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Abstract
The design of globally Cs-smooth (s ≥ 1) isogeometric spline spaces over
multi-patch geometries with possibly extraordinary vertices, i.e. vertices with valen-
cies different from four, is a current and challenging topic of research in the
framework of isogeometric analysis. In this work, we extend the recent methods
Kapl et al. Comput. Aided Geom. Des. 52–53:75–89, 2017, Kapl et al. Comput.
Aided Geom. Des. 69:55–75, 2019 and Kapl and Vitrih J. Comput. Appl. Math.
335:289–311, 2018, Kapl and Vitrih J. Comput. Appl. Math. 358:385–404, 2019 and
Kapl and Vitrih Comput. Methods Appl. Mech. Engrg. 360:112684, 2020 for the
construction of C1-smooth and C2-smooth isogeometric spline spaces over particu-
lar planar multi-patch geometries to the case of Cs-smooth isogeometric multi-patch
spline spaces of degree p, inner regularity r and of a smoothness s ≥ 1, with
p ≥ 2s + 1 and s ≤ r ≤ p − s − 1. More precisely, we study for s ≥ 1
the space of Cs-smooth isogeometric spline functions defined on planar, bilinearly
parameterized multi-patch domains, and generate a particular Cs-smooth subspace
of the entire Cs-smooth isogeometric multi-patch spline space. We further present
the construction of a basis for this Cs-smooth subspace, which consists of simple
and locally supported functions. Moreover, we use the Cs-smooth spline func-
tions to perform L2 approximation on bilinearly parameterized multi-patch domains,
where the obtained numerical results indicate an optimal approximation power of the
constructed Cs-smooth subspace.
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1 Introduction

Multi-patch spline geometries with possibly extraordinary vertices, i.e. vertices with
valencies different from four, are a useful tool in computer-aided design [15, 24] for
modeling complex objects, which usually cannot be described just by single-patch
geometries. The concept of isogeometric analysis [6, 14, 25] allows the construction
of globally Cs-smooth (s ≥ 1) isogeometric spline spaces over these multi-patch
geometries. The smooth spline spaces can then be used to solve high-order partial
differential equations (PDEs) on the multi-patch domains directly via the weak form
and a standard Galerkin discretization. While in case of fourth-order PDEs such as
the biharmonic equation, e.g. [5, 13, 26, 49, 57], the Kirchhoff-Love shell problem,
e.g. [3, 7, 41–43], the Cahn-Hilliard equation, e.g. [17, 18, 45], and problems of strain
gradient elasticity, e.g. [16, 46, 51], C1-smooth isogeometric spline functions are
needed, even C2-smooth functions are required in case of sixth order PDEs such as
the triharmonic equation, e.g. [5, 34, 57], the phase-field crystal equation, e.g. [5, 20],
the Kirchhoff plate model based on the Mindlin’s gradient elasticity theory, e.g. [40,
52], and the gradient-enhanced continuum damage model, e.g. [60]. Isogeometric
collocation, see, e.g. [1, 4, 19, 35, 47], is another possible application of globally
smooth isogeometric spline spaces. Solving the strong form of the PDE requires now
in case of a second order PDE C2-smooth isogeometric spline functions and in case
of a fourth-order PDE already C4-smooth functions.

Beside solving high-order PDEs directly via their Galerkin discretization or via
isogeometric collocation by employing exactly Cs-smooth isogeometric spline func-
tions as described in the previous paragraph, there exist further possible strategies in
isogeometric analysis to deal with high order PDEs by using function spaces of lower
regularity. We will briefly discuss two of them. The first approach is to couple the
neighboring patches instead of in a strong sense as for the case of exactly Cs-smooth
functions just in a weak sense. Then, the isogeometric spline space for solving the
PDE is in general not exactly Cs-smooth but the solution of the PDE is enforced to
be approximately Cs-smooth, e.g. by adding penalty terms and jump terms along the
interfaces to the weak form of the PDE, see, e.g. [2, 22], or by using Lagrange mul-
tipliers, see, e.g. [2, 56]. The second strategy is based on the application of a mixed
variational formulation for the corresponding high order PDE, which requires a refor-
mulation of the problem and the solving of a system of lower order PDEs but allows
the usage of isogeometric spline spaces of lower regularity, see, e.g. [54, 55].

The construction of globally, exactly Cs-smooth isogeometric spline spaces over
multi-patch geometries with possibly extraordinary vertices is mainly based on the
observation that an isogeometric function is Cs-smooth over the given multi-patch
domain if and only if its associated multi-patch graph surface is Gs-smooth (i.e.
geometrically continuous of order s). In this work, we will focus on the design
of smooth isogeometric spline spaces over planar multi-patch geometries, which
may have extraordinary vertices. So far, most existing techniques are limited to a
global smoothness of s = 1 and s = 2. In case of s = 1, these methods can be
roughly classified into three approaches depending on the used multi-patch param-
eterization. While the first strategy employs a multi-patch parameterization, which
is C1-smooth everywhere and therefore possesses a singularity at the extraordinary
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vertices, see, e.g. [50, 59], the second approach uses a multi-patch parameteriza-
tion, which is C1-smooth everywhere except in the neighborhood of an extraordinary
vertex, where a special construction of the parameterization is needed, see, e.g
[37–39, 49]. In contrast to the first two approaches, where the multi-patch geom-
etry is C1-smooth at most parts of the multi-patch domain, the used multi-patch
parameterization in the third strategy is in general just C0-smooth at the interfaces.
Examples of such parameterizations are (mapped) piecewise bilinear parameteriza-
tions, e.g. [8, 26, 36], general analysis-suitable parameterizations, e.g. [13, 27, 28,
30], non-analysis-suitable parameterizations, e.g. [11, 12], and general quadrilateral
meshes of arbitrary topology [9, 10, 48]. The recent survey article [29] provides more
details about the single methods of the three approaches and also includes further
possible constructions.

In case of s = 2, there exist only a small number of possible constructions, which
mainly follow the third strategy for s = 1, see, e.g. [31–35]. All these methods can be
applied to the case of (mapped) bilinear multi-patch parameterizations, but the tech-
niques [33–35] work also for a more general class of multi-patch parameterizations,
called bilinear-like G2 multi-patch geometries, cf. [33]. The design of Cs-smooth
isogeometric spline spaces for planar multi-patch geometries with possibly extraor-
dinary vertices has not been considered so far for a global smoothness of s > 2, and
is the topic of this paper. A related approach, which is based on a polar configura-
tion and enables the construction of Cs-smooth isogeometric spline functions with a
smoothness of s ≥ 3, is the technique [58].

In this paper, we study and generate Cs-smooth isogeometric spline functions,
which are defined over planar, multi-patch parameterizations. We will restrict our-
selves to a smoothness s with 1 ≤ s < 20, which should cover all cases of
practical interest. This limitation is due to the fact that one step in the proof of The-
orem 2 requires the use of a computer algebra system and has been verified for
1 ≤ s < 20. However, it is worth to mention that numerical tests (not shown in the
paper) have indicated the validity of Theorem 2 for a smoothness s ≥ 20, too, and
that then all other results of the paper would be directly applicable to an arbitrary
smoothness s ≥ 1.

The construction of the Cs-smooth spline space is mainly described for the case of
bilinearly parameterized multi-patch domains, but can be extended to the wider class
of bilinear-like Gs multi-patch geometries, which has been already introduced for
the case s = 2 in [33], and which allows the modeling of planar multi-patch geome-
tries with curved interfaces and boundaries. The presented study and construction of
the globally Cs-smooth isogeometric spline functions can be seen as an extension of
the techniques [27, 30] and [33–35] for the design of Cs-smooth isogeometric multi-
patch spline spaces for the case of s = 1 and s = 2, respectively. More precisely, we
develop for the case of a planar bilinear multi-patch parameterization a theoretical
framework to study the Cs-smoothness condition of an isogeometric function and to
characterize the resulting Cs-smooth function. We also use this framework to gen-
erate a particular Cs-smooth isogeometric spline space for a given planar, bilinearly
parameterized multi-patch domain and to construct a simple and locally supported
basis for the Cs-smooth space. Several numerical tests by performing L2 approx-
imation using the Cs-smooth isogeometric spline space for different s indicate an
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optimal approximation power of the constructed Cs-smooth space and demonstrate
the potential of the space for the use in isogeometric analysis.

The remainder of this paper is organized as follows. In Section 2, we introduce the
particular class of planar multi-patch geometries, which consists of bilinearly param-
eterized quadrilateral patches, and will be used throughout the paper. Moreover, we
present the concept of Cs-smooth isogeometric spline spaces over this class of multi-
patch geometries. Section 3 studies the Cs-smoothness condition of an isogeometric
function across two neighboring patches and describes first the construction of a par-
ticular Cs-smooth isogeometric spline space for the case of a bilinearly parameterized
two-patch domain. This requires the introduction of auxiliary functions, where some
concrete examples of these functions are presented in the Appendix. In Section 4,
we then extend the particular construction to the case of bilinearly parameterized
multi-patch domains with more than two patches and with possibly extraordinary ver-
tices. For both cases, we also explain the design of a simple basis, which consists of
locally supported functions. A first possible generalization of our approach beyond
bilinear parameterizations is briefly discussed in Section 5. Numerical experiments
in Section 6 indicate optimal approximation properties of the presented Cs-smooth
isogeometric multi-patch spline spaces. Finally, we conclude the paper in Section 7.

2 The multi-patch setting and Cs-smooth isogeometric spline spaces

In this section, we will first describe the multi-patch setting, which will be used
throughout the paper. Then, we will give a short overview of the concept of Cs-
smooth (s ≥ 1) isogeometric spline spaces over the considered class of multi-patch
domains.

Let Ω and Ω(i), i ∈ IΩ , be open and connected domains in R
2, such that

Ω = ∪i∈IΩ
Ω(i), where IΩ is the index set of the indices of the patches Ω(i).

Furthermore, let Ω(i), i ∈ IΩ , be quadrangular patches, which are mutually dis-
joint, and the closures of any two of them have either an empty intersection, possess
exactly one common vertex or share the whole common edge. We will further assume
that each patch Ω(i) is parameterized by a bilinear, bijective and regular geometry
mapping F (i),

F (i) : [0, 1]2 → R
2, ξ = (ξ1, ξ2) �→ F (i)(ξ) = F (i)(ξ1, ξ2), i ∈ IΩ,

such that Ω(i) = F (i)
([0, 1]2

)
, see Fig. 1. In addition, we denote by F the multi-

patch parameterization consisting of all geometry mappings F (i), i ∈ IΩ . We will
also use the splitting of the multi-patch domain Ω into the single patches Ω(i), i ∈
IΩ , edges Γ (i), i ∈ IΓ , and vertices Ξ(i), i ∈ IΞ , i.e.

