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Abstract
In this paper, we extend the structure-preserving interpolatory model reduction
framework, originally developed for linear systems, to structured bilinear control
systems. Specifically, we give explicit construction formulae for the model reduc-
tion bases to satisfy different types of interpolation conditions. First, we establish the
analysis for transfer function interpolation for single-input single-output structured
bilinear systems. Then, we extend these results to the case of multi-input multi-
output structured bilinear systems by matrix interpolation. The effectiveness of our
structure-preserving approach is illustrated by means of various numerical examples.
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1 Introduction

The modeling of various real-world applications and processes results in dynami-
cal control systems usually including nonlinearities. Since linear approximations are
very often incapable of capturing all the features of nonlinear systems, they are an
insufficient description for use in optimization and controller design. A special class
of nonlinear systems are bilinear control systems, which contain the multiplication of
control and state variables, i.e., they are linear in state and control separately, but not
together [1]. In the last decades, the class of bilinear systems became an essential tool
in systems theory. They naturally appear in the modeling process of many physical
phenomena, e.g., in the modeling of population, economical, thermal, and mechani-
cal dynamics [1, 2], of electrical circuits [3], of plasma devices [4, 5], or of medical
processes [6]. Bilinear systems can also result from approximation of general nonlin-
ear systems employing the Carleman linearization process [7, 8]. Moreover, bilinear
systems are nowadays often used in the parameter control of partial differential equa-
tions (PDEs) [9, 10]. Looking back to the linear case, bilinear systems can be used
as a generalizing framework in the modeling of linear stochastic [11] and parameter-
varying systems [12–14], allowing the application of established system-theoretic
tools such as model order reduction for those system classes.

In this paper, we focus on structured bilinear systems. Those structures arise from
the underlying physical phenomena. For example, in case of bilinear time-delay
systems, one has the bilinear control system defined by

Eẋ(t) = Ax(t) + Adx(t − τ) +
m∑

j=1

Njx(t)uj (t) + Bu(t),

y(t) = Cx(t),

(1)

with E, A, Ad, Nj ∈ R
n×n for all j = 1, . . . , m, B ∈ R

n×m, C ∈ R
p×n and a cons-

tant delay 0 ≤ τ ∈ R. In (1), x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p denote,

respectively, the states (degrees of freedom), inputs (forcing terms), and the out-
puts (quantities of interest) of the underlying dynamical system. Due to the usual
demand for increasing accuracy in applications, the number of differential equations
n, describing the dynamics of systems as in (1) quickly increases, resulting in a high
demand on computational resources such as time and memory. One remedy is model
order reduction: a reduced system is created, consisting of a significantly smaller
number of differential equations than needed to define the original one while still
accurately approximating the input-to-output behavior. Then, one can use this lower-
order approximation as a surrogate model for faster simulations or the design of
controllers. The classical (unstructured) bilinear first-order systems are described by
the state-space representation

Eẋ(t) = Ax(t) +
m∑

j=1

Njx(t)uj (t) + Bu(t),

y(t) = Cx(t).

(2)

There are different methodologies for model reduction of (2), e.g., the bilinear bal-
anced truncation method [3, 11, 15], different types of moment matching approaches
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for the underlying multi-variate transfer functions in the frequency domain [16–
20], the interpolation of complete Volterra series [21–23], or even the construction
of reduced-order bilinear systems from frequency data with the bilinear Loewner
framework [24, 25].

While some structured system classes (see Section 2.3.2) can actually be rewritten
into classical bilinear systems (2), the original structure is completely lost, which can
lead to undesirable results in terms of accuracy, stability, or physical interpretation.
Moreover, other structured bilinear systems, such as those with internal delays (1),
cannot be represented in the form (2). Therefore, here we develop a structure-preserving
model reduction approach for different system structures involving bilinear terms.
Following [26], which studied structured linear dynamical systems, our goal is to
generalize the structured interpolation approach to a general set of multivariate trans-
fer functions associated with different structured bilinear control systems to preserve
the system structure in the reduced-order model. The question we aim to answer
is how we can construct an interpolatory reduced-order model of, e.g., (1), that has
the same structure. Towards this goal, we develop a structure-preserving interpola-
tion framework for this special class of nonlinear systems, namely the structured
bilinear control systems, thus extending the theoretical analysis and computational
framework developed by [26] for linear systems to bilinear control systems.

