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Abstract
The numerical solution of dynamical systems with memory requires the efficient
evaluation of Volterra integral operators in an evolutionary manner. After appropriate
discretization, the basic problem can be represented as a matrix-vector product with
a lower diagonal but densely populated matrix. For typical applications, like frac-
tional diffusion or large-scale dynamical systems with delay, the memory cost for
storing the matrix approximations and complete history of the data then becomes pro-
hibitive for an accurate numerical approximation. For Volterra integral operators of
convolution type, the fast and oblivious convolution quadrature method of Schädle,
Lopez-Fernandez, and Lubich resolves this issue and allows to compute the dis-
cretized evaluation with N time steps in O(N log N) complexity and only requires
O(log N) active memory to store a compressed version of the complete history of the
data. We will show that this algorithm can be interpreted as an H-matrix approxima-
tion of the underlying integral operator. A further improvement can thus be achieved,
in principle, by resorting to H2-matrix compression techniques. Following this idea,
we formulate a variant of the H2-matrix-vector product for discretized Volterra inte-
gral operators that can be performed in an evolutionary and oblivious manner and
requires only O(N) operations and O(log N) active memory. In addition to the accel-
eration, more general asymptotically smooth kernels can be treated and the algorithm
does not require a priori knowledge of the number of time steps. The efficiency of
the proposed method is demonstrated by application to some typical test problems.
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1 Introduction

We study the numerical solution of dynamical systems with memory which can be
modelled by abstract Volterra integro-differential equations of the form

α(t)y′(t) + A(t)y(t) =
∫ t

0
k(t, s)f (s, y(s)) ds, 0 ≤ t ≤ T . (1)

Such problems arise in a variety of applications, e.g., in anomalous diffusion [32],
neural sciences [2], transparent boundary conditions [1, 20, 22, 23], wave propagation
[1, 12, 20], field circuit coupling [13], and many more, see also [7, 8, 29, 34] and the
references therein. The simplest model problem which already shares the essential
difficulties stemming from non-locality of the right-hand side in (1) is the evaluation
of the integral operator

y(t) =
∫ t

0
k(t, s)f (s) ds, 0 ≤ t ≤ T , (2)

with kernel function k, data f , and result function y. Let us emphasize that, in
order to allow the application in the context of integro-differential problems (1), the
parameter-dependent integrals (2) have to be evaluated in an evolutionary manner,
i.e., for successively increasing time. The results obtained for (2) then quite naturally
extend to (1). We hence focus on the evaluation of Volterra integral operators (2) in
the following and return to more general problems in Section 5.

1.1 Discretization and related work

After applying some appropriate discretization procedure, see [7] for a survey,
problem (2) can be phrased as a simple matrix-vector multiplication

yn = (Kf)n, 1 ≤ n ≤ N . (3)

The evolutionary character and the nonlocal interactions are reflected by the fact
that the matrix K ∈ R

N×N is lower block triangular but densely populated. The
straight-forward computation of the result vector y requires O(N2) algebraic opera-
tions. The evolutionary character of problem (2) can be preserved by computing the
entries yn for n = 1, . . . , N recursively, i.e., by traversing the matrix K from top to
bottom. If, on the other hand, the matrix K is traversed from left to right, then the
algorithm becomes oblivious, i.e., the data fn is only required in the nth step of the
algorithm, but the execution of (3) then requires O(N) active memory to store the
partial sums for every row. Although the evaluation can then still be organized in an
evolutionary manner, see Section 2.2, the number of time steps N needs to be fixed
a priori in order to store the intermediate results.

For the particular case that the integral kernel in (2) is of convolution type

k(t, s) = k(t − s), (4)
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a careful discretization of (5) gives rise to an algebraic system (3) with block Toeplitz
matrix K, and the discrete solution y can be computed in O(N log N) operations
using fast Fourier transforms. As shown in [21], an evolutionary version of the matrix
vector product can be realized in O(N log2 N) complexity and requiring O(N) active
memory. The convolution quadrature methods of [27, 28, 30] treat the case that only
the Laplace transform k̂(s) of the convolution kernel (4) is available. The fast and
oblivious convolution quadrature method introduced in [26, 31] allows the efficient
evaluation of Volterra integrals with convolution kernel in an evolutionary and obliv-
ious manner with O(N log N) operations and only O(log N) active memory and
O(log N) evaluations of the Laplace transform k̂(s). This method is close to optimal
concerning complexity and memory requirements and has been applied successfully
to the numerical solution of partial differential equations with transparent boundary
conditions [20], the efficient realization of boundary element methods for the wave
equation [34], or fractional diffusion [9].

For integral operators (2) with general kernels k(t, s), the abovementioned meth-
ods cannot be applied directly. Alternative approaches, like the fast multipole method
[14, 16, 33], the panel clustering technique [19], H- and H2-matrices [5, 17], mul-
tilevel techniques [6, 15], or wavelet algorithms [10], which were developed and
applied successfully in the context of molecular dynamics and boundary integral
equations, are however still applicable. These methods are based on certain hierar-
chical approximations for the kernel functions k(t, s), whose error can be controlled
under appropriate smoothness assumptions, e.g., if the kernel is asymptotically
smooth; see (27) for details. If the data f is independent of the solution y, the
numerical evaluation of the Volterra integral operator (2) can then be realized with
O(N logαN) computational cost with some α ≥ 0 and N again denoting the dimen-
sion of the underlying discretization. Moreover, data-sparse approximations of the
matrix K for asymptotically smooth kernels k(t, s) can be stored efficiently with only
O(N logαN) memory and for convolution kernels k(t−s) even with O(log N) mem-
ory; we refer to [5, 18] for details and an extensive list of references. Unfortunately,
the algorithms mentioned in literature are not evolutionary and, therefore, cannot be
applied to more complex problems like (1) directly.

