∈{0,...,2 −q−1}

⊂ I
q
ξ1
× I

q
η1 × I

q
ζ1

.

Suppose now ξ1η1ζ1 > 0: then, there exists a single element K ∈ G such that

I
q
ξ1
× I

q
η1 × I

q
ζ1
⊂ K,

thus,
vqt3 ◦ ϕξ1,η1,ζ1 ∈ XSq .

This implies that, for each ξ1, η1, ζ1: ξ1η1ζ1 > 0, there exists a polynomial pξ1η1ζ1
∈

XSq that interpolates vqt3 ◦ ϕξ1,η1,ζ1 in the reference cube, i.e.,

vqt3 ◦ ϕξ1,η1,ζ1 ϕ−1
ξ1,η1,ζ1

xξ1ξ2,η1η2,ζ1ζ2
= pξ1η1ζ1

(xξ2,η2,ζ2).

Note that for ξ1 = η1 = ζ1 = 0, the function vqt3◦ϕξ1,η1,ζ1 is not a polynomial, which

increases the dimension of the row space of U(q) by 1. Since dim(XSq ) ≤ Cp3, and
using the same arguments as in the proof of Lemma 2 it can be concluded that

rq = rank(U(q)) ≤ dim(XSq )+ 1 ≤ C 3d

Fig. 5 Reference cube Sq for
transposed order QTT and
representation of ϕξ1,η1,ζ1
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which gives, due to (21), a total number of degrees of freedom Ndof ≤ C 6d+1. The
fact that | log ε| concludes the proof.

5.3 Rank bounds of TQTT approximations

In this section, we prove rank bounds for the TQTT approximation. We start by prov-
ing, in Lemma 4 below, rank bounds for the block QTT decomposition of collections
of piecewise polynomial functions. Block QTT decompositions are precisely defined
in the following.

Definition 6 (Block QTT decomposition) Let ∈ N and let Aα : {0, . . . , 2 − 1} →
R for every α = 1, . . . , s. We say that the collection {Aα}α admits a block QTT
decomposition with ranks r0, . . . , r and cores U1, U2, . . . , U , if

Aα i1 . . . i = U1
α(i1)U

2(i1) · · ·U (i ) ∀(i1, . . . , i ) ∈ {0, 1} , ∀α ∈ {1, . . . , s},

for all in ∈ {0, 1}, and with Un : {0, 1} → R
rn−1×rn for all n = 1, . . . , . By U1

α(i1)

we indicate the αth row ofU1(i1). We have the restriction on the ranks r0 = s, r = 1.

We also need the definition, on the geometric mesh G1d (see (24)), of the univariate
hp-FE space

X
,p

hp,1d = {v ∈ H 1((0, 1)) : v|K ∈ Qp(K), for all K ∈ G1d} .

Lemma 4 Let {wα}sα=1 ⊂ X
,p

hp,1d, and let Wα : {0, . . . , 2 − 1} → R be such that

Wα(i) = wα(2− i), for all α = 1, . . . , s and i = 0, . . . , 2 − 1. Then the collection
{Wα}sα=1 admits a block QTT representation with ranks rn ≤ s + p + 1 for all
n = 1, . . . , − 1.

Proof We provide a constructive proof with explicit formulas for the QTT cores. In
the proof, the m-by-n matrix with zero entries will be denoted by Om×n, while the
n-by-n identity matrix will be written as In. Let

q(x) = a m(x),

where

a = a0 a1 . . . ap m(x) = 1 x x2 . . . xp

be a polynomial of degree ≤ p and q = {q(xi)}2 −1
i=0 ∈ R

2 , xi = 2− i. Then q
admits the exact, explicit QTT representation [26, 42, 66] with ranks rk = p + 1:

qi = Q1(i1)Q
2(i2) . . .Q (i ), i = i1 . . . i ,
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where

Q1(i1) = ϕϕϕa(2−1i1) ≡ ϕa0 2−1i1 . . . ϕap 2−1i1 ,

with ϕam(x) = am +
p

k=m+1
akC

m
k x

k−m, m = 0, . . . , p,

Qk(ik) = Q(2−kik), k = 2, . . . , − 1,

with Q(x)ij =

⎧⎪⎨
⎪⎩

C
i−j
i xi−j i > j,

C0
i i = j,

0 otherwise,

i, j = 0, . . . , p,

Q (i ) = m(2− i ).

(31)

Let now wα ∈ X ,p

hp,1d, α = 1, . . . , s be given by polynomials with the coefficients

ak(α), k = 1, . . . , + 1 on subintervals [2−k, 21−k) for k = 1, . . . , and [0, 2− ) for
k = + 1.

Consider the points xi1...i . The case of i1 = 1 and any in ∈ {0, 1}, n = 2, . . . ,
corresponds to the equispaced mesh points xi1...i from the interval [1/2, 1). Simi-
larly, the case i1 = · · · = ik−1 = 0, ik = 1 and any in ∈ {0, 1}, n = k + 1, . . . ,
corresponds to xi1...i ∈ [2−k, 21−k).

We conclude that wα(x0...01ik+1...i
) are polynomials sampled in equidistant points.

By utilizing this fact, explicit formulas (31) for the polynomial parts and combining
expressions for each of them, we obtain:

Wα(i) = wα(2
− i) = W 1

α(i1)W
2(i2) . . .W (i ), i = i1 . . . i ,

where

W 1: (i1) =

⎧⎪⎨
⎪⎩

1(2−1i1) Os×s , i1 = 1

Os×(p+1) Is , i1 = 0

Wk(ik) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q(2−kik) O(p+1)×s
k(2−1ik) Os×s

, ik = 1

Q(2−kik) O(p+1)×s
Os×(p+1) Is

, ik = 0

k = 2, . . . , − 1

W (i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

m(2− i )

(a(1)) m(2− i )

. . .

(a(s)) m(2− i )

⎤
⎥⎥⎥⎦ , i = 1

⎡
⎢⎢⎢⎣

m(2− i )

(a(1)+1) m(2− i )

. . .

(a(s)+1) m(2− i )

⎤
⎥⎥⎥⎦ , i = 0
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and where we used the notation

k(x) ≡

⎡
⎢⎢⎣
ϕϕϕa

(1)
k (x)
...

ϕϕϕa
(s)
k (x)

⎤
⎥⎥⎦ ∈ R

s×(p+1), k = 1, . . . , .

For fixed ik , k = 2, . . . , − 1, the matrices Wk(ik) are of size (p + s + 1) × (p +
s + 1). We conclude that the ranks of the collection {Wα}α are bounded from above
by p + s + 1. This completes the proof.

Lemma 5 Let 0 < ε0 < 1 and u ∈ X. Then, there exists a constant C > 0 (depend-
ing on u and on ε0) such that for all 0 < ε ≤ ε0 there exists ∈ N and vqtt = P u,

such that u− vqtt H 1(Q) ≤ ε. Furthermore, vqtt admits a TQTT representation with

Ndof ≤ C| log ε|3d+3

degrees of freedom.

Proof Consider the three-dimensional array V = A (vtqtt), with entries

Vξ,η,ζ = vtqtt(xξ,η,ζ ).

We start by showing that the 1-rank of V , i.e., the column rank of

V(1) = Vξ,ηζ

is bounded byC p, forC > 0 independent of , p. Indeed, for all η, ζ ∈ {0, . . . , 2 −
1}, the column {Vξ,ηζ }ξ contains the evaluation of a piecewise polynomial in the
finite dimensional space

X
,p

hp,1d = {v ∈ H 1((0, 1)) : v|K ∈ Qp(K), for all K ∈ G1d},
i.e., there exists pηζ ∈ X ,p

hp,1d such that

Vξ,ηζ = pηζ (2
− ξ) for all ξ ∈ {0, . . . , 2 − 1}.

