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Abstract
The dynamics of particle processes can be described by population balance equa-
tions which are governed by phenomena including growth, nucleation, breakage and
aggregation. Estimating the kinetics of the aggregation phenomena from measured
density data constitutes an ill-conditioned inverse problem. In this work, we focus on
the aggregation problem and present an approach to estimate the aggregation kernel
in discrete, low rank form from given (measured or simulated) data. The low-rank
assumption for the kernel allows the application of fast techniques for the evaluation
of the aggregation integral (O(n log n) instead of O(n2) where n denotes the num-
ber of unknowns in the discretization) and reduces the dimension of the optimization
problem, allowing for efficient and accurate kernel reconstructions. We provide and
compare two approaches which we will illustrate in numerical tests.

Keywords Population balance equation · Aggregation kernel · Inverse method ·
Low rank approximation
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1 Introduction

The phenomenon of aggregation is seen in a wide variety of chemical processes like
droplet coalescence, granulation and the aggregation of crystals. In this process, two
particles with masses u and v, respectively, unite and form a new particle of mass u+
v. This process is modelled by a convolution-type integral involving an aggregation
kernel κ(u, v) that is a non-negative symmetric function of the particle masses u
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and v which takes into consideration the conditions of the underlying process (like
temperature and saturation).

The number density distribution f (v, t) throughout this pure aggregation process
is governed by the integro-differential equation

df (v, t)

dt
= Qsource(v, t) − Qsink(v, t) (1)

with a source term

Qsource(v, t) = 1

2

v∫

0

κ(u, v − u)f (u, t)f (v − u, t) du (2)

and a sink term

Qsink(v, t) = f (v, t)

∞∫

0

κ(u, v)f (u, t) du. (3)

Starting from an initial distribution f (v, 0) = fInit(v), the density distribution f will
vary dynamically over time as smaller particles combine and form larger particles.
The total mass of all particles (also called the first moment),

μ1(f, t) :=
∞∫

0

vf (v, t) dv,

stays constant while the total number of all particles (the zero-th moment) μ0(f, t) :=
∞∫
0

f (v, t) dv decreases over time.

Here, we are concerned with the reconstruction of the kernel κ(u, v) from given
data F(v, ti) at m + 1 different time instances ti , i ∈ {0, . . . , m}. We denote the ref-
erence distributions by a capital F while distributions computed with a reconstructed
kernel are denoted by a lowercase f .

Previous work in this field is often concerned with fitting a single ([1], [15]) or
a small number of parameters of a kernel that is assumed to be of a certain form,
e.g. fitting exponents in rational functions [12]. Laurent polynomials were used in
[7] to approximate the aggregation kernel. All these works determine coefficients for
an approximation of a kernel on (0, ∞) × (0, ∞). A reconstruction on a bounded
computational domain is presented in [5]. Here, the property space is divided into
cells and a (piecewise) bilinear basis is used to approximate the kernel.

There exist some methods for parameter estimation in differential equations that
are based on discontinuous data in the presence of measurement noise ([2, 13] or
[14]) without a connection to population balances. However, the differential equa-
tions considered in these works have only a few degrees of freedom and more
measurements available making them non-applicable in this setting.

When formulating the optimization problem, there exist (at least) the following
two approaches:

• Compute approximations to the derivatives on the left hand side of (1) using
the measured data and compute the right hand side of (1) using a reconstructed
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kernel where the reconstruction should minimize the error between left and right
hand side of (1) in some appropriate norm.

• Simulate the aggregation process with a reconstructed kernel where the recon-
struction should minimize the error between the measured and simulated data.

The first approach minimizes the error of the derivative and is typically compu-
tationally less challenging but requires a high temporal resolution of the density
distribution in order to provide useful results. This is often infeasible for applications
of experimentally measured data where the time between measurements might be
large. The second approach often challenges the selected optimization algorithm and
is computationally expensive but—if successful—yields better results than the first
approach. In this paper, we will pursue the second approach which will be feasible in
view of a low-rank assumption imposed on the kernel. This assumption allows us to
use the fast evaluation techniques for the discrete aggregation process developed in
[8, 10]. In particular, this paper includes the following novel contributions:

• The reconstruction of a discrete kernel in low-rank representation, both for a
fixed and variable kernel basis.