1.2 A fast and oblivious evolutionary algorithm

In this paper, we propose an algorithm for the efficient evaluation of Volterra inte-
grals (2) or corresponding matrix-vector products (3) which shares the benefits and
overcomes the drawbacks of the approaches mentioned above, i.e., it is

– Evolutionary: the approximations yn can be computed one after another and the
number of time steps N does not need to be known in advance,

– Oblivious: the entry fn of the right-hand side is only required in the nth step,
– Fast: the evaluation of all yn, 1 ≤ n ≤ N requires only O(N) operations, and
– Memory efficient: the storage of the convolution matrix requires only O(N)

memory for general and O(log N) memory for convolution kernels. The matrix
entities can also be computed on the fly, such that only O(log N) storage is
required to store a compressed history of the data f .
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Our strategy is based on the ideas of polynomial-based H2-compression algo-
rithms for finding hierarchical low-rank approximations of the kernel function k(t, s)

leading to a block-structured hierarchical approximation of the matrix K in (3). The
accuracy of the underlying approximation can thus be guaranteed by well-known
approximation results; see [5, 18] for instance. A key ingredient for our consid-
erations is the one-dimensional nature of the integration domain which allows to
characterize the block structure of the approximating hierarchical matrix explicitly.
This allows us to formulate an algorithm which traverses the compressed matrix K
from top to bottom in accordance with the evolutionary structure of the underlying
problem. The hierarchical approximation of the convolution kernel also yields a com-
pression strategy for the history of the data f . In this sense, our algorithm can be
considered a generalization of [1, 4, 22, 23], where a fast multipole expansion was
employed to accelerate the sum of exponentials approach, or to [24], where a poly-
nomial on growing time steps was employed for the compression of the data, as well
as to [25], where an evolutionary H-matrix approximation with a special low-rank
structure was constructed. As a further result, we show that our algorithm seamlessly
integrates into the convolution quadrature framework of [27, 28], when the kernel
k(t − s) is of convolution type and only accessible via its Laplace transform. In anal-
ogy to the treatment of nearfield contributions in the fast boundary element method,
we utilize standard convolution quadrature to compute the entries of the convolu-
tion matrix close to the diagonal, while numerical inverse Laplace transforms [11]
are used to set up an H2-approximation of the remaining off-diagonal parts of the
convolution matrix in the time domain. This approach has some strong similarities
to the fast and oblivious convolution quadrature method [31, 35], but we will reveal
some important differences. In particular, we illustrate that the methods of [31, 35]
can actually be interpreted as H-matrix approximations with a particular organiza-
tion of the matrix-vector product in (3), which shows that the O(N log N) complexity
cannot be further improved. Moreover, the convolution matrix must be applied from
left to right to allow for an oblivious evaluation and the number of time steps N

must be known in advance. In contrast to that, our new algorithm is based on an
H2-approximation of the matrix K and the evolutionary, fast, and oblivious evalu-
ation of the matrix-vector product can be realized by traversing through the matrix
from top to bottom in O(N) complexity and without needing to know the number of
time steps N in advance. Finally, our algorithm naturally extends to general integral
kernels k(t, s) increasing the field of applications substantially.

1.3 Outline

In Section 2, we recall some general approximation results, introduce our basic nota-
tion, and state a slightly modified algorithm for the dense evaluation of the Volterra
integral operators to illustrate some basic principles that we exploit later on. Section 3
is concerned with a geometric partitioning on the domain of integration, the multi-
level hierarchy used for the H2-compression, and the description and analysis of our
new algorithm. In Section 4, we consider convolution kernels k̂(s) and discuss the
relation of our algorithm to Lubich’s convolution quadrature and the connections to
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the fast and oblivious algorithm of [31, 35]. To support our theoretical considerations,
some numerical results are provided in Section 5.

2 Preliminary results

Let us start with summarizing some basic results about typical discretization strate-
gies for Volterra integral operators

y(t) =
∫ t

0
k(t, s)f (s)ds (5)

which are the basis for the efficient and reliable numerical evaluation later on.
For simplicity, all functions y, f , and k are assumed to be scalar valued. We will
demonstrate the application to more general problems of the form (1) in Section 5.

2.1 A general approximation result

For the discretization of the integral operator (5), we consider methods of the form

ỹh(t) =
∫ t

0
kh(t, s)fh(s)ds, (6)

where kh and fh are suitable approximations for k and f . The subscript h will be
used to designate approximations throughout. The following result may serve as a
theoretical justification for a wide variety of particular discretization schemes.

Lemma 1 Let T > 0, kernels k, kh ∈ L∞(0, T ; Lr(0, T )), and f, fh ∈ Lr ′
(0, T )

be given with 1 ≤ r, r ′ ≤ ∞ with 1/r + 1/r ′ = 1. Further assume that

‖k − kh‖L∞(0,T ;Lr(0,T )) ≤ ε and ‖f − fh‖Lr′ (0,T )
≤ ε. (7)

Then, the functions y, ỹh defined by (5) and (6) satisfy

‖y − ỹh‖L∞(0,T ) ≤ C
(
‖k‖Lr(0,T ) + ‖f ‖

Lr′ (0,T )
+ ε

)
ε, (8)

i.e., the error in the results can be bounded uniformly by the perturbation in the data.

Proof From Hölder’s inequality, we can deduce that

|y(t) − ỹh(t)| ≤
∫ t

0
|k(t, s)||f (s) − fh(s)| + |k(t, s) − kh(t, s)||fh(s)|ds

≤ ‖k(t, ·)‖Lr (0,T )‖f − fh‖Lr′ (0,T )
+ ‖k(t, ·) − kh(t, ·)‖Lr (0,T )‖fh‖Lr′ (0,T )

.

The result then follows by estimating ‖fh‖ ≤ ‖f ‖+‖f −fh‖, using the estimates
for the differences in the data, and taking the supremum over all 0 < t < T .

Remark 1 The constant C in the estimate (8) depends on the kernel k, but is inde-
pendent of T . The result can therefore be applied to time intervals of arbitrary size.
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Without substantially changing the argument, it is possible to obtain similar estimates
also in other norms. In many cases, ỹh only serves as an intermediate result and the
final approximation is given by yh(t) = (Phỹh)(t), where Ph is some projection or
interpolation operator; a particular case will be discussed in more detail below. Esti-
mates for the error ‖y − yh‖ can then be obtained by additionally taking into account
the projection errors.

2.2 Piecewise polynomial approximations

Many discretization methods for integral or integro-differential equations, e.g., col-
location or Galerkin methods [7], are based on piecewise polynomial approximations
and fit into the abstract form mentioned above. As a particular example and for later
reference, we consider such approximations in a bit more detail now.

