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Abstract
This article develops a new predictor-corrector algorithm for numerical path track-
ing in the context of polynomial homotopy continuation. In the corrector step, it uses
a newly developed Newton corrector algorithm which rejects an initial guess if it is
not an approximate zero. The algorithm also uses an adaptive step size control that
builds on a local understanding of the region of convergence of Newton’s method and
the distance to the closest singularity following Telen, Van Barel, and Verschelde.
To handle numerically challenging situations, the algorithm uses mixed precision
arithmetic. The efficiency and robustness are demonstrated in several numerical
examples.

Keywords Numerical path tracking · Adaptive step size control ·
Homotopy continuation · Numerical nonlinear algebra.

1 Introduction

Systems of polynomial equations arise in many applications across the sciences
including computer vision [20, 36], chemistry [28], kinematics [41], and biology
[32]. A numerical method for finding all isolated solutions of a system F of n poly-
nomials in n unknowns is homotopy continuation [35]. This method constructs a
homotopy H(x, t) : C

n × C → C
n such that H(x, t) is a polynomial system for

all t , H(x, 1) = F(x) and H(x, 0) is a system whose isolated solutions are known.
There is a well-developed theory [35] on how to construct such homotopies to guar-
antee, with probability one, that every isolated solution of F(x) = 0 is the endpoint
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of at least one smooth solution path x(t). A solution path x(t) is implicitly defined
by the conditions

H(x(t), t) = 0 for all t ∈ [0, 1) and x(0) = x0 . (1)

In order to trace a path x(t), the problem (1) is treated as a sequence of problems

H(x(tk), tk) = 0 , k = 0, 1, 2, . . . (2)

with an (a priori unknown) subdivision 0 = t0 < t1 < . . . < tM = 1 of the
interval [0, 1]. Each of the problems (2) is then solved by a correction method, usu-
ally Newton’s method, under the assumption that a prediction method, e.g., Euler’s
method, provides a good starting point. Often, the choice of step size Δtk := tk+1−tk
is given by an adaptive step size control. The step size must be chosen appropriately:
if the step size is too large, the prediction can be outside the zone of convergence of
the corrector, while a too small step size means progress is slow. There have been
many efforts to design such adaptive step size controls [17, 25, 33].

In the context of polynomial homotopy continuation methods, two phenomena
need particular attention. Polynomial systems often have singular solutions, and thus,
the paths leading to these solutions are necessarily ill-conditioned at the end. While
endgame methods [30, 31] exist to compute singular solutions, these still require to
track the solution path sufficiently close to the singularity. Usually, homotopies guar-
antee, with probability one, that no path passes through a singularity before reaching
its endpoint. However, there is a non-negligible chance that a near-singular condition
is encountered during the tracking.

Also, if two different solution paths are near to each other, then this can cause path
jumping. That is, the solution that is tracked “jumps” from one path to another. The
typical reason is that starting from a point on the tracked path the prediction method
returns a point that, according to the correction method, is a numerical approxima-
tion of a point that is on a different path than the tracked one. A possible result of
path jumping is that not all isolated solutions of a polynomial system are computed.
Recently, Telen, Van Barel, and Verschelde [37] introduced an algorithm that is very
robust against path jumping. An implementation of this algorithm is available in the
software package PHCpack [39].

Therefore, path tracking algorithms are required to reduce the risk of path jump-
ing and they need to be able to handle ill-conditioned situations during the tracking.
Existing software packages, e.g., Bertini [6], use a version of the following path
tracking algorithm. The algorithm has the following parameters: An initial step size
Δt > 0, a number of corrector iterations N ≥ 1 allowed per step, a step adjust-
ment factor λ ∈ (0, 1), a step expansion integer E ≥ 1, and a minimum step
size tmin. Additionally, there is a tracking tolerance ε > 0. This means that for a
given t an approximate solution x ≈ x(t) has to satisfy a normwise absolute error
‖x − x(t)‖∞ ≤ ε.

Given an approximate solution x ≈ x(t) the prediction method provides an ini-
tial guess x̂(Δt) ≈ x(t + Δt). Then, Newton’s method iteratively improves the
approximation x̂(Δt). If the required tracking tolerance ε is achieved with a most N
iterations, then the solution is updated and t = t + Δt . If there are E successes in a
row, then the step size is expanded to Δt = λ−1Δt . If on the other hand the tolerance
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is not achieved with at most N iterations, then the step size is reduced to Δt = λΔt .
If Δt < tmin, the algorithm terminates with a failure. Otherwise the procedure is
repeated until t = 1 is reached.

The key to avoid path jumping is to allow only a small number of Newton itera-
tions, typically onlyN = 2 orN = 3. In practice, this is often sufficient for the initial
guess x̂(Δt) to stay within a small enough region surrounding the path such that no
path jumping occurs. However, if two paths are closer than the required tracking tol-
erance ε for some t∗ ∈ (0, 1), then this algorithm tends to fail for these paths. This
is shown in the computational experiments in Section 5 for two different examples.
Therefore, it is necessary to choose the path tracking tolerance ε smaller than the
minimal pairwise distance of any two paths. However, knowing the optimal choice of
ε a-priori is impossible. Thus, one has to use either a pessimistic value for ε or resort
to trial and error. But choosing ε small does not only slow down the tracking of all
paths, it also can result in new tracking failures. The reason for this is that Newton’s
method in floating point arithmetic cannot always produce solutions whose relative
normwise error is smaller than ε. This was shown by Tisseur in [38] and is explained
in detail in Section 2.2.

To avoid tracking failures due to insufficient precision, Bates, Hauenstein,
Sommese, and Wampler [5] developed an adaptive precision version of the above
described path tracking algorithm. During the tracking, the algorithm dynamically
changes the working precision such that Newton’s method can theoretically always
produce solutions accurate enough for the desired tracking tolerance. This eliminates
the problem of insufficient precision in exchange of a possibly high computational
cost. But it also still leaves open the problem of picking a suitable tolerance ε.

This article introduces a new path tracking algorithm, Algorithm 3, that does not
require the choice of a path tracking tolerance ε or a maximal number N of corrector
iterations allowed per step. This allows the algorithm to handle numerically challeng-
ing situations. The key idea is to use a more intrinsic measure for accepting an initial
guess in the Newton corrector: An initial guess x̂(Δt) should only be accepted if the
Newton iterates x̂(Δt) = x(0), x(1), x(2), . . . satisfy

‖x(j+1) − x(j)‖ ≤ a2
j −1‖x(1) − x(0)‖ (3)

for j = 1, 2, . . . and some fixed constant a ∈ (0, 1
2 ]. If the initial guess satisfies (3),

then it is an approximate zero. This notion was introduced by Smale [34] for a =
1
2 and plays an important role in the complexity analysis of polynomial homotopy
continuation methods [11, 26]. Based on this idea, this article develops a new Newton
corrector algorithm, Algorithm 1. The algorithm rejects an initial guess if (3) is not
satisfied for some j = 1, . . . , m where m is dynamically chosen as the maximal
number of iterations for which (3) can be satisfied in fixed precision floating point
arithmetic.