Ω =
⋃

i∈IΩ

Ω(i) ∪̇
⋃

i∈IΓ

Γ (i) ∪̇
⋃

i∈IΞ

Ξ(i),

where ∪̇ denotes the disjoint union of sets and IΓ and IΞ are the index sets of the
indices of the edges Γ (i) and vertices Ξ(i), respectively.
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Fig. 1 The multi-patch domain Ω = ∪i∈IΩ Ω(i) with the corresponding geometry mappings F (i), i ∈ IΩ

Let us describe now the isogeometric spline spaces that will be considered in this
work. We denote by Sp,r

h ([0, 1]) the univariate spline space of degree p, regularity r

and mesh size h = 1
k+1 , which is defined on the unit interval [0, 1], and which is

constructed from the uniform open knot vector

⎛

⎜⎜
⎝ 0, . . . , 0︸ ︷︷ ︸

(p+1)−times

, 1
k+1 , . . . , 1

k+1︸ ︷︷ ︸
(p−r)−times

, . . . , k
k+1 , . . . , k

k+1︸ ︷︷ ︸
(p−r)−times

, 1, . . . , 1︸ ︷︷ ︸
(p+1)−times

⎞

⎟⎟
⎠ ,

where k is the number of different inner knots. Furthermore, let Sp,r
h

([0, 1]2
)

be
the tensor-product spline space Sp,r

h ([0, 1]) ⊗Sp,r
h ([0, 1]) on the unit-square [0, 1]2.

We denote the B-splines of the spaces Sp,r
h ([0, 1]) and Sp,r

h

([0, 1]2
)

by N
p,r
j and

N
p,r
j1,j2

= N
p,r
j1

N
p,r
j2

, respectively, with j, j1, j2 = 0, 1, . . . , n−1, where n = p+1+
k(p − r). We assume that p ≥ 2s + 1 and s ≤ r ≤ p − (s + 1). Since the geometry
mappings F (i), i ∈ IΩ , are bilinearly parameterized, we trivially have that

F (i) ∈ Sp,r
h

(
[0, 1]2

)
× Sp,r

h

(
[0, 1]2

)
.

The space of isogeometric functions on Ω is given as

V =
{
φ ∈ L2 (Ω

) | φ|
Ω(i) ∈ Sp,r

h

(
[0, 1]2

)
◦
(
F (i)

)−1
, i ∈ IΩ

}
.

In addition, let

Vs = V ∩ Cs
(
Ω
)
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be the space of Cs-smooth isogeometric functions on Ω . For an isogeometric func-
tion φ ∈ V , we denote the spline functions φ ◦ F (i), i ∈ IΩ , by f (i), and specify
their spline representations by

f (i)(ξ1, ξ2) =
n−1∑

j1=0

n−1∑

j2=0

d
(i)
j1,j2

N
p,r
j1,j2

(ξ1, ξ2), d
(i)
j1,j2

∈ R.

Moreover, we define the graph Σ ⊆ Ω ×R of an isogeometric function φ ∈ V as
the collection of the graph surface patches Σ (i) : [0, 1]2 → Ω(i) × R, i ∈ IΩ , given
by

Σ (i)(ξ1, ξ2) =
(
F (i)(ξ1, ξ2), f

(i)(ξ1, ξ2)
)T

.

The space Vs can be characterized by means of the concept of geometric conti-
nuity of multi-patch surfaces, cf. [24, 53]. An isogeometric function φ ∈ V belongs
to the space Vs if and only if for any two neighboring patches Ω(i0) and Ω(i1),
i0, i1 ∈ IΩ , with the common edge Γ (i) = Ω(i0) ∩ Ω(i1), i ∈ IΓ , the associ-
ated graph surface patches Σ (i0) and Σ (i1) are Gs-smooth, see, e.g. [21, 36], i.e.

there exists a regular, orientation-preserving reparameterization Φ(i) =
(
Φ

(i)
1 , Φ

(i)
2

)
,

Φ
(i)
j : [0, 1]2 → [0, 1], j = 1, 2, such that

∂
j1
1 ∂

j2
2 Σ (i1)

∣∣
Γ (i) = ∂

j1
1 ∂

j2
2

(
Σ (i0) ◦ Φ(i)

) ∣∣
Γ (i) , 0 ≤ j1+j2 ≤ s, i0, i1 ∈ IΩ . (1)

Here and throughout the paper, we will denote by ∂
j

	 the j th partial derivative with
respect to the 	th argument of a multivariate function, while we will denote by ∂j the
j th derivative with respect to the argument of a univariate function.

In the next section, first, the case of a two-patch domain will be analyzed. For this
purpose but also for the remainder of the paper, the smoothness s will be restricted to
the case 1 ≤ s < 20 as explained in the introduction.

3 Cs-smooth isogeometric spline spaces over two-patch domains

In this section, we will consider the case of bilinearly parameterized two-patch
domains Ω . In order to simplify the notation, we will denote the patches of the two-
patch domain as Ω = Ω(i0) ∪ Ω(i1), their intersection by Γ = Ω(i0) ∩ Ω(i1) and the
corresponding reparameterization just as Φ. We will first study the Gs-smoothness
condition of the graph surface of a Cs-smooth isogeometric spline function defined
on a bilinear two-patch domain, and will then use it to construct a particular Cs-
smooth isogeometric spline space. The presented work in this section can be seen as
an extension of [27] and [33] for s = 1 and s = 2, respectively, to a higher smooth-
ness s in case of bilinear two-patch parameterizations. A possible strategy beyond
bilinear parameterizations is briefly explained in Section 5.

47   Page 6 of 34 Adv Comput Math (2021) 47: 47



3.1 G s -smoothness of graph surfaces

Let φ ∈ V , and let f (τ) = φ ◦ F (τ ), τ ∈ {i0, i1}, be the two associated spline
functions. To ensure that the graph surface Σ = Σ (i0) ∪ Σ (i1) of the isogeometric
function φ is Gs-smooth, Σ (i0) and Σ (i1) have to be joint above their common edge
Γ with Gs-continuity. Without loss of generality, we can assume that Φ(0, ξ2) =
(0, ξ2), i.e. the G0 smoothness across the common interface can be written as

Σ (i0)(0, ξ2) = Σ (i1)(0, ξ2), ξ2 ∈ [0, 1]. (2)

In this way, the patches Ω(i0) and Ω(i1) are parameterized as shown in Fig. 2.
Furthermore, the G1-smoothness can be expressed as

det
(
∂1Σ

(i1)(0, ξ2), ∂1Σ
(i0)(0, ξ2), ∂2Σ

(i0)(0, ξ2)
)

= 0, ξ2 ∈ [0, 1], (3)

which is equivalent to

α(i0)(ξ2)∂1f
(i1)(0, ξ2) − α(i1)(ξ2)∂1f

(i0)(0, ξ2) − β(ξ2)∂2f
(i0)(0, ξ2) = 0, (4)

for ξ2 ∈ [0, 1], with α(τ), β : R → R,

α(τ)(ξ) = λ1 det
(
∂1F

(τ )(0, ξ), ∂2F
(τ )(0, ξ)

)
, τ ∈ {i0, i1}, (5)

and

β(ξ) = λ1 det
(
∂1F

(i0)(0, ξ), ∂1F
(i1)(0, ξ)

)
.

We can select λ1 ∈ R in such a way, that

||α(i0) + 1||2
L2 + ||α(i1) − 1||2

L2 (6)

is minimized, cf. [34].

Remark 1 The proposed choice of λ1 for the functions α(i0), α(i1) and β will ensure
later together with additional scaling factors that the constructed basis functions
across the interfaces in Section 3.2 will be uniformly scaled, see also Remark 3.

Note that α(i0) < 0 and α(i1) > 0, since the geometry mappings F (i0) and F (i1)

are regular. In addition, we can write β as

β(ξ) = α(i0)(ξ)β(i1)(ξ) − α(i1)(ξ)β(i0)(ξ) (7)

Fig. 2 The parameterization of the two-patch domain Ω(i0) ∪ Ω(i1) with the common edge Γ
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with β(τ) : R → R,

β(τ)(ξ) = ∂1F
(τ )(0, ξ) · ∂2F

(τ )(0, ξ)

||∂2F
(τ )(0, ξ)||2 , τ ∈ {i0, i1}, (8)

where α(i0), α(i1), β(i0) and β(i1) are linear polynomials, and β is a quadratic one, cf.
[13, 33].

Recall (1), and let ai,j , bi,j : R → R,

ai,j (ξ) =
(
∂i

1∂
j

2 Φ1

)
(0, ξ), bi,j (ξ) =

(
∂i

1∂
j

2 Φ2

)
(0, ξ). (9)

By (1), (4) and (9), we observe that

a1,0(ξ) = α(i1)(ξ)

α(i0)(ξ)
, b1,0(ξ) = β(ξ)

α(i0)(ξ)
. (10)

In a similar way as for the G1 smoothness, we can derive conditions for the G	-
smoothness, 2 ≤ 	 ≤ s (see, e.g. [24]). For each particular 	, 1 ≤ 	 ≤ s, one only
needs to consider the equation

∂	
1Σ (i1)(0, ξ2) = ∂	

1

(
Σ (i0) ◦ Φ

)
(0, ξ2), ξ2 ∈ [0, 1], (11)

since the continuity of all mixed derivatives of total order 	 follows directly from
(11) for 1 ≤ 	′ < 	. Now, we would like to express G	-smoothness conditions in a
similar way as in (3). By introducing Ξ 	 = (

Ξ̃ 	, ω	

) : R → R
3 with components

Ξ̃ 	 : R → R
2 and ω	 : R → R, defined as

Ξ 	(ξ) = (
Ξ̃ 	(ξ), ω	(ξ)

) = ∂	
1Σ (i1)(0, ξ) − ∂	

1

(
Σ (i0) ◦ Φ

)
(0, ξ) + a	,0 ∂1Σ

(i0)(0, ξ)

+b	,0 ∂2Σ
(i0)(0, ξ), (12)

relations (11) imply

det
(
Ξ 	(ξ2), ∂1Σ

(i0)(0, ξ2), ∂2Σ
(i0)(0, ξ2)

)
= 0, ξ2 ∈ [0, 1]. (13)

Expanding (13) and multiplying with λ1 leads to

λ	 α(i0)(ξ2) ω	(ξ2) + η	(ξ2) ∂1f
(i0)(0, ξ2) + θ	(ξ2) ∂2f

(i0)(0, ξ2) = 0, (14)

for ξ2 ∈ [0, 1], with η	, θ	 : R → R,

η	(ξ) = λ1λ	 det
(
∂2F

(i0)(0, ξ), Ξ̃ 	(ξ)
)

, θ	(ξ) = λ1λ	 det
(
Ξ̃ 	(ξ), ∂1F

(i0)(0, ξ)
)

.

(15)
Since F (i0) is a bilinear mapping, (9), (11) and (13) imply

Ξ̃ 	(ξ) = −c	(ξ) ∂1∂2F
(i0)(0, ξ),

with c	 : R → R, defined as

c	(ξ) :=
	−1∑

i=1

(
	

i

)
ai,0(ξ) b	−i,0(ξ), 	 ≥ 2. (16)
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Then by (15), it follows that

η	(ξ) = −λ1λ	 c	(ξ) det
(
∂2F

(i0)(0, ξ), ∂1∂2F
(i0)(0, ξ)

)

= λ	

(
α(i0)(ξ)

)′
c	(ξ), (17)

and

θ	(ξ) = −λ1λ	 c	(ξ) det
(
∂1∂2F

(i0)(0, ξ), ∂1F
(i0)(0, ξ)

)

= λ	

(
α(i0)(ξ)

(
β(i0)(ξ)

)′ −
(
α(i0)(ξ)

)′
β(i0)(ξ)

)
c	(ξ). (18)

The last equalities in (17) and (18) follow directly by computing
det

(
∂2F

(i0)(0, ξ), ∂1∂2F
(i0)(0, ξ)

)
and det

(
∂1∂2F

(i0)(0, ξ), ∂1F
(i0)(0, ξ)

)
for a

bilinear patch F (i0), and using (5) and (8). Inserting ω	, defined in (12), into (14)
and considering coefficient functions at ∂1f

(i0)(0, ξ2) and ∂2f
(i0)(0, ξ2) gives

η	(ξ) = −λ	 α(i0)(ξ)a	,0(ξ), θ	(ξ) = −λ	 α(i0)(ξ)b	,0(ξ), 1 ≤ 	 ≤ s. (19)

Remark 2 For the sake of simplicity, we will choose in the following λ	 = 1 for
	 = 2, 3, . . . , s.

