
https://doi.org/10.1007/s10444-021-09875-6

Learning via variably scaled kernels

C. Campi1 ·F. Marchetti2 ·E. Perracchione1

Received: 30 October 2019 / Accepted: 20 May 2021 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract
We investigate the use of the so-called variably scaled kernels (VSKs) for learn-
ing tasks, with a particular focus on support vector machine (SVM) classifiers and
kernel regression networks (KRNs). Concerning the kernels used to train the mod-
els, under appropriate assumptions, the VSKs turn out to be more expressive and
more stable than the standard ones. Numerical experiments and applications to breast
cancer and coronavirus disease 2019 (COVID-19) data support our claims. For the
practical implementation of the VSK setting, we need to select a suitable scaling
function. To this aim, we propose different choices, including for SVMs a probabilis-
tic approach based on the naive Bayes (NB) classifier. For the classification task, we
also numerically show that the VSKs inspire an alternative scheme to the sometimes
computationally demanding feature extraction procedures.
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1 Introduction

In the context of approximation theory, the variably scaled kernels (VSKs) were
introduced in 2015 by [6]. The basic idea behind them is to map the initial set of
examples via a scaling function and construct an augmented approximation space.
Our main contribution consists in linking the VSKs to the field of machine learning,
as the VSKs have a long-known equivalent in pattern analysis. Precisely, many meth-
ods based on feature augmentation, as, e.g., zero padding and feature replication [9,
21, 27], fall into the general VSK setting that we are going to investigate.

Focusing on kernel learning methods and specifically on KRNs and SVMs (see,
e.g., [16, 42]), we give a very general formulation of feature augmentation schemes
via VSKs. In doing so, we drive our attention towards the Gaussian and linear kernels,
being truly popular for learning issues. We provide theoretical results concerning
their practical implementation and expressiveness [13] and we further analyze the
spectrum of the kernel matrices constructed via VSKs. This study reveals the effec-
tiveness of the proposed approach especially for the Gaussian kernel; indeed, the
condition number of the VSK kernel matrix is less than or equal to the condition num-
ber of the matrix constructed via the standard kernel. This fact turns out to be relevant
for KRNs, where one may require to compute the inverse of the kernel matrix, which
is usually affected by severe ill-conditioning. Moreover, for the selection of the scal-
ing function of the KRN-VSK, one can refer to the available literature in the context
of approximation theory [10, 36]. Indeed, the scaling function might be selected so
that it mimics the samples and this might lead to an improvement in terms of accu-
racy and/or stability (see, e.g., [6, 10, 11]). Here, in particular, we propose to use a
non-linear fitting of the function itself as augmented feature.

While for the KRN-VSK we can refer to some available literature for selecting
the scaling function, for SVM-VSK, we consider a probabilistic solution. More pre-
cisely, focusing on binary classification problems, we first note that the VSK setting
induces new feature maps and spaces that depend on the scaling function associated
to the VSK. For being competitive with the accuracy of the classical SVMs, as well
as with other common classifiers, we have to select a suitable scaling function for the
VSKs. To this aim, we remark that the SVM is characterized by a geometric point
of view. Nevertheless, methods based on probability distributions, as the NB classi-
fiers, might outperform SVM. For that reason, many efforts are devoted to investigate
which classifier performs better and under which conditions; for a general overview
refer, e.g., to [7, 31, 47]. In this work, we thus fuse SVM and NB classifiers by means
of VSKs, so that the mixed approach takes into account the probabilistic features of
the NB algorithm and classifies geometrically with SVM. Moreover, we conclude the
paper by presenting a feature extraction algorithm that is inspired by the VSK frame-
work and that might be considered in place of other feature extraction schemes; refer,
e.g., to [19, 45].

The paper is organized as follows. In Section 2, we briefly review the use of ker-
nels in machine learning literature. In Section 3, we investigate the VSKs for two
learning methods, specifically SVM and KRNs. Then, in Sections 4 and 5, we drive
our attention towards the Gaussian and linear VSKs as well as towards the problem
of selecting the scaling function. Section 6 is devoted to numerical experiments with
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both toy models and a real dataset. In Section 7, we present a feature extraction algo-
rithm whose underlying idea is derived from the study of the variably scaled setting.
The last section deals with conclusions and work in progress.

2 Preliminaries

We consider a learning problem with training examples

Σ = {(x1, y1), . . . , (xN, yN)},
where xi ∈ Ω ⊆ R

n and yi ∈ R. For the particular case of the classification setting,
we fix yi ∈ {−1, +1}.

For both SVMs and KRNs, we drive our attention towards (strictly) positive defi-
nite kernels κ : Ω × Ω −→ R, where Ω is a bounded set, that can be decomposed
via the Mercer’s Theorem as explained below (see, e.g., Theorem 2.2. [15] p. 107 or
[26]).

Theorem 1 Let κ : Ω × Ω −→ R be a continuous (strictly) positive definite kernel
that satisfies∫

Ω

κ(x, y)v(x)v(y)dxdy ≥ 0, ∀v ∈ L2(Ω), x, y ∈ Ω,

then the kernel can be expressed as

κ(x, y) =
∑
k≥0

λkρk(x)ρk(y), x, y ∈ Ω,

where {λk}k≥0 are the (non-negative) eigenvalues and {ρk}k≥0 are the (L2-
orthonormal) eigenfunctions of the operator T : L2(Ω) −→ L2(Ω), given
by

T [v](x) =
∫

Ω

κ(x, y)v(y)dy.

Moreover, such expansion is absolutely and uniformly convergent.