• Optimization with the objective to minimize the error between measured and
simulated data with a new error-function based on the χ2-measure.

• Numerical tests of this new framework.

The remainder of this paper is organized as follows: In Section 2, we introduce
the discretization of the property space and the low-rank assumption for the kernel.
We introduce the optimization problem and elaborate its structure in 3. Section 4
is devoted to numerical results of the proposed optimization problem, showing the
applicability of the reconstructed kernel in different simulations.

2 Kernel estimation

The first prerequisite for the numerical solution of this inverse problem is a suitable
discretization of the property space. For this, we define a maximum particle property
vmax ∈ R+ and exclude any particle that is larger from further consideration, i. e. we
assume that f (v, t) = 0 if v ≥ vmax.
For some p ∈ N, we define pivots in [0, vmax],

vj = vmax

n
· 2j − 1

2
, j = 1, . . . , n with n := 2p (4)

with equal spacing h := vmax/n, resulting in a grid Gvmax

p := {v1, . . . vn}.
We will assume particles are concentrated at these equidistant pivots and discretize
f (v, t) by macroscopic variables

fj (t) :=
jh∫

(j−1)h

f (v, t) dv
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at any given time t which allows us to represent f (v, t) as a non-negative, time-
dependent vector-valued function

f (t) := (
f1(t) . . . fn(t)

)T ∈ R
n
≥0.

We also represent the measured data F(v, ti) with respect to the grid Gvmax

p as a time-

dependent vector F(ti) = (F1(ti), . . . , Fn(ti))
T ∈ R

n
≥0.

In view of this discretization, the goal is to reconstruct a symmetric kernel matrix
K ∈ R

n×n
≥0 with Ki,j = κ(vi, vj ) at the pivots of Gvmax

p × Gvmax

p for an (unknown)
kernel function κ(·, ·).

Since several of the physically motivated kernel functions have separabel repre-
sentations or approximations of low rank, see for example [10] for an analysis of the
Brownian, shear and kinetic kernels, and since a separable kernel function of rank k

implies a kernel matrix of rank (at most) k, we make the following assumption.

Assumption 1 To reduce the number of unknown coefficients in the kernel matrix
K ∈ R

n×n, we assume it is of rank k (� n), i. e. it can be represented (or
approximated) in the form

K = U · S · UT (5)

with matrices U ∈ R
n×k and S ∈ R

k×k . To enforce the symmetry of K , we require
that S = ST .

This reduces the degrees of freedom in the kernel matrix K from n(n+1)
2 to nk +

k(k+1)
2 . It also allows us to use the algorithms introduced in [8, 10] to accelerate the

calculations: They provide the efficient evaluation of the source and sink terms (2)
and (3) in the case of a separable kernel. We will refer to the (thin/rectangular) matrix
U as the kernel basis.

The above discretization leads to a discrete source term

Qsource(j, t; U, S) := 1

2

k∑
ν=1

j−1∑
p=1

fj−p−1(t)fp(t) · (US)p,νUj−p−1,ν (6)

of convolution type which can be evaluated for all j = 1, . . . , n in complexity
O(kn log n) for given kernel factors U, S. The discrete sink term is given by

Qsink(j, t; U, S) :=
k∑

ν=1

n∑
p=1

fj (t)fp(t) · (US)p,νUp,ν (7)

and evaluated in complexity O(kn).
Our framework for the kernel estimation is related to [5] and [7] where coeffi-

cients for kernel functions within a linear space spanned by a number of given basis
functions, e.g. Laurent polynomials, are to be found.
The corresponding continuous kernel function in [7] can be expressed in the form
κ(u, v) = (b1(u) . . . bk(u)) S (b1(v) . . . bk(v))T where some of the coefficients of
the symmetrix matrix S ∈ R

k×k are subject to the optimization (while the others are
fixed to zero). In our framework, this corresponds to a given (fixed) matrix U with its
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entries given by the basis functions evaluated at the pivots, i. e. Uij = bj (vi). Here,
we further generalize this framework by including U in the optimization process.