Comparing Eqs. (17) and (18) with (19) directly leads to the following lemma.

Lemma 1 The functions a	,0 and b	,0, 1 ≤ 	 ≤ s, can be expressed by α(τ), β(τ),
τ ∈ {i0, i1}, via the recursion

a1,0(ξ) = α(i1)(ξ)

α(i0)(ξ)
, b1,0(ξ) = β(ξ)

α(i0)(ξ)
,

a	,0(ξ) = ϑ(ξ)c	(ξ), b	,0(ξ) = μ(ξ)c	(ξ), 2 ≤ 	 ≤ s,

where the function c	 is given in (16), and the functions ϑ, μ : R → R are defined as

ϑ(ξ) = −
(
α(i0)(ξ)

)′

α(i0)(ξ)
, μ(ξ) = −

(
α(i0)(ξ)

(
β(i0)(ξ)

)′ − (
α(i0)(ξ)

)′
β(i0)(ξ)

)

α(i0)(ξ)
.

Explicit expressions for the functions Ξ 	, η	 and θ	 for the cases 	 ∈ {1, 2, 3}
are given in Example 1 in the Appendix. Lemma 1 provides us now with closed
form formulae for the functions a	,0(ξ) and b	,0(ξ), 	 ≥ 2, which only depend on
α(i0)(ξ), α(i1)(ξ), β(i0)(ξ) and β(i1)(ξ), and which are equal to

a	,0(ξ) = 	! α(i1)(ξ) β(ξ)
(
α(i0)(ξ)

)	 ϑ(ξ)
	−2∑

j=0
N(	 − 1, j + 1)

(
μ(ξ) α(i1)(ξ)

)j
(ϑ(ξ) β(ξ))	−2−j ,

b	,0(ξ) = 	! α(i1)(ξ) β(ξ)
(
α(i0)(ξ)

)	 μ(ξ)
	−2∑

j=0
N(	 − 1, j + 1)

(
μ(ξ) α(i1)(ξ)

)j
(ϑ(ξ) β(ξ))	−2−j ,

where β(ξ) is given in (7) and

N(m1, m2) = 1

m1

(
m1

m2

)(
m1

m2 − 1

)
, 1 ≤ m2 ≤ m1, m1, m2 ∈ N,

are the well-known Narayana numbers. Summarizing the results of this section
implies the following theorem.
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Theorem 1 Let Ω be a bilinearly parameterized two-patch domain, i.e. Ω = Ω(i0)∪
Ω(i1). An isogeometric function φ ∈ V belongs to the space Vs if and only if the two
associated spline functions f (τ) = φ ◦ F (τ ), τ ∈ {i0, i1}, fulfill

∂	
1f (i1)(0, ξ2) = ∂	

1

(
f (i0) ◦ Φ

)
(0, ξ2), ξ2 ∈ [0, 1], 	 = 0, 1, . . . , s,

or equivalently
f (i1)(0, ξ2) = f (i0)(0, ξ2),

α(i0)(ξ2) ω	(ξ2) + η	(ξ2) ∂1f
(i0)(0, ξ2) + θ	(ξ2) ∂2f

(i0)(0, ξ2) = 0,

for ξ2 ∈ [0, 1], and 	 = 1, 2, . . . , s, where α(i0) is defined via (5) and (6), and ω	,
η	 and θ	 are expressed by means of (12), (19) and Lemma 1.

3.2 Construction of C s -smooth isogeometric spline spaces

Theorem 1 describes the Cs-smoothness condition for an isogeometric function φ ∈
V . Theorem 1 will provide now an equivalent but simplified condition, which will be
the key step for the construction of Cs-smooth isogeometric functions. Before stating
the theorem, we need the closed-form expression for ∂	

1

(
Σ (i0) ◦ Φ

)
(0, ξ), which

requires the use of the generalized Faà di Bruno’s formula [23], i.e.

∂	
1

(
Σ (i0) ◦ Φ

)
(0, ξ) =

	∑

|σ |=1

Aσ ;	(ξ) ∂
σ1
1 ∂

σ2
2 Σ (i0)(0, ξ), (20)

where σ = (σ1, σ2) is a multi-index with the indices σ1, σ2 ∈ {0, 1, . . . , 	}, 1 ≤
σ1 + σ2 ≤ 	, |σ | = σ1 + σ2 is the length of the multi-index, and Aσ ;	 : R → R,

Aσ ;	(ξ) = 	 !
∑

(i,j)∈Iσ ;	

	∏

ρ=1

a
iρ
ρ,0(ξ) b

jρ

ρ,0(ξ)
1

ρ! iρ+jρ iρ ! jρ ! , (21)

with aρ,0(ξ) and bρ,0(ξ) given in (9), and with

Iσ ;	 =
⎧
⎨

⎩
(i, j)=((i1, i2, . . . , i	),(j1,j2,. . . ,j	))

∣∣∣|i|=σ1,|j |=σ2,

	∑

ρ=1

ρ(iρ +jρ)=	

⎫
⎬

⎭
.

(22)
Example 2 in the Appendix states the expressions for the functions Aσ ;	 for the

case 	 = 3 and |σ | ≤ 3.

Theorem 2 Let Ω be a bilinearly parameterized two-patch domain, i.e. Ω = Ω(i0)∪
Ω(i1). An isogeometric function φ ∈ V belongs to the space Vs if and only if the
corresponding spline functions f (i0) = φ ◦ F (i0) and f (i1) = φ ◦ F (i1) satisfy

f
(i0)
	 (ξ) = f

(i1)
	 (ξ) =: f	(ξ), 	 = 0, 1, . . . , s, (23)

with

f
(τ)
	 (ξ) =

(
α(τ)(ξ)

)−	

∂	
1f (τ)(0, ξ) −

	−1∑

i=0

(
	

i

)(
β(τ)(ξ)

α(τ)(ξ)

)	−i

∂	−ifi (ξ), (24)

for τ ∈ {i0, i1}.
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Proof It directly follows from Theorem 1 that an isogeometric function φ ∈ V
belongs to the space Vs if and only if the associated spline functions f (i0) and f (i1)

fulfill the equation

(
α(i1)(ξ)

)−	 (
∂	

1f (i1)(0, ξ) − ∂	
1

(
f (i0) ◦ Φ

)
(0, ξ)

)
= 0, ξ ∈ [0, 1], (25)

for 	 = 0, 1, . . . , s. We will prove the equivalence of Eqs. (23) and (25) for any
	 = 0, 1, . . . , s, by means of induction on 	. The equivalence of both equations
trivially holds for 	 = 0 and can be directly obtained for 	 = 1 by applying (10) in
Eq. (25). We will assume now that the equivalence of the two Eqs. (23) and (25) holds
for all 	 ≤ s − 1, and we will show it for 	 = s. Using the induction assumption,
multiplying Eq. (24) for τ = i0 by (α(i0)(ξ))	 and expressing ∂	

1f (i0)(0, ξ) gives

∂	
1f (i0)(0, ξ) =

	∑

i=0

(
	

i

)(
β(i0)(ξ)

)	−i (
α(i0)(ξ)

)i

∂	−ifi(ξ), 1 ≤ 	 ≤ s − 1. (26)

Furthermore, differentiating ∂	
1f (i0)(0, ξ) with respect to the second argument

yields

∂
j

2 ∂	
1f (i0)(0, ξ) =

	∑

i=0

j∑

ρ=0

(
	

i

)(
j

ρ

)
∂j−ρ

((
β(i0)(ξ)

)	−i (
α(i0)(ξ)

)i
)

∂	−i+ρfi(ξ), (27)

for 1 ≤ 	 ≤ s − 1 and j ≥ 0. In the following, we will skip the arguments in order
to simplify the expressions. Using (20) and (27), (25) is equivalent to

0 = ∂s
1f (i1)

(
α(i1)

)s − ∂s
1f (i0)

(
α(i0)

)s

−
s∑

|σ |=1
σ1<s

Aσ ;s(
α(i1)

)s

σ1∑

i=0

σ2∑

ρ=0

(
σ1

i

)(
σ2

ρ

)
∂σ2−ρ

((
β(i0)

)σ1−i (
α(i0)

)i
)

∂σ1−i+ρfi

= ∂s
1f (i1)

(
α(i1)

)s − ∂s
1f (i0)

(
α(i0)

)s

−
s−1∑

σ1=0

s−σ1∑

σ2=0

Aσ ;s(
α(i1)

)s

σ1∑

i=0

σ2∑

ρ=0

(
σ1

i

)(
σ2

ρ

)
∂σ2−ρ

((
β(i0)

)σ1−i(
α(i0)

)i
)

∂σ1−i+ρfi

= ∂s
1f (i1)

(
α(i1)

)s − ∂s
1f (i0)

(
α(i0)

)s

−
s−1∑

i=0

s−1∑

σ1=i

s−σ1∑

σ2=0

σ2∑

ρ=0

Aσ ;s(
α(i1)

)s

(
σ1

i

)(
σ2

ρ

)
∂σ2−ρ

((
β(i0)

)σ1−i(
α(i0)

)i
)
∂σ1−i+ρfi . (28)
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It is straightforward to see that σ1 − i + ρ ≤ s − i. By writing j = σ1 − i + ρ and
applying that ρ ≥ 0 implies σ1 ≤ i + j , we can express Eq. (28) also as

0 = ∂s
1f (i1)

(
α(i1)

)s − ∂s
1f (i0)

(
α(i0)

)s −
s−1∑

i=0

s−i∑

j=0

Bs
i,j ∂j fi, (29)

where Bs
i,j : R → R,

Bs
i,j =

min{s−1,i+j}∑

σ1=i

s−σ1∑

σ2=i+j−σ1

Aσ ;s(
α(i1)

)s

(
σ1

i

)(
σ2

i+j−σ1

)
∂σ2−(i+j−σ1)

((
β(i0)

)σ1−i(
α(i0)

)i
)

.

(30)
In order to prove the theorem, which means now to demonstrate the equivalence

of the Eqs. (23) and (29), it remains to show that functions (30) simplify to

Bs
i,s−i =

(
s

i

)⎛

⎝
(

β(i1)

α(i1)

)s−i

−
(

β(i0)

α(i0)

)s−i
⎞

⎠ , i = 0, 1, . . . , s − 1, (31)

and
Bs

i,j = 0, j = 0, 1, . . . , s − i − 1, i = 0, 1, . . . , s − 1. (32)

We will first consider the case i +j = s, and will hence prove formula (31). Now,
σ2 = s − σ1, thus (30) equals

Bs
i,s−i =

s−1∑

σ1=i

A(σ1,s−σ1);s(
α(i1)

)s

(
σ1

i

)(
β(i0)

)σ1−i (
α(i0)

)i

.

Applying (21), we obtain

Bs
i,s−i = 1

(
α(i1)

)s

s−1∑

σ1=i

(
s

σ1

)(
σ1

i

)
a

σ1
1,0 b

s−σ1
1,0

(
β(i0)

)σ1−i (
α(i0)

)i

.