We point out that many relevant kernels, e.g., cases where Ω is unbounded or
non-measurable, do not fall into the above Mercer decomposition. Thus, on one side,
taking only Mercer kernels might be restrictive. On the other side, it provides the
adequate background for our purposes and it offers an easy way to introduce feature
maps and spaces. Indeed, for such kernels that admit a Mercer expansion (also called
valid kernels according to the definition given by [42]), it is worth to note that we can
interpret the series representation in terms of an inner product in the so-called feature
space F , which is a Hilbert space. Indeed,

κ(x, y) = 〈Φ(x), Φ(y)〉F , x, y ∈ Ω, (2.1)

where Φ : Ω −→ F is a feature map. For a given kernel, the feature map and space
are not unique. A possible solution is the one of taking the map Φ(x) = κ(·, x),
which is linked to the characterization of F as a reproducing kernel Hilbert space;
see [16, 42] for further details.
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In the classification context, many studies are devoted to investigate and mea-
sure the complexity of a chosen model, such as the so-called VC dimension [44] and
the empirical Rademacher complexity [4]. The complexity of a method is usually
referred to as capacity or expressiveness. Indeed, complex models have the capabil-
ity to perform complex tasks, by determining elaborated decision functions, and thus
to express sophisticated links between the data. In any case, the capacity of a method
needs to be tailored to the considered task, in order to avoid overfitting; for a general
overview, we refer, e.g., the reader to [39].

To better investigate the concept of expressiveness in the kernel setting, we intro-
duce the kernel matrix K constructed via the dataset Ξ = {x1, . . . , xN } ⊆ Ω , i.e.,
the matrix of entries

Kij = κ(xi , xj ), i, j = 1, . . . , N, (2.2)

where κ is a (strictly) positive definite kernel. Note that if κ is a strictly positive
definite kernel then K is positive definite, while it is positive semi-definite if κ is a
positive definite kernel.

Remark 1 The expressiveness of a kernel-based model is related to the number of
dichotomies achievable by a linear separator in the feature space. Moreover, concern-
ing the rank of the kernel matrix, we have the following result [13, Theorem 2, p.
7].

Theorem 2 Let K be the kernel matrix as in (2.2) constructed via Ξ =
{x1, . . . , xN } ⊆ Ω , let us denote by rank(K) its rank. Then, there exists at least one
subset of examples of size rank(K) that can be shattered by a linear function.

As capacity measure dedicated to the kernel setting, we consider the spectral ratio
that has been introduced in [13]. It is defined as

S(K) = tr(K)

‖K‖F
=

∑N
i=1 Kii√∑N

i=1
∑N

j=1 K2
ij

.

According to the following definition (see [13, Definition 1, p. 8]), such quantity
is an expressiveness measure for kernels. As a remark, we also point out that it is
connected to the empirical Rademacher complexity [13, Theorem 4, p. 9].

Definition 1 Let κi, κj : Ω × Ω −→ R, be two (strictly) positive definite kernels.
We say that κj is more specific (or more expressive) than κi whenever for any dataset
Ξ = {x1, . . . , xN } ⊆ Ω , we have

S(Ki ) ≤ S(Kj ), (2.3)

where Ki and Kj are the kernel matrices on Ξ obtained via κi and κj , respectively.

Remark 2 Technically the Definition 1, which is taken by [13], states that κj is more
specific (or more expressive) than κi also when the equality in (2.3) holds true. In the
latter case, we should use the term “equally or more specific than.” To take a common
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notation with the native definition, we simply use the term “more expressive” also
for the trivial case.

The spectral ratio being an expressiveness measure, it is related to the rank of the
kernel matrix (see also Remark 1), indeed

1 ≤ S(K) ≤ √rank(K).

We conclude this brief review on kernels for machine learning by pointing out
that the kernel matrices introduced above might suffer from severe ill-conditioning.
In order to partially overcome instability issues in the approximation framework, a
possible solution comes from the use of VSKs (see below for their definition), which
have been recently introduced in [6]; refer also to [10, 11].

Definition 2 Let Λ ⊆ R
m, m > 0 ∈ N. Let κ : Ω̃ × Ω̃ −→ R, Ω̃ = Ω × Λ ⊆

R
n+m, be a continuous (strictly) positive definite kernel. Given a scaling function

ψ : Ω −→ Λ, a variably scaled kernel κΨ : Ω × Ω −→ R is defined as

κΨ (x, y) := κ((x, ψ(x)), (y, ψ(y))), (2.4)

for x, y ∈ Ω .

We point out that in Definition 2, we present a multidimensional extension of
the scaling function ψ , which has been introduced as a real-valued function in the
previous literature [6].

When dealing with Mercer’s kernels, the construction of a VSK as in Definition 2
provides a valid kernel. We now extend this general setting to work with KRNs and
SVMs.

3 Learning with VSKs

To have a clear theoretical framework, we investigate the use of VSKs as a feature
augmentation algorithm, where new features are added to the original dataset in order
to possibly increase the performances of learning schemes. According to Definition
2, we define a function Ψ : Ω −→ Ω̃ as

Ψ (x) := (x, ψ(x)).

The function Ψ extends the data vector x ∈ Ω , including m features that depend on
the original ones. The VSK kernel defined in (2.4) is a valid kernel, as it corresponds
to an inner product in the associated feature space FΨ (see [42, Proposition 3.22, p.
75]). Moreover, it induces a new feature map Θ : Ω −→ FΨ so that

κΨ (x, y) = 〈Θ(x), Θ(y)〉FΨ . (3.1)

Referring to (2.1), because of [6, Theorem 3.1], the spaces FΨ and the classical fea-
ture space F , associated to κ : Ω̃ × Ω̃ −→ R and induced by the feature map
Υ : Ω̃ −→ F , are isometric; see also [10, Proposition 2.3].

We now investigate the use of the VSKs for both SVMs and KRNs.
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3.1 SVM-VSK

In this section, we present the VSK setting in the SVM algorithm. For this general
overview, we also refer the reader to [16, 42].

We take Ξ = {xi , i = 1, . . . , N} ⊆ Ω , where Ω ⊆ R
n. The associate function

values are so that yi ∈ {−1, +1}, i = 1, . . . , N . Indeed, for the binary classification
problem via VSKs, we need to find a predictor, i.e., a decision function sΨ : Ω −→
{−1, +1}, that assigns appropriate labels, i.e., ỹi ∈ {−1, +1}, to other unknown
samples x̃i , i = 1, . . . , t .