Since dim X
,p

hp,1d ≤ C p, we have that rank(V(1)) ≤ C d+1. We write R =
dim X

,p

hp,1d , denote by {bn}Rn=1 a basis for X ,p

hp,1d, and repeat the argument above in

the other two cardinal directions. It follows that there exists a Tucker decomposition
such that, for ξ, η, ζ ∈ {0, . . . , 2 − 1},

Vξ,η,ζ =
R

β1=1

R

β2=1

R

β3=1

Gβ1,β2,β3Uβ1(ξ)Vβ2(η)Wβ3(ζ ), (32)

where R ≤ C d+1 and such that

Uβ1(ξ) = bβ1(2
− ξ), Vβ2(η) = bβ2(2

− η), Wβ3(ζ ) = bβ3(2
− ζ ), (33)

for all β1, β2.β3 ∈ {1, . . . , R}, see [32, Chapter 8].
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Applying Lemma 4 to the Tucker factors U,V,W , we obtain their block QTT
representation with tensor ranks {R, rQTT, . . . , rQTT, 1} bounded as

rQTT = R + p + 1 ≤ C d+1.

To store Tucker factors in the block QTT format, we need to store

N factors
dof = 3 · 2 · (rQTTR + r2

QTT( − 2)+ rQTT) ≤ C 2d+3

parameters of the decomposition. Storing the Tucker core requires an additional

Ncore
dof = R3 ≤ C 3d+3

parameters. This gives the following bound for the overall number of degrees of
freedom in the TQTT representation

Ndof = Ncore
dof +N factors

dof ≤ C 3d+3 .

Choosing | log ε| and using Proposition 2 completes the proof.

5.4 Exponential convergence of QTT approximations of u ∈ Jγ (Q)

From Proposition 2 and Lemmas 2, 3, and 5, we obtain the following estimate for
the QTT-Finite Element approximation of functions in Jγ (Q). In the following
theorem, we introduce a tag qtd ∈ {qtt,tqtt,qt3}, which generically denotes
quantized tensor decomposition.

Theorem 1 Assume γ > 3/2, Cu > 0, Au > 0, d ≥ 1, and 0 < ε0 1.
Furthermore, assume the function u belongs to the weighted Gevrey class u ∈
Jγ (Q;Cu,Au, γ, d) ∩ H 1

Γ (Q). Then, there exists a constant C > 0 such that, for

all 0 < ε ≤ ε0, there exists ∈ N and vqtd ∈ X such that

u− vqtd H 1(Q) ≤ ε

and vqtd admits a representation with

Ndof ≤ C| log ε|κ
degrees of freedom, with

κ =

⎧⎪⎨
⎪⎩

4d+ 3 for classic QTT

6d+ 1 for transposed order QTT

3d+ 3 for Tucker QTT

.

Remark 4 (Rank bounds of QTT-formatted approximations of two-dimensional cor-
ner singularities) Using the same techniques for the two-dimensional case (which
was already considered for the transposed order QTT in [40] in the analytic class,
i.e., for d = 1) results in the bound

κ = 2d+ 3 for classic QTT,

4d+ 1 for transposed order QTT.
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In the case of two spatial variables, the Tucker QTT format is easily reduced to the
classic QTT format for the index ordering i , . . . , i1, j1, . . . , j .

6 Numerical experiments

In this section, we support the obtained theoretical results with numerical experi-
ments. First, in Section 6.1, we construct FE approximants to functions defined in
Q = (0, 1)3 with point singularities in three quantized tensor formats: QTT, trans-
posed order QTT (QT3) and Tucker QTT (TQTT), see Fig. 1 for their tensor network
representations. We note that for all formats under consideration, the numerically
observed asymptotic behavior of rank versus error is better than that of theoretical
estimates.

In Section 6.2, we consider an elliptic eigenvalue problem with a singular poten-
tial — the Schrödinger equation for a hydrogen atom. We approximate the solution
using the finite element method with a tensor of coefficients represented the TQTT
format. The numerical results suggest that convergence rates of QTT-formatted
approximations are slightly higher than those achieved by the hp-FEM.

We note that optimization algorithms, e.g., SVD, that we use to approximate
tensors are based on optimization in L2-type norms. Nevertheless, in numeri-
cal experiments, we also calculate H 1 errors for function approximation problem
(Section 6.1) as well as eigenvalue errors (Section 6.2) that are associated with the
computation of derivatives. We observe that these errors behave in agreement with
the theoretical bounds.

6.1 QTT-FE approximation of functions with point singularities

In this section, we present the numerical results on function approximation. We will
detail the approximation technique in Remark 5, while the details on the explicit con-
struction of prolongation matrices for the computation of the error will be postponed
to Appendix C.

Let us consider the following smooth functions in Q = (0, 1)3 that exhibit
singularities at the origin x = (0, 0, 0):

u(x) = |x|α m(x), x = (x1, x2, x3) ∈ Q,
where α > 0 defines the strength of the singularity and m(x) = (1−x2

1)(1−x2
2)(1−

x2
3) is chosen to ensure zero values of the function on Γ . Note that the function m(x)

does not affect the singularity at the origin and can be represented with tensor ranks
bounded from above by 3 for QTT and TQTT formats and by 9 for QT3 format.

Recall that by I we denote the Lagrange interpolation operator on the uniform
tensor mesh T :

I v =
(i,j,k)∈{0,...,2 −1}3

v(xi,j,k) ϕi,j,k .

In practice, uqtd will be an approximation of I u obtained by applying to A I u the
exponential sums representation (see Remark 5) and by interpolating on a staggered
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grid (see Remark 6). We introduce the rank-truncated representation of uqtd, qtd ∈
{qtt, tqtt, qt3} based on the rounding procedure:

u
,δ

qtd = S roundqtd(A uqtd, δ) ,

where roundqtd is a rounding operation that aims at reducing the numerical qtd-rank
of A uqtd with the relative Euclidean error threshold δ. The rounding procedure is
based on a sequence of QR and SVD decompositions, see [65, Alg. 2] for TT (covers
QTT and QT3 cases) and [18, Alg. 1] for two-level QTT-Tucker (covers the TQTT
case with minor modifications).

For given u ,δ
qtd, we approximate the error ε in the seminorm | · |H 1(Q):

ε = |u
,δ

qtd − u|H 1(Q)

|u|H 1(Q)

= ∇u ,δ
qtd − ∇u L2(Q)

∇u L2(Q)

,

by using the respective quantized tensor approximation of u obtained on an equi-
spaced mesh of axiparallel cubes with L := 30 levels of binary refinement of
Q = (0, 1)3:

ε ≈ ε ≡ ∇u ,δ
qtd − IL0 (∇u) L2(Q)

IL0 (∇u) L2(Q)

. (34)

Here IL0 (∇u) = (IL0,1(∂x1u), IL0,2(∂x2u), IL0,3(∂x3u)) with IL0,β , β = 1, 2, 3 being
interpolation operators on a span of {∂xβ ϕi,j,k}i,j,k .

In Fig. 6, we present the convergence plots of the relative error ε defined in (34)
for δ = 10−10 versus the background mesh levels for different α and for different
quantized tensor formats. In all the cases, we observe empirical convergence in close
correspondence with the rate

ε = O 2−min{α+1/2, 1} , α > −1

2
.

This can be anticipated from classical FE interpolation error bounds on an equis-
paced, cartesian mesh in Q, for functions [x → |x|α] in three spatial dimensions.

background

Fig. 6 Number of background mesh levels versus the relative error in | · |H 1(D) seminorm for singularity
exponent α = 3/2, 3/4, 1/3, 1/4 and for different quantized tensor formats: QTT, QT3 (transposed QTT),
TQTT (Tucker QTT). The black lines correspond to ε = O(2−min{α+1/2, 1} ) convergence
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Let us first fix α = 3/2. In Fig. 7, we present ε versus the effective number of
degrees of freedom Ndof for three different tensor formats. On each gray dotted line
we plot the error ε for one fixed and for various values of δ. The envelopes of the
computed errors with respect to Ndof are highlighted with large empty markers.