The proposed path tracking algorithm combines the new Newton corrector algo-
rithm with an adaptive step size control that chooses Δt based on local geometric
informations. The step size control extends an adaptive step size control developed
by Deuflhard [12] and combines it with the insight of [37] to use Padé approximants
as prediction methods. In particular, the algorithm builds a local understanding of
the region of convergence of Newton’s method and following Telen, Van Barel, and
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Verschelde [37] obtains an estimate of the distance to the closest singularity. This
keeps the risk of path jumping low, but the algorithm cannot guarantee that path
jumping does not happen. To handle numerically challenging situations, the algo-
rithm uses mixed precision arithmetic. That is, while the bulk of the computations
is performed in double precision, some computations are performed, if necessary,
in extended precision. This article is accompanied by a prototype implementation
of the algorithm and an implementation will also be available in version 2.0 of
HomotopyContinuation.jl [10].

This article is organized as follows. Section 2.1 reviews a Kantorovich style
convergence theory of Newton’s method and Section 2.2 develops a new Newton cor-
rector algorithm, Algorithm 1, based on requirement (3). In Section 3, the use of Padé
approximants as prediction method is developed. In Section 4, the results from the
previous sections are used to develop an adaptive step size control. Finally, the new
path tracking algorithm, Algorithm 3, is stated. The algorithm’s effectiveness and
ability to handle challenging paths are shown through several numerical experiments
in Section 5.

2 Newton’s method: theory and computational aspects

The path tracking algorithm for a path x(t) consists of three main components: An
adaptive step size routine that provides a step size Δt , a predictor that produces an
initial guess x̂ of x(t +Δt), and a corrector that takes x̂ and returns either an approx-
imation of x(t + Δt) or rejects x̂. This section focuses on Newton’s method as a
corrector. The goal is to understand the size of the region of convergence of Newton’s
method as well as the behavior of Newton’s method in floating point arithmetic and
to translate this into a Newton corrector algorithm.

2.1 Convergence results

Let D ⊆ C
n an open set. Let F : D ⊆ C

n → C
n be an analytic function and

JF : Cn → C
n×n its Jacobian. Consider the Newton iteration

JF (x(j))Δx(j) = F(x(j))

x(j+1) = x(j) − Δx(j) , j = 0, 1, 2, . . . (4)

starting at the initial guess x(0) ∈ D. In 1948, Kantorovich [24] already showed
sufficient conditions for the convergence of Newton’s method and the existence of
solutions. He also showed the uniqueness region of solutions and provided error esti-
mates. A particular property of Newton’s method is that the iterates (4) are invariant
under general linear transformations of F . That is, given a start value x(0) ∈ D and
A ∈ GLn(C), the Newton iterates of AF(x) and F(x) coincide. This property is
referred to as affine covariance [13]. In the following, an affine covariant version of a
Kantorovich style convergence theorem for Newton’s method is given. The statement
is due to Deuflhard and Heindl [14] with error bounds from Yamamoto [42].
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Theorem 1 (Newton-Kantorovich [14, 42]) Let F : D ⊆ C
n → C

n be analytic. For
some x(0) ∈ D, assume that JF (x(0)) is invertible and that for all x, y ∈ D

‖JF (x(0))−1(JF (x) − JF (y))‖ ≤ ω‖x − y‖,
‖Δx(0)‖ = ‖JF (x(0))−1F(x(0))‖ ≤ β

and h0 := ωβ ≤ 1
2 .

Let r∗ = (1− √
1 − 2h0)/ω and S̄(x(0), r∗) := {x | ‖x − x(0)‖ ≤ r∗} ⊆ D. Then:

1. The iterates (4) are well-defined, remain in S̄(x(0), r∗), and converge to a
solution x∗ of F(x) = 0.

2. The solution is unique in S(x(0), r∗∗) ∩ D where r∗∗ := (1 + √
1 − 2h0)/ω.

Furthermore, assume h < 1
2 and define the recursive sequence hj := h2j−1

2(1−hj−1)
2 .

Then, also the following error estimates hold.

‖Δx(j)‖ ≤ 1

2
ω

√
1 − 2hj√
1 − 2h0

‖Δx(j−1)‖2, j = 1, 2, 3, . . . (5)

‖x(j) − x∗‖ ≤ 2‖Δx(j)‖
1 +

√

1 − 2ω
√

1−2hj√
1−2h0

‖Δx(j)‖
, j = 0, 1, 2, . . . (6)

A drawback of the Newton-Kantorovich theorem is that it is not possible to obtain
sufficient conditions for the convergence of Newton’s method by only using data
from the initial guess x(0). Instead, local information about the Lipschitz constant
ω is required. The necessity of local information motivated Smale to develop his α-
theory [34], which only requires data from the initial guess x(0) to compute sufficient
conditions for the convergence of Newton’s method. This point of view has valuable
features for the theory of computation. In particular, it is the building block for the
complexity analysis of polynomial homotopy continuation methods [7, 8, 11, 26],
certified path tracking algorithms [7] and the a posteriori certification of zeros [21].

Smale [34] introduced the concept of an approximate zero in order to talk about
initial guesses that are super-convergent with the first iteration. That is, the initial
guess x(0) converges and the constant c on the right-hand side of

‖Δx(j)‖ ≤ c‖Δx(j−1)‖2, j = 1, 2, 3, . . .

is not large.

Definition 1 (Approximate zero) The point x(0) ∈ C
n is an approximate zero of F

if the Newton iterate x(j) is defined for j = 1, 2, . . . and satisfies

‖Δx(j)‖ ≤
(
1

2

)2j −1

‖Δx(0)‖ .

If x(0) is an approximate zero, then the true zero x∗ ∈ C
n of F to which the iterates

are converging is the associated zero of x(0).
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Smale’s α-theorem gives a sufficient condition for x(0) to be an approximate zero.
The theorem uses

γ (F, x) := supk≥2

∥∥ 1
k! JF (x)−1DkF(x)

∥∥
1

k−1 and β(F, x) := ‖JF (x)−1F(x)‖
where DkF is the tensor of order-k derivatives of F and the tensor J−1

F DkF is
understood as a multilinear map A : (Cn)k → C

n.