Using μ = σ1 − i gives

Bs
i,s−i = 1

(
α(i1)

)s

(
α(i0)

β(i0)

)i s−i−1∑

μ=0

(
s

i + μ

)(
i + μ

i

)(
a1,0β

(i0)
)i+μ

b
s−(i+μ)
1,0

= 1
(
α(i1)

)s

(
α(i0)

β(i0)

)i s−i−1∑

μ=0

(
s − i

μ

)(
s

i

)(
a1,0β

(i0)
)i+μ

b
s−(i+μ)
1,0 ,

where the binomial identity
(

s
i+μ

)(
i+μ

i

) = (
s−i
μ

)(
s
i

)
has been used. Expanding the sum

by one additional term and then subtracting it and further using the binomial theorem
implies

Bs
i,s−i = 1

(
α(i1)

)s

(
α(i0)

β(i0)

)i (
a1,0β

(i0)
)i
(

s

i

)⎛

⎝
s−i∑

μ=0

(
s − i

μ

)(
a1,0β

(i0)
)μ

b
(s−i)−μ
1,0 −

(
a1,0β

(i0)
)s−i

⎞

⎠

= 1
(
α(i1)

)s

(
α(i0)

β(i0)

)i (
a1,0β

(i0)
)i
(

s

i

)((
a1,0β

(i0) + b1,0

)s−i −
(
a1,0β

(i0)
)s−i

)
.
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By (10), it follows that a1,0β
(i0) = α(i1)β(i0)

(
α(i0)

)−1
and a1,0β

(i0)+b1,0 = β(i1).
Thus, Bs

i,s−i finally simplifies to

Bs
i,s−i =

(
s

i

)
1

(
α(i1)

)s−i

⎛

⎝
(
β(i1)

)s−i −
(

α(i1)β(i0)

α(i0)

)s−i
⎞

⎠ =
(

s

i

)⎛

⎝
(

β(i1)

α(i1)

)s−i

−
(

β(i0)

α(i0)

)s−i
⎞

⎠ .

Let us now consider (32), i.e. i + j ≤ s − 1. We can show with the help of a
computer algebra system that expression (30) is equivalent1 to

Bs
i,j = (−1)s−(i+j)s(s − 1 − i)!(s−1

i

) (
β(i1)

)j−1 (
α(i1)

)i−1

j ! (α(i1)
)s (

α(i0)
)2(s−(i+j))

(
i β(i1)

(
α(i0)

)′ + j α(i1)
(
β(i0)

)′)

·
(

α(i0)β(i1)
(
α(i0)

)′ + α(i1)

(
α(i0)

(
β(i0)

)′ − 2β(i0)
(
α(i0)

)′))s−1−(i+j)

(33)

·
((

α(i1)
)2

β(i0) − α(i0)α(i1)β(i1) +
(
α(i0)

)2
a1,0 b1,0

)
.

Since the last factor of (33) is equal to zero, i.e.
(
α(i1)

)2
β(i0) −α(i0)α(i1)β(i1) +

(
α(i0)

)2
a1,0 b1,0 = −α(i1)

(
α(i0)β(i1) − α(i1)β(i0)

)
+α(i1)β = 0,

relation (32) holds. Employing (31) and (32), we can now simplify Eq. (29) to

∂s
1f (i1)

(
α(i1)

)s − ∂s
1f (i0)

(
α(i0)

)s −
s−1∑

i=0

(
s

i

)(
β(i1)

α(i1)

)s−i

∂s−ifi +
s−1∑

i=0

(
s

i

)(
β(i0)

α(i0)

)s−i

∂s−ifi = 0,

which is equivalent to Eq. (23), and which finally concludes the proof.

The Cs-smooth isogeometric spline space Vs over a bilinearly parameterized two-
patch domain Ω = Ω(i0) ∪ Ω(i1) can be decomposed into the direct sum of three
subspaces, namely

Vs = Vs

Ω(i0) ⊕ Vs

Ω(i1) ⊕ Vs
Γ ,

where the subspaces Vs
Ω(τ) , τ ∈ {i0, i1}, and Vs

Γ are given by

Vs
Ω(τ) =

⎧
⎨

⎩
φ ∈ Vs | f (τ)(ξ1, ξ2) =

n−1∑

j1=s+1

n−1∑

j2=0

d
(τ)
j1,j2

N
p,r
j1,j2

(ξ1, ξ2), f (̃τ )(ξ1, ξ2) = 0, τ̃ �= τ, d
(τ)
j1,j2

∈ R

⎫
⎬

⎭

and

Vs
Γ =

⎧
⎨

⎩
φ ∈ Vs | f (τ)(ξ1, ξ2) =

s∑

j1=0

n−1∑

j2=0

d
(τ)
j1,j2

N
p,r
j1,j2

(ξ1, ξ2), τ ∈ {i0, i1}, d
(τ)
j1,j2

∈ R

⎫
⎬

⎭
,

1This equivalence has been verified for 1 ≤ s < 20 using the Mathematica file available on https://osebje.
famnit.upr.si/∼vito.vitrih/notebook.html
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respectively. The subspaces Vs
Ω(τ) , τ ∈ {i0, i1}, can be simply described as

Vs
Ω(τ) = span

{
φΩ(τ);j1,j2

| j1 = s + 1, . . . , n − 1, j2 = 0, 1, . . . , n − 1
}

, τ ∈ {i0, i1},

with the functions φΩ(τ);j1,j2
: Ω → R,

φΩ(τ);j1,j2
(x) =

{(
N

p,r
j1,j2

◦ (F (τ )
)−1

)
(x) if x ∈ Ω(τ),

0 if x ∈ Ω\Ω(τ).
(34)

Since the functions φΩ(τ);j1,j2
, j1 = s+1, . . . , n−1, j2 = 0, 1, . . . , n−1, are just

“standard” isogeometric spline functions of at least Cs-continuity, they are linearly
independent and therefore form a basis of the space Vs

Ω(τ) . The following theorem
specifies now an explicit representation of an isogeometric function φ ∈ Vs

Γ .

Theorem 3 Let φ ∈ Vs
Γ , then the two associated spline functions f (τ) = φ ◦ F (τ ),

τ ∈ {i0, i1}, can be represented as

f (τ)(ξ1, ξ2) =
s∑

i=0

⎛

⎝
i∑

j=0

(
i

j

)(
β(τ)(ξ2)

)i−j (
α(τ)(ξ2)

)j

∂i−j fj (ξ2)

⎞

⎠M
p,r
i (ξ1), (35)

where the functions fj are defined in (23) and (24), and the functions M
p,r
i : R →

R, which fulfill ∂	M
p,r
i (0) = δi,	, 	 = 0, 1, . . . , s, with δi,	 being the Kronecker

delta, are given as

M
p,r
i (ξ) =

s∑

j=i

(
j
i

)
hi

∏i−1
	=0(p − 	)

N
p,r
j (ξ), i = 0, 1, . . . , s.

Proof By means of the Taylor expansion of f (τ)(ξ1, ξ2) at (ξ1, ξ2) = (0, ξ2), and
due to Theorem 2, we obtain that

f (τ)(ξ1, ξ2) = f (τ)(0, ξ2) + ∂1f
(τ)(0, ξ2)ξ1 + ∂2

1 f (τ)(0, ξ2)
ξ2

1

2
+ . . . + ∂s

1f (τ)(0, ξ2)
ξ s

1

s! + O
(
ξ s+1

1

)

= f0(ξ2) +
(
α(τ)(ξ2)f1(ξ2) + β(τ)(ξ2)f

′
0(ξ2)

)
ξ1

+
((

α(τ)
)2

(ξ2)f2(ξ2) + 2β(τ)α(τ)(ξ2)f
′
1(ξ2) +

(
β(τ)

)2
(ξ2)f

′′
0 (ξ2)

)
ξ2

1

2
+ . . .

+
⎛

⎝
s∑

j=0

(
s

j

)(
β(τ)(ξ2)

)s−j (
α(τ)(ξ2)

)j

∂s−j fj (ξ2)

⎞

⎠ ξ s
1

s! + O
(
ξ s+1

1

)
.

Using the fact that the functions f (τ)(ξ1, ξ2), τ ∈ {i0, i1}, possess just a spline
representation of the form

f (τ)(ξ1, ξ2) =
s∑

j1=0

n−1∑

j2=0

d
(τ)
j1,j2

N
p,r
j1,j2

(ξ1, ξ2),
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we further get

f (τ)(ξ1, ξ2) = f0(ξ2)M
p,r

0 (ξ1) +
(
α(τ)(ξ2)f1(ξ2) + β(τ)(ξ2)f

′
0(ξ2)

)
M

p,r

1 (ξ1)

+
((

α(τ)
)2

(ξ2)f2(ξ2) + 2β(τ)α(τ)(ξ2)f
′
1(ξ2) +

(
β(τ)

)2
(ξ2)f

′′
0 (ξ2)

)
M

p,r

2 (ξ1) + . . .

+
⎛

⎝
s∑

j=0

(
s

j

)(
β(τ)(ξ2)

)s−j (
α(τ)(ξ2)

)j

∂s−j fj (ξ2)

⎞

⎠M
p,r
s (ξ1),

with

M
p,r
i (ξ1) =

s∑

j=0

λi,jN
p,r
j (ξ1), i = 0, 1, . . . , s.

The unknown parameters λi,j , i, j = 0, 1, . . . , s, are then determined by the con-
ditions ∂	M

p,r
i (0) = δi,	. By the properties of the B-splines N

p,r
j , we obtain for the

unknowns λi,j the following system of 2(s + 1) equations

∂	M
p,r
i (0) = h−	

⎛

⎝
	−1∏

ρ=0

(p − ρ)

⎞

⎠
	∑

ρ=0

(−1)	−ρ

(
	

ρ

)
λi,ρ, i, 	 = 0, 1, . . . , s,

which possesses the solution

λi,0 = λi,1 = · · · = λi,i−1 = 0, λi,j =
(
j
i

)
hi

∏i−1
ρ=0(p − ρ)

, j ≥ i.

The construction of a basis for the space Vs
Γ , and hence for the space Vs , is a very

challenging task, which requires the study of a lot of different possible cases, cf. [27]
and [33] for s = 1 and s = 2, respectively. This is a direct consequence of the fact
that the dimension of the space Vs

Γ heavily depends on the configuration of the two
underlying bilinear patches F (i0) and F (i1). Therefore, we consider instead of the
entire space Vs = Vs

Ω(i0) ⊕ Vs

Ω(i1) ⊕ Vs
Γ a subspace Ws ⊆ Vs , given as

Ws = Vs

Ω(i0) ⊕ Vs

Ω(i1) ⊕ W̃s
Γ , (36)

with W̃s
Γ ⊆ Vs

Γ . The subspace W̃s
Γ is defined as

W̃s
Γ = span

{
φΓ ;j1,j2 | j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , nj1 − 1

}
,

where the functions φΓ ;j1,j2 : Ω → R possess the form

φΓ ;j1,j2 (x) =
⎧
⎨

⎩

(
f

(i0)
Γ ;j1,j2

◦ (F (i0)
)−1

)
(x) if x ∈ Ω(i0),

(
f

(i1)
Γ ;j1,j2

◦ (F (i1)
)−1

)
(x) if x ∈ Ω(i1),

j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , nj1 − 1,

(37)
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and nj1 = dim
(
Sp−j1,r+s−j1

h ([0, 1])
)

= p+1−j1+k(p−r−s+j1). The functions

f
(τ)
Γ ;j1,j2

: [0, 1]2 → R, τ ∈ {i0, i1}, are further given by

f
(τ)
Γ ;j1,j2

(ξ1, ξ2)=γj1

s∑

i=j1

(
i

j1

)(
β(τ)(ξ2)

)i−j1
(
α(τ)(ξ2)

)j1
∂i−j1

(
N

p−j1,r+s−j1
j2

(ξ2)
)
M

p,r
i (ξ1),

(38)
where γj1 , j1 = 0, 1, . . . , s, are scaling factors of the form γj1 = h−j1

∏j1−1
j2=0(p−j2).