In Fig. 8, we depict ε versus Ndof for α = 3/2, 3/4, 1/3, and 1/4 obtained as
envelopes of the set of points obtained for different δ (see Fig. 7 for α = 3/2). By
plotting log10 log2 ε

−1 against log10 Ndof, we numerically estimate the constant κ in
the empirical exponential rate of convergence

ε = C exp(−bN1/κ
dof ), (35)

for some positive constants b and C. Indeed, by first applying log2 to both sides of
(35), we arrive at log2 ε

−1 = b̃N
1/κ
dof − log2 C, b̃ = −b log 2. Assuming log2 C is

small compared with N1/κ
dof and taking log10 of both sides, we obtain

log10 log2 ε
−1 ≈ κ−1 log10 Ndof + log10 b̃.

In all the numerical examples considered, we observe κ < 6, i.e., higher con-
vergence rates than those predicted by our quantized tensor rank bounds. We also
observe lower rates of convergence than those of hp-FE approximations of corner
singularities in three spatial dimensions (see (43)), i.e., we find κ > 4.

Figures 7 and 8 illustrate the fact that in the range of considered, the transposed
order QTT representation requires more degrees of freedom to achieve a given accu-
racy ε than the two other formats even though it has empirical convergence (35) with
slightly smaller values of κ . Among the tensor formats and for the examples consid-
ered, the TQTT format requires the smallest number of degrees of freedom to achieve
a prescribed accuracy ε.

Remark 5 (Approximation of singular functions by exponential sums) To numeri-
cally evaluate the relative errors ε for all functions under consideration we used the
following procedure. For each background mesh level , we approximated the func-
tion using the exponential sums representation. Specifically, we obtain the quantized
tensor representations by applying the trapezoidal quadrature rule on a uniform mesh

Fig. 7 Each gray dotted line represents dependence of the estimated relative seminorm | · |H 1(D) error
values ε on the rounding parameter δ for fixed as suggested by (34). Empty markers represent convex
envelope of the gray dotted lines. The limits for both axes coincide for each of the plots
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Fig. 8 Effective number of degrees of freedom w.r.t. the estimated relative seminorm | · |H 1(D) error
values ε for α = 3/2, 3/4, 1/3 and 1/4. Reference lines with κ = 4 and κ = 7 correspond to the hp
approximation and the obtained (for QTT and QT3) theoretical convergence bounds respectively

to the following integral [9, 34]

(
√
y)−β = 1

Γ (β/2)

∞

−∞
e−yet+βt/2 dt, β > 0, y > 0, (36)

for different values of β. A quadrature rule on a uniform mesh applied to (36) leads
to an approximate, separated representation:

|x|−β ≈
α

ωα e
−x2

1e
tα
e−x2

2e
tα
e−x2

3e
tα
, x = (x1, x2, x3), (37)

where |x| = (x2
1 + x2

2 + x2
3)

1/2. Note that (37) only gives us separation of physi-
cal variables, while the exponential convergence for Gaussian functions in the QTT
format was shown in [19].

The size of the integration interval and the number of points was tuned separately
for each beta to ensure the desired accuracy. In this way, an approximation for |x|β ,
with β ∈ (0, 2), is found by first approximating the radial function |x|β−2 since
β − 2 < 0 and (37) is applicable, and subsequently by multiplying this function by
|x|2 = x2

1 +x2
2 +x2

3 , which has bounded TT ranks: |x|β = |x|2 |x|β−2 for β ∈ (0, 2).
This allows us to avoid using cross approximation techniques which may experience
stability issues at high accuracies (using exponential sums, we obtain approximations
with relative accuracy 10−11 in L2 norm). Note that the exponential sums approach
can be applied to any of the considered TT formats: QTT, QT3 and TQTT. In this
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section, for the QTT-, QT3-formatted arrays and for intermediate computations in
TQTT we utilized the ttpy library.2

Remark 6 (Interpolation on staggered grid) To conveniently assemble |x|β−2 for β ∈
(0, 2) using exponential sums, while avoiding evaluation at the origin where the func-
tion has a singularity, we approximate each u(xi,j,k) as an average of the neighboring

points on a staggered grid. Let h = 2− and denote by N = {xi,j,k + h /2}2 −1
i,j,k=0

the nodes on the staggered grid. Then, for each xi,j,k , the set of neighboring points
to xi,j,k on the staggered grid is Ni,j,k = {x ∈ N : |x − xi,j,k| ≤ h /2}. We then
approximate

u(xi,j,k) ≈ 1

#Ni,j,k
x∈Ni,j,k

u(x),

where #Ni,j,k is the number of points of Ni,j,k—equal to 8 except for points that
lie on ∂Ω \ Γ . We need therefore function evaluations only in the points of a mesh
shifted by h /2 with respect to the original mesh T , and avoid evaluations at the
singularity.

After uqtd is accurately approximated for every background mesh level using
exponential sums, we reduce the number of parameters in the corresponding quan-
tized tensor representation qtd of A uqtd by using roundqtd.

6.2 QTT-FEM for eigenvalue problems with singular potential

We apply QTT-formatted compression to the numerical solution of the eigenvalue
problem (5), linearized and with singular potential V :

−1

2
− 1

|x| u(x) = λ u(x), x ∈ R
3.

This is, essentially, Schrödinger’s equation for the hydrogen atom. It is well-known
(e.g., [50, Chapter 10]) that the eigenfunctions un,l,m can be enumerated by three inte-
ger quantum numbers: n = 1, 2, . . .—principal quantum number, l = 0, 1, . . . , n−
1—orbital quantum number, and m = −l, . . . , l, magnetic quantum number. The
corresponding eigenvalues are λn = 1/(2n2). We aim at approximating the 3 smallest
eigenvalues λn and their respective Nev = 14 eigenvectors un,m,l , n = 1, 2, 3.

To solve the problem numerically, we replace R
3 with a finite domain Ω =

(−a, a)3, a = 100 and impose homogeneous Dirichlet boundary conditions. To
discretize the problem, we introduce a mesh with the nodes

xi,j,k = −a + (i, j, k)h , h = 2a

2 + 1
,

2https://github.com/oseledets/ttpy/tree/develop/tt in the develop branch (latest commit: ac03657)
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where (i, j, k) ∈ {0, 1, . . . , 2 + 1}3. For (i, j, k) ∈ {1, . . . , 2 }3, we denote by ϕi,j,k
the piecewise trilinear, continuous nodal Lagrange functions satisfying

ϕi,j,k(xp,q,r ) = δipδjqδkr , (i, j, k) ∈ {1, . . . , 2 }3, (p, q, r) ∈ {0, . . . , 2 + 1}3,
and introduce the associated finite element space span{ϕi,j,k}. We discretize the
problem using the finite element method. The discretized eigenvalue problem reads

1

2
D + V u = λ M u , u ∈ R

2 ×2 ×2 , (38)

where D and M are, respectively, stiffness and mass linear operators3:

(D )i,j,k,p,q,r =
Ω

∇ϕi,j,k(x)∇ϕp,q,r (x) dx,

(M )i,j,k,p,q,r =
Ω

ϕi,j,k(x)ϕp,q,r (x) dx

for (i, j, k), (p, q, r) ∈ {1, . . . , 2 }3, and V is the matrix of the FE discretization of
V (x) = −|x|−1:

(V )i,j,k,p,q,r = −
Ω

1

|x| ϕi,j,k(x) ϕp,q,r (x) dx.