In Section 2, we review the theory for classical first-order bilinear systems and
motivate the more general structure, we will consider, via two examples. Section 3
gives subspace construction formulae for interpolatory model reduction bases in the
case of single-input single-output (SISO) systems and suggests reasonable choices
for interpolation points, for which the effectiveness of the approach is illustrated by
employing two numerical examples. The developed theory is then extended further
in Section 4 to the multi-input multi-output (MIMO) case by matrix interpolation.
Section 5 concludes the paper.

2 Structured bilinear systems

In this section, we present the basic properties of the structured bilinear systems
considered in this paper. To clarify the presentation, we first revisit the unstructured
(classical) bilinear control systems as given in (2) and then generalize these concepts
to the structured case.

2.1 Revisiting the classical first-order bilinear systems

Given the unstructured bilinear system (2), define N = [
N1 . . . Nm

]
and let Imk be

the identity matrix of dimension mk . Assuming for simplicity E to be invertible, the
initial condition x(0) = 0, and some additional mild conditions, the output of (2) can
be expressed in terms of a Volterra series [27], i.e.,

y(t) =
∞∑

k=1

t∫

0

t1∫

0

. . .

tk−1∫

0

gk(t1, . . . , tk)

⎛

⎝u

⎛

⎝t −
j∑

i=1

ti

⎞

⎠⊗ · · · ⊗ u(t − t1)

⎞

⎠dtk · · · dt1,
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where gk , for k ≥ 1, is the k-th regular Volterra kernel given by

gk(t1, . . . , tk) = CeE−1Atk

⎛

⎝
k−1∏

j=1

(Imj−1 ⊗ E−1N)(Imj ⊗ eE−1Atk−j )

⎞

⎠

× (Imk−1 ⊗ E−1B),

(3)

with ⊗ denoting the Kronecker product and × the continuation of the classical matrix
multiplication to the next line. Using the multivariate Laplace transform [27], the
regular Volterra kernels (3) yield a representation of (2) in the frequency domain by
the so-called regular subsystem transfer functions

Gk(s1, . . . , sk) = C(skE − A)−1

⎛

⎝
k−1∏

j=1

(Imj−1 ⊗ N)(Imj ⊗ (sk−jE − A)−1)

⎞

⎠

× (Imk−1 ⊗ B),

(4)

with s1, . . . , sk ∈ C. This compact expression is actually the collection of the
different combinations of the bilinear matrices, i.e., we can write (4) as

Gk(s1, . . . , sk) = [C(skE − A)−1N1 · · · N1(s1E − A)−1B,

C(skE − A)−1N1 · · · N2(s1E − A)−1B,

. . .

C(skE − A)−1N1 · · · Nm(s1E − A)−1B,

. . .

C(skE − A)−1Nm · · · Nm(s1E − A)−1B].

(5)

For SISO systems, (4) simplifies to

Gk(s1, . . . , sk) = C(skE − A)−1

(
k−1∏
j=1

N(sk−jE − A)−1

)
B.

As stated in Section 1, for the unstructured bilinear system case (2), there are already
different model reduction techniques. For the structured bilinear systems we consider
here, we will concentrate on interpolatory methods.

Note that the assumption of E being invertible is only made for ease of presenta-
tion. The interpolation theory and interpolatory properties of the reduced-order model
developed in the following sections hold for the general situation, yet the final con-
struction of the reduced-order model might need some additional treatment as in the
linear and unstructured bilinear cases; see, e.g., [28–30].
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2.2 Moving from classical to structured bilinear systems

For the transition from unstructured to structured bilinear systems, we start by recall-
ing the case of linear systems. The classical (unstructured) linear dynamical systems
are described, in state-space, by

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

with E, A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n. Assuming the initial condition

Ex(0) = 0, the Laplace transform maps this problem to the frequency domain:

(sE − A)X(s) = BU(s),

Y (s) = CX(s),
(6)

where X(s), U(s), and Y (s) denote the Laplace transforms of the time-dependent
functions x(t), u(t), and y(t). Inspired by much richer structured systems than (6)
appearing in the linear case such as those describing the dynamic response of a vis-
coelastic body, [26] introduced a more general system of equations in the frequency
domain, given by

K(s)X(s) = B(s)U(s),

Y (s) = C(s)X(s),
(7)

with matrix-valued functions K : C → C
n×n, B : C → C

n×m and C : C → C
p×n.