The selection of the subspace Ws is motivated by the numerical results in [33] for
s = 2, and by our numerical experiments in Section 6 for s = 1, . . . , 4, which
indicate that the subspace Ws (and consequently also the entire space Vs) possesses
optimal approximation properties. It remains to show that W̃s

Γ ⊆ Vs
Γ , which is

covered amongst others by the following theorem.

Theorem 4 It holds that

W̃s
Γ ⊆ Vs

Γ .

Moreover, the functions φΓ ;j1,j2 , j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , nj1 − 1, form a
basis of the space W̃s

Γ .

Proof In order to prove W̃s
Γ ⊆ Vs

Γ , we show that φΓ ;j1,j2 ∈ Vs
Γ for all j1 =

0, 1, . . . , s, j2 = 0, 1, . . . , nj1 − 1. Note that any (s + 1)-tuple of functions
(f0, f1, . . . , fs), which assures after inserting in (35), that the two functions f (τ) =
φ ◦F (τ ), τ ∈ {i0, i1}, belong to the spline space Sp,r

h

([0, 1]2
)
, defines an isogeomet-

ric function φ ∈ Vs
Γ . One can easily verify by means of representation (35), that the

(s + 1)-tuples formed by

(f0, f1, . . . , fs) =
⎛

⎝0, 0, . . . , 0︸ ︷︷ ︸
j1

, γj1 N
p−j1,r+s−j1
j2

, 0, . . . , 0︸ ︷︷ ︸
s−j1

⎞

⎠ , (39)

for j2 = 0, 1, . . . , nj1 − 1, j1 = 0, 1, . . . , s, yield isogeometric functions φ ∈ Vs
Γ ,

since we get f (τ) ∈ Sp,r
h

([0, 1]2
)
, τ ∈ {i0, i1}. However, the resulting functions φ ∈

Vs
Γ obtained by the (s +1)-tuples in (39) are now exactly the isogeometric functions

φΓ ;j1,j2 , j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , nj1 −1, which hence implies that φΓ ;j1,j2 ∈
Vs

Γ for all j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , nj1 − 1. Since the functions φΓ ;j1,j2 are
linearly independent by construction, they form a basis of the space W̃s

Γ

Remark 3 The scaling factors γj1 in (38) guarantee together with the proposed
choice of λ1 for the functions α(i0), α(i1) and β in Section 3.1 that the basis func-
tions φΓ ;j1,j2 , j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , nj1 − 1, are uniformly scaled. This
scaling has been already used for the construction of Cs-smooth isogeometric spline
functions for the case of s = 1 and s = 2 in [29, 30] and [34, 35], respectively.

47   Page 16 of 34 Adv Comput Math (2021) 47: 47



Finally, we obtain the following theorem as a direct consequence of the results
from this subsection.

Theorem 5 The space Ws , given in (36), is a subspace of the Cs-smooth space Vs .
In addition, the functions φΩ(τ);j1,j2

, j1 = s +1, . . . , n−1, j2 = 0, 1, . . . , n−1, τ ∈
{i0, i1}, together with the functions φΓ ;j1,j2 , j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , nj1 − 1,
form a basis of the space Ws , which further implies that the dimension of the
subspace Ws is independent of the configuration of the two underlying bilinear
patches F (i0) and F (i1), and is equal to

dimWs = dimVs

Ω(i0) + dimVs

Ω(i1) + dim W̃s
Γ ,

with

dimVs

Ω(i0) = dimVs

Ω(i1) = n(n − (s + 1)) and dim W̃s
Γ =

s∑

j1=0

(nj1 + 1).

Remark 4 While for s = 1 we have W̃1
Γ = V1

Γ except for special configurations of
the two patch geometry F , see [27], for s ≥ 2 it always holds W̃s

Γ � Vs
Γ , since the

linear combinations of the functions φΓ ;j1,j2 , j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , nj1−1,
are not the only functions in Vs

Γ , see, e.g. [33] for s = 2. An example of a special con-
figuration of the two-patch geometry F with W̃s

Γ � Vs
Γ for s = 1, too, is to choose

the two geometry mappings F (i0) and F (i1) as bilinear mappings F (i0) : [0, 1]2 →
[−1, 0] × [0, 1] and F (i1) : [0, 1]2 → [0, 1]2. In this case, the dimension of Vs

Γ is
trivially equal to

dimVs
Γ = (s + 1)n,

but which is always larger than dim W̃s
Γ .

4 Cs-smooth isogeometric spaces over multi-patch domains

In this section, we will extend the construction of the Cs-smooth isogeometric sub-
space Ws ⊆ Vs for bilinearly parameterized two-patch domains, which has been
described in the previous section, to the case of bilinear multi-patch domains Ω

with more than two patches and with possibly extraordinary vertices. The proposed
construction will work uniformly for all possible multi-patch configurations and is
much simpler as for the entire Cs-smooth space Vs . Thereby, the design of the sub-
space Ws will be based on the results of the two-patch case, and is motivated by the
methods [29, 30] and [34, 35], where similar subspaces have been generated for a
global smoothness of s = 1 and s = 2, respectively. There, it has been numerically
shown that the corresponding subspaces possess optimal approximation properties.
This will be also numerically verified in Section 6 on the basis of an example for the
subspace Ws for s = 1, . . . , 4.
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The subspace Ws will be generated as the direct sum of smaller subspaces corre-
sponding to the single patches Ω(i), i ∈ IΩ , edges Γ (i), i ∈ IΓ and vertices �(i),
i ∈ IΞ , i.e.

Ws =
⎛

⎝
⊕

i∈IΩ

Ws
Ω(i)

⎞

⎠⊕
⎛

⎝
⊕

i∈IΓ

Ws
Γ (i)

⎞

⎠⊕
⎛

⎝
⊕

i∈IΞ

Ws
Ξ(i)

⎞

⎠ . (40)

In order to ensure h-refinable and well-defined subspaces, we have to assume
additionally that the number of inner knots satisfies k ≥ 4s+1−p

p−r−s
, which implies

h ≤ p−r−s
3s−r+1 . The construction of the particular subspaces in (40) will be based on

functions from the subspaces Vs
Ω(τ) , τ ∈ {i0, i1}, and Ws

Γ , which have been both
defined in Section 3 for the case of a bilinearly parameterized two-patch domain
Ω = Ω(i0) ∪ Ω(i1) with the common edge Γ = Ω(i0) ∩ Ω(i1), and will be described
in detail below.

4.1 The patch and edge subspaces

We will first describe the construction of the subspaces Ws
Ω(i) , i ∈ IΩ , and Ws

Γ (i) ,
i ∈ IΓ . Analogous to (34) in case of a two-patch domain, we define the func-
tions φΩ(i);j1,j2

: Ω → R in case of a multi-patch domain Ω = ∪i∈IΩ
Ω(i) as

φΩ(i);j1,j2
(x) =

{(
N

p,r
j1,j2

◦ (F (i)
)−1

)
(x) if x ∈ Ω(i),

0 if x ∈ Ω\Ω(i),
(41)

and then define the patch subspace Ws
Ω(i) as

Ws
Ω(i) = span

{
φΩ(i);j1,j2

| j1, j2 = s + 1, s + 2, . . . , n − 1 − (s + 1)
}

.

We clearly have Ws
Ω(i) ⊆ Vs , since the functions φΩ(i);j1,j2

, j1, j2 = s +
1, . . . , n − 1 − (s + 1), have a support entirely inside Ω(i), are clearly Cs-smooth on
Ω(i) and have vanishing values and derivatives up to order s on ∂Ω(i).

Let us construct now the edge subspaces Ws
Γ (i) , i ∈ IΓ , where we have to

distinguish between boundary and inner edges Γ (i). In case of a boundary edge
Γ (i) ⊆ Ω(i0), i0 ∈ IΩ , we can assume without loss of generality that the boundary
edge Γ (i) is given by F (i0)({0}× (0, 1)). Then, we generate the edge subspace Ws

Γ (i)

as

Ws
Γ (i) = span

{
φΩ(i0);j1,j2

| j2 =2s+1−j1, . . . , n+j1−(2s+2), j1 = 0, 1, . . . , s
}

,

where the functions φΩ(i0);j1,j2
are defined as in (41). Similar to the patch sub-

space Ws
Ω(i) , the functions φΩ(i0);j1,j2

, j2 = 2s + 1 − j1, . . . , n + j1 − (2s + 2),

j1 = 0, 1, . . . , s, are trivially Cs-smooth on Ω , which implies that Ws
Γ (i) ⊆ Vs .

Let us consider now the case of an inner edge Γ (i) ⊆ Ω(i0) ∩ Ω(i1), i0, i1 ∈
IΩ . Without loss of generality, we can assume that the two associated geometry
mappings F (i0) and F (i1) are parameterized as shown in Fig. 2. The edge subspace
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Ws
Γ (i) is now defined as

Ws
Γ (i) =span

{
φΓ (i);j1,j2

| j2 =2s+1−j1, . . . , nj1 +j1−(2s+2), j1 =0, 1, . . . , s
}

,

where the functions φΓ (i);j1,j2
: Ω → R possess the form

φΓ (i);j1,j2
(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
f

(i0)

Γ (i);j1,j2
◦ (F (i0)

)−1
)

(x) if x ∈ Ω(i0),
(
f

(i1)

Γ (i);j1,j2
◦ (F (i1)

)−1
)

(x) if x ∈ Ω(i1),

0 otherwise,

(42)

similar to the two-patch case (37), and where the functions f
(τ)

Γ (i);j1,j2
, τ ∈ {i0, i1},

are specified in (38). In contrast to the two-patch case (37), the indices j2 of the
functions f

(τ)

Γ (i);j1,j2
are restricted to the choice of j2 = 2s + 1 − j1, . . . , nj1 + j1 −

(2s + 2), j1 = 0, 1, . . . , s, which implies that the functions f
(τ)

Γ (i);j1,j2
have vanishing

values and derivatives up to order s at all edges Γ (	), 	 ∈ IΓ , except the edge Γ (i),
that is for all edges Γ (	), 	 ∈ IΓ \ {i}. This property of the functions φΓ (i);j1,j2

,
j2 = 2s + 1 − j1, . . . , nj1 + j1 − (2s + 2), j1 = 0, 1, . . . , s, together with the

fact that the functions φΓ (i);j1,j2
possess a support contained in Ω(i0) ∪ Ω(i1) and are

Cs-smooth at the edge Γ (i) by construction directly leads to Ws
Γ (i) ⊆ Vs .

4.2 The vertex subspaces

We will denote by vi the patch valency of a vertex Ξ(i), i ∈ IΞ . To generate the
vertex subspaces Ws

Ξ(i) , we will distinguish between inner and boundary vertices. We
will follow a similar approach as used in [29, 30] and [34, 35] for the construction of
C1 and C2-smooth isogeometric spline functions in the vicinity of the vertex Ξ(i).