assembled with the exponential sums approach.
To solve the problem, we approximate the eigenvectors corresponding to the

smallest eigenvalues in the TQTT format that yields the smallest amount of degrees
of freedom for a given error (compared with the QTT and QT3 formats) according to
Figs. 6 and 8. Note that due to the extremely refined underlying background meshes
with 23 internal equispaced points, the stiffness matrix D becomes severely ill-
conditioned (its condition number scales as h−2, i.e., it grows exponentially in ).
Besides, there arises an effect of ill-conditioning for large connected purely with
the structure of tensor decompositions, see [5]. Therefore, in order to overcome the
effect of algebraic and representation ill-conditioning and to accurately approximate
the eigenvalues and corresponding eigenvectors of (38), particular attention has to
be devoted to technical details of the computation. The overall procedure—based on
the preconditioned gradient descent method and on the Rayleigh-Ritz procedure—is
summarized in Algorithm 1. In the algorithm, we utilize “derivative-free” formu-
las [69] (that avoid multiplications by D , see Algorithm 1, line 8) for calculating the
Nev ×Nev matrix F given by

Fk
αβ = u ,k

α ,
1

2
D + V u

,k
β , α, β = 1, . . . , Nev, (39)

3Here, linear operators are mappings A : R2 ×2 ×2 → R
2 ×2 ×2 given as 6-dimensional arrays such that

the action on u ∈ R
2 ×2 ×2 is defined by

(Au)i,j,k =
2

p,q,r=1

Ai,j,k,p,q,rup,q,r , (i, j, k) ∈ {1, . . . , 2 }3.
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Algorithm 1 Block eigensolver in TQTT format based on derivative-free formu-
las. The algorithm is formulated for three-dimensional arrays, implying that all the
operations are performed within the TQTT format.

Require: Initial guess to eigenvectors u ,0
α and to eigenvalues λ ,0

α , α = 1, . . . , Nev,
tolerance parameter δ.

Ensure: Approximation to eigenvectors uα(δ) and to eigenvalues λα(δ), α =
1, . . . , Nev.

1: for k = 1, 2, . . . until converged do
2: for α = 1, . . . , Nev do
3: Approximate V u ,k−1

α using algorithm mvrk2 from TT-Toolbox.
4: With tolerance δ using the ADI-based solver [68], solve

1

2
D − λ ,k−1

α M u ,k
α = −V u ,k−1

α .

5: Approximate V u ,k
α using algorithm mvrk2 from TT-Toolbox.

6: for α = 1, . . . , Nev do
7: for β = 1, . . . , Nev do
8: Calculate Fk

αβ = λ
,k−1
β u ,k

α , u
,k
β + u ,k

α , V u
,k
β − u ,k

α , V u
,k−1
β .

9: Calculate Gk
αβ = u ,k

α , u
,k
β .

10: Solve the generalized eigenvalue problem

FkS = GkSΛ, S ∈ R
Nev×Nev, Λ = diag(λ ,k

1 , . . . , λ
,k
Nev

) ∈ R
Nev×Nev .

11: for α = 1, . . . , Nev do
12: Calculate u ,k

α = round( Nev
β=1 Sαβ u

,k
β , δ).

13: Calculate u ,k
α = u ,k

α / u ,k
α 2.

14: Set uα(δ) = u ,k
α , λα(δ) = λ ,k

α , α = 1, . . . , Nev.

where u ,k
α are three-dimensional arrays represented in the TQTT format that approx-

imate uα on the kth step of the iterative process and ·, · denotes scalar products of
three-dimensional arrays:

u, v =
2

i,j,k=1

ui,j,kvi,j,k, u, v ∈ R
2 ×2 ×2 .

To solve the screened Poisson’s equations arising in Algorithm 1, we utilize the algo-
rithm proposed in [68], which is based on the alternating direction implicit method,
adapted to tensor formats with the help of rank truncation after each iteration. We also
note that in this solver, the stiffness matrix D is never formed explicitly in the quan-
tized format, and each ADI step is performed in a derivative-free way. This allows
us to avoid the ill-conditioning of QTT [5] and approximate the solution without
stability issues.

Let λn,l,m(δ), n = 1, 2, 3 (Nev = 14) be the eigenvalues obtained by using Algo-
rithm 1 with a tolerance parameter δ and sorted by their quantum numbers. Let us
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Fig. 9 Relative errors ε = |λn,l(δ) − λn|/|λn|, n = 1, 2, 3, l = 0, 1, . . . , n − 1 in double logarithmic
scale (left) and single logarithmic scale (right) with respect to the averaged number of degrees of freedom
for the eigenvalue problem (38). In the legend, the numbers 1,2,3 denote the principal quantum number n
and the letters s, p, d correspond to l = 0, 1, 2 respectively

calculate an average numerical eigenvalue for fixed n and l

λn,l(δ) =
1

2l + 1

l

m=−l
λn,l,m(δ), n = 1, 2, 3. (40)

To each λn,l , we associate a number of degrees of freedom, which is averaged in m
by analogy with (40). For every , select the parameters δ as the largest numbers
satisfying

|λn,l(δ )− λn| ≤ cn,l |λn,l(δref)− λn|,
where we chose δref = 10−10 and where the constants cn,l satisfy cn,l > 1 (the
practical choice is cn,l = 1.01). In Fig. 9, we present the errors

ε = |λn,l(δ )− λn|
|λn| ,

in eigenvalues λn, n = 1, 2, 3 with respect to the effective number of degrees of
freedom for the eigenvalue problem (38).

Note that in this section, the implementation is done using the open source library
TT-Toolbox4, which contains the implementation of the two-level QTT Tucker for-
mat [18]. In three space dimensions, this format is equivalent to the TQTT format
with negligible overhead.5

7 Conclusion

We considered several formats of quantized tensor-train decompositions and proved
tensor rank bounds for the approximation—with a prescribed error ε ∈ (0, 1) in

4https://github.com/oseledets/TT-Toolbox
5In the two-level QTT Tucker format, the Tucker core of size R1 × R2 × R3 is additionally decomposed
using the TT decomposition, which leads to TT cores of sizes R1 × R1, R1 × R2 × R3, R3 × R3. So,
compared with TQTT, the two-level QTT Tucker format leads to the storage of O(R2

1 + R2
3) additional

degrees of freedom.
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H 1(Q)—of several classes of Gevrey-smooth functions in the unit cubeQ = (0, 1)3,
with one point singularity situated at the origin. In particular, we considered singu-
larities from Gevrey-type and analytic function spaces with regularity quantified by
corresponding derivative bounds in weighted Sobolev norms, with radial weight. For
these singularities, we extended the hp approximation error analysis in [73, 76] to
Gevrey-regular solutions with an isolated point singularity.

We then addressed approximation rate bounds in three concrete quantized tensor
formats: the quantized tensor train (QTT), the transposed quantized TT (QT3) and the
Tucker quantized TT (TQTT) format. Our theoretical TT rank analysis indicated that
the tensor ranks and number of degrees of freedom necessary to achieve a prescribed
accuracy ε ∈ (0, 1) in norm H 1(Q) in these format might depend on the format
adopted in the quantized approximation (as no lower bounds were shown, these con-
clusions might be an artifact of our proofs). Numerical results, however, for several
model singular functions confirmed the relative rank bounds for the three mentioned
formats. These results point the way to QTT-structured solvers for electron structure
problems and for other PDE models where solutions exhibit isolated point singular-
ities; for example, continua with point defects, nonlinear Schrödinger and parabolic
PDEs with blowup, to name but a few. Format-adaptive, quantized approximations as
were recently proposed in [7, 8, 61] might result in further quantitative improvement
of TT ranks for the presently considered examples.

While our analysis focused only on functions with singular support consisting
of one isolated point, we emphasize that corresponding rank bounds are obtained
for functions whose singular support consists of a finite number of (well-separated)
isolated points; the present results imply the same rank bounds as shown here also for
such functions, albeit with the constants in the estimates strongly depending on the
separation of the singular supports. With further analysis, the present results extend
to other forms of singularities, such as line and face singularities. The details on this
shall be reported in [57].