Note that (7) contains (6) as a special case. Assuming the problem to be regular, i.e.,
there exists an s ∈ C for which the matrix functions are defined and K(s) is full-rank,
the problem (7) leads to the general formulation of structured transfer functions of
linear systems

Glin(s) = C(s)K(s)−1B(s), (8)

describing the input-to-output behavior in the frequency domain.
Inspired by (8) and the structure of the examples in Sections 2.3.1 and 2.3.2, we

consider here a more general, structured formulation of the regular subsystem transfer
functions corresponding to structured bilinear systems, namely

Gk(s1, . . . , sk) = C(sk)K(sk)
−1

⎛

⎝
k−1∏

j=1

(
Imj−1 ⊗ N (sk−j )

)(
Imj ⊗ K(sk−j )

−1)
⎞

⎠

× (Imk−1 ⊗ B(s1)),

(9)

for k ≥ 1 and where N (s) = [
N1(s) . . . Nm(s)

]
with the matrix functions C : C →

C
p×n, K : C → C

n×n, B : C → C
n×m, Nj : C → C

n×n for j = 1, . . . , m. This
general formulation includes transfer functions of classical bilinear systems (4) since
we can choose

C(s) = C, K(s) = sE − A, N (s) = N, B(s) = B.
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Section 2.3 gives two examples of structured system classes that can be formulated
in this general setting.

For the construction of structured reduced-order bilinear models, we will use the
projection approach, i.e., we will construct two model reduction bases W, V ∈ C

n×r

such that the reduced-order bilinear system quantities will be computed by

Ĉ(s) = C(s)V , K̂(s) = WHK(s)V ,

B̂(s) = WHB(s), N̂j (s) = WHNj (s)V ,
(10)

for j = 1, . . . , m. Here, WH := W
T

denotes the conjugate transposed of the matrix
W . The structured reduced-order bilinear control system Ĝ is then given by the under-
lying reduced-order matrices from (10) and with the corresponding structured regular
subsystem transfer functions

Ĝk(s1, . . . , sk) = Ĉ(sk)K̂(sk)
−1

⎛

⎝
k−1∏

j=1

(
Imj−1 ⊗ N̂ (sk−j )

)(
Imj ⊗ K̂(sk−j )

−1)
⎞

⎠

×(Imk−1 ⊗ B̂(s1)),

for k ≥ 1.

2.3 Examples for structured bilinear systems

We will consider, in particular, the following two system classes as examples for
structured bilinear systems in this paper.

2.3.1 Bilinear time-delay systems

First, we revisit the introductory example of bilinear time-delay systems (1) from
Section 1. It was shown in [25] that the regular subsystem transfer functions of (1)
are given by

Gk(s1, . . . , sk) = C(skE − A − e−skτAd)
−1

⎛

⎝
k−1∏

j=1

(
Imj−1 ⊗ N

)

× (
Imj ⊗ (sk−jE − A − e−sk−j τAd)

−1)
⎞

⎠ (Imk−1 ⊗ B).

(11)

We can directly see that (11) can be written in the setting of (9) using

C(s) = C, K(s) = sE − A − e−sτAd, N (s) = N, and B(s) = B.

Once the model reduction bases W and V are constructed, the resulting reduced-order
model retains the delay structure of the original system as it is given by

Ĉ(s) = CV, K̂(s) = s(WHEV ) − (WHAV ) − e−sτ (WHAdV ),

N̂ (s) = WHN(Im ⊗ V ), B̂(s) = WHB.
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In Sections 3 and 4, we will show how to construct the model reduction bases
W and V such that the structured reduced-order bilinear control system provides
interpolation of the full-order subsystems.

2.3.2 Bilinear second-order systems

Another example for structured bilinear control systems is the case of bilinear
mechanical systems, i.e.,

Mq̈(t) + Dq̇(t) + Kq(t) =
m∑

j=1

Np,j q(t)uj (t) +
m∑

j=1

Nv,j q̇(t)uj (t) + Buu(t),

y(t) = Cpq(t) + Cvq̇(t),

(12)

with M, D, K, Np,j , Nv,j ∈ R
n×n for all j = 1, . . . , m, Bu ∈ R

n×m and Cp, Cv ∈
R

p×n. We note that (12) can be rewritten in the first-order (unstructured) form (2) by
introducing the new state vector x(t) = [qT(t), q̇T]T such that we obtain

[
J 0
0 M

]

︸ ︷︷ ︸
E

ẋ(t) =
[

0 J

−K −D

]

︸ ︷︷ ︸
A

x(t) +
m∑

j=1

[
0 0

Np,j Nv,j

]

︸ ︷︷ ︸
Nj

x(t)uj (t) +
[

0
Bu

]