Given x = (x1, . . . , xn)
ᵀ ∈ Ω , we define a non-linear SVM classifier that makes

use of VSKs via the following decision function:

sΨ (x) = sign(hΨ (x)) := sign(〈Θ(x),w〉FΨ + b),

where Θ : Ω −→ FΨ is the VSK feature map and

w =
N∑

i=1

αiyiΘ(xi ) ∈ FΨ .

The coefficients α = (α1, . . . , αN) ∈ R
N are the solution of the following soft

margin problem [16, Sect. 18, pp. 346–347]

⎧⎪⎨
⎪⎩

minα∈RN

1

2

∑N
i=1
∑N

j=1 αiαjyiyj κ
Ψ (xi , xj ) −∑N

i=1 αi,

s.t.
∑N

i=1 αiyi = 0,

0 ≤ αi ≤ ζ, i = 1, . . . , N,

where [0, ζ ]N is known as bounding box, with ζ ∈ R = [0, +∞). Then,

b = yi −
N∑

j=1

αjκ
Ψ (xi , xj ). (3.2)

Observe that in the computation of b any given index i so that 0 < αi < ζ can be
used. However, to make b uniquely defined and for stability purposes, it is computed
via an average over all such candidates.

The equation of the SVM decision function sΨ : Ω −→ {−1, +1}, i.e., w and
b as in equation (3.1) and (3.2), is then found by imposing the Karush Kuhn Tucker
conditions (see, e.g., [29]) and thanks to (3.1), for x ∈ Ω , it reads as follows:

sΨ (x) = sign(hΨ (x)) = sign(〈Θ(x),w〉FΨ + b) = sign

(
N∑

i=1

yiαiκ
Ψ (x, xi ) + b

)
.

If one uses the standard kernel κ : Ω × Ω −→ R, then we recover the classical
SVM setting.

As a second test case for the use of VSKs in the machine learning context, we
investigate regression networks.
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3.2 KRN-VSK

Since here KRNs are used for regression/interpolation tasks, given distinct data Ξ =
{xi , i = 1, . . . , N} ⊆ Ω , where Ω ⊆ R

n, we fix the output variables yi ∈ R,
i = 1, . . . , N .

Concerning supervised learning networks, the simplest strategy consists in learn-
ing the trend between inputs and outputs via a predictor sΨ : Ω −→ R which is a
linear combination of some basis functions, in this case VSKs. For a general overview
on KRNs, we refer the reader to [16, 30].

We keep the general framework of KRNs and we adapt them to the use of VSKs.
Here, we focus on kernels with centers at locations Z = {zi , i = 1, . . . , M} ⊆ Ω;
and thus, our KRN-VSK predictor sΨ : Ω −→ R is of the form

sΨ (x) =
M∑
i=1

ciκ
Ψ (x, zi ),

for (strictly) positive definite kernels κΨ : Ω × Ω −→ R and for some real
coefficients c1, . . . , cM .

For KRN-VSK, we compute c = (c1, . . . , cM)ᵀ ∈ R
M via the following

minimization problem [15]

min
c∈RM

⎡
⎢⎣

N∑
i=1

⎛
⎝yi −

M∑
j=1

cj κ
Ψ (xi , zj )

⎞
⎠

2

+ ν

M∑
j=1

c2
j

⎤
⎥⎦ ,

where ν ∈ R+ is a regularization parameter.
In the following, we may take the set of kernel centers Z ≡ Ξ . In that case, the

kernel matrix KΨ of entries

KΨ
ij = κΨ (xi , xj ), i, j = 1, . . . , N,

is square. Furthermore, if a strictly positive definite kernel as the Gaussian function
is used, then the matrix is non-singular. Therefore, we may look at the special setting
for which ν = 0. In that case, the solution can be found as c = (KΨ )−1y, where
y = (y1, . . . , yN)ᵀ and c = (c1, . . . , cN)ᵀ.

In general, computing the inverse of the kernel matrix K might lead to serious
instability issues due to the typical ill-conditioning of the kernel matrix. This prob-
lem may be somehow overcome by selecting a safe shape parameter γ , formally
introduced below, and/or by using stable bases; refer, e.g., to [20, 24, 34]. In the
incoming sections, we will point out that the use of VSKs might reduce the usual
ill-conditioning of the kernel matrices.

4 Gaussian and linear VSKs

In this section, we focus on specific kernels providing the practical implementation
of the variably scaled setting. Furthermore, we also study the expressiveness and the
conditioning induced by the VSKs.
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4.1 Gaussian kernel

Radial kernels are truly common. They are kernels for whom there exists a radial
basis function (RBF) ϕ : R+ −→ R, where R+ := [0, ∞), and (possibly) a shape
parameter γ > 0 such that, for all x, y ∈ Ω ,

κ(x, y) = κγ (x, y) = ϕγ (||x − y||2) = ϕ(r),

where r := ||x − y||2.
Among all radial kernels, we remark that the Gaussian is given by

κ(x, y) = κγ (x, y) = e−γ ‖x−y‖2
2 = e−γ r2

. (4.1)

We now discuss its practical implementation in the variably scaled setting. We point
out that the Gaussian kernel is strictly positive definite; and thus, its associated kernel
matrix turns out to be positive definite, provided that the data are distinct; see, e.g.,
[16].

Practical implementation for the Gaussian VSK

Throughout this section, we take N data points Ξ = {xi , i = 1, . . . , N} ⊆ Ω ,
where Ω ⊆ R

n and we consider a subset Λ ⊆ R
m.

The Gaussian VSK matrix can be seen as a Hadamard product; indeed, we have
the following result.