Appendix A. hp approximation in weighted Gevrey classes

We prove, in this section, the exponential convergence of the hp approximations to
functions in the weighted Gevrey class Jγ (Q;C,A, d) for C,A > 0, γ > 3/2,

d ≥ 1. Specifically, this corresponds to functions u ∈ H 1(Q) such that

|α|=s
rs−γ ∂αu L2(Q) ≤ CAs(s!)d for all s ∈ N. (41)

We recall that the hp space is defined as

X
,p

hp = {v ∈ H 1(Q) : v|K ∈ Qp(K), for all K ∈ G }.
The central (novel) result of this section is the existence—for Gevrey-regular func-
tions in Jγ (Q)—of an exponentially convergent, H 1(Q) conforming hp-projector
on 1-irregular geometric meshes of hexahedra, as stated in the following proposition.
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Proposition 3 Let γ ≥ γ0 > 3/2 and d ≥ 1. Then, there exists ,p
hp : J∞γ (Q) →

X
,p

hp such that for all u ∈ Jγ (Q;C,A, d) there exist constants Chp and bhp such
that

u− ,p
hp u H 1(Q) ≤ Chpe

−bhp , ∈ N, (42)

provided the uniform polynomial degree is p ≥ c0
d for a sufficiently large constant

c0 > 0 (depending on the constant A in Eq. (41) and on d) which is independent of
. The constants Chp, bhp depend on the constants C,A, and d in Jγ (Q). In terms

of Ndof = dim(X ,p
hp ) 3d+1, (42) reads

u− ,p
hp u H 1(Q) ≤ Chp exp −b̂hpN

1/(1+3d)
dof . (43)

The rest of the section will be devoted to an overview of the construction of the
conforming projector ,p

hp . This projector has already been exploited and analyzed
in detail, e.g., in [73, 74]; here, we wish to sketch its construction for the sake of self-
containedness and to provide the necessary detail of the treatment of non-analytic
Gevrey-type estimates (i.e., of the cases where d > 1), which requires some minor
modification with respect to the setting of [73, 74]. For positive integers p and s such
that 1 ≤ s ≤ p, we write Ψp,s = (p − s)!/(p + s)!.

A.1 Discontinuous projector

We start by introducing a nonconforming projector.

A.1.1 Local projector

We denote the reference interval by I = (−1, 1) and the reference cube by K =
(−1, 1)3. We write also H 2

mix(K) = H 2(I )⊗H 2(I )⊗H 2(I ), where ⊗ denotes the
Hilbertian tensor product. Let p ≥ 3: as constructed in [17, Appendix A], there exist
univariate projectors πp : H 2(I )→ Pp(I ) such that

πpv
(j)
(±1) = v(j)(±1), j = 0, 1, (44)

see [73, Lemma 4.1] (the projector πp is denoted πp,2 there). Then, the Hilbertian
tensor product projector given by

p = πp ⊗ πp ⊗ πp (45)

has the following property.

Lemma 6 [75, Remark 5.5] For every p ≥ 3 exists a projector p : H 2
mix(K) →

Qp(K) such that for all v ∈ H 2
mix(K) and all integer s such that 2 ≤ s ≤ p

v − pv
2
H 2

mix(K)
≤ CΨp−1,s−1 v 2

Hs+5(K)
,

with C independent of p, s, and v.
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For all K ∈ G , we introduce the affine transformation from the reference element
to K

K : K → K such that K(K) = K;
it follows that for v defined on K such that v ◦ K ∈ H 2

mix(K) we can define the
local projector on K so that

K
p v = p(v ◦ K) ◦ −1

K . (46)

The projector K
p is continuous across regular matching faces.

Lemma 7 [73, Lemma 4.2] Let K1,K2 be two axiparallel cubes that share one
regular face F (i.e., F is a full face of both K1 and K2). Then, for v ∈ H 6(int(K1 ∪
K2)) the piecewise polynomial

K1∪K2
p v =

K1
p v in K1,
K2
p v in K2

is continuous across F .

Remark 7 By (44) and (45), if a function v on K such that v ◦ K ∈ H 2
mix(K)

vanishes on a face F ⊂ ∂K , then we also have K
p v |F

= 0.

A.1.2 Globally discontinuous hp projector

Starting from the local, elementwise projector (46), a global, discontinuous pro-
jection operator ,p

hp,disc is defined in the usual way: with the nonconforming
hp-space

X
,p

hp,disc =
K∈G

Qp(K) = {v ∈ L2(Q) : v|K ∈ Qp(K), for all K ∈ G };

for all K ∈ G and for v ∈ J∞γ (Q), with γ > 3/2,

,p

hp,disc|Kv|K =
v(0) if K ∈ L0,
K
p v otherwise.

(47)

Note that v(0) is well defined for v ∈ J 1
γ (Q) if γ > 3/2, see [49, Lemma 7.1.3];

hence, a fortiori, ,p

hp,disc : J∞γ (Q)→ X
,p

hp,disc is well defined if γ > 3/2.

Lemma 8 Let u ∈ Jγ (Q;Cu,Au, d). Then, if p d, there exist constants C, b >
0 such that

K∈G

1

h2
K

u− ,p

hp,discu
2
L2(K)

+ ∇ u− ,p

hp,discu
2
L2(K)

≤ Ce−b ,

with dim X
,p

hp,disc
3d+1.
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Proof The proof follows along the lines of the proof of [75, Proposition 5.13]. Denote
η = u− ,p

hp,discu and NK [v]2 = v 2
L2(K)

/h2
K + ∇v 2

L2(K)
.

We start by considering K ∈ Lj for j ≥ 1 and write dK = dist(K, (0, 0, 0)). By
Lemma 6, scaling inequalities (see [75, Equations (5.26)–(5.31)]), and the regularity
of u (see (41)),

NK [η]2 ≤ CΨp−1,s−1

s+1≤|α|≤s+5

d
2|α|−2
K ∂αu 2

L2(K)

≤ CΨp−1,s−1

s+1≤|α|≤s+5

d
2γ−2
K r |α|−γ ∂αu 2

L2(K)

≤ CΨp−1,s−12−2( −j)γ+2A2(s+5)
u ((s + 5)!)2d .

Then, using the fact that for sufficiently large s and c = 2Au + 1,

Ψp−1,s−1A
2s
u ((s + 5)!)2d ≤ C

2Au

2Au + 1

2c−1/dp1/d

,

see [20, Equation (42)], choosing s = (p/c)1/d , with c > 1 sufficiently large,
and summing over all mesh layers not touching the origin (“interior mesh layers”),
we obtain that there exist C1, b1 > 0 such that for every ≥ 1 holds

j=1 K∈Lj

NK [η]2 ≤ CΨp−1,s−1A
2(s+5)
u ((s + 5)!)2d ≤ Ce−2bs ≤ C1e

−2b1 .

(48)
We now consider the element K ∈ L0, i.e., K = (0, 2− )3. By Hardy’s inequality

and choosing γ > 1,

NK [η]2= 1

h2
K

u− u(0) 2
L2(K)

+ ∇u 2
L2(K)

≤ r−1(u− u(0)) 2
L2(K)

+ ∇u 2
L2(K)

≤ C ∇u 2
L2(K)

≤ Ch
2(γ−1)
K r1−γ∇u 2

L2(K)

≤ C2−2(γ−1) u 2
J 1
γ (Q)

≤ C2e
−b2 .

Finally, the dimension of the Qp(K) space in each element K ∈ G is given by
(1 + p)3; since each non-terminal mesh layer Lj , j > 0, contains 7 elements, we

have that dim(X ,p

hp,disc) = (1+ p)3(1+ 7 ). The observation that p d concludes
the proof.

A.2 Conforming hp approximation

A conforming hp approximation is obtained by locally lifting the polynomial face
jumps of the discontinuous, piecewise polynomial approximation. Their construction
is detailed in [73, Section 5.3].
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A.2.1 Edge and face liftings

Since our discontinuous interpolant is the same as in [73], apart from the nonzero
constant in L0 (see (47) and [73, Equation (4.10)]), the construction of the polynomial
face jump liftings can be replicated verbatim as in [73]. We recall it here briefly,
referring the reader to the aforementioned [73, Section 5.3] for the details.