Theorem 2 (Smale’s α-theorem [34]) There is a naturally defined
number α0 approximately equal to 0.1307 such that if α(F, x(0)) :=
β(F, x(0)) γ (F, x(0)) < α0, then x(0) is an approximate zero of F .

It is also possible to give sufficient conditions for x(0) to be an approximate zero
under the assumptions of the Newton-Kantorovich Theorem 1.

Lemma 1 Using notation from Theorem 1 assume

h0 = ω‖Δx(0)‖ ≤ 2(
√
4a4 + a2 − 2a2) =: h(a)

for a parameter 0 < a < 1. Then, the contraction factors

Θj := ‖Δx(j+1)‖
‖Δx(j)‖ ≤ a2

j
, j = 0, 1, 2, . . . (7)

and the error bounds

‖Δx(j)‖ ≤ a2
j −1‖Δx(0)‖ , j = 1, 2, . . . (8)

are satisfied. In particular, x(0) is an approximate zero if h0 ≤ √
2 − 1.

Proof From the error estimate (5) follows

Θj ≤ 1

2
ω

√
1 − 2hj√
1 − 2h0

‖Δx(j)‖ ≤ 1

2
ω

√
1

1 − 2h0
‖Δx(j)‖ (9)

= 1

2
ω‖Δx(0)‖

√
1

1 − 2h0

j−1∏


=0

Θj = h0

2
√
1 − 2h0

j−1∏


=0

Θ
 .

From h0 ≤ 2(
√
4a4 + a2 − 2a2) < 1

2 follows h0
2
√
1−2h0

≤ a and therefore

Θj ≤ a

j−1∏


=0

Θ
 ≤ aa
∑j−1


=0 2

 = a2

j

.

Statement (8) follows from (7) by observing

‖Δx(j)‖
‖Δx(0)‖ =

j−1∏


=0

Θ
 ≤ a2
j −1 .
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The Newton-Kantorovich theorem and Smale’s α-theorem both give sufficient
conditions for an initial guess to be an approximate zero. For the former, a (local)
estimate of the Lipschitz constant ω needs to be obtained and for the latter γ needs
to be computed. The path tracking algorithm developed in this paper is based on the
Newton-Kantorovich theorem since a (rough) estimate of ω can be computed with
almost no additional cost during the Newton iteration.

A computational estimate [ω] of ω is

[ω] := 2
‖Δx(1)‖
‖Δx(0)‖2 . (10)

This can be seen as follows. Using the error estimate (5)

‖Δx(1)‖ ≤ 1

2
ω

√
1 − 2h1
1 − 2h0

‖Δx(0)‖2

together with the observation 1−2h1
1−2h0

= (1 − h0)
−2 follows

‖Δx(1)‖ ≤ 1

2
ω

1

1 − ω‖Δx(0)‖‖Δx(0)‖2

which is equivalent to

2‖Δx(1)‖
‖Δx(0)‖2 + 2‖Δx(0)‖‖Δx(1)‖ ≤ ω . (11)

The computational estimate (10) is now obtained by upper bounding (11) with

2‖Δx(1)‖
‖Δx(0)‖2 + 2‖Δx(0)‖‖Δx(1)‖ ≤ 2

‖Δx(1)‖
‖Δx(0)‖2 = [ω] .

2.2 Computational aspects and floating point arithmetic

After establishing the theoretical foundations of Newton’s method as well as a
method to obtain a computational estimate of the Lipschitz constant ω, these results
are now used to guide the development of a Newton corrector algorithm. For this,
the behavior of Newton’s method in floating-point arithmetic has to be taken into
account.

Limit accuracy The following assumes the standard model of floating point arith-
metic [23, Section 2.3]

f l(x op y) := (x op y)(1 + δ), |δ| ≤ u, op = +, −, ∗, /

where u is the unit roundoff. In standard double precision arithmetic u = 2−53 ≈ 2.2·
10−16. In [38], Tisseur analyzed the limit accuracy of Newton’s method in floating-
point arithmetic. Let x∗ ∈ C

n be a zero of F with JF (x∗) non-singular, and let
x(0) ∈ C

n be an approximate zero of F with associated zero x∗. In floating point
arithmetic, we have

x(j+1) = x(j) − (JF (x(j)) + Ej)
−1(F (x(j)) + ej ) + εj

where
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– ej is the error made when computing the residual F(x(j)),
– Ej is the error incurred in forming JF (x(j)) and solving the linear system for

Δx(j),
– εj is the error made when adding the correction to x(j).

Assume that F(x(j)) is computed in the possibly extended precision ū ≤ u before
rounding back to working precision u and assume that there exists a function ψ

depending on F , x(j), u and ū such that

‖ej‖ ≤ u‖F(x(j))‖ + ψ(F, x(j), u, ū) .

Similarly, assume that the error Ej satisfies

‖Ej‖ ≤ uφ(F, x(j), n, u)

for some function φ that reflects both the instability of the linear solver and the error
made when forming JF (x(j)). Then, the following statement holds [38, Corollary
2.3].

Theorem 3 [38] Let x(0) be an approximate zero with associated zero x∗,
x∗ = 0, assume that JF (x∗) is non-singular, satisfies u κ(JF (x∗)) ≤ 1

8 and assume
that for all j

u‖JF (x(j))−1‖φ(F, x(j), n, u) ≤ 1

8
.

Then, Newton’s method in floating point arithmetic generates a sequence of iterates
x(j+1) whose normwise relative error decreases until the first j for which

‖x(j+1) − x∗‖
‖x∗‖ ≈ ‖JF (x∗)−1‖

‖x∗‖ ψ(F, x∗, u, ū) + u =: μ(x∗, u, ū) . (12)

In the following, the valueμ(x∗, u, ū) is referred to as the limit accuracy. Theorem
3 shows that the limit accuracy is influenced by three factors: the working precision u,
the accuracy of the evaluation of the residual (in possibly extended precision ū), and
the conditioning of the Jacobian. The essential consequence of this is that Newton’s
method cannot always produce solutions whose normwise relative error is on the
order of the working precision u. From the error estimate (5) follows that if for a
given j

‖Δx(j)‖ ≤ ω‖Δx(j−1)‖2
2
√
1 − 2h0

≤ μ(x∗, u, ū)‖x∗‖, (13)

then the normwise relative accuracy of x(j) in floating point arithmetic is only of
order μ(x∗, u, ū). Assume that for a given j (13) is satisfied. Then, a computational
estimate [μ] of μ(x∗, u, ū) can be obtained by computing ‖Δx(j)‖/‖x(j+1)‖.

The following lemma shows that using extended precision improves the limit
accuracy.