Theorem 3 Let Ξ = {xi , i = 1, . . . , N} ⊆ Ω be a set of data points. Let ψ :
Ω −→ Λ be the scaling function for the VSK setting. Let κ : Ω × Ω −→ R be the
Gaussian kernel. Then, the VSK matrix constructed on Ξ via κΨ : Ω × Ω −→ R is
given by

KΨ = K ◦ Kψ,

where Kψ
ij = e−‖ψ(xi )−ψ(xj )‖2

2 , i, j = 1, . . . , N , and ◦ denotes the Hadamard matrix
product.

Proof For x, y ∈ Ω , we have that

κΨ (x, y) = e−(‖x−y‖2
2+‖ψ(x)−ψ(y)‖2

2

)
= e−‖x−y‖2

2 e−‖ψ(x)−ψ(y)‖2
2 .

Therefore, the entries of the VSK matrix built on Ξ = {xi , i = 1, . . . , N} are given
by

KΨ
ij = e−‖xi−xj ‖2

2 e−‖ψ(xi )−ψ(xj )‖2
2 , i, j = 1, . . . , N,

and thus
KΨ = K ◦ Kψ .

About the Hadamard product, we report here a result that can be traced back to
1911 by Schur [40]. It will be helpful in what follows; refer also to [14, Lemma A.5]
and [18, Lemma 2.1].
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Theorem 4 If E and M ∈ R
N×N are positive definite matrices, denoting by λmin and

λmax the smallest and largest eigenvalue of a matrix, we have that

λmin(E) min
i=1,...,N

Mii ≤ λi(E ◦ M) ≤ λmax(E) max
i=1,...,N

Mii .

This result allows us to infer about the spectrum of the kernel matrix (see [12])
and to show that with the Gaussian VSK we gain both in terms of stability and
expressiveness of the kernel.

Spectral ratio for the Gaussian VSK

We now give upper and lower bounds for the Frobenius norm ‖ · ‖F of the kernel
matrix K in terms of its variably scaled setting. This turns out to be helpful when
comparing the spectral ratio of the two matrices (K and KΨ ).

Theorem 5 Let Ξ = {xi , i = 1, . . . , N} ⊆ Ω be a set of data points. Let ψ :
Ω −→ Λ be the scaling function for the VSK setting. Let κ : Ω × Ω −→ R be
the Gaussian kernel. Given the VSK matrix KΨ = K ◦ Kψ constructed on Ξ via
κΨ : Ω × Ω −→ R, we have that

‖KΨ ‖F ≤ ‖K‖F ≤ ‖K‖F‖Kψ‖F.

Proof Being the RBF ϕ : R+ −→ R associated to the Gaussian kernel κ non-
increasing, for x, y ∈ Ω , we obtain

ϕ
(
‖x − y‖2

2

)
≥ ϕ
(
‖x − y‖2

2 + ‖ψ(x) − ψ(y)‖2
2

)
,

which in particular implies that

Kij ≥ KΨ
ij ≥ 0, i, j = 1, . . . , N .

Thus, we get
‖K‖F ≥ ‖KΨ ‖F.

Moreover, since ϕ(0) = 1, i.e., Kψ
ii = 1, i = 1, . . . , N , we obtain

‖Kψ‖F ≥
√√√√ N∑

i=1

(
Kψ

ii

)2 =
√

N(ϕ(0))2 ≥ 1,

and therefore
‖KΨ ‖F ≤ ‖K‖F ≤ ‖K‖F‖Kψ‖F.

From this theorem, we can easily infer on the spectral ratio in the VSK setting.

Corollary 1 Let Ξ = {xi , i = 1, . . . , N} ⊆ Ω be a set of data points. Let ψ :
Ω −→ Λ be the scaling function for the VSK setting. Let κ : Ω × Ω −→ R be the
Gaussian kernel, then the VSK kernel κΨ : Ω × Ω −→ R is more expressive than κ .
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Proof Let KΨ = K◦Kψ be the VSK matrix constructed on Ξ via κΨ : Ω×Ω −→ R,
we have that

tr(KΨ ) = tr(K) = Nϕ(0) = N,

where ϕ : R+ −→ R is the RBF associated to the Gaussian kernel κ : Ω×Ω −→ R.
Taking into account Theorem 5, we obtain

S(K) = N

‖K‖F
≤ N

‖KΨ ‖F
= S(KΨ ). (4.2)

Remark 3 The concept of expressiveness when the equality in (4.2) holds true has
already been clarified in Remark 2. We further point out that the equality is satisfied,
for instance, in the trivial case for which ψ(x) ≡ 0, for all x ∈ Ω .

On one side, the fact that the Gaussian VSK is more expressive than the standard
one tells us that the VSK-based learning might be able to deal with more complex
tasks. In the next subsection, we focus on the stability of the kernel matrix.

Spectrum of the Gaussian VSK

The smallest eigenvalue of a positive definite kernel matrix is of course linked to
the ill-conditioning. Moreover, given Ξ = {xi , i = 1, . . . , N} ⊆ Ω , the stability is
also related to the separation distance

qΞ := 1

2
min
i �=j

‖xi − xj‖2,

which only depends on the data. As shown in, e.g., [6], we have that

qΞ ≤ qΨ
Ξ ,

where

qΨ
Ξ := 1

2
min
i �=j

‖Ψ (xi ) − Ψ (xj )‖2,

is the separation distance in the VSK setting. This gives the intuition of the fact that
the VSKs might lead to possible improvements in terms of stability [6]. Indeed, in
general, it is well-known that the smallest eigenvalue of the kernel matrix is related
to the separation distance, meaning that the ill-conditioning usually grows as the
separation distance decreases; refer, e.g., to [28], where the authors make use of a
result from [3] on the eigenvalues of distance matrices. These facts are the fruits on
many studies on the so-called trade-off or uncertainty principle [37, 38], which could
be summarized in a conflict between accuracy and stability.

As already mentioned, the VSKs are helpful for improving the stability, especially
in view of the following property. We also refer the reader to [43, Corollary 3.1]. For
a given matrix M, we focus on the 2-condition number defined as

cond(M) = ||M||2||M−1||2.