3 Optimization problem

With these prerequisites, we define the following minimization problem

minimize
U,S

E2(U, S) :=
⎛
⎝ m∑

i=0

n∑
j=1

(Fj (ti) − fj (ti))
2

⎞
⎠

1/2

where U ∈ R
n×k, S = ST ∈ R

k×k .

(8)

Here, Fj (ti) is the given (measured) data and fj (ti) are computed by numerical
simulation of

dfj (t)

dt
= Qsource(j, t; U, S) − Qsink(j, t; U, S)

on the grid Gvmax

p .
A possible disadvantage of the above minimization problem results from the fact

that absolute errors are considered. Cells with a small number of particles may have
only a small influence on the kernel estimation since the error E2 is dominated by
index pairs (i, j) where Fj (ti) is large. To increase the sensitivity with respect to
those cells with a small amount of particles, we define the error based on the χ2-
measure leading to

minimize
U,S

E(U, S) :=
⎛
⎝ m∑

i=0

n∑
j=1

(Fj (ti) − fj (ti))
2

fj (ti) + ε

⎞
⎠

1/2

where U ∈ R
n×k, S = ST ∈ R

k×k .

(9)

Here, we weigh the difference of simulated and observed particles higher when the
simulation indicates a small number of particles in a class. Similar measures to curve-
fitting are also used in machine learning [11]. We add ε = 10−10 to the denominator
in (9) to ensure it is large enough to avoid numerical instabilities caused by the
division.

We set fj (t0) = Fj (t0), j = 1, . . . , n, as the initial distribution which is always
non-negative. The constraint fj (ti) ≥ 0 will be satisfied throughout the simula-
tion when step sizes in the time discretization of the differential equation are chosen
sufficiently small.

Since the objective is to determine a kernel that minimizes the error between mea-
sured and simulated density distribution, every evaluation of E(U, S) requires the
solution of (1), making it mandatory that efficient computational techniques are avail-
able. In fact, there are kn degrees of freedom in U and k(k+1)

2 degrees of freedom in
S, leading to this number of evaluations of E(U, S). Most computational time during
this optimization is spent in the evaluation of (6) which only becomes feasible with
our Assumption 1 of a separable kernel and the fast algorithms designed in [8, 10].
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We solve the minimization problem (9) using MATLAB’s optimization routine
lsqnonlin and use the routine ode45 to solve the underlying differential equation. The
routine lsqnonlin uses the Levenberg-Marquardt algorithm to search for local optima
via finite differences.

If U has full rank k, its columns can be chosen orthonormal which turned out
favorable in our numerical tests. We obtain orthonormal columns in U by replacing
the current estimate U, S by Q, RSRT where Q and R are the QR-factors of U .

Remark 1 A kernel function κ(u, v) is nonnegative, i.e. κ(u, v) ≥ 0. This implies
that the matrix K is elementwise non-negative as well, which cannot be guaranteed
without imposing complicated constraints on U and S. It is possible to restrict U

and S to non-negative matrices as well (which guarantees K to be non-negative).
This, however, significantly reduces the search space for a fixed rank k and does not
allow for orthonormal columns of U . Details about non-negative matrix factorization
(NNMF) are available in [4] and [9] but will not be used in this work.

Low-rank optimization has seen some attention (e.g. [6, 16]). In [3], the influence
of missing data was addressed.