Let h > 0 be given, define tn = nh, n ≥ 0, and set T = tN = Nh. We set
In = [tn−1, tn] for 1 ≤ n ≤ N , and denote by Th = {In : 1 ≤ n ≤ N} the
resulting uniform mesh of the interval [0, T ]. We write Pp(a, b) for the space of
polynomials of degree at most p over the interval (a, b), and Pq,q((a, b) × (c, d)) =
Pq(a, b) ⊗ Pq(c, d) for the space of polynomials in two variables of degree at most
q in each variable. We further define piecewise polynomial spaces

Pp(Th) =
{
f ∈ L1(0, T ) : f |In ∈ Pp(In)

}
, (9)

Pq,q(Th × Th) =
{
k ∈ L1((0, T ) × (0, T )) : k|Im×In ∈ Pq,q

(
Im × In

)}
, (10)

over the grid Th and the tensor-product grid Th × Th.
For sufficiently regular functions f and k over the mesh Th and Th × Th, piece-

wise polynomial approximations kh, fh satisfying (7) can be found by appropriate
interpolation and choosing the mesh size h small enough. Without further structural
assumptions on the data, it seems natural to use uniform grids Th, which can be
obtained, e.g., by uniform refinement of some reference grid. In Fig. 1, we depict the
resulting uniform partitions for approximation of the kernel function k.

Fig. 1 Uniformly refined grids Th × Th for approximation of k. Only the elements required for approx-
imating k(t, s) for s ≤ t are depicted. The grid cells near the diagonal t = s, i.e, the nearfield, play a
special role and are thus colored in gray
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The evaluation of ỹh defined by (6) can be split into two contributions

ỹh(t) = w̃h(t) + z̃h(t) (11)

with wh corresponding to the integrals over the farfield cells and zh over the nearfield
cells, which are depicted in white and gray in Fig. 1, respectively. As discussed in the
following subsection, the numerical treatment of these contributions differs slightly.

2.3 Practical realization

From equation (6) and the choice of fh ∈ Pp(Th) and kh ∈ Pq,q(Th × Th), one can
see that ỹh is a piecewise polynomial of degree ≤ p + q + 1 over the grid Th. It
is often convenient to replace ỹh by a piecewise polynomial yh ∈ Pp(Th) with the
same degree as the data. For this purpose, we simply choose a set of distinct points
0 ≤ γj ≤ 1, 0 ≤ j ≤ p, and define yh ∈ Pp(Th) by collocation

yh

(
tnj

)
= ỹh

(
tnj

)
, 0 ≤ j ≤ p, (12)

on every time interval In ∈ Th, with collocation points tnj = tn−1 + γjh, j =
0, . . . , p. Now let ψn

j , j = 0, . . . , p, denote the Lagrangian basis of Pp(In) with
respect to the interpolation points tnj , i.e.,

ψn
i

(
tnj

)
= δi,j , 0 ≤ i ≤ p, 1 ≤ n ≤ N . (13)

Then as a consequence of the uniformity of the mesh Th, one may deduce that

ψn
i

(
t − tn

) = ψm
i

(
t − tm

)
, 0 ≤ i ≤ p, 1 ≤ m, n ≤ N, (14)

i.e., the basis {ψn
i }0≤i≤p is invariant under translation, which will become an impor-

tant ingredient for our algorithm below. The approximate data fh and the discrete
solution yh can now be expanded as

yh(t) =
p∑

j=0

yn
j ψn

j (t), fh(t) =
p∑

j=0

f n
j ψn

j (t), for t ∈ In. (15)

In a similar manner, the approximate kernel function kh can be expanded with respect
to a set of bases {ϕn

i }i=0,...,q for the spaces Pq(In), which leads to

kh(s, t) =
q∑

i=0

q∑
j=0

k
m,n
i,j ϕm

i (s)ϕn
j (t), for s ∈ Im, t ∈ In. (16)

We will again assume translation invariance of this second basis, i.e.,

ϕn
i

(
t − tn

) = ϕm
i

(
t − tm

)
, 0 ≤ i ≤ q, 1 ≤ m, n ≤ N . (17)

Page 7 of 24    81Adv Comput Math (2021) 47: 81



Note that we allow for different polynomial degrees q 	= p in the approximations
yh, fh, and kh, and hence two different sets of basis functions are required. Evaluating
(6) at time t = tmj and utilizing (12), we obtain

yh(t
m
j ) =

m−2∑
n=1

∫
In

kh

(
tmj , s

)
fh(s) ds +

∫ tmj

tm−2
j

kh

(
tmj , s

)
fh(s) ds, (18)

where we used the splitting of the integration domain (0, tmj ) into subintervals of
the mesh Th and an additional separation of farfield and nearfield contributions; see
Fig. 1. By inserting the basis representations (15) and (16) for yh, fh, and kh, the
integrals in the farfield contribution can be expressed as

∫
In

kh

(
tmj , s

)
fh(s) ds =

q∑
i=0

ϕm
i

(
tmj

) q∑
k=0

k
m,n
i,k

p∑
r=0

∫
In

ϕn
k (s)ψn

r (s) ds f n
r . (19)

For convenience of presentation, let us introduce the short-hand notations

Pi,j = ϕm
i

(
tmj

)
, Qk,r =

∫
In

ϕn
k (s)ψn

r (s) ds, (20)

and note that the corresponding matrices P and Q are independent of the time steps
m, n, due to the translation invariance conditions (14) and (17). The result vector ym

containing entries ym
j = yh

(
tmj

)
from (18) can then be expressed as

ym = wm + zm (21)

with farfield contribution wm given by

wm = Pum, um =
m−2∑
n=1

km,ngn, gn = Qf n, (22)

where km,n is the matrix containing the entries k
m,n
i,j . Further introducing the symbols

Km,n = Pkm,nQ, this may be stated equivalently as wm = ∑m−2
n=0 Km,nf n. In a

similar manner, we may represent the nearfield contribution zm by

zm = Km,m−1f m−1 + Km,mf m, (23)

with appropriate nearfield matrices Km,m−1, Km,m ∈ R
(p+1)×(p+1).

We denote by y, f ∈ R
N(p+1) the global vectors that are obtained by stacking the

element contributions ym, f n together. The computation of y can then be written as
matrix-vector product y = Kf with block-matrix K ∈ R

N(p+1)×N(p+1) consisting
of blocks Km,n as defined above. A possible block-based implementation of this
matrix-vector product can be realized as in Algorithm 1.