Proposition 1 Let Ξ = {xi , i = 1, . . . , N} ⊆ Ω be a set of distinct data. Let
ψ : Ω −→ Λ be the scaling function for the VSK setting. Let κ : Ω × Ω −→ R
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be the Gaussian kernel. Given the VSK matrix KΨ = K ◦ Kψ constructed on Ξ via
κΨ : Ω × Ω −→ R, we have that

cond(KΨ ) ≤ cond(K).

Proof First note that, since in this case the matrix is positive definite, the condition
number can be computed as

cond(KΨ ) = λmax(KΨ )

λmin(KΨ )
.

Moreover, from Theorem 4 and since the RBF ϕ : R+ −→ R associated to the
Gaussian kernel κ : Ω × Ω −→ R is so that ϕ(0) = 1, i.e., Kψ

ii = 1, i = 1, . . . , N ,
we obtain

cond(KΨ ) = λmax(KΨ )

λmin(KΨ )
≤ λmax(K)

λmin(KΨ )
≤ λmax(K)

λmin(K)
= cond(K).

This result turns out to be meaningful especially for the KRN-VSK approach.
As a second case study, we now consider the linear kernel, which is truly popular

for classification tasks.

4.2 The linear VSK

For x, y ∈ Ω , the linear kernel κ : Ω × Ω −→ R is given by

κ(x, y) = xᵀy.

As for the Gaussian kernel, its implementation in the variably scaled setting turns
out to be trivial. We remark that the linear kernel is positive definite; and thus, its
associated kernel matrix turns out to be positive

Practical implementation for the linear VSK

The linear VSK can be written as sum of matrices; indeed, we have the following
result.

Theorem 6 Let Ξ = {xi , i = 1, . . . , N} ⊆ Ω be a set of data points. Let ψ :
Ω −→ Λ be the scaling function for the VSK setting. Let κ : Ω × Ω −→ R be the
linear kernel. Then, the VSK matrix constructed on Ξ via κΨ : Ω × Ω −→ R is
given by

KΨ = K + Kψ,

where Kψ
ij = ψ(xi )

ᵀψ(xj ), i, j = 1, . . . , N .

Proof For x, y ∈ Ω we have that:

κΨ (x, y) = (xᵀ, ψ(x)ᵀ
) ( y

ψ(y)

)
= xᵀy + ψ(x)ᵀψ(y),
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and thus the kernel matrix is given by

KΨ = K + Kψ .

We now drive our attention towards the expressiveness of the linear VSK.

Spectral ratio for the linear VSK

Depending on the function ψ , we might have that the linear VSK is less expressive
than the standard linear kernel; indeed, we have the following proposition.

Proposition 2 Let Ξ = {xi , i = 1, . . . , N} ⊆ Ω be a set of data points. Let
ψ : Ω −→ Λ be the scaling function for the VSK setting. Let κ : Ω × Ω −→ R be
the linear kernel. Let us suppose that the associated kernel matrix K is non-negative,
i.e., so that all the entries of K are non-negative. Given the VSK matrix KΨ = K+Kψ

constructed on Ξ via κΨ : Ω × Ω −→ R, if ψ is so that Kψ is non-negative, then:

tr(K)

tr(KΨ )
≤ S(K)

S(KΨ )
≤ ||KΨ ||F

||K||F .

Proof Under our assumptions, if ψ : Ω −→ Λ is so that Kψ is non-negative, we
have that

tr(K)

tr(KΨ )
≤ 1.

Moreover, since we suppose K to be non-negative, we get

||KΨ ||F
||K||F ≥ 1.

Finally, taking into account the definition of the spectral ratio, the statement follows.

Note that the requirements of Proposition 2 are satisfied, e.g., if Ω ⊆ R
n+ and

Λ ⊆ R
m+.

Minimum eigenvalue of the linear VSK matrix

Being Gramian matrices, KΨ and Kψ are positive semi-definite. Concerning the
minimum eigenvalue of the VSK matrix KΨ , by virtue of Weyl’s inequality (see, e.g.,
[5, Section III.2, p. 62]), we obtain that:

λmin(K) ≤ λmin(K + Kψ) = λmin(K
Ψ ).

As for the Gaussian kernel, one can make many different choices for the function ψ .
Some of them are discussed in the next section.

Remark 4 In this section, we provided some theoretical findings concerning the
expressiveness of VSKs in terms of the spectral ratio, without taking into account the
tuning of the shape parameter γ (see (4.1)), which is considered fixed. While such a
theoretical investigation concerns a relevant topic in the theory of machine learning,
as we pointed out in Section 2, the spectral ratio represents a poor choice for model
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selection in practical applications. Indeed, in view of the maximization of a certain
score (e.g., accuracy, AUC, f1-score), it is convenient to perform a classical tuning
of the model parameters (e.g., SVM, KRN) instead of analyzing its capacity via the
spectral ratio as it is.

5 Choices for the scaling function

In the framework of approximation theory, as well as for KRNs, the choice of the
scaling function can be guided by some characteristics concerning the data distribu-
tion or the underlying function that needs to be reconstructed (see, e.g., [35, 36]).
In the classification setting, the VSKs can be seen as feature augmentation methods.
More precisely, our aim is to adopt this strategy to encode possible a priori informa-
tion in the kernel. Let us take N data points Ξ = {xi , i = 1, . . . , N} ⊆ Ω , where
Ω ⊆ R

n and consider a subset Λ ⊆ R
m, we now propose some techniques to define

the scaling function of the VSK framework.

5.1 Scaling function for SVM-VSK

Depending on the task and on the available knowledge, different choices for the scal-
ing function could be taken into account. Here, we construct the scaling function
ψ : Ω −→ Λ as follows. Given the dataset

Σ = {(xi , yi), i = 0, . . . , N, xi ∈ Ω, yi ∈ {−1, +1}},
we introduce the classes C1 and C2, associated to the labels y = −1 and y = +1,
respectively. Let x̃ = (x̃1, . . . , x̃n) be a new example that we need to classify.
Treating the features as mutually independent, the NB classifier (see, e.g., [1, 25])
computes

Pj (x̃) := P(x̃ ∈ Cj |x̃) = P(Cj )
∏n

i=1 P(x̃i |Cj )

P (x̃)
,

classifying
C(x̃) = argmaxj=1,2Pj (x̃).