︸ ︷︷ ︸
B

u(t),

y(t) = [
Cp Cv

]
︸ ︷︷ ︸

C

x(t),

(13)

for any invertible matrix J ∈ R
n×n. For this first-order companion realization (13),

we know the frequency domain representation to be given by the multivariate regular
transfer functions (4). If we now plug in the structured matrices from (13), we can
make use of those special block structures. In general, we obtain

(sE − A)−1 =
[
sJ −J

K sM + E

]−1

=
[ 1

s
J−1 − 1

s
(s2M + sD + K)−1KJ−1 (s2M + sD + K)−1

−(s2M + sD + K)−1KJ−1 s(s2M + sD + K)−1

]

for the frequency-dependent center terms and, therefore,

Nj(sE − A)−1B =
[

0
(Np,j + sNv,j )(s

2M + sD + K)−1Bu

]
.

Using this, we obtain for the first part of the k-th subsystem transfer function
⎛

⎝
k−1∏

j=1

(
Imj−1 ⊗ N

)(
Imj ⊗ (sk−jE − A)−1)

⎞

⎠ (Imk−1 ⊗ B)

=
⎡

⎢⎣
0(

k−1∏
j=1

(
Imj−1 ⊗ (Np + sk−jNv)

)(
Imj ⊗ (s2

k−jM + sk−jD + K)−1
)
)

(Imk−1 ⊗ Bu)

⎤

⎥⎦ ,
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where we used the notion Np = [
Np,1 . . . Np,m

]
and Nv = [

Nv,1 . . . Nv,m

]
. Mul-

tiplication with the remaining terms yields the regular subsystem transfer functions
of (12) to be written in the form

Gk(s1, . . . , sk) = (Cp + skCv)(s
2
kM + skD + K)−1

×
⎛

⎝
k−1∏

j=1

(
Imj−1 ⊗ (Np + sk−jNv)

)

× (
Imj ⊗ (s2

k−jM + sk−jD + K)−1)
⎞

⎠ (Imk−1 ⊗ Bu).

(14)

Having the general formulation of regular transfer functions (9) in mind, we see that
we can rewrite (14) in the structured bilinear form (9) by setting

C(s) = Cp + sCv, K(s) = s2M + sD + K, N (s) = Np + sNv, B(s) = Bu.

Now assume that we construct model reduction bases W and V , and compute the
reduced-order model by projection as in (10). This leads to the reduced-order bilinear
system

Ĉ(s) = CpV + s(CvV ),

K̂(s) = s2(WHMV ) + s(WHDV ) + (WHKV ),

N̂ (s) = (WHNp(Im ⊗ V )) + s(WHNv(Im ⊗ V )),

B̂(s) = WHBu.

(15)

Note that the reduced-order bilinear system in (15) has the same structure as the
original one and can be viewed as a reduced second-order bilinear system, where the
full-order matrices in (12) are simply replaced by the reduced analogues from (15).

3 Interpolation of single-input single-output systems

In this section, we assume the SISO system case, i.e., m = p = 1. Therefore, the bili-
near part consists of, at most, one term N = N1 and the matrix functionals C and B
map frequency points only onto row and column vectors, respectively. In this setting,
the regular subsystem transfer functions drastically simplify since (9) can now be
written as

Gk(s1, . . . , sk) = C(sk)K(sk)
−1

(
k−1∏
j=1

N (sk−j )K(sk−j )
−1

)
B(s1), (16)

for k ≥ 1. In the remainder of this section, we develop the theory for structure-
preserving interpolation (both the case of simple and high-order (Hermite) interpola-
tion) and then present numerical examples to illustrate the analysis.
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3.1 Structured transfer function interpolation

We want to construct the model reduction bases W and V , and the corresponding
reduced structured-bilinear system via projection as in (10) such that its lead-
ing regular subsystem transfer functions interpolate those of the original one; i.e.,
Gk(σ1, . . . , σk) = Ĝk(σ1, . . . , σk), where σ1, . . . , σk ∈ C are some selected
interpolation points.

The following two theorems answer the question of how the model reduction bases
V and W can be constructed independent of each other. In other words, the interpo-
lation conditions are satisfied only via V or W , no matter how the respective other
matrix is chosen. First, we consider the model reduction basis V .