Remark 2 At first sight, this algorithm may seem more complicated than actually
required. In fact, after generating the matrix blocks Km,n = Pkm,nQ, the mth com-
ponent of the result vector could also be computed as ym = ∑m

n=1 Km,nf n. The
above version, however, is closer to the algorithm developed in the next section.
Moreover, it is evolutionary, i.e., the entries of the vector y are computed one after
another, and oblivious in the sense that only the blocks f m−1 and f m are needed for
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Algorithm 1 Evaluation of Volterra integral operators for uniform meshes.

for m = 1, . . . , N do
u = 0
for n = 1, . . . , m − 2 do

u = u + km,ngn

end for
gm = Qf m

wm = Pu

zm = Km,m−1f m−1 + Km,mf m

ym = wm + zm

end for

the computation of ym. Note, however, that all auxiliary values gn, n = 1, . . . , m− 2
are required to compute the block ym and therefore have to be kept in memory. This
will be substantially improved in Section 3.2.

2.4 Computational complexity

As indicated above, the computation of yh according to (18) can be phrased in
algebraic form as a matrix-vector product

y = Kf, (24)

with y and f denoting the coefficient vectors for yh and fh, and a lower block trian-
gular matrix K ∈ R

N(p+1)×N(p+1). Note that the pattern of the matrix K is structurally
the same as that of the tensor-product grid underlying the approximation of the kernel
function k; see Fig. 1, with each cell corresponding to a block of size (p+1)×(p+1).
Thus, the the computation of y = Kf will in general require O(p2N2) operations
and O(p2N2) memory to store the matrix K. In addition, we require O(pN) active
memory to store two values of f n and the history of g.

3 A fast and oblivious algorithm

The aim of this section is to introduce a novel algorithm which allows for a simul-
taneous compression of the matrix K used for the evaluation of (24) and the history
of the data stored in the vectors gn, n ≥ 1. The underlying approximation is that of
H2-matrix compression techniques [5, 18]. We first collect some results about these
hierarchical approximations and then state and analyze our algorithm.

3.1 Multilevel partitioning

For ease of presentation, we will assume that the number of time steps is given as
N = 2L with L ∈ N and define h = T/N . Now let I (n;1) = In and introduce a
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Fig. 2 Mesh hierarchy obtained by recursive coarsening of intervals In = I (n;1) with maximal coarsening
level L = 3 and N = 2L = 8 fine grid cells

hierarchy of nested partitions into subintervals

I (n;�) = I (2n−1;�−1) ∪ I (2n;�−1) =
[
t2�−1(n−1), t2�−1n

]
, � > 1,

of length 2�−1h by recursive coarsening of the intervals; see Fig. 2 for a sketch.
From the hierarchic construction, one can immediately see that

In ⊂ I (C(n;�);�) for C(n; �) :=
⌈
n/2�−1

⌉
, (25)

where �r denotes the smallest integer larger or equal to r as usual.
In a similar spirit to [5, 14, 16, 18], we next introduce a multilevel partitioning of

the support of the kernel k leading to adaptive hierarchical meshes

ATh =
{
I (m;�) × I (n;�) : � = 1 with n ∈ {m − 1, m} or

I (m;�) ∩ I (n;�) = ∅ with I (�m/2;�+1) ∩ I (�n/2;�+1) 	= ∅
}

. (26)

Note that every element of ATh is square and thus corresponds to one element of
a, possibly coarser, uniform mesh Th′ × Th′ . Moreover, any element in ATh is the
union of elements of the underlying uniform mesh Th ×Th and can be constructed by
recursive agglomeration or coarsening. As illustrated in Fig. 3, the hierarchic adaptive
mesh ATh can again be split into nearfield elements adjacent to the diagonal and
the remaining farfield elements. Let us remark that the resulting partitioning and
its splitting coincide with most of the classical partitioning strategies developed in

Fig. 3 Adaptive hierarchical meshes ATh obtained by recursive coarsening of farfield cells in the
corresponding uniformly refined meshes Th × Th in Fig. 1
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the context of panel clustering and H- and H2-matrices, see [18] and the references
therein.

3.2 Adaptive data-sparse approximation

Let Pq,q(ATh) be the space of piecewise polynomials of degree ≤ q in each variable
over the mesh ATh. Since the adaptive hierarchical mesh is obtained by coarsening
of the underlying uniform grid Th × Th, we certainly have

Pq,q(ATh) ⊂ Pq,q(Th × Th).

Instead of a uniform approximation as used in Section 2.2, we now consider adaptive
approximations kh ∈ Pq,q(ATh) for the evaluation of (6) or (18).

Remark 3 Let us assume for the moment that the kernel k in (2) is asymptotically
smooth, i.e., there exist constants c1, c2 > 0, r ∈ R such that

∣∣∂α
t ∂β

s k(t, s)
∣∣ ≤ c1

(α + β)!
c
α+β

2

(t − s)r−α−β (27)

for all α, β ≥ 0 and all t 	= s. As shown in [5, 18], adaptive approximations
kh ∈ Pq,q(ATh) can be constructed for asymptotically smooth kernels, which con-
verge exponentially in q in the farfield. As a consequence, the same level of accuracy
required in Lemma 1 can be achieved by adaptive approximations with much less
degrees of freedom than by uniform approximations.

Remark 4 It is not difficult to see that dim(Pq,q(Th × Th)) = O(N2q2) while
dim(Pq,q(ATh)) = O(Nq2). The adaptive hierarchical approximation thus is data-
sparse and leads to substantial savings in the memory required for storing the kernel
approximation or its matrix representation (24), compare to Lemma 3 at the end of
this section. In addition, an appropriate reorganization of the operations required for
the matrix-vector product (24) leads to a substantial reduction of computational com-
plexity. Moreover, the fast evaluation also induces an automatic compression of the
history of the data.