The likelihood
∏n

i=1 P(x̃i |Cj ) and the prior P(Cj ) are typically estimated from the
dataset Σ . In other cases, especially when the dataset is not too large, they could be
obtained as a priori knowledge, for example by consulting the literature.

In this view, for the SVM-VSK, we propose the scaling map Ψ : Ω −→ Ω̃

defined by
Ψ (x) := (x, P1(x)),

and the kernel κΨ : Ω × Ω −→ R

κΨ (x, y) := κ (Ψ (x), Ψ (y)) .

For x ∈ Ω , since P2(x) = 1 − P1(x) and P1(x) are not independent, we observe
that it is sufficient to consider one of the two probabilities.

Concerning the effectiveness of this scaling function Ψ : Ω −→ Ω̃ for the Gaus-
sian VSK, we refer to the notation introduced in Theorem 3 and we point out that,
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for xi , xj ∈ Ξ ,

Kψ
ij = e−(P1(xi )−P1(xj ))2

, i, j = 1, . . . , N .

We observe that if P1(xi ) ≈ P1(xj ), then Kψ
ij ≈ 1 and so KΨ

ij ≈ Kij . Considering

instead the linear VSK κΨ : Ω × Ω −→ R described in Section 4.2, we get

Kψ
ij = P1(xi )P1(xj ), i, j = 1, . . . , N .

We remark that, according to to Proposition 2, with the linear VSK we construct
kernels that might be less expressive than the standard ones.

For both kernels, this means that the matrices change according to our a priori
knowledge on the dataset, leading to a different, possibly easier, learning task for
SVM.

5.2 Scaling function for KRN-VSK

Here, we take again N distinct data Ξ = {xi , i = 1, . . . , N} ⊆ Ω , where Ω ⊆ R
n,

and the associated measurements yi ∈ R, i = 1, . . . , N , and consider a subset Λ ⊆
R

m. We now investigate some ideas to define the scaling function for KRNs.
Therefore, concerning the choice of the scaling function ψ : Ω −→ Λ, we

suppose to know the trend of data, which can be modelled via a specific class of func-
tions, i.e., a model M : Ω × R

l −→ R depending on x ∈ Ω , and on l parameters
β = (β1, . . . , βl). To determine β, we compute:

β∗ = min
β∈Rl

N∑
i=1

(yi − M(xi , β))2.

Then, one possible solution to define the function ψ : Ω −→ Λ is

ψ(x) = M(x, β∗). (5.1)

Of course, this gives a recipe for the selection of the scaling function which is not
unique.

6 Numerical tests for SVM-VSK and KRN-VSK

All the performed experiments have been carried out in PYTHON, using also the
scientific module scikit-learn [32], on a Intel(R) Core(TM) i7 CPU 4712MQ 2.13
GHz processor.

6.1 Tests for SVM-VSK

In the following, we consider different toy datasets of various sizes, with precise
probability information concerning the features’ distributions, and we compare our
SVM-VSK approach with standard SVM and NB classifiers. A freely available
software can be downloaded at https://github.com/emmaA89/SVM-VSK.
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The hyperparameters are validated by taking

ζ ∈ {2−6, 2−5, . . . , 26},
γ ∈ {10−6, 10−5, . . . , 102}.

Moreover, in the validation and in the test steps, we evaluate the performance of the
considered methods by means of the f1-score, weighted with respect to the classes.
We remind that the f1-score is defined as the harmonic mean between precision and
recall. More precisely, given the number of true positive (TP), false positive (FP), and
false negative (FN) cases,

f1-score = 2 · precision · recall

precision + recall
,

where precision = TP

TP + FP
and recall = TP

TP + FN
.

We proceed by constructing 12 toy datasets that differ in terms of number of fea-
tures and examples. We now fix n = 64. Letting Ω ⊆ R

n, they are extracted from
the dataset

Γ = {(xi , yi), i = 1, . . . , 5000, xi ∈ Ω, yi ∈ {−1, +1}},
where the two classes C1 and C2, associated to the labels y = −1 and y = +1
respectively, are exactly balanced. The construction of such a dataset is explained in
the following steps.

1. Each class Cj , j = 1, 2, is characterized by two vectors

μj =
(
μ1

j , . . . , μ
n
j

)
, σ j =

(
σ 1

j , . . . , σ n
j

)
.

More precisely, let us denote by U(a, b) a univariate uniform random distribution
on the interval (a, b) ⊆ R and by p ∼ U(a, b) a sample from such distribution.
Then, μk

j and σk
j , k = 1, . . . , n, j = 1, 2 are determined as follows:

μk
1 ∼ U(0, 20),

σ k
1 ∼ U(0, 2),

μk
2 = μk

1 + uk, with uk ∼ U(0, 2),

σ k
2 ∼ U(0, 4.5).

2. We denote by N (μ, σ ) the univariate normal distribution with mean μ and stan-
dard deviation σ . Let xi = (x1

i , . . . , xn
i

)
be an example in Ω belonging to a class

Cj , j = 1, 2. The elements xk
i of xi ∈ Ω , k = 1, . . . , n, are then randomly gen-

erated as samples of N
(
μk

j , σ
k
j + 1

)
= N

(
μk

j , σ
k
j

)
+N (0, 1), where N (0, 1)

is Gaussian white noise.
3. Finally, the data are normalized between [0, 1].

From the so-constructed Γ , let nk ∈ {2, 4, 16, 64} and let xi,nk
be the element

xi ∈ Γ reduced in dimensions to nk randomly pre-selected features (that are the
same for all xi ∈ Γ ). We extract the datasets

Γξ = {(xi,nk
, yi), i = 1, . . . , Nq, yi ∈ {−1, +1}},
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with Nq ∈ {100, 500, 2500}, ξ = (Nq, nk), and preserving the balance among the
two classes. More precisely, fixed Nq , we randomly select Nq indices from the set
{1, . . . , 5000}. Moreover, since all combinations examples-features are taken into
account, we obtain 12 different datasets.