Lemma 2 For extended precision ū ≤ u it holds μ(x∗, u, ū) ≈ μ(x∗, u, u) ū
u

+ u.
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Proof From Section 4.3.2 in [5] follows that for a system of polynomials given as
a straight line program ψ(F, x(j), u, ū) in Theorem 3 is a linear function in ū, i.e.,
ψ(F, x(j), u, ū) = ū

u
ψ(F, x(j), u, u). The statement then follows from (12).

If the working precision u is standard double-precision arithmetic, then computing
with extended precision can be accomplished by using double-double arithmetic. A
double-double number is represented as an unevaluated sum of a leading double and
a trailing double, resulting in a unit roundoff of 2−106 = u2. Bailey [2] pioneered
double-double arithmetic, and implementations are nowadays available for a wide
variety of programming languages and architectures.

Assume that for a fixed parameter a ∈ (0, 1
2 ] the Newton iterates starting at the

initial guess x(0) are required to satisfy the contraction factors

Θj = ‖Δx(j+1)‖
‖Δx(j)‖ ≤ a2

j

j = 0, 1, 2, . . . .

If the Newton iterates are computed with precision ū = u, then (13) implies together
with Lemma 1 that if

ωμ(x∗, u, u) > a2
k−1h(a)‖x∗‖, (14)

then there does not need to exist an initial guess x(0) such that the first k contraction
factors are satisfied. Given a fixed k, for instance, k = 2, this gives a criterion when to
use extended precision. Similarly, if the Newton iteration is performed with extended
precision, then it is possible to use only working precision again if ωμ(x∗, u, u) <

a2
k−1h(a).
The working precision u is insufficient if the combination of the error in the evalu-

ation of the Jacobian and the instability in the linear system solver become too large.
In this case, a multi-precision path tracking algorithm as [5] is necessary. However,
as demonstrated in Section 5, using only double precision arithmetic for the linear
system solver is sufficient for most applications. Nevertheless, even if the precision u

is sufficient to achieve the limit accuracy, the analysis of Tisseur also shows that the
convergence speed of Newton’s method can decrease due to a too unstable linear sys-
tem solver. In this case, the theoretical convergence speed may not be achieved which
in turn can lead to not satisfying the required contraction factors. To circumvent this,
the Newton updates are improved using mixed precision iterative refinement [22] if
ū < u. This stabilizes the linear system solver sufficiently to achieve the theoretical
convergence speed.

Stopping criteria Criteria for stopping the Newton iteration are now derived. Assume
that ω and the limit accuracy μ = μ(x∗, u, ū) are known. If for any j the contraction
factor

Θj = ‖Δx(j+1)‖
‖Δx(j)‖ ≤ a2

j

(15)
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is not satisfied then the iteration is stopped and the initial guess is rejected. The
iteration is stopped successfully at step j if the next update would be smaller than the
limit accuracy, i.e.,

ω‖Δx(j−1)‖2
2
√
1 − 2h(a)

≤ ‖x(j)‖μ . (16)

An additional Newton update is computed to obtain a computational estimate of μ.

Scaling Before the full Newton corrector algorithm is stated, a final point is
addressed. So far, a simple rescaling of variables can change the behavior of the
algorithm sinceω,μ and ‖Δx(j)‖ are not invariant under rescaling of variables. Addi-
tionally, if x∗ = 0 the accuracy needs to be measured with an absolute, and not a
relative, normwise error. A rescaling of variables is formally the change of variables

y = D−1x, D = diag(d1, . . . , dn), di ∈ R>0 .

With x = (x1, . . . , xn) and |xi | = 0 the choice di ≈ |xi | results in new coordinates
yi of unit order. To deal with the case |xi | = 0 as well as with possible overflows in
floating point arithmetic, an absolute threshold value dmin > 0 of the form

di = max{|xi |, dmin} (17)

has to be imposed. For instance, dmin = max(
√

umaxi |xi |, u). To not introduce
rounding errors, the scaling factors D should be powers of the floating-point radix
β (β = 2 in the case of IEEE-754 floating point standard arithmetic). Instead of
performing the change of variables explicitly in Newton’s method, the size of the
Newton updates can also be measured with the weighted error ‖D−1Δx(j)‖ . Using
the scaling factors D allows the algorithm to perform independent of the initial
provided variable scaling (assuming that the initial scaling is not too extreme).

The Algorithm Finally, a new Newton corrector algorithm, Algorithm 1, is stated.
The algorithm builds on the results developed in this section. The idea of the algo-
rithm is to reject an initial guess x(0) if the Newton iterates x(0), x(1), x(2), . . . do not
satisfy

‖x(j+1) − x(j)‖ ≤ a2
j −1‖x(1) − x(0)‖

for j = 1, 2, . . . , m and some fixed constant a ∈ (0, 1
2 ]. Here, m is decided dynam-

ically based on (16). The rejection of an initial guess is performed using the slightly
stricter criterion (15). The algorithm needs as input estimates of the limit accuracy μ

and the Lipschitz constant ω and also returns updated estimates of these quantities.
During the path tracking, estimates are available by using the returned estimates from
the previous steps. What to do at the beginning of the tracking, if these estimates are
not available, is addressed after the algorithm.

The algorithm requires estimates of the limit accuracy μ and the Lipschitz con-
stant ω. During the path tracking, the computational estimates for both of them are
available by using the computed estimates of the Newton corrector from the previous
step. However, this leaves open what to do for the first step. There are two possibil-
ities. If the start solution is the solution of a previous tracking, then computational
estimates ofμ and ω are already available. If this is not the case, the following heuris-
tic, Algorithm 2, to determine values for [μ] and [ω] proved to be helpful. The idea is
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Algorithm 1 Newton corrector.

Require: F : Cn → C
n, x(0) ∈ C

n, a ∈ (0, 1
2 ], estimate [μ] > 0 of the limit accuracy μ,

estimate [ω] > 0 of ω, evaluation precision ū ≤ u, and positive scaling factors D such
that the coordinates of D−1x(0) are of unit order.

Ensure: Boolean indicating whether x(0) was accepted, approximation x̄ ∈ C
n of a zero x∗

of F , updated estimate of the (limit) accuracy μ at x∗, updated estimate of ω, number of
updates j and last contraction factor Θj−2.