We start by considering the interface between two mesh levels Lk and Lk+1,
k ∈ N. We introduce a local coordinate system x̂, ŷ, ẑ and label the faces and edges
belonging to the interface as Fi , i = 1, 2, 3 and Ei , i = 1, . . . , 9, respectively, see
Fig. 10. Furthermore, we denote by hE the maximum length of all edges Ei . We
refer to Fig. 10 for the precise numbering of edges and faces and for the location of
the local system of coordinates. Given two neighboring elements Ka and Kb with
interface fab = Ka ∩Kb, the jump of a function

v = vKa in Ka

vKb in Kb

on fab is given by

where nKa (resp. nKb
) is the normal pointing outwards from element Ka (resp. Kb).

Consider face F1 of Fig. 10: we define the jump of the discontinuous interpolant
on this face as

where f1j are the four parts of the face F1, see Fig. 10. The jumps on the
other faces are defined similarly. The edge jump, e.g., on E1, is then defined as

Fig. 10 Separation of mesh levels Lk (elements moved to the left) and Lk+1, with the interfaces F1, F2, F3
and edges E1, . . . , E9 marked. The local system of coordinates is given by x̂, ŷ, ẑ is also represented (with
ŷ pointing upwards from the page)
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. Let n denote the normal on face F1 pointing

outwards from K010,k+1; the lifting of the jump on edge E1 is given by

(49)

After having defined the other edge liftings LEi , i = 2, . . . , 9, in the same way, we
can introduce the full edge lifting operator

LE =
9

i=1

LEi .

We now introduce the face lifting operator for the face F1, the other liftings being
derived in the same way. We have

(50)

where n is again the normal on face F1 pointing outwards from K010,k+1. Then, the

global lifting Lk between mesh levels Lk and Lk+1 is the sum of the local liftings on
the three interfaces:

Lk = LF1 + LF2 + LF3 . (51)

Note that the lifting thus defined has support only in the elements belonging to mesh
level Lk .

We now turn to the terminal layer, i.e., to the jumps of ,p

hp,discu between the

element K000,0 = (0, 2− )3 and the elements of L1. The (three) faces belonging to

the interface are all regular, but ,p

hp,discu is defined as a constant in K000,0, see (47).

One has to lift the nodal jumps at all the nodes of K000,0 except the origin. Then, the
same procedure as for the other mesh layers (applied to the nodally lifted polynomial)
gives a lifting operator L0.

The full lifting operator is thus given by the sum of the local operators, as

L =
−1

k=0

Lk, (52)

with all Lk constructed as in (51). Such a lifting permits to obtain a conforming
projector into X ,p

hp , with approximation error bounded by a multiple of the approxi-

mation error of the discontinuous operator ,p

hp,disc, as stated in the next proposition,
that is proven in [73].
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Proposition 4 [73, Proposition 5.3] The discontinuous projection operator Π ,p
hp

defined in (47) and the lifting operator L defined in (52) are such that

Π
,p

hp = Π
,p

hp,disc + LΠ
,p

hp,disc : X→ X
,p

hp

is conforming in H 1(Q) and there exists C > 0 independent of p such that

K∈G

1

h2
K

u−Π
,p

hp u 2
L2(K)

+ ∇ u−Π
,p

hp u 2
L2(K)

≤ Cp18

K∈G

1

h2
K

η 2
L2(K)

+ ∇η 2
L2(K)

Here, η = u−Π
,p

hp,discu.
The exponential convergence of the conforming approximation, stated in Proposi-

tion 3, is a direct consequence of the last results.

Proof of Proposition 3 Inequality (42) follows from Proposition 4 and Lemma 8,
once the algebraic term in p of inequality (48) has been absorbed in the exponential
by a change of constants.

Remark 8 Recall that Γ = {(x1, x2, x3) ∈ ∂Q : x1x2x3 = 0} contains the faces of
the boundary ofQ not abutting at the singularity. All liftings obtained by the operator
(52) admit traces which vanish on Γ . I.e., for all v ∈ J∞γ (Q),

,p
hp v |Γ

= ,p

hp,disc |Γ
.

Therefore, by Remark 7, if v|Γ = 0, then also ,p
hp v |Γ

= 0.

A.3 Combination of patches

We conclude this section by considering the approximation in a domain which con-
tains the singular point in its interior. Let then R = (−1, 1)3. The definition of the
weighted space follows directly from the definition of the spaces in Q, by keeping
the weight r = |x| to be the distance from the origin.

The construction of the graded mesh is done by decomposing R into eight sub-
cubes of unitary edge and by collecting the elements of the sub-meshes (called here
“patches”) obtained by symmetry from G . The projector ,p

hp in R can also be
straightforwardly constructed by combining local projectors obtained by symmetry;
we show that it is continuous on interpatch faces, hence conforming on the whole
cube R.

We detail the construction for two patches; the rest follows by iterating this
argument. Specifically, we consider the two cubes

Q+ = (0, 1)3 Q− = (−1, 0)× (0, 1)2,
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and introduce the reflection operator

ψ± : Q+ → Q− ψ± : (x1, x2, x3)→ (−x1, x2, x3).

Note that (ψ±)−1 = ψ±. Then, the mesh on the domain Q± = Q+ ∪Q− is given
by

G ,± = G ∪ G ,−, G ,− = {ψ±(K) : K ∈ G },
see Fig. 11.

The projection operator for functions v ∈ J∞γ (Q±) can be easily constructed by
reflection

(
,p,±

hp v)|K =
⎧⎨
⎩

,p
hp|K

v if K ∈ G
,p

hp|K
(v ◦ ψ±) ◦ ψ± if K ∈ G ,−.

The operator thus obtained is continuous hence conforming, as discussed in the next
lemma.

Lemma 9 The operator ,p,±
hp is conforming in H 1(Q±). Furthermore, if γ ≥

γ0 > 3/2 and d ≥ 1, then for all u ∈ Jγ (Q±;C,A, d) there exist C±hp, bhp such

that, for all ∈ N, with p ≥ c±0 d for a sufficiently large c±0 > 0 independent of ,
there holds

u− ,p,±
hp u H 1(Q±) ≤ C±hpe

−b±hp . (53)

Furthermore, there holds dim(X ,p
hp ) 3d+1.

Proof ,p,±
hp is continuous in the sub-patches Q+ and Q−. It remains to check

the continuity across the interpatch interface F± = {0} × (0, 1)2. By construction,
all elemental faces belonging to the interface are regular, hence, by Lemma 7, the
discontinuous projector ,p

hp,disc is continuous across these faces.
We consider the error contribution from interior mesh layers, i.e., from all ele-

ments in Lj , j > 0. For all faces F in interior mesh layers which are situated

Fig. 11 The mesh patches G ,− on Q− and G on Q+. An edge E belonging to the interpatch interface is
highlighted
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perpendicular to F±, we have

We now consider any edge E belonging to F± and separating the mesh levels Lk and
Lk+1, see Fig. 11 for an example. By the continuity of the discontinuous projector
across regular faces

where ,p,−
hp,disc is the discontinuous projector in patch G ,−. Therefore, from defi-

nitions (49), (50), and (51), we conclude that the projection operator is continuous
across interior mesh layers Lk , k > 0.

When dealing with the terminal layer L0, we note that the discontinuous projector
is constant hence continuous. The nodal liftings are continuous by the symmetry of
their construction; the edge liftings are then continuous by the same argument as in
interior mesh layers, and this gives the continuity between patches.

Finally, (53) follows from the application of the corresponding approximation
results in each patch.

We can directly extend the construction in the proof of the above lemma to the
remaining patchesRm = (0, a1)×(0, a2)×(0, a3)with (a1, a2, a3) ∈ {−1, 1}3,m =
0, . . . , 7. Recall that ,p,m

hp is the conforming hp projector in patch Rm, obtained by

reflection from the one defined in (0, 1)3, see (55). Recall also that the functions ψm

are the reflections from (0, 1)3 to Rm. For γ > 3/2, given the finite element space
on R = m R

m,

X
,p

hp (R) = {v ∈ H 1(R) : v ◦ ψm ∈ X ,p
hp , m = 0, . . . , 7},

we define the global projector

,p,R
hp : J∞γ (R)→ X

,p
hp (R) such that ,p,R

hp v|Rm = ,p,m
hp v|Rm . (54)

Then, by the same arguments as in Lemma 9 applied to all interpatch interface, there
holds the following result.