4 Numerical results

This section is devoted to numerical results using the proposed method to reconstruct
a kernel from given (measured or simulated) data. In this work, in order to be able
to validate our results, we will reconstruct the following four different kernels from
“measurements” F(vj , ti) obtained through numerical simulation,

Brownian : κB(u, v) =
(
u1/3 + v1/3

)
·
(
u−1/3 + v−1/3

)
(10)

Shear : κS(u, v) = 2 ·
(
u1/3 + v1/3

)7/3
(11)

Sum : κ�(u, v) = 5 · (u + v) (12)

Peglow : κP (u, v) = 3 ·
(
u + v

)0.7105 ·
(
uv

)−0.062
(13)

which are plotted in Fig. 1. We note that the kernels κB and κ� are separable, i. e.
the kernel matrices can be represented in factored form (5) with k = 3 and k = 2,
respectively. The discretized Brownian and sum kernels κB , κ� can be written in the
form

KB : Ui,1 = v
1
3
i , Ui,2 = 1, Ui,3 = v

− 1
3

i , S =
⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ , (14)

K� : Ui,1 = vi, Ui,2 = 5, S =
[

0 1
1 0

]
, (15)

respectively, where vi, i = 1, . . . , n, are the pivots defined in (4), giving rise to
initialize our optimizations with an antidiagonal matrix S. The other two kernels
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Fig. 1 Four different aggregation kernels κ(u, v)

are not separable but can be approximated using a low-rank k so that the resulting
discretization error is dominated by the number of pivots n.

We use a bimodal initial distribution

fInit(v) = c ·
(
e−20v + e−300·(v−0.2)2

)
(16)

where the scaling coefficient c normalizes the function to first moment μ1(f, t) =
10−2 with vmax = 1. We will use vmax = 1 in all our numerical tests and hence leave
out the superscript in Gp := G1

p.
We obtain reference solutions by solving (1) with respect to a very fine grid G17

and take “measurements” for m + 1 = 6 equidistant time instances ti = i for i ∈
{0, . . . , 5}. We obtain F̃ (ti) ∈ R

217
and consider it to be a distribution (perfectly)

measured at time ti . We coarsen it to the grid G10 and gather the particles at the pivots
by summing over each set of 27 entries to obtain F(ti) ∈ R

1024. Throughout this
section, we will use the following notation for discrete density distributions:

Grid Reconstructed kernel Exact kernel

G10 f F

G17 f̃ F̃
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The distributions F(v, ti) for κS and κP are shown in Fig. 2. We see that the
distributions have similar shapes and both have hardly any particles of mass greater
than 0.5.

We present numerical tests for two variants of the optimization problem, one with
a fixed matrix factor U , i. e. optimization only with respect to S, and one with both
U and S (5) included in the optimization.

4.1 Optimization including the kernel basis U

For a variable U , we start the optimization process with rank k = 5 in (5) and

Uj,γ = v
1/γ

j , S =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (17)

We use this initial kernel because it is the pointwise evaluation of a smooth function
and gives only moderate aggregation rates in the considered domain. High rates of
aggregation will result in very small time steps in the solution of the differential
equation to ensure the positivity of f . Our choice of S mimics the matrix present in
the kernels κB (14) and κ� (15).

The kernel matrix that solves the optimization problem (9) is denoted by Kest =
UestSestU

T
est for each of the four kernels. We also compute the pointwise relative errors

Erel(vi, vj ) = |Kest(vi, vj ) − Ktrue(vi, vj )|
Ktrue(vi, vj )

, 1 ≤ i, j ≤ n, (18)

0
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,t)
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0
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t

3211 0

0
0

2.5

F
(v

,t)

10-4
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t

3211 0

0
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(v
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v

50.5 4

t

3211 0

Fig. 2 Evolution of the particle distribution F(v, t) for time instances ti = 0, . . . , 5, with the shear kernel
κS (top) and the Peglow kernel κP (bottom) for linear (left) and logarithmic (middle) scaling of the y-axis.
The right column shows F · FT on a logarithmic scale
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and plot these in Fig. 3.
For all four kernels, we see a minimum of the relative error around (0.2, 0.2) which

we attribute to our choice of initial condition with a peak at 0.2. We are not con-
cerned about larger relative errors in the upper right triangle (vi + vj > 1) since the
aggregation of two particles to one with mass greater than 1 and hence out of our com-
putational domain should not occur, hence there is no (or hardly any) data to estimate
the kernel in this region. The relative error of the shear kernel κS is small over the
entire domain, a similar result is observed for the Brownian kernel κB . The sum and
Peglow kernel approximation errors are smallest where most data is available—this
follows from comparison with the plots of F · FT in Fig. 2 (right).