3.3 Multilevel hierarchical basis

In order to obtain algorithms for the matrix-vector multiplication (3) of quasi-optimal
complexity, we require the following second fundamental ingredient. Based on the
multilevel hierarchy I (n;�) of time intervals and the translation invariance of the basis
functions ϕn

i =: ϕ
(n;1)
i , we define a multilevel basis

ϕ
(n;�)
i (t) =

{∑q

j=0 A
(1)
i,j ϕ

(2n−1;�−1)
j (t), t ∈ I (2n−1;�−1),∑q

j=0 A
(2)
i,j ϕ

(2n;�−1)
j (t), t ∈ I (2n;�−1),

(28)

for the spaces Pq

(
I (n;�)), � > 1 appearing in the farfield blocks of the approximation

kh ∈ Pq,q(ATh). Let us note that by translation invariance, the coefficients A
(1)
i,j and

A
(2)
i,j are independent of n and �.
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For each of the elements of the adaptive partition ATh, we expand the kernel
function as

kh(s, t) =
q∑

i=0

q∑
j=0

k
(m,n;�)
i,j ϕ

(m;�)
i (s)ϕ

(n;�)
j (t), (s, t) ∈ I (m;�) × I (n;�). (29)

For the computation of the farfield contributions in (18), we can further split the
integration domain into

[
0, tm−2

]
=

L(m)⋃
�=1

B(m;�)⋃
n=1

I (P (m,n;�);�) (30)

with L(m) = �log2(m) − 1, B(m; �) = bin(m)� + 1, and P(m, n; �) = C(m; �) −
n − 1. Here bin(m)� denotes the �th digit from behind of the binary representation
of m obtained by MATLAB’s dec2bin function. This partitioning of the integration
domain exactly corresponds to the cells of a corresponding row in the adaptive mesh
ATh; see Fig. 4 for an illustration. More precisely, L(m) ∈ N describes the number
of different coarsening levels involved in the mth row, B(m; �) ∈ {1, 2} corresponds
to the number of intervals on each level, and P(m, n; �) yields the indices of these
intervals on level �. By inserting the splitting of the integration domain in (30) into
(18), we obtain

yh

(
tmj

)
=

L(m)∑
�=1

B(m;�)∑
n=1

∫
I (P (m,n;�);�)

kh

(
tmj , s

)
fh(s) ds +

∫ tmj

tm−2
kh

(
tmj , s

)
fh(s) ds.

We can now further insert the expansions (29) for the kernel kh into the farfield
integrals over I (P (m,n;�);�) to see that∫

I (P (m,n;�);�)
kh(t

m
j , s)fh(s) ds

=
q∑

i=0

ϕ
(C(n;�);�)
i (tmj )

q∑
k=0

k
(C(n;�),P (m,n;�);�)
i,k g

(P (m,n;�);�)
k ,

with auxiliary values

g
(P (m,n;�);�)
k =

∫
I (P (m,n;�);�)

ϕ
(P (m,n;�);�)
k (s)fh(s) ds.

Fig. 4 Illustration of the meaning of the quantities L(m), B(m, �), and P(m, n; �) arising in (30) for
m = 14 time steps
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By the recursive definition of ϕ(n;�), the latter expression can be rewritten as

g
(i;�)
k =

∫
I (i;�)

ϕ
(i;�)
k (s)fh(s) ds =

q∑
j=0

(
A

(1)
i,j g

(2i−1;�−1)
k + A

(2)
i,j g

(2i;�−1)
k

)

for � > 1 complemented with g
(i;1)
k = gi

k = ∑p

r=0 Qk,rf
i
r as defined on the uniform

grid in Section 2.2. Evaluation of the recursion (28) at time tmj further yields

ϕ
(C(n;�);�)
i

(
tmj

)
=

q∑
k=0

A
(B(m,�−1))
i,k ϕ

(C(n,�−1);�−1)
k

(
tmj

)
,

such that we may define intermediate values

u
(C(n;�);�)
j =

q∑
i=0

A
(B(m;�))
i,j u

(C(m,�+1);�+1)
i +

B(m;�)∑
n=1

q∑
k=0

k
(C(n;�),P (m,n;�);�)
i,k g

(P (m,n;�);�)
k .

The result of the integral (18) then is finally obtained by

ym
j = yh(t

m
j ) =

q∑
k=0

Pj,ku
(m;1)
k + zm

with nearfield contributions zm and projections Pj,k as given in (20) and (22). The
above derivations can be summarized as in Algorithm 2.

Remark 5 The MATLAB function bitxor(a, b) returns the integer generated by a
bit-wise xor comparison of the binary representation of a and b in O(1) complexity.
This allows to determine Lcoarse = arg maxk{B(m; k) 	= B(m − 1; k)} in O(1) com-
plexity in each step and is required for achieving a theoretical runtime of O(N). In
actual implementations, one may just set Lcoarse = L(m), without any notable differ-
ence in computation times. Further note that only one value u(n;�) and two values of
g(n;�) are required for each level �. Moreover, at most two values of f n are required
at any time step. The required buffers are denoted by u(�), f(i), and g(i;�), i = 1, 2,
� = 1, 2, 3, . . .. The complexity of the overall algorithm is analyzed in detail in the
next section.

Remark 6 Readers familiar with H2-matrices or the fast multipole method may
notice that our algorithm is similar to the corresponding matrix-vector multiplica-
tions but with rearranged computations. In each time step, the algorithm checks
for changes in the matrix partitioning structure compared to the previous time step.
Then, starting from the coarsest level, an upward pass of one level is executed
for all coarsened intervals of the farfield by applying the transfer or multipole-to-
multipole matrices. Entities from the coarsened intervals are overwritten. Thereafter,
the farfield interactions are computed by applying the kernel or multipole-to-local
matrices corresponding to the changed intervals and directly including the con-
tributions of the next coarser level with a downward pass by appling transfer or
local-to-local matrices. Finally, the nearfield contributions are applied.
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Algorithm 2 A fast and oblivious evolutionary algorithm.

1: for m = 1, . . . , N do
2: Lcoarse = 1 + �log2(bitxor(m, m − 1))�
3: for � = Lcoarse, . . . , 1 do
4: if B(m; �) 	= B(m − 1; �) then
5: g(2;�) = g(1;�)
6: if � > 1 then
7: g(1;�) = A(1)g(1;�−1) + A(2)g(2;�−1)

8: else
9: g(1;�) = Qf(2)

10: end if
11: Set (Kn)i,j = k

(C(n;�),P (m,n;�);�)
i,j for n ∈ {1, B(m; �)}

12: u� = K1g(1;�)
13: if B(m; �) = 2 then
14: u� = u� + K2g(2;�)
15: end if
16: u� = u� + (

A(B(m;�)))�
u(�+1)

17: end if
18: end for
19: f(2) = f(1)

20: f(1)
j = f (tmj ), j = 0, . . . , p

21: zm = Km,m−1f(2) + Km,mf(1)

22: ym = Pu(1) + zm

23: end for

3.4 Complexity estimates

In the following, we consider Algorithm 2 for the evaluation of (18) with approximate
kernel kh ∈ Pq,q(ATh) and data fh ∈ Pp(Th), and with N = 2L denoting the
number of time intervals in Th. The assertions of the following two lemmas are well-
known, see, e.g., [5], but their reasoning is simple and illustrative such that we repeat
it for the convenience of the reader.