Corollary 1 The operator ,p,R
hp defined in (54) is conforming in H 1(R). Further-

more, if γ ≥ γ0 > 3/2 and d ≥ 1, then for all u ∈ Jγ (R;C,A, d) exist constants
CR

hp, b
R
hp (that depend on C,A, and d) such that, for every ∈ N there holds, with

p ≥ cR0
d for some cR0 > 0 independent of , the error bound

u− ,p,R
hp u H 1(Q±) ≤ CR

hpe
−bRhp .

Furthermore, dim(X ,p
hp ) 3d+1.
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Appendix B. Extension of rank bounds to domains with internal
singularity

As a corollary to Theorem 1, we show here how the result can be generalized to
functions that have the singularity in an internal point of the domain. As an example,
we will consider the case of the axiparallel cube R = (−1, 1)3 and of functions in
the weighted analytic class Jγ (R;C,A, d) with singularity at the origin. The cube
R can be decomposed into eight congruent cubes, all with the singularity situated
at one corner, that we will denote by Rm, m = 0, . . . , 7. For each m, there exist
(a1, a2, a3) ∈ {−1, 1}3 such that Rm = (0, a1),×(0, a2) × (0, a3). We do not need
to specify any particular ordering, but choose, without loss of generality R0 = Q.
We will denote ψm : Q→ Rm the linear transformation from Q = R0 to Rm such
that for all (x1, x2, x3) ∈ Q

ψm :
⎛
⎝
x1
x2
x3

⎞
⎠→

⎛
⎝
a1

a2
a3

⎞
⎠
⎛
⎝
x1
x2
x3

⎞
⎠ , with (a1, a2, a3) ∈ {−1, 1}3,

i.e., ψm only operates reflections with respect to interpatch interfaces. Note that ψ0

is the identity.
Furthermore, we define by A .m the analysis operator (see Section 3.1.4) of patch

Rm, such that

A ,mv|Rm ∈ R
2 ×2 ×2 and A ,mv = A (v ◦ ψm).

B.1 Quasi interpolation on R

We can then define the local hp projection and interpolation operators in the patches
Rm, m = 0, . . . , 7, in the same way, i.e., as

,p,m
hp v = ,p

hp (v ◦ ψm) ◦ (ψm)−1 and I ,mv = I (v ◦ ψm) ◦ (ψm)−1

(55)
in each Rm. The definition of the local quasi interpolation operators also follows
directly, by setting P ,m = I ,m ,p,m

hp , for m = 0, . . . , 7. Then, the global (on

R) quasi interpolation operator is the operator P ,R such that P ,R
|Rm = P ,m for all

m = 0, . . . , 7.

B.2 Patchwise QTT formats

It is now straightforward to consider the “patchwise QTT” formats which are con-
structed by adding a patch index to the formats considered so far. For a function
u ∈ J∞γ (R), we consider the tensor A ∈ R

8×2 ×2 ×2 such that for m = 0, . . . , 7

Am,:,:,: = A ,mP ,mu.

Then, writing with the usual notation i = i1 . . . i , j = j1 . . . j and k = k1 . . . k ,
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– A admits a patchwise, classic QTT decomposition if

Am,i,j,k = U1
m,:(i1) · · ·U (i )V 1(j1) · · ·V (j )W 1(k1) · · ·W (k )

for all m = 0, . . . , 7, (i, j, k) ∈ {0, . . . , 2 − 1}3 and where U1
m,:(i1) indicates

the mth row of U1(i1) with cores defined as in (14) and the following convention
on ranks

r0 := 8, r3 := 1.

Note that the only modification with respect to Definition 3 is the convention
r0 = 8.

– A admits a patchwise, transposed order QTT decomposition if

Am,i,j,k = U1
m,:(i1j1k1) · · ·U (i j k ) (56)

with cores as in Definition 4 and with the restriction on the ranks r0 = 8, r = 1.
– A admits a patchwise, Tucker QTT decomposition if

Am,i,j,k =
R1,R2,R3

β1,β2,β3=1

Gm
β1,β2,β3

U1
β1
(i1)U

2(i2) . . . U (i )

V 1
β2
(j1)V

2(j2) . . . V (j )W 1
β3
(k1)W

2(k2) . . .W (k ).

(57)

where, clearly, the Tucker core is now a four-dimensional array of size 8×R1×
R2 × R3.

Let T ,R be the tensor product mesh on R given by

T ,R = {(2− i, 2− (i + 1))× (2− j, 2− (j + 1))× (2− k, 2− (k + 1)),

(i, j, k) ∈ {−2 + 1, . . . , 2 − 1}3}.
We define the finite element space in R as

X ,R = v ∈ H 1
0 (R) : v|K ∈ Q1(K), for all K ∈ T ,R .

The following proposition is then a direct consequence of Theorem 1 and of Corollary
1.

Proposition 5 Assume γ > 3/2, Cu > 0, Au > 0, d ≥ 1, and 0 < ε0 1.
Furthermore, assume the function u belongs to the weighted Gevrey class u ∈
Jγ (R;Cu,Au, γ, d) ∩ H 1

0 (R). Then, for all 0 < ε ≤ ε0, there exists ∈ N and

vqtd ∈ X ,R such that

u− vqtt H 1(Q) ≤ ε

and the multi-dimensional array Vqtd ∈ R
8×2 ×2 ×2 such that (Vqtd)m,:,:,: =

A ,mvqtt, m = 0, . . . , 7 admits a patchwise representation with

Ndof ≤ C| log ε|κ
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degrees of freedom, with a positive constant C independent of ε and

κ =

⎧⎪⎨
⎪⎩

4d+ 3 for patchwise classic QTT ,

6d+ 1 for patchwise transposed order QTT ,

3d+ 3 for patchwise Tucker QTT .

Proof Here, we retrace the steps of the proofs of Lemmas 2, 3, and 5, generalizing
them to the multipatch case.

Patchwise classic QTT The tensor Vqtt can be written as the product

(Vqtd)m,i,j,k = U0(m)U1(i1) · · ·U (i )V 1(j1) · · ·V (j )W 1(k1) · · ·W (k ),

where the bounds on the ranks of the cores U1, . . . , U and the first rank of the
core V 1 are multiplied by 8, while the other bounds are left unchanged with respect
to the single patch case. The multiplication of the cores U0 and U1 gives the
multipatch formulation.

Patchwise transposed order QTT The row space of the unfolding matrices

V
(q)

mξ1η1ζ1,ξ2η2ζ2
= (Vqtt)m,ξ1ξ2,η1η2,ζ1ζ2

defined for m ∈ 0, . . . , 7, ξ1, η1, ζ1 ∈ {0, . . . , 2q − 1}, and ξ2, η2, ζ2 ∈
{0, . . . , 2 −q−1} is bounded asymptotically by the same quantity as the one of the
unfolding matrix in (30), by symmetry. Thus, Vqtd admits a decomposition such
that

(Vqtd)m,i,j,k = U0(m)U1(i1j1k1) · · ·U (i j k ).

By multiplying U0(m) and U1(i1j1k1) for all m = 0, . . . , 7 and i1, j1, k1 ∈ {0, 1},
we obtain a representation of the form (56).

Patchwise Tucker QTT We Tucker-decompose the tensor Vqtd, thus obtaining, by
the same arguments that we used for (32),

Vqtd =
RT

β1,β2,β3=1

RP

β0=1

Gβ0,β1,β2,β3Zβ0 ⊗ Uβ1 ⊗ Vβ2 ⊗Wβ3 ,

where RT ≤ C d+1. Then, by contracting the core G and the factor Z over the
index β0 and by deriving the existence of the block QTT decomposition of the
Tucker factors U , V , W as in (33), we obtain the existence of a representation of
Vqtd of the form (57).