Let us start with the case of an inner vertex Ξ(i), i ∈ IΞ . We can assume without
loss of generality that all patches Ω(iρ), ρ = 0, 1, . . . , vi − 1, around the vertex Ξ(i),

i.e. Ξ(i) = ∩vi−1
ρ=0 Ω(iρ), are parameterized and labeled as shown in Fig. 3. In addition,

we relabel the common edges Ω(iρ)∩Ω(iρ+1), ρ = 0, 1, . . . , vi −1, by Γ (iρ+1), where
we take the lower index ρ of the indices iρ modulo vi .

The design of the subspace Ws
Ξ(i) is based on the construction of Cs-smooth func-

tions in the vicinity of the vertex Ξ(i), which will be formed by the linear combination
of functions φΓ (iρ );j1,j2

, j2 = 0, 1, . . . , 2s −j1, j1 = 0, 1, . . . , s, ρ = 0, 1, . . . , vi −
1, coinciding at their common supports in the vicinity of the vertex Ξ(i), and
by subtracting those “standard” isogeometric spline functions φΩ(iρ );j1,j2

, j1, j2 =
0, 1, . . . , s, ρ = 0, 1, . . . , vi − 1, which have been added twice. For this purpose, let
us consider the isogeometric spline function φΞ(i) : Ω → R,

φΞ(i) (x) =
{(

f Ξ(i)

iρ
◦ (F (iρ)

)−1
)

(x) if x ∈ Ω(iρ), ρ = 0, 1, . . . , vi − 1,

0 otherwise,
(43)

Page 19 of 34    47Adv Comput Math (2021) 47: 47



Fig. 3 The parameterization of the patches Ω(i0),Ω(i1), . . . ,Ω(ivi−1) with the edges
Γ (i0), Γ (i1), . . . , Γ (ivi−1) around the inner vertex Ξ(i)

where the functions f Ξ(i)

iρ
: [0, 1]2 → R are given as

f Ξ(i)

iρ
(ξ1, ξ2) = f Γ (iρ )

iρ
(ξ1, ξ2) + f Γ

(iρ+1)

iρ
(ξ1, ξ2) − f Ω(iρ )

iρ
(ξ1, ξ2), (44)

with f Γ (iρ+τ )

iρ
, f Ω(iρ )

iρ
: [0, 1]2 → R,

f Γ (iρ+τ )

iρ
(ξ1, ξ2) =

s∑

j1=0

2s−j1∑

j2=0

aΓ (iρ+τ )

j1,j2
f

(iρ )

Γ (iρ+τ );j1,j2
(ξ2−τ , ξ1+τ ), aΓ (iρ+τ )

j1,j2
∈ R, τ = 0, 1,

(45)
f Ω(iρ )

iρ
(ξ1, ξ2) =

s∑

j1=0

s∑

j2=0

a
(iρ )

j1,j2
N

p,r
j1,j2

(ξ1, ξ2), a
(iρ )

j1,j2
∈ R,

and with the functions f
(iρ)

Γ (iρ+τ );j1,j2
, τ = 0, 1, given in (38). The function φΞ(i) is

now Cs-smooth on Ω , i.e. φΞ(i) ∈ Vs , if the coefficients aΓ (iρ+τ )

j1,j2
, a

(iρ)

j1,j2
satisfy the

equations

∂
	1
1 ∂

	2
2

(
f Γ

(iρ+1)

iρ
− f Γ (iρ )

iρ

)
(0) = 0 and (46a)

∂
	1
1 ∂

	2
2

(
f Γ

(iρ+1)

iρ
− f Ω(iρ )

iρ

)
(0) = 0, (46b)

for 0 ≤ 	1, 	2 ≤ s and ρ = 0, 1, . . . , vi − 1. The Eqs. (46) form a homogeneous
system of linear equations

T (i)a = 0, (47)

where the vector a consists of all coefficients aΓ (iρ+τ )

j1,j2
, a

(iρ)

j1,j2
. Any choice of the vec-

tor a, which fulfills the linear system (47), yields an isogeometric function (43)
belonging to the spline space Vs . Each basis of the kernel ker

(
T (i)

)
determines

dim ker
(
T (i)

)
linearly independent Cs-smooth isogeometric spline functions, which
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are denoted by φΞ(i),j , j ∈ {0, 1, . . . , dim ker
(
T (i)

)− 1}, and which can be used to
define the vertex subspace Ws

Ξ(i) via

Ws
Ξ(i) = span

{
φΞ(i),j | j ∈ {0, 1, . . . , dim ker

(
T (i)

)
− 1}

}
⊆ Vs .

As in the case of the three-patch domain in the numerical examples in Section 6,
see Fig. 5 (bottom row), we can employ the algorithm developed in [32] for comput-
ing a basis of ker

(
T (i)

)
, which is based on the concept of minimal determining sets

(cf. [44]) for the coefficients a.
Note that dim ker

(
T (i)

)
, and hence dimWs

Ξ(i) , does not depend just on the valency

vi of the vertex Ξ(i) but also on the configuration of the bilinear patches around
the corresponding vertex. The computation of dim ker

(
T (i)

)
would require the study

of various different possible cases, see, e.g. [8] and [31] for s = 1 and s = 2,
respectively, and is beyond the scope of this paper. However, the following lemma
provides us with a first lower and upper bound for dimWs

Ξ(i) .

Lemma 2 Let Ξ(i), i ∈ IΞ , be an inner vertex of patch valency vi . Then, dimWs
Ξ(i)

can be bounded by

1

2
vi s (s + 1) ≤ dimWs

Ξ(i) ≤ 1

2
(s + 1)((2 + vi)s + 2).

Proof Clearly, dim ker
(
T (i)

)
, and hence dimWs

Ξ(i) , is given by the the number of
unknowns in the homogeneous linear system (47) minus the number of linearly
independent equations in this linear system. The number of unknowns is now just

the number of the possible involved coefficients aΓ (iρ+τ )

j1,j2
, a

(iρ)

j1,j2
, which is equal to

vi ((s + 1)2 + 1
2 (s + 1)(3s + 2)). To estimate the number of linearly independent

equations, we will study the Eqs. (46) in more detail, since they form the linear
system (47). In doing so, we aim to give a lower and upper bound for this number.

Let us start with the vi (s + 1)2 linear Eqs. (46b). All these equations are not
only linearly independent from each other but also from the linear Eqs. (46a).
This is a direct consequence of their construction and of the fact that for each ρ,

ρ = 0, 1, . . . , vi − 1, the (s + 1)2 coefficients a
(iρ)

j1,j2
, 0 ≤ j1, j2 ≤ s, arise just in

Eqs. (46b), and there only in the equations for the corresponding patch Ω(iρ).
Let us continue with the vi (s + 1)2 linear Eqs. (46a). For each patch Ω(iρ),

ρ = 0, 1, . . . , vi − 1, the (s + 1)2 equations contain at most the coefficients aΓ (iρ )

j1,j2
,

aΓ
(iρ+1)

j1,j2
, j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , 2s−j1, and are clearly linearly independent

by construction. Therefore, starting with the (s + 1)2 equations for patch Ω(i0), and
adding step by step the (s +1)2 equations for the patches Ω(iρ), ρ = 1, 2, . . . , vi −2,
one can easily verify that the resulting (vi −1) (s+1)2 equations are linearly indepen-
dent, since in each step for the patches Ω(iρ), ρ = 1, 2, . . . , vi − 2, the coefficients
aΓ (iρ )

j1,j2
, j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , 2s − j1, just arise for the first time. Adding

the last (s + 1)2 equations, namely the equations for the patch Ω(ivi−1), we cannot
assume as before that the (s + 1)2 additional equations are linearly independent with
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all the remaining ones, since now the coefficients aΓ
(ivi−1)

j1,j2
, j1 = 0, 1, . . . , s, j2 =

0, 1, . . . , 2s − j1, could have already appeared in the equations for patch Ω(i0), and
therefore some of these equations could be linearly dependent with the previous equa-
tions. By assuming the two extreme cases that all or none of these (s + 1)2 equations
are linearly dependent with the previous equations we get in total (2vi − 1) (s + 1)2

as a lower and 2vi (s + 1)2 as an upper bound for the number of linearly independent
equations in (46). Using these bounds to estimate the dimension of Ws

Ξ(i) , we finally
obtain for dimWs

Ξ(i) as a lower and upper bound

vi ((s + 1)2 + 1

2
(s + 1)(3s + 2)) − 2vi (s + 1)2 = 1

2
vi s (s + 1)

and

vi

(
(s + 1)2 + 1

2
(s + 1)(3s + 2)

)
− (2vi − 1) (s + 1)2 = 1

2
(s + 1)((2 + vi)s + 2),

respectively.

Let us continue with the case of a boundary vertex. This can be handled sim-
ilarly as an inner vertex by assuming that the two boundary edges are labeled as
Γ (i0) and Γ (ivi ). Then, the only difference in the construction of the Cs-smooth func-
tions φΞ(i),j and of the Cs-smooth space Ws

Ξ(i) ⊆ Vs is that for the patches Ω(i0) and

Ω(ivi−1) the functions f Γ (i0)

i0;j1,j2
and f Γ

(ivi
)

ivi−1;j1,j2
in (45) are just the standard B-splines.

Following the steps in the proof of Lemma 2 and counting the number of unknowns in
the adapted homogeneous linear system (47) minus the number of equations (which
are now clearly all linearly independent) in this linear system, we further obtain that
for any boundary vertex Ξ(i) of valency vi it holds

dimWs
Ξ(i) =

(
((s + 1)2vi + 1

2
(s + 1)(3s + 2))(vi + 1)

)
−2(s+1)2vi = 1

2
(s+1)((3+vi)s+2).

For boundary vertices Ξ(i) of patch valency vi ∈ {1, 2}, the vertex sub-
spaces Ws

Ξ(i) can be also directly constructed without solving a homogeneous linear

system (47). In case of a boundary vertex Ξ(i) of patch valency vi = 2, we can
assume without loss of generality that the two neighboring patches Ω(i0) and Ω(i1),
i0, i1 ∈ IΩ , which contain the vertex Ξ(i) and possess the common edge Γ (j0) =
Ω(i0) ∩ Ω(i1), j0 ∈ IΓ , are parameterized as shown in Fig. 2 and that the vertex Ξ(i)

is further given as Ξ(i) = F (i0)(0) = F (i1)(0). Then, the vertex subspace Ws
Ξ(i) can

be also generated as

Ws
Ξ(i) = span

{

φ̃Ξ(i);j1,j2
| j1 =0, 1, . . . , 3s, j2 =

{
0, 1, . . . , 2s − j1 if j1 ≤ 2s

0, 1, . . . , 3s − j1 if j1 > 2s

}

,

with the functions φ̃Ξ(i);j1,j2
: Ω → R,

φ̃Ξ(i);j1,j2
(x) =

⎧
⎪⎨

⎪⎩

φΓ (j0);j1,j2
(x) if j1 = 0, 1, . . . , s

φΩ(i0);j1,j2
(x) if j1 = s + 1, s + 2, . . . , 2s

φΩ(i1);j1−s,j2
(x) if j1 = 2s + 1, 2s + 2, . . . , 3s,
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where the functions φΩ(i	);j1,j2
, 	 = 0, 1, and φΓ (j0);j1,j2

are defined as in (41) and

(42), respectively. Clearly, all functions φ̃Ξ(i);j1,j2
are Cs-smooth on Ω , since the

functions φΓ (j0);j1,j2
, j1 = 0, 1, . . . , s, j2 = 0, 1, . . . , 2s − j1, are Cs-smooth by

construction on Ω , and the functions φΩ(i	);j1,j2
, 	 = 0, 1, j1 = s + 1, s + 2, . . . , 3s,

j2 = 0, 1, . . . , 2s − j1 if j1 ≤ 2s and j2 = 0, 1, . . . , 3s − j1 if j1 > 2s, which
possess a support in Ω(i	), are Cs-smooth on Ω(i	), and have vanishing values and
derivatives of order ≤ s along all inner edges Γ (j), j ∈ IΓ .