The sum kernel κ� shows a large error for the aggregation rate involving very
small particles even though there is enough data for an accurate estimation. We
attribute this to the coarse discretization.

For additional validation of our kernel estimates, we use them for simulations with
a different initial distribution and compare the obtained results with the simulations
with the correct kernel. The approximation was obtained by fitting a given initial

Fig. 3 (Logarithm of the) relative error (18) of the kernel with the kernel basis U included in the
optimization
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distribution f but should also hold a certain accuracy for other distributions to be of
general use. We use the initial distribution

g(v, 0) = c · v · e−200(v−0.1)2
(19)

(the factor c is again used for normalization of g(v, 0) to the first moment μ1(g, t) =
10−2) and calculate G̃(v, 10) with the reference kernel and g̃(v, 10) with the approx-
imated kernel factors Uest and Sest with respect to the very fine grid G17. We chose
g(v, 0) in view of its maximum at v = 0.1 which is near the local minimum
of f (v, 0). In Fig 4, we show G̃(v, 10) and g̃(v, 10) on the interval [0, 0.4] (the
simulation was computed on [0, 1]).

We also calculate the relative L2 error

err =

⎛
⎜⎜⎜⎜⎝

217∑
i=1

(
G̃i(10) − g̃i (10)

)2

217∑
i=1

G̃i(10)2

⎞
⎟⎟⎟⎟⎠

1/2

(20)
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Fig. 4 Particle distributions G̃(v, 10) (red) and g̃(v, 10) (blue) for initial distribution g (19) for kernels
and their approximations based on initial distribution f (16) with kernel basis U subject to optimization
for v ∈ [0, 0.4]
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Table 1 Relative L2 error (20) between G̃ and g̃ with the kernel basis U included in the optimization for
kernel approximations based on different grids Gp

����p
kernel

κB κS κ� κP

5 4.53 · 10−2 3.23 · 10−2 3.89 · 10−2 3.82 · 10−2

6 1.35 · 10−2 1.65 · 10−2 3.01 · 10−2 2.47 · 10−2

7 1.22 · 10−2 9.80 · 10−3 2.79 · 10−2 2.50 · 10−2

8 1.13 · 10−2 6.59 · 10−3 2.64 · 10−2 1.43 · 10−2

9 1.40 · 10−2 5.06 · 10−3 2.60 · 10−2 1.27 · 10−2

10 1.40 · 10−2 4.59 · 10−3 2.59 · 10−2 1.23 · 10−2

between G̃(v, 10) and g̃(v, 10) for each kernel based on approximations for different
grids G5 to G10 and present the results in Table 1. On the positive side, we have
relative approximation accuracies of order O(10−2) on a relatively coarse grid with
25 pivots, i. e. a gridwidth of h = 2−5 = 0.03125. However, we observe hardly
any improvement with respect to further refinement of the grid even though, as we

Fig. 5 (Logarithm of the) relative error (18) of the kernel approximation for a fixed kernel basis U
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will see in the following subsection, the framework would indeed allow for higher
accuracies.

4.2 Optimization with a fixed kernel basis U

We now fix the kernel basis to U = (ujγ ) ∈ R
n,k with k = 7 and entries uj,γ =

v
(γ−4)/3
j for γ = 1, . . . , 7. The pivots vj , j = 1, . . . , n, have been defined in (4). The

optimization occurs now only with respect to the symmetric matrix S ∈ R
k×k . We

initialize S by S = 0 since we experienced better results compared to an initialization
with an antitriangular matrix (which was not the case in the previous setting where
U was included in the optimization). We are able to allow for a larger rank k in this
setting since the number of degrees of freedom is no longer linear in the number of
pivots n but only quadratic in the maximum rank k of the kernel matrix.