1: procedure NEWTON(F, x(0), a, [μ], [ω], ū, D)
2: j ← 0
3: while true do
4: r ← Evaluate F at x(j) with precision ū and round result to precision u

5: Solve JF (x(j))Δx(j) = r

6: x(j+1) ← x(j) − Δx(j)

7: if j = 1 then

8: [ω] ← 2 ‖D−1Δx(1)‖
‖D−1Δx(0)‖2 � Compute ω estimate

9: end if
10: if j ≥ 1 and ‖D−1Δx(j)‖

‖D−1Δx(j−1)‖ > a2
j−1

then � Check sufficient contraction

11: return (false, x(j+1), [μ], [ω], j + 1, ‖D−1Δx(j)‖
‖D−1Δx(j−1)‖ )

12: else if ω‖D−1Δx(j)‖2
2
√
1−2h(a)

≤ [μ] then � Approaching limit accuracy

13: r ← Evaluate F at x(j+1) with precision ū and round result to precision u

14: Solve JF (x(j+1))Δx(j+1) = r

15: x(j+2) ← x(j+1) − Δx(j+1)

16: [μ] ← ‖D−1Δx(j+2)‖ � Update of the limit accuracy

17: return (true, x(j+2), [μ], [ω], j+2, ‖D−1Δx(j+1)‖
‖D−1Δx(j)‖ )

18: end if
19: j ← j + 1
20: end while
21: end procedure

to add a small perturbation to the provided start solution and to perform two Newton
steps. If the perturbation is sufficiently small, then the perturbed solution still con-
verges to the provided start solution, and an estimate of [ω] and [μ] can be obtained.
As an added benefit, this provides a test to point out invalid start solutions, e.g., due
to user error. For simplicity, it is assumed that it is sufficient to compute the residual
with precision u.

3 Predictors and Padé approximants

After carefully studying the Newton corrector in the previous section, the attention
now shifts to the predictor. Recall that the role of the predictor is to produce for a
given step size Δt an initial guess x(0) such that the corrector converges sufficiently
fast. The choice of the step size Δt will be addressed in the next section, but before it
is essential to understand the influence of Δt on the distance of the initial guess x(0)

to the solution path.
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Algorithm 2Model initialization heuristic.

Require: Candidate x(0) ∈ C
n, a ∈ (0, 1), scaling factors D such that the coordinates of

D−1x(0) are of unit order.
Ensure: Boolean indicating whether the initialization was successful, estimate [μ] of the limit

accuracy μ of the associated zero of x(0), and an estimate [ω] of ω.
1: procedure MODELINITIALIZATION(x(0), a, D)
2: v ← ‖D−1JF (x(0))−1F(x(0))‖ + u

3: ε ← √
v

4: for k ← 1 : 3 do � Try up to 3 different sizes of perturbations
5: x̄ ← x(0) + εD � Add relative perturbation
6: Δ0 ← JF (x̄)−1F(x̄)

7: x(1) ← x̄ − Δ0

8: Δ1 ← JF (x(1))−1F(x(1))

9: x(2) ← x(1) − Δ1

10: if ‖D−1Δ1‖/‖D−1Δ0‖ < a then

11: [ω] ← 2 D−1‖Δx(1)‖
‖D−1Δx(0)‖2

12: [μ] ← ‖D−1Δ1‖
13: return (true, [μ], [ω])
14: else � ω larger than ε, reduce ε

15: ε ← εu2
−k

16: end if
17: end for
18: return (false, [μ], [ω])
19: end procedure

Consider the homotopy H(x, t) : C
n × C → C

n and a constant t̄ > 0. Given
a solution s ∈ C

n of the system H(x, 0) = 0 assume that there is a solution path
x(t) : [0, t̄ ] → C

n implicitly defined by the conditions

H(x(t), t) = 0 for all t ∈ [0, t̄ ] and x(0) = s . (18)

Also assume that Hx(x(t), t) is nonsingular for all t ∈ [0, t̄ ]. Then, x(t) can be
extended to a holomorphic function with H(x(t∗), t∗) = 0 for all t∗ in some
nonempty open neighborhood of 0.

Without loss of generality, in the following, only the situation at t = 0 is con-
sidered, thus Δt = t . A predictor generates a prediction path x̂(t) : [0, t̄ ] → C

n

with x̂(0) = x(0) and they can be classified by the local order of the prediction error
‖x̂(t) − x(t)‖.

Definition 2 (Local order of a predictor) A predictor is of local order p if there exists
a τ > 0 and a constant ηp ≥ 0 such that for all t ∈ [0, τ ]

‖x̂(t) − x(t)‖ ≤ ηptp .

The constant τ is the trust region of the predictor.
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Example 1 The Euler predictor x̂(t) = x(0) + t ẋ(0) is of local order p = 2 with
τ = t̄ since

‖x(t) − x̂(t)‖ = ‖x(t) − x(0) − t ẋ(0)‖ ≤ 1

2
max

t∈[0,t̄ ]
‖ẍ(t)‖t2 .

There are many different families of predictors known in the literature, with
the most famous ones probably being (embedded) Runge-Kutta methods. In [4]
it is shown that for polynomial homotopy continuation higher-order Runge-Kutta
methods are substantially more efficient than the Euler predictor. However, in the fol-
lowing, another particular class of predictors is considered: Padé approximants. See
[3] for an exhaustive treatment of Padé approximants. The use of Padé approximants
is strongly motivated by the recent results from Telen, Van Barel, and Verschelde
[37] where a path tracking algorithm is developed that is very robust against path
jumping. But it is to note that the use of Padé approximants as predictors was already
considered in [33].

Definition 3 (Padé approximant) Let x(t) = ∑∞

=0 c
t


 be a convergent power
series. The type (L, M) Padé approximant is the rational function

[L/M]x := a0 + a1t + a2t
2 + · · · + aLtL

1 + b1t + b2t2 + · · · + bMtM

such that x(t) and [L/M]x (considered as formal power series) satisfy

[L/M]x − x(t) ∈ O(tL+M+1) .

Remark 1 A type (L, M) Padé approximant is a predictor of local order L + M + 1.

The following use of Fabry’s ratio theorem is the key result from [37] which is
used to obtain an estimate for the trust region of a Padé predictor. Since x(t) is holo-
morphic in a nonempty open neighborhood of 0, there is a coordinatewise expansion
of x(t) as a convergent power series around 0. Write xj (t) = ∑∞


=0 c
t

 for the Tay-

lor expansion of the coordinate function xj (t) at 0. For sufficiently largeL the pole of
the Padé approximant [L/1]xj

indicates the distance to the nearest singularity (also
if it is a branch point). This is seen as follows. A computation shows that if cL = 0,

[L/1]xj
= c0 + c1t + . . . + cL−1t

L−1 + cLtL

1 − tcL+1/cL

. (19)

Hence, the pole of [L/1]xj
is cL/cL+1 (or it is ∞ if cL+1 = 0). Fabry’s ratio theorem

[16] now states that if the limit limL→∞ cL/cL+1 exists it is a singularity of x(t).