Theorem 1 (Interpolation via V ) Let G be a bilinear SISO system, described by (16),
and Ĝ the reduced-order bilinear SISO system constructed by (10). Let σ1, . . . , σk ∈
C be interpolation points for which the matrix functions C(s), K(s)−1, N (s) and
B(s) are defined and K̂(s) is full-rank. Construct V using

v1 = K(σ1)
−1B(σ1),

vj = K(σj )
−1N (σj−1)vj−1, 2 ≤ j ≤ k,

span(V ) ⊇ span ([v1, . . . , vk]) .

Let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of Ĝ interpolate those of G in the following way:

G1(σ1) = Ĝ1(σ1),

G2(σ1, σ2) = Ĝ2(σ1, σ2),

...

Gk(σ1, . . . , σk) = Ĝk(σ1, . . . , σk).

Proof First, we note that the constructed vectors are given by

v1 = K(σ1)
−1B(σ1),

v2 = K(σ2)
−1N (σ1)K(σ1)

−1B(σ1),

...

vk = K(σk)
−1N (σk−1)K(σk−1)

−1 · · ·K(σ1)B(σ1),

and that by construction all those vectors are contained in span(V ). Therefore, for
the first subsystem transfer function, we obtain

Ĝ1(σ1) = Ĉ(σ1)K̂(σ1)
−1B̂(σ1)

= C(σ1)V (WHK(σ1)V )−1WHB(σ1)

= C(σ1) V (WHK(σ1)V )−1WHK(σ1)︸ ︷︷ ︸
=: Pv1

K(σ1)
−1B(σ1)

= C(σ1)K(σ1)
−1B(σ1)

= G1(σ1),
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where we used the fact that Pv1 is an oblique projector onto span(V ), i.e., z = Pv1z

holds for all z ∈ span(V ), and that K(σ1)
−1B(σ1) = v1 ∈ span(V ). Considering the

second subsystem transfer function, we get

Ĝ2(σ1, σ2) = Ĉ(σ2)K̂(σ2)
−1N̂ (σ1)K̂(σ1)

−1B̂(σ1)

= C(σ2)V (WHK(σ2)V )−1WHN (σ1)V (WHK(σ1)V )−1WHB(σ1)

= C(σ2)V (WHK(σ2)V )−1WHN (σ1)K(σ1)
−1B(σ1)

= C(σ2) V (WHK(σ2)V )−1WHK(σ2)︸ ︷︷ ︸
=:Pv2

K(σ2)
−1N (σ1)K(σ1)

−1B(σ1)

= C(σ2)K(σ2)
−1N (σ1)K(σ1)

−1B(σ1)

= G2(σ1, σ2),

using the same arguments as for the first transfer function and, additionally, the con-
struction of v2 and the oblique projector Pv2 . Continuing with this argument, the
desired result follows by induction over the transfer function index k.

The proof of Theorem 1 shows that the recursive construction of the truncation
matrix is necessary for the interpolation of higher-order transfer functions. Also, it
should be noted that W was an arbitrary full-rank truncation matrix of suitable dimen-
sions but with no additional constraints for the interpolation of (16). Theorem 2 is
the counterpart to Theorem 1 by only giving constraints for the left model reduction
basis W , while V is now allowed to be arbitrary.

Theorem 2 (Interpolation via W ) Let G, Ĝ, and the interpolation points
σ1, . . . , σk ∈ C be as in Theorem 1. Construct W using

w1 = K(σk)
−HC(σk)

H,

wj = K(σk−j+1)
−HN (σk−j+1)

Hwj−1, 2 ≤ j ≤ k,

span(W) ⊇ span ([w1, . . . , wk]) .

Let V be an arbitrary full-rank truncation matrix of appropriate dimension. Then the
subsystem transfer functions of Ĝ interpolate those of G in the following way:

G1(σk) = Ĝ1(σk),

G2(σk−1, σk) = Ĝ2(σk−1, σk),

...

Gk(σ1, . . . , σk) = Ĝk(σ1, . . . , σk).

Proof The proof of this theorem follows analogous to the proof of Theorem 1. We
only need to note that the left projection space span(W) involves the C(s) matrix,
which takes always the last argument of Gk into account. Therefore, the order of
the interpolation points is reversed and the recursion formula follows the transfer
function order going from left to right. The rest follows as in the proof of Theorem 1
by taking the transposed conjugate of the matrix functions for the construction.
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The main difference between Theorem 1 and Theorem 2 is the order in which the
interpolation points have to be used. Switching between the two projection schemes
leads to a reverse ordering of the interpolation points for the intermediate transfer
functions. The last theorem of this section states now the combination of Theorem 1
and Theorem 2 by two-sided projection.