Lemma 2 Algorithm 2 can be executed in O
(
N

(
p2 + q2

))
operations.

Proof The algorithm rearranges the operations of a standard H2-matrix-vector multi-
plication without adding any significant operations. We therefore simply estimate the
complexity of the corresponding H2-matrix-vector multiplication. Let us first remark
that the computation of zm in line 21 requires O(p2) operations in each time step.
Second, on a given level �, we have to perform O(2�) applications of A(1) and A(2)

in total for obtaining the g(n;�) from the ones on level � − 1, see line 7. Similarly,
O(2�) applications of A(B(m;�)) in line 16 are in total required on level � for the com-
putation of the u(n;�) and O(2�) multiplications by k(k,n;�) need to be performed in
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lines 12 and 14. Finally, O(N) values of gn = Qf n and Pu(1) need to be computed
in line 9 and line 22. Summing up yields

O
(
Np2

)
+ 3O

(
q2

) L∑
�=1

O
(

2L−�
)

+ 2O(Npq) = O
(
Np2

)
+ O

(
2Lq2

)
+ O(Npq),

and since N = 2L Young’s inequality yields the assertion.

Lemma 3 The H2-matrix representation K of the adaptive hierarchic approxima-
tion kh ∈ Pq,q(ATh) can be stored in O

(
N(p2 + q2)

)
memory. If the kernel is of

convolution type (4), then the memory cost reduces to O
(
p2 + log2(N)q2)

)
.

Proof The proof for the adaptive approximation is similar to the previous lemma,
with the p2-related term arising from the nearfield and the q2-related term from the
farfield. For a kernel of convolution type, the hierarchical approximation provides a
block Toeplitz structure, such that we only have to store O(1) coefficient matrices
per level for the farfield and O(1) coefficient matrices for the nearfield.

Let us finally also remark on the additional memory required during execution.

Lemma 4 The active memory required for storing the data history required for
Algorithm 2 is bounded by O(q log2 N + p).

Proof We require O(1) vectors of length p for the nearfield and at most two vectors
g(n;�) of length q on L = log2(N) levels for the farfield contributions.

3.5 Summary

In this section, we discussed the adaptive hierarchical data-sparse approximation for
the dense system matrix K in (3) stemming from a uniform polynomial-based dis-
cretization of the Volterra integral operators (2). This approximation amounts to an
H2-matrix compression of the system matrix, leading to O(N) storage complexity
for general and O(log(N)) storage complexity for convolution kernels. Using a mul-
tilevel basis representation on the hierarchy of the time intervals, we formulated a
fast and oblivious evolutionary algorithm for the numerical evaluation of Volterra
integrals (2). The overall complexity for computing the matrix-vector product in (3)
is O(N) and only O(log(N)) memory is required to store the compressed history of
the data. The algorithm is executed in an oblivious and evolutionary manner and can
therefore be generalized immediately to integro-differential equations of the form
(1). Moreover, knowledge of the number of time steps N is not required prior to
execution.

4 Approximation of convolution operators

While our algorithm for the fast evaluation of Volterra integral operators is based on a
time domain approximation, in many interesting applications, see [29] for examples
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and references, the kernel function in (5) is of convolution type

k(t, s) = k(t − s) (31)

and only accessible indirectly via its Laplace transform, i.e., the transfer function

k̂(s) := (Lk)(s) :=
∫ ∞

0
e−st k(t) dt, s ∈ C.

Let us note that, at least formally, the evaluation of the kernel function in the time
domain can be achieved by the inverse Laplace transform

k(t) = (L−1k̂)(t) = 1

2πi

∫
Γ

etλk̂(λ) dλ, t > 0, (32)

where Γ is an appropriate contour connecting −i∞ with i∞; see [3] for details. To
ensure the existence of the inverse Laplace transform, we require that

k̂(λ) is analytic in a sector | arg(λ − c)| < ϕ,
π

2
< ϕ < π, (33)

and |k̂(λ)| ≤ M|λ|−μ for some fixed M, μ > 0, (34)

and tacitly assume that the contour Γ lies within the domain of analyticity of the
function k̂. In this section, we show that with some minor modifications, Algorithm 2
and our analysis are applicable also in this setting and we compare our method with
the fast and oblivious convolution quadrature of [31, 35].

4.1 Approximation and numerical realization

As a first step, we show that the convolution kernel k given implicitly by (32) indeed
satisfies the assumption (27) on asymptotic smoothness. Thus, an accurate adaptive
hierarchical approximation as discussed in Section 3 is feasible.

Lemma 5 Assume that k̂ satisfies (33) and (34). Then, k as defined in (32) is
asymptotically smooth, i.e., it satisfies (27) with c2 = sin(ϕ − π/2).

Proof It is sufficient to consider the case c = 0 in (33) and μ = 1 in (34). Otherwise,
we simply transform k̂(λ + c) = L(e−ct k(t))(λ) and k(t) = k

(μ−1)∗ (t) with k̂∗(λ) :=
L(k∗)(λ) = |λ|μ−1k̂(λ) for μ 	= 1. From [3, Theorem 2.6.1], also see [36], we
deduce that k has a holomorphic extension into the sector | arg(λ)| < ϕ − π/2 with
ϕ as in (33). Thus, the radius of convergence of the Taylor series of k around t0 ∈
(0, ∞) is given by c2t0, with c2 = sin(ϕ − π/2) independent of t0. This implies

∣∣∂α
t k(t)

∣∣ ≤ c1
α!

cα
2 tα

for some constant c1 > 0. Condition (27) then follows by the chain rule.

For the construction of the adaptive approximation kh, we can now proceed in
complete analogy to (11), i.e., we split the convolution integral

yh(t
n) =

∫ tn−2

0
kh(t

n, s)fh(s) ds +
∫ tn

tn−2
kh(t

n, s)fh(s) ds (35)
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into a farfield and a nearfield contribution. The latter can be computed stably and
efficiently with Lubich’s convolution quadrature; see [27, 28] for details.