In the following description, we fix one of the extracted datasets Γξ for some value
of Nq and nk . We divide such a dataset in a training set Σξ and a test set Tξ . These
sets are so that card(Σξ ) ≈ 2card(Tξ ).

In this experiment, we suppose to have a priori information and to encode it in the
SVM-VSK method by means of the NB algorithm. More precisely, the NB classifier
is trained considering both Σξ and Γ̄ξ , which is defined as the dataset containing the
examples of Γ , whose number of features has been reduced to nk , that are not in Γξ ,
i.e.,

Γ̄ξ := Γ(5000,nk) \ Γξ .

Therefore, in this test, we compare the performances on Tξ of the three methods
constructed as follows.

1. The NB classifier, which is trained on Γ̄ξ ∪ Σξ . Given x = (x1, . . . , xnk
), we

adopt the Gaussian likelihood [33]

P(xi |Cj ) = 1√
2π
(
σ i

j

)2 e
−
(

xi−μi
j√

2σ i
j

)2

.

for i = 1, . . . , nk , j = 1, 2.
2. The standard SVM method, which is trained on Σξ .
3. The SVM-VSK classifier, which is trained on Σξ and whose scaling map ψ :

Ω −→ Λ, constructed as explained in Section 5, considers the probabilistic
outcomes of the NB classifier.

In order to tune the SVM hyperparameters ζ and γ , the latter in case of RBF
kernel, we consider a 5-fold cross-validation on Σξ .

We carry out the test for each dataset Γξ and we show the obtained results in
Fig. 1. The proposed SVM-VSK algorithm is competitive with the best among SVM
and NB methods, slightly outperforming both in some cases.

For the Gaussian kernel, we numerically verify Corollary 1 by reporting in Table 1
the spectral ratios related to the matrices K and KΨ , obtained from the training sets Σξ

with Nq = 100, 500, 2500, and nk = 2. The results numerically confirm what was
theoretically predicted, i.e., the Gaussian VSK is more expressive than the standard
one for a fixed shape parameter.

Moreover, for the linear kernel, we are in the hypothesis of Proposition 2. The
quantities involved in that proposition are reported in Table 2. The results support
what was theoretically observed.

6.2 Tests for KRN-VSK

Here, we refer the reader to [16, Program 18.1, p. 340] for a detailed software that
deals with KRNs.

51   Page 16 of 23 Adv Comput Math (2021) 47: 51



Fig. 1 The f1-score of the experiments performed on various datasets using the linear (lin.) and Gaussian
kernel (RBF). The considered number of examples and features are displayed on the top

As an example for KRNs, we focus on the Italian data of the 2020 COVID-19
pandemic. The task we consider consists in learning the time series, i.e., Ω ⊆ R,
of people that in Italy were hospitalized as intensive care unit (ICU) patients from
24 February 2020 to 26 April 2020. The dataset, provided by the “Dipartimento
della Protezione Civile,” is available at https://github.com/pcm-dpc/COVID-19/tree/
master/dati-andamento-nazionale.

The dataset Γ consists of 63 samples and it is divided as follows. The first 58 days
define the training set Σ , i.e., they are used to construct the regression model, which
is then tested on the last t = 5 days, x̃i , i = 1, . . . , t . Referring to Section 3.2 we
take the set of kernel centers Z as the set of available data in Ξ and we construct the
model using the Gaussian kernel defined in (4.1). Moreover, the feature augmentation
strategy outlined in (5.1) is carried out considering M : Ω × R −→ R given by

M(x, β) = e−β|x−p̄|,

where p̄ = 42 is the peak of the considered time series. The model M is constructed
on Σ .

In addition, we encode into the kernel also other available data. Precisely, thinking
of time series, one usually disposes of other available and dependent data sampled
at the same locations which can be used as additional features (see, e.g., [8, 41]). In
this direction, we take into account the total number of COVID19 infected (included
death and recovered people), the daily number of new infected and the total number

Table 1 The spectral ratios of the matrices K and KΨ related to the normalized training sets Σξ , varying
Nq = 100, 500, 2500. We set nk = 2 and we considered a Gaussian kernel with γ = 1

N S(K) S(KΨ )

50 1.3782 E+00 1.5756E+00

500 1.3222 E+00 1.5197E+00

2500 1.2770 E+00 1.4954E+00

Page 17 of 23    51Adv Comput Math (2021) 47: 51

https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-nazionale
https://github.com/pcm-dpc/COVID-19/tree/master/dati-andamento-nazionale


Table 2 The ratios of the norms involved in Proposition 2 obtained via the linear kernel. The matrices K
and KΨ are related to the normalized training sets Σξ , varying Nq = 100, 500, 2500, and with nk = 2

N tr(K)/tr(KΨ ) S(K)/S(KΨ ) ||KΨ ||F/||K||F

50 6.1373 E−01 8.8640E−01 1.4443E+00

500 5.2890 E−01 8.8021E−01 1.6642E+00

2500 5.5705 E−01 8.8461E−01 1.5880E+00

of infected (excluded death and recovered people). Of course, this selection of the
scaling function means that we are adding a priori knowledge to the selected time
series. Therefore, the scaling function ψ is so that ψ : Ω −→ Λ, where Λ ⊆ R

4.
To analyze the performances of the variably scaled setting, we take the Gaussian

kernel and we compute the condition number of the kernel matrix and the rounded
mean error (RME). Let

ME = 1

t

t∑
i=1

|yi − A(x̃i)|,

be the mean error, where A is a decision function as defined in Section 3.2 obtained
via classical or variably scaled kernels. Since hospitalized patients are involved in the
dynamics we consider, as accuracy indicator, the RME defined as

RME =
{ �ME� , if ME − �ME� ≤ 0.5,

�ME� , if ME − �ME� > 0.5.