In case of a boundary vertex Ξ(i) of patch valency vi = 1, we can assume without
loss of generality that the boundary vertex Ξ(i) is given by Ξ(i) = F (i0)(0), i0 ∈ IΩ .
Then, the vertex subspace Ws

Ξ(i) can be simply constructed as

Ws
Ξ(i) = span

{
φΩ(i0);j1,j2

| j1, j2 = 0, 1, . . . , 2s, j1 + j2 ≤ 2s
}

,

where the functions φΩ(i0);j1,j2
are given as in (41). Again, the functions φΩ(i0);j1,j2

,

j1, j2 = 0, 1, . . . , 2s, j1 + j2 ≤ 2s, are entirely contained in Ω(i0), are Cs-smooth
on Ω(i0), and have vanishing values and derivatives of order ≤ s along all inner
edges Γ (j), j ∈ IΓ , which implies that the functions are Cs-smooth on Ω .

Summarizing the results from Section 4, we obtain:

Theorem 6 The space Ws , given by the direct sum (40), is a subspace of the Cs-
smooth space Vs . Moreover, the functions which have been used to generate the
spaces Ws

Ω(i) , i ∈ IΩ , Ws
Γ (i) , i ∈ IΓ , and Ws

Ξ(i) , i ∈ IΞ , form a basis of the
space Ws , and the dimension of the space Ws is equal to

dimWs =
∑

i∈IΩ

dimWs
Ω(i) +

∑

i∈IΓ

dimWs
Γ (i) +

∑

i∈IΞ

dimWs
Ξ(i) ,

where
dimWs

Ω(i) = (n − 2(s + 1))2,

dimWs
Γ (i) =

{
(s + 1)

(
n − ks − ( 7s

2 + 2
))

if Γ (i) is an inner edge,

(s + 1)(n − 3s − 2) if Γ (i) is a boundary edge,

and
dimWs

Ξ(i) = dim ker
(
T (i)

)
,

with

dim ker
(
T (i)

)
= 1

2
(s + 1)((3 + vi)s + 2),

if Ξ(i) is a boundary vertex of valency vi , and with

1

2
vi s (s + 1) ≤ dim ker

(
T (i)

)
≤ 1

2
(s + 1)((2 + vi)s + 2),

if Ξ(i) is an inner vertex of valency vi .

Proof Ws ⊆ Vs follows from the fact that Ws
Ω(i) ⊆ Vs , i ∈ IΩ , Ws

Γ (i) ⊆ Vs , i ∈ IΓ ,
and Ws

Ξ(i) ⊆ Vs , i ∈ IΞ , as already shown before. Since the functions which have
been used to generate the spaces Ws

Ω(i) , i ∈ IΩ , Ws
Γ (i) , i ∈ IΓ , and Ws

Ξ(i) , i ∈ IΞ ,
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are linearly independent by definition and/or by construction, they form a basis of
the individual spaces Ws

Ω(i) , Ws
Γ (i) and Ws

Ξ(i) , and therefore, they build a basis of the
space Ws . Finally, the dimension of Ws results from the direct sum (40), from the
dimensions of the spaces Ws

Ω(i) , Ws
Γ (i) and Ws

Ξ(i) and from Lemma 2.

Remark 5 In case of a bilinearly parameterized two-patch domain, the two slightly
different constructions described in this and in the previous section lead in both
cases to the same subspace Ws with the same basis, which can be easily verified by
comparing the two differently generated bases.

An alternative approach for the construction of a vertex subspace Ws
Ξ(i) , which

leads also for inner vertices to a vertex subspace whose dimension is independent of
the configuration of the bilinear patches (and even independent of the valency vi),
is to enforce additionally C2s-smoothness of the functions at the vertex Ξ(i), see,
e.g. [29, 30] and [35] for s = 1 and s = 2, respectively. Thereby, we will compute a
subspace Ŵs

Ξ(i) of the vertex subspace Ws
Ξ(i) , i.e. Ŵs

Ξ(i) ⊆ Ws
Ξ(i) . For this purpose,

let ψj1,j2 : Ω → R, j1, j2 = 0, 1, . . . , 2s with j1 + j2 ≤ 2s, be functions which are
Cs-smooth on Ω and additionally C2s-smooth at the vertex Ξ(i) such that

∂
	1
1 ∂

	2
2 ψj1,j2

(
Ξ(i)

)
= σ	1+	2 δ

	1
j1

δ
	2
j2

, 	1, 	2 = 0, 1, . . . , 2s, 	1 + 	2 ≤ 2s,

where σ is a scaling factor (cf. [30]) given by

σ =
⎛

⎝ h

p vi

vi−1∑

ρ=0

||JF (iρ)(0)||
⎞

⎠

−1

,

with JF (iρ) being the Jacobian of F (iρ). Then, isogeometric functions φ̂Ξ(i);j1,j2
:

Ω → R, j1, j2 = 0, 1, . . . , 2s, j1 + j2 ≤ 2s, can be defined via φ̂Ξ(i);j1,j2
= φΞ(i) ,

with the functions φΞ(i) given in (43), by means of the interpolation problem

∂
	1
1 ∂

	2
2 φΞ(i)

(
Ξ(i)

)
= ∂

	1
1 ∂

	2
2 ψj1,j2

(
Ξ(i)

)
, 	1, 	2 = 0, 1, . . . , 2s, 	1 + 	2 ≤ 2s.

(48)
The isogeometric functions φΞ(i) , and therefore the isogeometric functions

φ̂Ξ(i);j1,j2
, are uniquely determined by (48) and can be computed via the coeffi-

cients aΓ (iρ+τ )

j1,j2
and a

(iρ)

j1,j2
of the spline functions f Ξ(i)

iρ
in (44) with the help of the

following equivalent interpolation conditions

∂
	1
1 ∂

	2
2 f Γ (iρ )

iρ
(0) = ∂

	1
1 ∂

	2
2

(
ψj1,j2 ◦ F (iρ )

)
(0), 0 ≤ 	1 ≤ 2s, 0 ≤ 	2 ≤ s, 	1 + 	2 ≤ 2s,

∂
	1
1 ∂

	2
2 f Ω(iρ )

iρ
(0) = ∂

	1
1 ∂

	2
2

(
ψj1,j2 ◦ F (iρ )

)
(0), 0 ≤ 	1, 	2 ≤ s,

for ρ = 0, 1, . . . , vi − 1. The resulting isogeometric spline functions φ̂Ξ(i);j1,j2
,

j1, j2 = 0, 1, . . . , 2s, j1 + j2 ≤ 2s are well-defined, Cs-smooth on Ω and even
C2s-continuous at the vertex Ξ(i), and determine by

Ŵs
Ξ(i) = span

{
φ̂Ξ(i);j1,j2

| j1, j2 = 0, 1, . . . , 2s, j1 + j2 ≤ 2s
}

⊆ Vs ,

47   Page 24 of 34 Adv Comput Math (2021) 47: 47



a vertex subspace Ŵs
Ξ(i) with a dimension which is independent of the valency vi

of the vertex Ξ(i) and of the configuration of the bilinear patches around the vertex,
since it just equals

dim Ŵs
Ξ(i) = (s + 1)(2s + 1). (49)

The resulting dimension of the alternative vertex subspace Ŵs
Ξ(i) can be used now

to give an improved lower bound in Lemma 2 for the dimension of Ws
Ξ(i) in case of

an inner vertex Ξ(i) when the valency vi of the corresponding vertex Ξ(i) is small.
Since Ŵs

Ξ(i) ⊆ Ws
Ξ(i) , (49) is a further lower bound for the dimension of Ws

Ξ(i) ,
which directly leads with Lemma 2 to the following corollary.

Corollary 1 Let Ξ(i), i ∈ IΞ , be an inner vertex of patch valency vi . Then,

max
(
(s + 1)(2s + 1),

1

2
vi s (s + 1)

)
≤ dimWs

Ξ(i) ≤ 1

2
(s + 1) ((2 + vi)s + 2).

5 Beyond bilinear parameterization

In this section, we will briefly discuss a first possible generalization of the presented
construction to a wider class of multi-patch parameterizations than the considered
bilinear one. Motivated by [13] for s = 1 and by [33] for s = 2, we are interested
in multi-patch parameterizations which possess similar connectivity functions as in
the bilinear case, in particular linear functions α(i0), α(i1), β(i0), β(i1), along the inter-
faces Γ (i), i ∈ IΓ . There, but also in further publications for the case s = 1 or
s = 2, see, e.g. [29, 30, 34], it was numerically shown that such multi-patch param-
eterizations can allow the construction of globally Cs-smooth isogeometric spline
spaces with optimal approximation properties, similar to the bilinear case. Inspired
by [33], we call these particular multi-patch parameterizations bilinear-like Gs and
define them as follows.

Definition 1 A multi-patch parameterization F consisting of the geometry map-
pings

F (i) ∈ Sp,r
h

(
[0, 1]2

)
× Sp,r

h

(
[0, 1]2

)
, i ∈ IΩ,

is called bilinear-like Gs if for any two neighboring patches F (i0) and F (i1), i0, i1 ∈
IΩ , assuming without loss of generality that

F (i0)(0, ξ2) = F (i1)(0, ξ2),

there exist linear functions α(i0), α(i1), β(i0), β(i1) : R → R, such that

F
(i0)
	 (ξ) = F

(i1)
	 (ξ) =: F 	(ξ), 	 = 0, 1, . . . , s,

with

F
(τ )
	 (ξ) =

(
α(τ)(ξ)

)−	

∂	
1F (τ )(0, ξ) −

	−1∑

i=0

(
	

i

)(
β(τ)(ξ)

α(τ)(ξ)

)	−i

∂	−iF i (ξ), τ ∈ {i0, i1}.
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Fig. 4 Two examples of bilinear-like G3 multi-patch geometries beyond bilinear multi-patch parameteri-
zations, which can have curved interfaces and boundaries

For example, Theorems 2 and 3 can be directly applied by employing bilinear-
like Gs multi-patch parameterizations. The advantage of using bilinear-like Gs

multi-patch parameterizations instead of bilinear multi-patch parameterizations is
the possibility to deal with multi-patch domains with curved interfaces and curved
boundaries, see, e.g. [28–30] and [33] for s = 1 and for s = 2, respectively. Two
instances of possible bilinear-like G3 multi-patch geometries beyond bilinear multi-
patch parameterizations are visualized in Fig. 4. Both domains consist of polynomial
patches of bi-degree (p, p) = (7, 7), and have been constructed by following the
two strategies presented in [29, Section 3.3] for the case of s = 1, which have been
adapted to the case of s = 3. While the left multi-patch geometry is a mapped piece-
wise bilinear domain generated from the bilinearly parameterized three-patch domain
in Section 6, the right multi-patch geometry is a first simple example of a bilinear-like
G3 multi-patch parameterization, which extends the class of mapped bilinear multi-
patch domains, and possesses a C3-smooth outer boundary and an inner boundary
with sharp corners. However, a detailed study about the construction of bilinear-like
Gs multi-patch geometries as well as the generalization of our method to the design
of Cs-smooth isogeometric spline spaces over bilinear-like Gs multi-patch parame-
terizations are beyond the scope of the paper and will be part of our planned future
research.