Theorem 3 (Interpolation by two-sided projection) Let G and Ĝ be as in Theo-
rem 1 and let V be constructed as in Theorem 1 for a given set of interpolation
points σ1, . . . , σk ∈ C and W as in Theorem 2 for another set of interpolation points
ς1, . . . , ςθ ∈ C, for which the matrix functions C(s), K(s)−1, N (s) and B(s) are
defined and K̂(s) is full-rank. Then the subsystem transfer functions of Ĝ interpolate
those of G in the following way:

G1(σ1) = Ĝ1(σ1),

G2(σ1, σ2) = Ĝ2(σ1, σ2),

...

Gk(σ1, . . . , σk) = Ĝk(σ1, . . . , σk), and

G1(ςθ ) = Ĝ1(ςθ ),

G2(ςθ−1, ςθ ) = Ĝ2(ςθ−1, ςθ ),

...

Gθ(ς1, . . . , ςθ ) = Ĝθ (ς1, . . . , ςθ ),

(17)

and, additionally,

Gq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ ) = Ĝq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ ), (18)

for 1 ≤ q ≤ k and 1 ≤ η ≤ θ .

Proof Since the interpolation conditions in (17) follow directly from Theorem 1 and
Theorem 2, we only need to prove (18), the mixed interpolation conditions. For q

and η as described in the theorem, we obtain

Ĝq+η(σ1, . . . , σq , ςθ−η+1, . . . , ςθ )

= Ĉ(ςθ )K̂(ςθ )
−1

⎛

⎝
η−1∏

j=1

N̂ (ςθ−j )K̂(ςθ−j )
−1

⎞

⎠

⎛

⎝
q−1∏

i=0

N̂ (σq−i )K̂(σq−i )
−1

⎞

⎠ B̂(σ1)

= Ĉ(ςθ )K̂(ςθ )
−1

⎛

⎝
η−1∏

j=1

N̂ (ςθ−j )K̂(ςθ−j )
−1

⎞

⎠WH

⎛

⎝
q−1∏

i=0

N (σq−i )K(σq−i )
−1

⎞

⎠B(σ1)

︸ ︷︷ ︸
∈ span(V )

= C(ςθ )K(ςθ )
−1

⎛

⎝
η−1∏

j=1

N (ςθ−j )K(ςθ−j )
−1

⎞

⎠

︸ ︷︷ ︸
=: h, hH ∈ span(W)

⎛

⎝
q−1∏

i=0

N (σq−i )K(σq−i )
−1

⎞

⎠B(σ1)

= Gq+η(σ1, . . . , σq , ςθ−η+1, . . . , ςθ ),

Page 11 of 38    43Adv Comput Math (2021) 47: 43



where we used the construction of span(V ) in the third and of span(W) in the fourth
lines as denoted, and following the strategy in the proof of Theorem 1.

It is an important observation that we can interpolate higher subsystem transfer
functions by only evaluating lower ones for the construction of the model reduction
bases. Following Theorem 3, we can in fact interpolate up to the (k+θ)-th subsystem
transfer function. Also, we recognize that the two-sided projection-based interpola-
tion is able to match k + θ + k · θ interpolation conditions at the same time. Those
results are similar to the unstructured systems case [20]. The special case of identical
sets of interpolation points is discussed in the following section regarding Hermite
interpolation.

3.2 Hermite interpolation

As in the linear case, we can use the projection framework to interpolate not only the
transfer functions but also their derivatives. In the setting of the multivariate trans-
fer function appearing in bilinear systems, this amounts to partial derivatives with
respect to the different frequency arguments. For ease of notation, we introduce an
abbreviation for partial derivatives

∂
s
j1
1 ···sjk

k

f (z1, . . . , zk) := ∂j1+...+jk f

∂s
j1
1 ···∂s

jk
k

(z1, . . . , zk),

denoting the differentiation of an analytic function f : Ck → C
� with respect to the

variables s1, . . . , sk and evaluated at z1, . . . , zk ∈ C. Moreover, the Jacobian of f is
denoted by

∇f = [
∂s1f . . . ∂skf

]
,

as the concatenation of all partial derivatives.
The following theorem states a Hermite interpolation result via V only.