For the farfield contributions, we utilize the adaptive hierarchical approximation
discussed in the previous section. If direct access to the kernel k(t, s) = k(t − s) is
available, Algorithm 2 can be applied directly. If, on the other hand, only the transfer
function k̂(s) is accessible, the values of kh(t, s) = k(t − s) can be computed by fast
numerical Laplace inversion; see [11, 26, 37]. Here we follow the approach of [26,
35] which is based on hyperbolic contours of the form

γ (θ) = μ(1 − sin(α + iθ)) + σ, θ ∈ R, (36)

with 0 < μ, 0 < α < π/2 − ϕ, and σ ∈ R, such that the contour remains in the
sector of analyticity (33) of k̂. The discretization of the contour integral (32) by the
trapezoidal rule with uniform step with τ yields

k(t) ≈
R∑

r=−R

iτ

2π
eγ (θr )t γ ′(θr )k̂(γ (θr )), (37)

with θr = τr . Given we are interested in k(t) for t ∈ [tmin, tmax] and have fixed
values for α and σ , suitable parameters τ and μ are given by

τ = aρ(ρopt), μ = 2παR(1 − ρopt)

tmaxaρ(ρopt)
, ρopt = arg min

ρ∈(0,1)

(
εεR(ρ)ρ−1 + εR(ρ)ρ

)
,

where ε is the machine precision and

aρ(ρ) = acosh

(
tmax/tmin

(1 − ρ) sin(α)

)
, εR(ρ) = exp

(
−2παR

aρ(ρ)

)
,

see [26, 35]. In our examples in Section 5, we chose α = 3/16π , σ = 0. For error
bounds concerning this approach, we refer to [26, 35].

4.2 Comparison with fast and oblivious convolution quadrature

Similar to Algorithm 2, the fast and oblivious convolution quadrature (FOCQ)
method of [31, 35] is also based on a splitting (35) of the convolution integral into
nearfield and farfield contributions, and the former can again be computed stably and
efficiently with Lubich’s convolution quadrature [27, 28].

A different adaptive hierarchic approximation based on L-shaped cells is now used
for the approximation in the farfield; see Fig. 5. The farfield part of the integration
domain for computing the entry yh(t

m) is then partitioned into

[
0, tm−2

]
=

m−2⋃
n=1

In =
L(m)⋃
�=1

B(m;�)⋃
n=1

I (P (m,n;�);�) =
L(m)⋃
�=1

I �
FOCQ,m.
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Fig. 5 Hierarchical partitions of fast and oblivious convolution quadrature [35]

Choosing an appropriate contour Γ�, see (36), and corresponding quadrature points
θ

(�)
r for each farfield cell and using (37) yields an approximation

∫
I �

FOCQ,m

k
(
tm, s

)
f (s) ds (38)

≈ iτ

2π

R∑
r=−R

k̂
(
γ

(
θ(�)
r

))
γ ′ (θ(�)

r

)
e
γ
(
θ

(�)
r

)(
tm−b(�)

) ∫
I �

FOCQ,n

e
γ
(
θ

(�)
r

)
(b(�)−s)

f (s) ds

︸ ︷︷ ︸
=z

(
c(�);b(�),γ

(
θ

(�)
r

))

,

with b(�) = min I �
FOCQ,m and c(�) = max I �

FOCQ,m. The values z
(
c(�); b(�), γ

(
θ

(�)
r

))
can be computed by numerically solving the ordinary differential equation

d

dt
z(t; s, γ ) = γ z(t; s, γ ) + f (t), z(s; s, γ ) = 0 (39)

with appropriate values s = b(�) and γ = γ
(
θ

(�)
r

)
. Thus, the fast and oblivious con-

volution quadrature provides an approximation of the convolution matrix by solving
an auxiliary set of (2R + 1)L differential equations. In order to obtain an oblivious
algorithm, it is crucial that the solution of each differential equation is updated in
each time step, i.e., the compressed convolution matrix must be evaluated from left
to right; see [31, 35] for details.

The connection to our approach is revealed upon noticing that the compres-
sion approach underlying the fast and oblivious convolution quadrature actually
implements a low-rank approximation in each of the farfields L-shaped blocks, i.e.,

k(t, s) ≈
R∑

r=−R

(
iτ

2π
e
γ
(
θ

(�)
r

)
(t−b(�))

k̂
(
γ

(
θ(�)
r

))
γ ′ (θ(�)

r

))
e
γ
(
θ

(�)
r

)
(b(�)−s)

=
R∑

r=−R

U
(
t, θ (�)

r

)
V

(
s, θ(�)

r

)
.
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The corresponding farfield approximation (38) thus effectively reads

∫
I �

FOCQ,m

k
(
tn, s

)
f (s) ds ≈

R∑
r=−R

U
(
t, θ (�)

r

) ∫
I �

FOCQ,m

V
(
s, θ(�)

r

)
f (s) ds

=
R∑

r=−R

U
(
t, θ (�)

r

)
z
(
c(�), b(�), θ (�)

r

)
,

which can be understood as a low-rank matrix-vector product realized implicitly by
the numerical solution of a differential equation. Since the partitioning depicted in
Fig. 5 can easily be refined to an adaptive partitioning as in Fig. 3, the fast and
oblivious convolution quadrature can be interpreted as a particular case of an H-
matrix approximation with a particular realization of the H-matrix-vector product.
The O(log(N)) memory cost and O(N log(N)) complexity of the algorithm can then
be immediately deduced from H-matrix literature [5, 18].

As mentioned in the introduction, the algorithm proposed in Section 3.2, with the
modifications discussed above, is based on an H2-matrix approximation and leads to
a better complexity of O(N). It is also clear that the number of quadrature points for
the numerical Laplace inversion determines the ranks of the farfield approximations
for the H-matrix approximations, which allows for an improved understanding of the
approximation error in terms of the approximation order.

5 Numerical examples

In the following, we present a series of numerical examples to illustrate and verify
the capabilities of our novel algorithms. The experiments are performed in MATLAB,
in which we implemented our new algorithm as well as a version of the fast-and-
oblivious convolution quadrature algorithm of [26, 31] for reference. Although our
new algorithm performed considerably faster in all of the following examples, we do
not present a detailed comparison.