Theorem 4 Suppose that the coefficients of the power series
∑∞


=0 c
t

 are such

that the limit limL→∞ cL/cL+1 = λ = 0 exists. Then, the series converges uniformly
inside the disk {|t | < |λ|} and λ is a singular point of xj (t) = ∑∞


=0 c
t

.

For a fixed L the modulus |cL/cL+1| therefore can be assumed to be an approxi-
mation of the distance to the nearest singularity of x(t) and a computational estimate
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of the trust-region τ of the Padé approximant. It is recommended to see Section 3 of
[37] to learn more about Padé approximants in the context of homotopy continuation.

For the computation of a Padé approximant of type (L, M), it is necessary to
compute the local derivatives x(
)(0) for 
 = 1, . . . , L + M . For this Mackens [27]
observed the following useful identity.

Lemma 3 [27] The local derivatives x(
)(t) can be computed using the formula

x(
)(t) = −Hx(x(t), t)−1R
(t) ,

where

R
(t) := (
d
dλ

)

H

(
x(t) + ∑
−1

i=1
1
i!x

(i)(t)λi, t + λ
) ∣∣∣

λ=0
. (20)

In [27], this identity is used for the computation of x(
)(0) by numerical differen-
tiation. A downside of numerical differentiation is that it can suffer from catastrophic
cancellation resulting in wrong approximations. Instead of using numerical differ-
entiation, the expression (20) can be computed efficiently and accurately by using
automatic differentiation [19, Chapter 13]. In particular, the cost of computing R


using automatic differentiation is at most 2
2 + O(
) times the cost of evaluating
H by a straight-line-program. The dominating factor for the accuracy of x(
)(t) is
the forward error of the linear system solving. To ensure that computed derivatives
are sufficiently accurate, the forward error of the linear system solving should be
monitored and if necessary be reduced by using mixed precision iterative refinement
[22].

A robust Padé approximant implementation also needs to handle the edge cases
that x(
)

j (0) = 0 for some 1 ≤ j ≤ n and 1 ≤ 
 ≤ L+M . In [18], a robust algorithm
is proposed for computing Padé approximants. The provided implementation uses
this algorithm for the computation of the Padé approximants.

It is also possible to obtain an estimate of the local approximation error of a Padé
approximant as was shown in [37]. By comparing for each coordinate function xj (t)

the coefficient of tL+M+1 in

(a0 + a1t + . . . + aLtL) − (1 + b1t + . . . + bMtM)(c0 + c1t + c2t
2 + . . .)

it follows

e0,j = −(cL+M+1 + b1cL+M + . . . + bMcL+1) .

Considering the Taylor expansion of [L/M]xj
at 0 it follows

xj (t) − [L/M]xj
(t) = e0,j t

L+M+1 + O(tL+M+2) .

Therefore, for a Padé approximant, a computational estimate [ηL+M+1] of ηL+M+1
is

[ηL+M+1] := ‖D−1(e0,1, . . . , e0,n)‖ (21)

where D > 0 are the same scaling factors as used for the Newton corrector in
Section 2.
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4 Step size control and path tracking algorithm

After studying Newton’s method as a correction method in Section 2 and Padé
approximants as a prediction method in Section 3, the results are now combined to
derive an adaptive step size control. Afterward, the path tracking algorithm is stated.

Consider the homotopy H(x, t) : Cn × C → C
n with a given solution s ∈ C

n of
the system H(x, 0) = 0 and constant t̄ > 0. Assume there is a solution path x(t) :
[0, t̄] → C

n implicitly defined by the conditions x(0) = s and (18), and assume
that Hx(x(t), t) is non-singular for all t ∈ [0, t̄ ]. Denote by x̂(t) : [0, τ̄ ] → C

n the
prediction path produced by the Padé approximant. As in Section 3, only the situation
at t = 0 is considered such that Δt = t .

The goal of the step size routine is to provide a step size t such that the Newton
iterates x(j) starting at the initial guess x̂(t) = x(0) satisfy for j = 0, 1, 2, . . . the
contraction factors

Θj = ‖Δx(j+1)‖
‖Δx(j)‖ ≤ a2

j

(22)

for a fixed parameter a ∈ (0, 1), for instance a = 0.2. Recall from Lemma 1 that if
a ≤ 1

2 , then x̂(t) is an approximate zero. Assuming knowledge about the Lipschitz
constant ω in a neighborhood of the path x(t) and the theoretical quantities intro-
duced in Section 3, it is possible to give a maximal theoretical feasible step size tmax
such that this is the case. The approach to use the theoretical quantities ω, ηp, and τ

to determine a maximal feasible step size such that Newton’s method converges was
pioneered by Deuflhard in [12].

Theorem 5 [14] Let D ⊆ C
n such that for all x ∈ D and t ∈ [0, t̄ ], t̄ > 0, the

Jacobian Hx(x, t) is non-singular. Assume that for each t ∈ [0, t̄ ] there exists a
convex subset D(t) ⊆ D with x(t) ∈ D(t) where x(t) denotes the unique solution
path in D × [0, t̄ ]. Let x̂(t) : [0, t̄ ] → D denote a prediction path of order p with
trust-region τ , i.e., with

‖x̂(t) − x(t)‖ ≤ ηptp for all t ∈ [0, τ ] .
Moreover, assume for all t ∈ [0, t̄ ] the affine covariant Lipschitz condition

‖Hx(x̂(t), t)−1(Hx(u, t) − Hx(v, t))‖ ≤ ω‖u − v‖ for all u, v ∈ D(t) .

For fixed h ≤ 1
2 let tmax = min(t∗, τ, t̄) where

t∗ :=
(√

1 + 2h − 1

ωηp

)1/p

(23)

and for all t ≤ tmax let B(t) denote a ball around x̂(t) with radius (1− √
1 − 2h)/ω

and assume B(t) ⊆ D(t). Then, for all step sizes t ≤ tmax, the Newton iterates
starting at x̂(t) = x(0) are well-defined, remain in B(t), converge towards x(t), and
satisfy ‖Hx(x̂(t), t)−1H(x̂(t), t)‖ ≤ h

ω
.
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Proof For h = 1
2 the statement is Theorem 1.3 in [12]. The more general maxi-

mal step size (23) and the inequality ‖Hx(x̂(t), t)−1H(x̂(t), t)‖ ≤ h
ω
follows from

equations (1.14a) and (1.14b) in the proof of Theorem 1.3 in [12].

In Theorem 5, there is a choice of the parameter h ≤ 1
2 . If this is sufficiently

small, then the contraction factors (22) are satisfied. The following corollary makes
this precise.

Corollary 1 In Theorem 5 choose h ≤ h(a) = 2(
√
4a4 + a2 − 2a2) for a ∈ (0, 1).