Theorem 4 (Hermite interpolation via V ) Let G be a bilinear SISO system,
described by (16), and Ĝ the reduced-order bilinear SISO system constructed by (10).
Let σ1, . . . , σk ∈ C be the interpolation points for which the matrix functions C(s),
K(s)−1, N (s) and B(s) are analytic and K̂(s) is full-rank. Construct V using

v1,j1 = ∂sj1 (K−1B)(σ1), j1 = 0, . . . , �1,

v2,j2 = ∂sj2K−1(σ2)∂s�1 (NK−1B)(σ1), j2 = 0, . . . , �2,

...

vk,jk
= ∂sjkK−1(σk)

⎛

⎝
k−2∏

j=1

∂
s
�k−j (NK−1)(σk−j )

⎞

⎠

×∂s�1 (NK−1B)(σ1), jk = 0, . . . , �k,

span(V ) ⊇ span([v1,0, . . . , vk,�k
]),
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and let W be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of Ĝ interpolate those of G in the following way:

∂
s
j1
1

G1(σ1) = ∂
s
j1
1

Ĝ1(σ1), j1 = 0, . . . , �1,

∂
s
�1
1 s

j2
2

G2(σ1, σ2) = ∂
s
�1
1 s

j2
2

Ĝ2(σ1, σ2), j2 = 0, . . . , �2,

...

∂
s
�1
1 ···s�k−1

k−1 s
jk
k

Gk(σ1, . . . , σk) = ∂
s
�1
1 ···s�k−1

k−1 s
jk
k

Ĝk(σ1, . . . , σk), jk = 0, . . . , �k .

Proof First, we note that the case k = 1 was already proven in [26] and �1 = . . . =
�k = 0 corresponds to Theorem 1. For k = 2, we start with j2 = 0 to investigate
the partial derivative with respect to s1 involving the bilinear term. Using the product
rule, the partial derivative can be written as

∂s�1 (NK−1B)(σ1) =
�1∑

i=0
ci∂siN (σ1)∂s�1−i (K−1B)(σ1),

for some appropriate constants ci ∈ R, i = 0, . . . , �1. Now, we can show

∂
s
�1
1

Ĝ2(σ1, σ2) = Ĉ(σ2)K̂(σ2)
−1∂s�1 (N̂ K̂−1B̂)(σ1)

= Ĉ(σ2)K̂(σ2)
−1

(
�1∑

i=0

ci∂si N̂ (σ1)∂s�1−i (K̂−1B̂)(σ1)

)

= Ĉ(σ2)K̂(σ2)
−1WH

(
�1∑

i=0

ci∂siN (σ1)V ∂s�1−i (K̂−1B̂)(σ1)

)

= Ĉ(σ2)K̂(σ2)
−1WH

(
�1∑

i=0

ci∂siN (σ1)∂s�1−i (K−1B)(σ1)

)

= Ĉ(σ2)K̂(σ2)
−1WH∂s�1 (NK−1B)(σ1)

= C(σ2) V (WHK(σ2)V )−1WHK(σ2)︸ ︷︷ ︸
=: Pv2,0

K(σ2)
−1∂s�1 (NK−1B)(σ1)

= C(σ2)K(σ2)
−1∂s�1 (NK−1B)(σ1)

= ∂
s
�1
1

G2(σ1, σ2),

where we first used the construction of v1,j1 and then that of v2,0 with the projec-
tor Pv2,0 onto span(V ). By induction over j2, the results for the case k = 2 follow
from [26]; and by induction over k and jk , using the same arguments, the rest of the
theorem follows.

We note the difference between Theorem 1 and Theorem 4 in terms of the sub-
space construction. While for the previous interpolation results, we are able to
recursively construct the next part of the model reduction subspace by using the pre-
vious one, this is not possible in Theorem 4 due to the frequency dependence of the
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bilinear term N (s). Also, it follows that for the interpolation of the �-th derivative,
� = �1 + . . . + �k , of the k-th subsystem transfer function Gk in the interpolation
points σ1, . . . , σk , the minimal dimension of the projection space span(V ) is given
by � + k.

As before, we can consider the counterpart to Theorem 4. In addition to reversing
the order of interpolation points, the order of the derivatives needs to be reverted as
well for the Hermite interpolation.