In Fig. 5, we show the relative approximation errors (18).
We observe a clear improvement compared to the kernels estimated with variable

U whose errors were shown in Fig. 3 and offer two interpretations of this result: (i)
The fixed basis U has been chosen to span a space that allows for accurate approxi-
mations of the exact kernels; hence, the search space has been reduced significantly,
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0.5

1

1.5

2

2.5
10-6 Sum kernel 

0 0.1 0.2 0.3 0.4
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P

Fig. 6 Particle distributions G̃(v, 10) (red) and g̃(v, 10) (blue) for initial distribution g (19) for kernels
and their approximations based on initial distribution f (16) with fixed basis U for v ∈ [0, 0.4]
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Table 2 Relative L2 error (20) between G̃ and g̃ for a fixed kernel basis U with approximations based on
different grids Gp

����p
kernel

κB κS κ� κP

5 3.94 · 10−1 4.75 · 10−1 5.66 · 10−1 5.52 · 10−1

6 1.04 · 10−1 2.93 · 10−1 2.30 · 10−1 2.49 · 10−1

7 2.97 · 10−2 2.58 · 10−2 1.51 · 10−2 3.57 · 10−2

8 4.64 · 10−3 5.46 · 10−3 3.39 · 10−3 3.00 · 10−2

9 1.32 · 10−3 1.76 · 10−3 1.46 · 10−3 9.66 · 10−3

10 2.32 · 10−4 8.59 · 10−4 7.03 · 10−4 1.12 · 10−3

allowing for an easier optimization. (ii) Kernel estimation is an inverse problem
which we propose to solve using a (non-convex) optimization. There could exist sev-
eral (local) minima. In the end, we are estimating a kernel that simulates results close
to the measured results, not a kernel that is close to another kernel (in our experiments
given, but in practice unknown).

Using these estimated kernels together with an initial distribution g(v, 0) = c ·
v · e−200(v−0.1)2

, the resulting distributions g̃(v, 10) are shown in Fig. 6. They are
indeed more accurate than those obtained for a variable U which were shown in
Fig. 4. The relative L2 errors for approximations based on grids G5 to G10 are shown
in Table 2. Comparing to the respective results for an optimized U in Table 1, we
see less accurate kernel approximations on the coarser grids (p = 5, 6) but then a
decrease of order up to O(h2) with respect to the grid width h = 2−p (errors decrease
by factors close to 4 when the grid is refined, i. e. when h is divided by 2).

5 Conclusions and future work

We have presented a novel framework for the approximation of aggregation kernels
in population balance equations from measured or previously simulated data. We do
not require a high temporal resolution of the measured data since we do not use it
to approximate the (time) derivative on the left hand side on (1) as is done in sev-
eral previous works. This allows estimation of an aggregation kernel from population
data that is spaced in time without information at intermediate time instances.
The main idea is the assumption of a discrete low-rank kernel of the form K =
USUT which allows the fast evaluation of aggregation integrals introduced in [8,
10] in nonlinear optimization procedures (here: MATLAB’s lsqnonlin). We presented
two approaches, one with a fixed kernel basis U and optimization with respect to
1
2k(k+1) entries in the symmetric matrix S, and one with U included in the optimiza-
tion. Our numerical tests indicate that the approach with a variable U is preferable
only for a rather small number of pivots (here less than 100) whereas using a fixed
basis U yields approximation results that depend (up to) quadratically on the grid
with h.
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In addition to producing results of higher accuracy, the approach with a fixed ker-
nel basis U is also preferable with respect to computational complexity which is
O(kn log n) compared to O(kn2 log n) for a variable U . Presenting some actual sim-
ulation timings, using a variable U took 2 min for n = 27 = 128 pivots and 22
minutes for n = 210 = 1024. Using a fixed kernel, using n = 210 = 1024 pivots can
still be done in under a minute.

Possible extensions in the future include the analysis for noisy data as it might
occur in actual measurements for physical particles.
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