Remark 9 In Proposition 5, we consider the approximation of functions in the cube
R = (−1, 1) for ease of notation. Nonetheless, the argument and the result extend,
without major modification, to R = (−a1, b1)×(−a2, b2)×(−a3, b3), with ai, bi >
0, i = 1, 2, 3, and with a point singularity at the origin. This implies, by translation,
that given a cube of fixed size, we can obtain bounds on patchwise quantized tensor
representations that are uniform in the location of the singularity.
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Appendix C. QTT representation of prolongationmatrices

In order to evaluate the error ε , we need a tensor of ∇u ,δ
qtd evaluated on the back-

ground mesh with L levels of refinement and have it represented using the respective
tensor decomposition without accessing all its elements. This can be implemented
as a multiplication by the prolongation matrices in the respective tensor format. To
introduce the prolongation matrices, we start by considering the one-dimensional
piecewise linear space on the background mesh with levels (recall that Ij =
(2− j, 2− (j + 1)))

X1d,0 = {v ∈ H 1((0, 1)) : v(1) = 0 and v|
I
j

∈ P1(Ij ), j = 0, . . . , 2 − 1}.

Furthermore, we introduce the one-dimensional analysis operator A1d :
H 1((0, 1))→ R

2 as

A1dv
i
= v(2− i), i = 0, . . . , 2 − 1.

Then, for every L > , the one-dimensional prolongation operator P ( →L)
p.l. ∈ R

2L×2

is realized by the matrix such that

P
( →L)
p.l. A1dvqtt = A L

1dvqtt for all vqtt ∈ X1d,0. (58)

In the same vein, the one-dimensional prolongation operator for piecewise constant
function is such that

P ( →L)
p.c. A1dvqtt = A L

1dvqtt

for all

vqtt ∈ Xp.c.,1d = {v ∈ L∞((0, 1)) : v|[xj ,xj+1)
∈ P0([xj , xj+1)), j = 0, . . . , 2 − 1}.

Recall that we consider functions u such that u|Γ = 0, where Γ = ∂Q\{x =
(x1, x2, x3) ∈ ∂Q : x1x2x3 = 0}. In this case, the three-dimensional prolongation
matrices from mesh level to L > , can be written as a tensor product of the one-
dimensional piecewise linear and piecewise constant prolongation matrices, which
read:

P
( →L)
p.l. = 2 −L I ( ) ⊗

⎡
⎢⎢⎢⎣

2L−
...
2
1

⎤
⎥⎥⎥⎦+ J ( ) ⊗

⎡
⎢⎢⎢⎣

0
1
...

2L− − 1

⎤
⎥⎥⎥⎦ ∈ R

2L×2 (59)

and

P ( →L)
p.c. = I ( ) ⊗

⎡
⎢⎣

1
...
1

⎤
⎥⎦

2L−

∈ R
2L×2 ,
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respectively, where we used the notation

I ( ) =

⎡
⎢⎢⎢⎢⎣

1
. . .

. . .
1

⎤
⎥⎥⎥⎥⎦

2 ×2

, S( ) =

⎡
⎢⎢⎢⎢⎣

0 1
. . .

. . .

. . . 1
0

⎤
⎥⎥⎥⎥⎦

2 ×2

.

The matrix P
( →L)
p.c. can be represented with QTT ranks 1, 1, . . . , 1, as it has

Kronecker product structure, since I ( ) = I (1)
⊗

and

P ( →L)
p.c. = I ( ) ⊗ e⊗(L− ), e = 1

1
.

We now show, in Proposition 6 below, that P ( →L)
p.l. also has low-rank QTT struc-

ture. For convenience, we introduce the matricization operator M : Rr1×m×n×r2 →
R
mr1×nr2 such that:

(M (X))α1i,α2j
= (X(i, j))α1,α2

,

i = 1, . . . , m, j = 1, . . . , n, αi = 1, . . . , ri , i = 1, 2,

that allows to recast tensor cores as matrices. The following proposition holds.

Proposition 6 The matrix P ( →L)
p.l. , L > , defined in (59) has explicit QTT represen-

tation with ranks 2, 2, . . . , 2. In particular, for each i1, . . . , iL ∈ {0, 1}, j1, . . . , j ∈
{0, 1} and j +1, . . . , jL ∈ {0}:

P
( →L)
p.l.

i1...iL,j1...jL
= Q1(i1, j1) . . .QL(iL, jL)

where the matricizations read

M(Q1) = I J ,

M(Qi) = I J

J
, i = 2, . . . , ,

M(Qi) = 1
2

p δ1
δ2 q

, i = + 1, . . . , L− 1,

M(QL) = 1
2

p

δ2
,

with blocks given by

I = 1 0
0 1

, J = 0 1
0 0

, p = 2
1

, q = 1
2

, δ1 = 1
0

, δ2 = 0
1

.
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Proof First, we introduce the notation

p(i) = 2−i

⎡
⎢⎢⎢⎣

2i

...
2
1

⎤
⎥⎥⎥⎦ , q(i) = 2−i

⎡
⎢⎢⎢⎣

0
1
...

2i − 1

⎤
⎥⎥⎥⎦ ,

so that
P
( →L)
p.l. = I ( ) ⊗ p(L− ) + J ( ) ⊗ q(L− ).

Since I ( ) = I ⊗ I ( −1) and J ( ) = I ⊗ J ( −1) + J ⊗ J
⊗( −1)

and using the
operation that denotes the strong Kronecker product between block matrices, in
which matrix-matrix multiplication of blocks is replaced by a Kronecker product6 ,
we obtain

P
( →L)
p.l. = I J

I ( −1) J ( −1)

J
⊗( −1)

p(L− )

q(L− )

= I J
I J

J

( −1)
p(L− )

q(L− ) .

We complete the proof by the observations that

p(i)

q(i)
= 1

2
p δ1
δ2 q

p(i−1)

q(i−1) , i > 1, p(1) = 1

2
2
1

, q(1) = 1

2
0
1

.

Corollary 2 Let vqtt ∈ X1d,0 and let A1dvqtt have QTT ranks r1, r2, . . . , r −1. Then,

for any L > , the vector A L
1dvqtt = {vqtt(xi)}2

L−1
i=0 , xi = 2−L i can be represented

with QTT ranks equal to 2r1, 2r2, . . . , 2r −1.

Proof According to Proposition 6, the matrix P
( →L)
p.l. has ranks 2, 2, . . . , 2. The

statement then follows from the fact that the multiplication in (58) of a TT-matrix
with ranks R1, . . . , R −1 by a TT-vector with the ranks r1, . . . , r −1, leads to the TT
representation with ranks R1r1, . . . , R −1r −1, see [65].

The multidimensional prolongation matrices are assembled as Kronecker products
of the one-dimensional matrices P ( →L)

p.l. and/or P ( →L)
p.c. . For example, to find the

values of vqtt ∈ X on a mesh with L levels, the matrix

P
( →L)
p.l. ⊗ P

( →L)
p.l. ⊗ P

( →L)
p.l.

represented in the respective format is applied to the coefficient vector A vqtt.

6Formally, the strong Kronecker product of two 2 × 2 block matrices is defined as the following 2 × 2
block matrix:

A11 A12
A21 A22

B11 B12
B21 B22

= A11 ⊗ B11 + A12 ⊗ B21 A11 ⊗ B12 + A12 ⊗ B22
A21 ⊗ B11 + A22 ⊗ B21 A21 ⊗ B12 + A22 ⊗ B22

.
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29. Guo, B., Babuška, I.: The h-p version of the finite element method - Part 1: The basic approximation
results. Comput. Mech. 1(1), 21–41 (1986). https://doi.org/10.1007/BF00298636
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