Then, the Newton iterates starting at x̂(t) satisfy the contraction factors

‖Δx(j+1)‖
‖Δx(j)‖ ≤ a2

j

.

Proof Since ‖Hx(x̂(t), t)−1H(x̂(t), t)‖ ≤ h
ω
follows h0 ≤ h and using Lemma 1

follows the statement.

If the step size is chosen according to Theorem 5, then path jumping cannot hap-
pen. However, to obtain the theoretical quantities ω, ηp, and τ is very hard. Instead,
the theoretical quantities are replaced by easy to obtain computational estimates [ω],
[ηp] and [τ ]. Using the computational estimates and Corollary 1, an estimate [tmax]
of the maximal feasible step size tmax is given by

[tmax] := min
( [t∗], βτ [τ ], t̄

)
(24)

where

[t∗] :=
(√

1 + 2h(a) − 1

βω[ω][ηp]
)1/p

where 0 < βτ < 1 and βω ≥ 1 are additional safety factors, for instance βτ = 0.75
and βω = 10. Instead of choosing βω fixed, it seems worthwhile to develop a more
adaptive criterion for choosing βω in the future.

Since [ηp] and [ω] are only lower bounds and [τ ] is only an upper bound for the
theoretical quantities, it is possible that the step size t = [tmax] is larger than tmax.
Then, it can happen that the Newton corrector Algorithm 1 rejects the initial guess
since Θk > a2

k
for some k. In this case, a suitable step size correction formula is

t ′ :=

⎛

⎜⎜
⎝

√
1 + 2h( 12a) − 1

√
1 + 2h

(
Θ2−k

k

)
− 1

⎞

⎟⎟
⎠

1/p

t (25)

which is a clear reduction since Θ2−k

k > a.
Before the path tracking algorithm is stated, the similarities and differences to the

step size control developed in [37] are stated. In [37] the authors develop an adaptive
step size control similar to (24) with the difference that their algorithm uses instead
of [t∗] the step size candidate Δt1 computed as follows. For Δt1, an estimate δ of the
distance to the nearest path is computed based on a second-order Taylor expansion
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around x(0). This involves the computation of the Hessian ofH and multiple singular
value decompositions. Then, Δt1 = (

β1δ/[ηp])1/p where β1 is a safety factor to
unknown region of convergence of Newton’s method, for instance β1 = 0.005.

Finally, the path tracking algorithm, Algorithm 3, is stated. It is assumed that the
computational estimates [ω] and [μ] for the start solution s are available. These are
either available as a result of a previous path tracking or by using Algorithm 2.

5 Computational experiments

In this section, numerical experiments are shown to illustrate the effectiveness of the
proposed path tracking algorithm. A prototype implementation of the path tracking
algorithm together with all the data necessary to run the experiments is available at
https://doi.org/10.5281/zenodo.3667414 .

The path tracking algorithm will also be implemented in version 2.0 of the Julia
package HomotopyContinuation.jl [10].

In the following experiments, the performance of the proposed path tracking
algorithm is studied. Additionally, the algorithm is compared against the adaptive
precision path tracking algorithm [5] as it is implemented in the state of the art pack-
age Bertini [6]. For the different solvers, the following notations are used in the
experiments:

HC.jl The provided implementation of the algorithm
Bertini DP Bertini v1.6 using double precision arithmetic (MPTYPE = 0)
Bertini AP Bertini v1.6 using adaptive precision (MPTYPE = 2)

All solvers are used intentionally with the default settings unless otherwise men-
tioned since for a non-expert user it is very hard to understand which parameters need
to be changed. Note that Bertini uses by default a path tracking tolerance of 10−5

before and 10−6 during the endgame. The experiments are performed on a 24 GB
RAM machine with an Intel Core i5-7500 CPU working at 3.40 GHz. All solvers
use only one core for all the experiments unless stated otherwise. The experiments
are designed such that the tracked solution paths are all smooth. Therefore, endgame
algorithms are not necessary. In all experiments, the implementation of the proposed
algorithm uses a (2, 1) Padé approximant with parameters a = 0.2, βω = 10 and
βτ = 0.75.

5.1 Mixtures of Gaussians and themethod of moments

This example illustrates the behavior of the path tracking algorithm with respect to
the two computed quantities [t∗] and βτ [τ ] which restrict the step size [tmax] in (24).
Consider two univariate Gaussian random variables X1 and X2 with means μ1, μ2
and variances σ 2

1 , σ 2
2 . A mixture of the two random variables X1 and X2 is then the

random variable where for a given value λ ∈ [0, 1] a value is drawn from X1 with
probability λ and with probability 1 − λ from X2. Only given observations of the
the mixture of the two random variables, the parameters μ1, μ2, σ

2
1 , σ 2

2 , and λ can
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Algorithm 3 Path tracking algorithm.

Require: Homotopy H(x, t) : Cn ×C → C
n, s ∈ C

n such that s is an approximate
zero of G(x) := H(x, 0), estimates [ω] and [μ] of ω and μ, a ∈ (0, 1

2 ], safety
factors βω and βτ , minimal step size tmin, type of Padé approximant L.

Ensure: Approximate zero of F(x) := H(x, 1) or false if the tracking failed.
1: procedure TRACK(H, s, [ω], [μ], a, βω, βτ , tmin, L)
2: (t, Δt) ← (0, ∞)

3: x ← s

4: ū ← u

5: Initialize scaling factors D using x and (17)
6: while t < 1 do
7: Compute x(1)(t), . . . , x(L+2)(t) from (x, t) by using the identity (20)
8: Compute [ηL+2] and [τ ] for (L, 1) Padé approximant using (19) and (21)

9: Δt ← min

([√
1+2h(a)−1

βω[ω][ηL+2]
]1/(L+2)

, 1 − t, βτ [τ ]
)

10: Use (L, 1) Padé approximant to obtain initial guess x̂ at t + Δt

11: Update scaling factors D using x̂ and (17)
12: (success, x̄, [μ], [ω], Θk) ← NEWTON(x̂, a, [μ], [ω], ū, D)

13: if success then
14: t ← t + Δt

15: x ← x̄

16: else

17: Δt ←
⎛

⎝
√
1+2h(0.5a)−1√
1+2h

(
Θ2−k

k

)
−1

⎞

⎠

1/(L+2)

Δt

18: if Δt < tmin then
19: return false
20: end if
21: go to Line 10
22: end if
23: if ū = u and [ω][μ] > a5h(a) then � Use extended precision, see (14)
24: ū ← u2

25: else if ū = u2 then
26: Compute estimate μu of μ(x, u, u) as described in Section 2.2
27: if [ω]μu < a7h(a) then
28: ū ← u

29: end if
30: end if
31: end while
32: return x

33: end procedure
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be recovered by using the method of moments. See [1] for a detailed algebraic treat-
ment of this problem. As shown in [1] for a mixture of two univariate Gaussians, the
method of moments results in a polynomial system consisting of five polynomials
of degree two to six in five variables and with five parameters, the sample moments.
For generic sample moments, this system has 18 isolated solutions. Starting from
generic sample moments, the 18 solutions were tracked to 50 different real sample
momements draw elementwise independently from a normal distribution. For this, a
path needed on average 14.55 steps (including rejected steps) and on average only
0.18 steps got rejected. This shows that the step size control effectively avoids tak-
ing too large steps. In 62.25% of the steps, the step size was more restricted by the
curvature condition [t∗] than the distance to the closest singularity βτ [τ ]. This shows
that both conditions, [t∗] and βτ [τ ], have also in practice an effect on the chosen
step size.