6 Examples

The goal of this section is to numerically study the approximation power of the iso-
geometric spline space Ws by performing L2 approximation over the two bilinearly
parameterized multi-patch domains Ω given in Fig. 5 (left column). More precisely,
we will approximate the smooth function z : Ω → R,

z(x) = z(x1, x2) = 4 cos(2x1) sin(2x2), (50)

47   Page 26 of 34 Adv Comput Math (2021) 47: 47



visualized in Fig. 5 (middle column) on these two multi-patch domains, by employing
isogeometric spline spaces Ws for a global smoothness s = 1, . . . , 4, and a mesh
size h = 1

2L , with L = 0, 1, . . . , 5 or L = 0, 1, . . . , 6, for a spline degree p = 2s +1

and for an inner patch regularity r = s. Let {φj }dimWs−1
j=0 be a basis of such an

isogeometric spline space Ws , then we compute an approximation zh : Ω → R,

zh(x) =
dimWs−1∑

j=0

cjφj (x), cj ∈ R,

of the function z, by minimizing the objective function
∫

Ω

(zh(x) − z(x))2dx.

Finding a solution of this minimization problem is equivalent to solving the linear
system

Mc = z, c = (cj )
dimWs−1
j=0 ,

where M is the mass matrix with the single entries

mj1,j2 =
∫

Ω

φj1(x)φj2(x)dx, (51)

Fig. 5 L2 approximation of the smooth function (50) (middle column) on two different bilinearly parame-
terized multi-patch domains Ω (left column) using spline spaces Ws for a global smoothness s = 1, . . . , 4,
and a mesh size h = 1

2L , with L = 0, 1, . . . , 5 or L = 0, 1, . . . , 6, for a spline degree p = 2s + 1 and for

an inner patch regularity r = s. The resulting relative L2 errors (right column) are visualized with respect
to the number of degrees of freedom (NDOF)
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and z is the right side vector with the single entries

zj =
∫

Ω

z(x)φj (x)dx. (52)

Using the relation f
(i)
j = φj ◦ F (i), i ∈ IΩ , the entries (51) and (52) can be

computed via

mj1,j2 =
∑

i∈IΩ

∫

[0,1]2
f

(i)
j1

(ξ1, ξ2)f
(i)
j2

(ξ1, ξ2)| det(JF (i)(ξ1, ξ2))|dξ1dξ2,

and

zj =
∑

i∈IΩ

∫

[0,1]2
z(F (i)(ξ1, ξ2))f

(i)
j (ξ1, ξ2)| det(JF (i)(ξ1, ξ2))|dξ1dξ2,

respectively.
While in case of the bilinearly parameterized two-patch domain, see Fig. 5 (top

row and left column), the basis for the space Ws is generated as described in
Section 3.2; in case of the bilinearly parameterized three-patch domain, see Fig. 5
(bottom row and left column), the basis is constructed as explained in Section 4.
In the latter case, the design of the vertex subspaces Ws

Ξ(i) has to be slightly mod-

ified in case of a mesh size p−r−s
3s−r+1 ≤ h ≤ 1 for boundary vertices. Namely, the

vertex subspace Ws
Ξ(i) for a boundary vertex Ξ(i) is then just generated by those

corresponding functions φΓ (i);j1,j2
and/or φΩ(i);j1,j2

, which have not been already
used to construct the vertex subspace for another vertex especially for the inner
vertex.

Figure 5 (right column) displays the resulting relative L2 errors with respect to the
number of degrees of freedom (NDOF) by performing L2 approximation on the two
different bilinearly parameterized multi-patch domains. In all cases, the numerical
results indicate a convergence rate of optimal order of O(hp+1) in the L2 norm. In
case of the three-patch domain, the shown results have been obtained by employing
the minimal determining set approach for the construction of the vertex subspaces
for the inner vertex. However, the use of the alternative interpolation strategy instead
would lead to a nearly indistinguishable result but which is not presented here. The
number of degrees of freedom, i.e. the dimensions of the obtained isogeometric spline
spaces Ws for the two different multi-patch domains are reported in Table 1. Again,
the dimensions for the spaces based on the alternative interpolation strategy for the
three-patch domain are not presented in the table. However, they are very similar to
the numbers presented in the table, namely they are the same for the first column,
reduced by one for the second column, by two for the third one and by four for the
last column.
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Table 1 The number of degrees of freedom, i.e. the dimensions of the generated isogeometric spline
spaces Ws in Section 6 for a mesh size h = 1

2L , L = 0, 1, . . . , 5, for the two bilinearly parameterized
multi-patch domains shown in Fig. 5 (left column)

h p = 3, s = r = 1 p = 5, s = r = 2 p = 7, s = r = 3 p = 9, s = r = 4

Two-patch domain

1 23 51 90 140
1
2 57 126 222 345
1
4 173 384 678 1055
1
8 597 1332 2358 3675
1
16 2213 4956 8790 13715
1
32 8517 19116 33942 52995

Three-patch domain

1 24 52 90 139
1
2 66 142 246 379
1
4 222 484 846 1309
1
8 822 1816 3198 4969
1
16 3174 7072 12510 19489
1
32 12486 27952 49566 77329

7 Conclusion

We have studied the space of Cs-smooth (s ≥ 1) isogeometric spline functions on
planar, bilinearly parameterized multi-patch domains and have presented the con-
struction of a particular subspace of this Cs-smooth isogeometric spline space. The
use of the Cs-smooth subspace is advantageous compared to the use of the entire Cs-
smooth space, since the design of the subspace is simple and works uniformly for all
possible multi-patch configurations, and furthermore, the numerical experiments by
performing L2 approximation indicate that the subspace already possesses optimal
approximation properties.

The construction of the Cs-smooth subspace and of an associated simple and
locally supported basis is first described for the case of two-patch domains, and is
then extended to the case of multi-patch domains with more than two patches and
with possibly extraordinary vertices. In the latter case, the Cs-smooth subspace is
generated as the direct sum of spaces corresponding to the individual patches, edges
and vertices.

Moreover, a possible generalization of our approach to a more general class of pla-
nar multi-patch parameterizations, called bilinear-like Gs multi-patch geometries, is
briefly explained. This class of multi-patch parameterizations provides the possibil-
ity to model multi-patch domains with curved interfaces and boundaries. A detailed
study of this class of geometries is beyond the scope of the paper and is a topic of
our future research. Further open problems which are worth to study are, e.g. the the-
oretical investigation of the approximation properties of the constructed Cs-smooth
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isogeometric spline space, the use of the Cs-smooth isogeometric spline functions for
applications which require functions of high continuity such as solving fourth order
PDEs via isogeometric collocation, and the extension of our approach to multi-patch
shells and volumes.

Appendix

We present concrete examples of functions which have been introduced in Section 3.

Example 1 We give for the cases 	 ∈ {1, 2, 3} explicit expressions for the functions
Ξ 	, η	 and θ	, which have been firstly considered in (12) and (15). Based on (12),
(19) and Lemma 1, we get for 	 = 1

Ξ1(ξ) = ∂1Σ
(i1)(0, ξ), η1(ξ) = −λ1 α(i1)(ξ), θ1(ξ) = −λ1 β(ξ),

for 	 = 2

Ξ2(ξ) = ∂2
1Σ (i1)(0, ξ) −

(
a2

1,0(ξ)∂2
1 Σ (i0)(0, ξ)

+2a1,0(ξ)b1,0(ξ)∂1∂2Σ
(i0)(0, ξ) + b2

1,0(ξ)∂2
2Σ (i0)(0, ξ)

)
,

η2(ξ) = −2α(i1)(ξ)β(ξ)

(α(i0)(ξ))
ϑ(ξ), θ2(ξ) = −2α(i1)(ξ)β(ξ)

(α(i0)(ξ))
μ(ξ),

and for 	 = 3

Ξ3(ξ) = ∂3
1 Σ (i1)(0, ξ) −

(
a3

1,0(ξ)∂3
1 Σ (i0)(0, ξ) + 3a2

1,0(ξ)b1,0(ξ)∂2
1 ∂2Σ

(i0)(0, ξ)

+ 3a1,0(ξ)b2
1,0(ξ)∂1∂

2
2 Σ (i0)(0, ξ) + b3

1,0(ξ)∂3
2 Σ (i0)(0, ξ) + 3a1,0(ξ)a2,0(ξ)∂2

1 Σ (i0)(0, ξ)

+ 3(b1,0(ξ)a2,0(ξ) + a1,0(ξ)b2,0(ξ))∂1∂2Σ
(i0)(0, ξ) + 3b1,0(ξ)b2,0(ξ)∂2

2 Σ (i0)(0, ξ)
)

,

η3(ξ) = 6α(i1)(ξ)β(ξ)
(
α(i0)(ξ)α(i1)(ξ)(β(i0)(ξ))′ + (α(i0)(ξ))′(β(ξ) − α(i1)(ξ)β(i0)(ξ))

)

(α(i0)(ξ))3
ϑ(ξ),

θ3(ξ) = 6α(i1)(ξ)β(ξ)
(
α(i0)(ξ)α(i1)(ξ)(β(i0)(ξ))′ + (α(i0)(ξ))′(β(ξ) − α(i1)(ξ)β(i0)(ξ))

)

(α(i0)(ξ))3
μ(ξ).

Example 2 We consider particular examples of the functions Aσ ;	 and of the sets
Iσ ;	 introduced in (21) and (22), respectively. Let |σ | ≤ 3. Then, the sets Iσ ;3 as
well as the functions Aσ ;3 are equal to

I(1,0);3 = {((0, 0, 1), (0, 0, 0))}, I(0,1);3 = {((0, 0, 0), (0, 0, 1))},
I(2,0);3 = {((1, 1, 0), (0, 0, 0))}, I(0,2);3 = {((0, 0, 0), (1, 1, 0))},
I(1,1);3 = {((1, 0, 0), (0, 1, 0)) , ((0, 1, 0), (1, 0, 0))},
I(3,0);3 = {((3, 0, 0), (0, 0, 0))}, I(2,1);3 = {((2, 0, 0), (1, 0, 0))},
I(1,2);3 = {((1, 0, 0), (2, 0, 0))}, I(0,3);3 = {((0, 0, 0), (3, 0, 0))},
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and

A(1,0);3(ξ) = a3,0(ξ), A(0,1);3(ξ) = b3,0(ξ), A(2,0);3(ξ) = 3a1,0(ξ)a2,0(ξ),

A(1,1);3(ξ) = 3
(
a1,0(ξ)b2,0(ξ) + b1,0(ξ)a2,0(ξ)

)
, A(0,2);3(ξ) = 3b1,0(ξ)b2,0(ξ),

A(3,0);3(ξ) = a3
1,0(ξ), A(2,1);3(ξ) = 3a2

1,0(ξ)b1,0(ξ),

A(1,2);3(ξ) = 3a1,0(ξ)b2
1,0(ξ), A(0,3);3(ξ) = b3

1,0(ξ).
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