In the first experiments, we set the parameter ν = 0. We remark that for regression
networks the selection of the shape parameter plays a crucial role. Therefore, to make
a fair comparison between classical and VSK regression networks, we report the
condition numbers and the RME for 200 values of the shape parameter γ in the
interval [0.5, 20]. The results are reported in Fig. 2. We observe that the computation
carried out via VSKs is characterized by a lower condition number of the kernel
matrix, as theoretically observed in Proposition 1. For such experiment, this directly
reflects on the accuracy of the computation, meaning that the safe interval for the
shape parameter γ is larger than for the classical method (see Fig. 2, right).

In Fig. 3, we report two graphical results corresponding to ν = 0 and ν = 1e−04,
left and right respectively. In both cases we take the optimal shape parameter γ ∗,
meaning that it leads to the smallest RME, in the same framework of Fig. 2 (right).
The associated RME is shown in Table 3. We note that the VSK setting outperforms
the classical method for ν = 0, while for ν = 1e − 04 the two approximations are
comparable.

7 A VSK-like feature extraction algorithm

In this section, we propose a feature extraction method directly inspired by the pre-
sented variably scaled setting, which can be used as an alternative to other possible
expensive feature extraction algorithms.
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Fig. 2 Left: The condition numbers for different values of the shape parameter of the classical kernel and
VSK matrix denoted by red triangles and blue dots, respectively. Right: The RME for different values of
the shape parameter of the classical KRN and KRN-VSK methods denoted by red triangles and blue dots,
respectively. Both plots are in semi-logarithmic scale and obtained by considering the normalized dataset

To this aim, we consider the Wisconsin Breast Cancer Database [22, 23], which
consists of 699 instances described by 9 features, extracted from a digitized image of
a fine needle aspirate of a breast mass. The task consists in predicting if the mass is
benign or malignant. From the original dataset, we exclude 16 instances that present
missing values. The two classes are not equally distributed, presenting 444 benign
instances and 239 malignant instances.

At first, we divide the dataset into a training set, consisting of 226 benign and 116
malignant cases, and a test set, which is composed of 218 benign and 123 malignant
cases.
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Fig. 3 The ICU patients’ curves reconstructed via KRN and KRN-VSK denoted by red triangles and blue
dots, respectively. We fix ν = 0 and ν = 1e − 04, left and right respectively. The true solution is plotted
with a black solid line
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Table 3 The RME for the optimal shape parameter by using KRN and KRN-VSK in reconstructing the
ICU curves

Method ν

ν = 0 ν = 1e − 04

KRN 116 13

KRN-VSK 33 9

Then, taking the hyperparameter grids adopted in Section 6.1, we compare the
performances on the test set of the following four methods.

1. A NB classifier with Gaussian likelihood.
2. A standard SVM classifier, whose hyperparameters ζ and γ (in the Gaussian

case) are validated by means of 5-fold cross-validation on the training set.
3. A SVM classifier constructed after a feature selection process, as explained in

what follows.
Analyzing the resulting weights of the SVM classifier (in the linear case), we

can rank the features by their influence in the classification; see, e.g., [17]. Then,
we choose the n̄ more relevant features, here we fix n̄ = 2, and we consequently
reduce our training and test sets by restricting to the two most relevant features.
Finally, we take both linear and Gaussian kernels, we train a SVM classifier via
5-fold cross-validation on the reduced training set and we evaluate the results on
the reduced test set.

We denote this method with SVM-Selection (SVM-S).
4. A SVM classifier constructed after a VSK-like feature extraction process, as

described in the following lines.
We randomly select n̄ − 1 features (here n̄ = 2). The training set restricted

to the remaining 8 features is used to train a Gaussian NB classifier. Reduced
training and test sets are obtained by juxtaposing the previously selected n̄ − 1
features to the probabilistic output of the NB classifier. Then, we take both linear
and Gaussian kernels, we train a SVM classifier via 5-fold cross-validation on
the reduced training set and we evaluate the results on the reduced test set.
We denote this method with SVM-Extraction (SVM-E).

Table 4 The f1-score for the Wisconsin Breast Cancer Database via the SVM, NB, and SVM-S methods

Linear Gaussian

NB SVM SVM-S SVM SVM-S

0.965 0.968 0.959 0.965 0.953
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Table 5 The f1-score for the Wisconsin Breast Cancer Database via the SVM-E method

Random feature Linear Gaussian

1 0.965 0.965

2 0.962 0.968

3 0.959 0.977

4 0.962 0.965

5 0.965 0.965

6 0.965 0.962

7 0.965 0.962

8 0.959 0.956

9 0.968 0.965

We point out that both SVM-S and SVM-E consider reduced training and test
sets that are characterized by the same number of features n̄. Moreover, the SVM-
E presents some advantages in terms of computational complexity with respect to
SVM-S, since training an auxiliary NB classifier to perform feature extraction is
cheaper than training a SVM classifier to carry out the feature selection.

In Table 4, we present the results obtained considering the SVM, NB, and SVM-
S methods. In Table 5, we report the results concerning the SVM-E algorithm. For
completeness, we vary the randomly selected feature, taking into account all the
possibilities.

We observe that the best score is achieved by the SVM-E algorithm. Moreover for
this dataset, we point out that such a method prefers the Gaussian kernel with respect
to the linear one, while the standard SVM and SVM-S obtain better classification
scores when the linear kernel is considered.

8 Conclusions and future work

We investigated the link between VSKs and feature augmentation strategies. In doing
so, we tailored the VSKs for SVM and KRNs. The proposed methods turn out to
be flexible and easy to implement. For KRNs, the use of VSKs takes advantage of
being stable and for classification of merging the probabilistic features of NB and
the geometric ones of SVM. This results in effective algorithms that can be used for
many tasks. Applications to real datasets show the effectiveness of our approach.

Work in progress consists in extending this concept for support vector regression
and as well as for greedy methods [2, 46].
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