5.2 Alt’s problem

Alt’s problem, formulated in 1923, is to count the number of four-bar linkages
whose coupler curve interpolates nine general points in the plane. In 1992, Mor-
gan, Sommese, and Wampler [40] provided a numerical proof to Alt’s problem that
there are generically 1442 non-degenerate four-bar linkages. Due to Roberts cog-
nates and a twofold symmetry, the resulting polynomial system generically has 8652
regular solutions. Here the formulation of the polynomial system as an affine poly-
nomial system in 24 variables and the 16 parameters (δ, δ̂) ∈ C8 ×C

8 is considered.
Since the problem is formulated in isotropic coordinates, the physically meaningful
configurations correspond to choices of parameters such that δ and δ̂ are com-
plex conjugates. Consider the ‘general’ situation where solutions are tracked from
generic parameter values δ1 ∈ C

8 × C
8 to generic physically meaningful parame-

ter values (δ0, δ̄0) with δ0 ∈ C
8. The results in Table 1 show that even this general

situation results in numerically challenging paths that Bertini AP cannot han-
dle with its default settings1. After decreasing the path tracking tolerance to 10−8,
in half of the cases all solutions are found. The proposed algorithm, on the other
hand, reliably computes all 1442 solutions without any path jumping in a fraction of
the time.

Figure 1 illustrates the behavior of the proposed algorithm for one particular
numerically challenging path. This path closely passes at around t = 0.93 a singu-
larity. As expected, this increases the Lipschitz constant ω and the limit accuracy μ.
The limit accuracy decreases sharply as soon as the algorithm switches to extended
precision. After passing the problematic region, the algorithm quickly switches back
to only using double precision arithmetic, as indicated by a sharp increase of μ.
The lower part of Fig. 1 depicts different values associated with the Jacobian J =
Hx(x(t), t) along the path: the condition number κ(J ), the componentwise relative
condition number cond(J ) and cond(J, x). See [23, Sec. 7] for the definitions. The

1It is to note that Bertini provides a warning when paths fail, so that a user always knows whether a
provided solution set is possibly not complete.
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Table 1 Results for 10 runs of Alt’s problem using the same generic start solutions to a generic physically
meaningful configuration

Runtime (seconds) # solutions

tol Mean Median Min Max Median Min Max

HC.jl - 6.38 6.41 5.08 7.12 1442 1442 1442

Bertini AP 1e-5 1931.63 1832.59 1120.43 2695.13 1436 1433 1441

Bertini AP 1e-8 10950.09 11218.97 8371.76 12115.66 1441 1437 1442

The tol column refers to the assigned path tracking tolerance. Missing solutions are a result of path
tracking failures

values of κ(J ) and cond(J ) obtain a maximum of 2.1× 1025 resp. 1.6× 1019. From
these values, it seems hopeless to track the path in double precision arithmetic due
to the general expectation to lose around log10(κ(J )) digits of accuracy in the linear
system solving. However, the componentwise relative forward error of the computed
Newton updates is only governed by the much tamer cond(J, x) which is at most
5.8×1010. This explains why it is still possible to track the path by only using mixed
precision iterative refinement. Using the proposed path tracking algorithm, the path
needs 253 steps in total with only two rejected steps and a total runtime of 13 ms.
Trying to compute the path with Bertini AP results in a path failure after around
90 s and over 5000 steps due to supposedly insufficient precision of at most 1024 bits.
After changing the required tracking tolerance to 10−12 Bertini AP successfully
tracks the path in 120 s.

Fig. 1 Behavior of the path tracking algorithm along a single challenging path
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Table 2 Results for 50 runs of Steiner’s problem from generic complex parameter values to generic real
parameter values

Runtime (seconds) # Solutions

tol Mean Median Min Max Median Min Max

HC.jl 2.47 2.49 1.64 3.11 3264 3264 3264

Bertini DP 1e-5 34.42 34.57 23.85 45.34 3189 3094 3216

Bertini AP 1e-5 130.53 126.61 78.70 251.01 3261 3256 3264

Bertini AP 1e-8 688.50 691.59 368.36 1125.72 3264 3261 3264

The tol column refers to the assigned path tracking tolerance. Missing solutions are a result of path
tracking failures

5.3 Steiner’s conic problem

A classic problem in enumerative geometry is Steiner’s conic problem. It asks: How
many plane conics are tangent to five given conics in general position? The answer
is 3264. See [15] for historic remarks and a modern intersection theory treatment of
this classic problem. Here, the formulation of Steiner’s conic problem from [9] is
used where the resulting polynomial system consisting of 10 quadratic and 5 cubic
polynomials has 15 variables and 30 parameters. To test the path tracking algorithm,
consider the case of a parameter homotopy [29] from generic complex parameters
c ∈ C30 to generic real parameters r ∈ R

30.
The results for 50 parameter homotopies are shown in Table 2. As for Alt’s prob-

lem, the proposed path tracking algorithm handles all instances without any failure
or path jumping. However, even these generic instances pose problems for other path
tracking algorithms with Bertini AP losing solutions almost always using the
default settings. After the path tracking tolerance is manually decreased to 10−8 in
almost all instances, all solutions are found.

6 Conclusion and future work

This article proposed a mixed precision path tracking algorithm for numerical path
tracking in polynomial homotopy continuation. The results of the computational
experiments demonstrate that the proposed algorithm can handle numerically chal-
lenging situations that are typical for applied problems. The implementation of
the proposed algorithm significantly outperforms the available implementation of
the adaptive precision algorithm [5] in the the considered examples. However, this
does not eliminate the need for an adaptive precision algorithm to solve more
numerically challenging problems. It is expected that the techniques in this article
can be extended to develop a new adaptive precision algorithm. An implemen-
tation is available, and the algorithm will also be integrated into version 2.0 of
HomotopyContinuation.jl.
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