In accordance with the H- and H2-literature, we require the farfield cells in our
implementation to be at least nmin × nmin = 16 × 16 times larger than the nearfield
cells. This simply means that the cells in Fig. 3 represent 16 × 16 blocks of fine grid
cells. Following [7, Chapter 2], we choose Radau-IIA collocation methods of stage
p = 1, 2, 3, for the discretization of the Volterra integral operators, which is exactly
the scheme used for the approximation as outlined in Section 2.2 and the beginning
of Section 2.3. This fixes the approximation spaces Pp(Th) for the solution yh and
the data fh. The error of this discretization scheme is given by

eh =: max
ti∈Th

|y(ti) − yh(ti)| ≤ Ch2p−1 (40)

for smooth data f ∈ C2p−1([0, T ]) and kernel k ∈ C2p−1({(t, s) : 0 ≤ t ≤ s ≤ T });
see [7, Chapter 2] for details. For convolution kernels k(t − s), we utilize Lubich’s
convolution quadrature [27, 28] in the nearfield and the same strategy as above in the
farfield. Again, the Radau-IIA method is used as the underlying integration scheme.

Page 19 of 24    81Adv Comput Math (2021) 47: 81



This allows to estimate the approximation error by

eh =: max
ti∈Th

|y(ti) − yh(ti)| ≤ C
(
h2p−1 + hp+1+μ

)
(41)

for transfer functions satisfying (33)–(34) and data f ∈ C2p−1([0, T ]); see [30] for
details. The parameter μ is related to the singularity of the kernel k(t − s) at t = s.

5.1 Variation of constants formula

The first example is dedicated to the solution of the differential equation

y′(t) = −2ty(t) + 5 cos(5t), t ∈ (0, 10], (42)

y(0) = 2. (43)

By the variation of constants formula, the solution can be expressed as

y(t) = 2e−t2 + 5
∫ t

0
es2−t2

cos(5s) ds. (44)

Let us note that the integral kernel k(t, s) = es2−t2
satisfies the asymptotic

smoothness assumption (27), but is not of convolution type k(t − s). To obtain a ref-
erence solution, we solve (42)–(43) numerically with a 3-stage Radau-IIA method
and with N∞ = 219 time steps. For the numerical solution of (44), we then employ
Algorithm 2 with polynomial degree q = 16 for the kernel approximation and var-
ious degrees p for the approximation of the data f and the solution y. The left plot
of Fig. 6 illustrates that we indeed reach the theoretical convergence rates predicted
by (40) up to a tolerance of around 10−10 at which numerical noise begins to dom-
inate. From the right plot, one can immediately deduce the linear complexity of the
algorithm.

Fig. 6 Approximation errors (left) and computation times (right) for the variation of constants formula
example of Section 5.1
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5.2 Nonlinear Volterra integral equation

We continue with a second test example taken from [35], in which we consider the
nonlinear Volterra integral equation

u(t) = −
∫ t

0

(u(τ) − sin(τ ))3

√
π(t − τ)

dτ, t ∈ [0, 60].

In this example, the convolution kernel k(t − s) = 1/
√

π(t − s) is of convolution
type, with Laplace transform given by k̂(λ) = 1/

√
λ. The evaluation of the integral

kernel k(t − s) is realized via numerical inverse Laplace transforms with R = 15
quadrature points and the kernel is approximated by piecewise polynomials of degree
q = 8 in the farfield; see Section 4. Since the data f (t, u) = (u−sin(t))3 here depend
on u, a nonlinear equation must be solved for each time step, for which we employ
a Newton method up to a tolerance of 10−12. As a reference solution for computing
the errors, we here simply take the numerical solution computed on a finer grid. The
results of Fig. 7 again clearly show the predicted convergence rates up to the point
where numerical noise begins to dominate, see (41) with μ = 1/2, and the linear
complexity of Algorithm 2.

5.3 Fractional diffusion with transparent boundary conditions

As a last example, which is taken from [9, 35], we consider the one-dimensional
fractional diffusion equation

u(x, t) = u0(x) +
∫ t

0

(t − τ)α−1

Γ (α)
Δxu(x, τ ) dτ + g(x, t), x ∈ R, t ∈ R>0,

with α = 2/3, u(x, ·) → 0 for |x| → ∞ and g(x, 0) = 0. For the computations,
we restrict the spatial domain to x ∈ (−a, a), assume that u0 and g have support in
[−a, a], and impose transparent boundary conditions on x = ±a which read

u(x, t) = −
∫ t

0

(t − τ)α/2−1

Γ (α/2)
∂nu(x, τ ) dτ, x = ±a;

Fig. 7 Approximation errors (left) and computation times (right) for the nonlinear Volterra integral
equation example of Section 5.2
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Fig. 8 Convergence plot (left) and computation times (right) for the fractional diffusion problem with
transparent boundary conditions

we refer to [20, 35] for further details on the model. The Laplace transform of the
convolution kernel k(t − s) = (t − s)α−1/Γ (α) is here given by k̂(λ) = 1/λα .

For the spatial discretization, we employ a finite difference scheme on an equidis-
tant mesh xi = iτ , τ = a/M , i = −M, . . . , M and use second-order finite
differences within the domain and central differences to approximate the normal
derivative on the boundary; see [9, 35]. For the time discretization, we employ the
frequency domain version of our algorithm with R = 30 quadrature points for the
inverse Laplace transform and polynomial degree q = 16 for the farfield interpo-
lation. We note that two different convolution quadratures are required, one for the
fractional derivative in (−a, a) involving α and one for the fractional derivative of
the boundary values, involving α/2.

For the space discretization, we consider a fixed mesh with M = 104 which is fine
enough to let the error of the time discretization dominate. As a reference solution,
we take the method with order p = 3 on a finer mesh. Let us note that due to
the lack of temporal smoothness of the solution at t = 0, we cannot expect the
full order of convergence as predicted by (41); we refer to [9, Section 1] for further
discussion. In Fig. 8, we however still observe a very good approximation in the
pre-asymptotic phase and a substantial improvement in accuracy until the numerical
noise level is reached when using higher approximation order p. As predicted by the
theory, the computation times again increase linearly in the number of time steps. In
the numerical tests, identical results were obtained for direct evaluation of k(t, s) and
evaluation of the kernel via inverse Laplace transforms, which indicates that the main
approximation error comes from the adaptive hierarchical approximation.
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