Theorem 5 (Hermite interpolation via W ) Let G, Ĝ the original and reduced-order
models, respectively, and the interpolation points σ1, . . . , σk ∈ C be as in Theorem 4.
Construct W using

w1,jk
= ∂sjk (K−HCH)(σk), jk = 0, . . . , �k,

w2,jk−1 = ∂
sjk−1 (K−HNH)(σk−1)∂s�k (K−HCH)(σk), jk−1 = 0, . . . , �k−1,

...

wk,j1 = ∂sj1 (K−HNH)(σ1)

⎛

⎝
k−1∏

j=2

∂
s
�j (K−HNH)(σj )

⎞

⎠ ∂s�k

×(K−HCH)(σk), j1 = 0, . . . , �1,

span(W) ⊇ span([w1,0, . . . , wk,�k
]),

and let V be an arbitrary full-rank truncation matrix of appropriate dimension. Then
the subsystem transfer functions of Ĝ interpolate those of G in the following way:

∂
s
jk
1

G1(σk) = ∂
s
jk
1

Ĝ1(σk), jk = 0, . . . , �k,

∂
s
jk−1
1 s

�k
2

G2(σk−1, σk) = ∂
s
jk−1
1 s

�k
2

Ĝ2(σk−1, σk), jk−1 = 0, . . . , �k−1,

...

∂
s
j1
1 s

�2
2 ···s�k

k

Gk(σ1, . . . , σk) = ∂
s
j1
1 s

�2
2 ···s�k

k

Ĝk(σ1, . . . , σk), j1 = 0, . . . , �1.

Proof Observing that the order of the derivatives changed in the same way as the
interpolation points, the proof works analogously to the proof of Theorem 4 while
building on the ideas from the proof of Theorem 2.

An interesting fact in the structured linear case, as stated in [26], is the implicit
matching of Hermite interpolation conditions without sampling the derivatives of
the transfer function. Next, we extend this construction to the structured bilinear
case. This result becomes a special case of Theorem 3 by using identical sets of
interpolation points for V and W .

Theorem 6 (Implicit Hermite interpolation by two-sided projection) Let G and Ĝ

be as in Theorem 4. Also let V and W be constructed as in Theorems 1 and 2, respec-
tively, for the same set of interpolation points σ1, . . . , σk ∈ C, for which the matrix
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functions C(s), K(s)−1, N (s) and B(s) are analytic and K̂(s) is full-rank. Then the
subsystem transfer functions of Ĝ interpolate those of G in the following way:

G1(σ1) = Ĝ1(σ1), . . . , Gk−1(σ1, . . . , σk−1) = Ĝk−1(σ1, . . . , σk−1),

G1(σk) = Ĝ1(σk), . . . , Gk−1(σ2, . . . , σk) = Ĝk−1(σ2, . . . , σk),

and, additionally,

Gk(σ1, . . . , σk) = Ĝk(σ1, . . . , σk),

∇Gk(σ1, . . . , σk) = ∇Ĝk(σ1, . . . , σk),

Gq+η(σ1, . . . , σq, σk−η+1, . . . , σk) = Ĝq+η(σ1, . . . , σq, σk−η+1, . . . , σk),

hold for 1 ≤ q, η ≤ k.

Proof While most of the results follow directly from Theorem 3 by using identical
sets of interpolation points for V and W , the Hermite interpolation of the complete
Jacobian ∇Gk of the k-th order transfer function is new. Since k = 1 (the linear
subsystem) is covered by [26], we assume k > 1. Therefore, and by the structure of
the multivariate transfer functions Gk , three different cases can occur depending on
the differentiation variable, i.e., we have

∂s1 : ∂s(NK−1B) = (∂sN )K−1B + N
(
∂s(K−1B)

)
,

∂sj : ∂s(NK−1) = (∂sN )K−1 + N
(
∂sK−1

)
, for 1 < j < k,

∂sk : ∂s(CK−1) = (∂sC)K−1 + C
(
∂sK−1

)
,

as possible derivative terms. Since those three cases work analogously to each other,
we restrict ourselves, for the sake of compactness, to the first one. First, we extend
the expression of the partial derivative further into

∂s(NK−1B) = (∂sN )K−1B + N
(−K−1 (∂sK)K−1B + K−1 (∂sB)

)
.

Therefore, for the complete partial derivative, we obtain

∂s1Ĝk(σ1, . . . , σk)

= Ĉ(σk)K̂(σk)
−1

⎛

⎝
k−2∏

j=1

N̂ (σk−j )K̂(σk−j )
−1

⎞

⎠ ∂s(N̂ K̂−1B̂)(σ1)

= Ĉ(σk)K̂(σk)
−1

⎛

⎝
k−2∏

j=1

N̂ (σk−j )K̂(σk−j )
−1

⎞

⎠

×
[(

∂sN̂
)
K̂−1B̂ − N̂ K̂−1 (∂sK̂

)
K̂−1B̂ + N̂ K̂−1 (∂sB̂

)]
(σ1)

= Ĉ(σk)K̂(σk)
−1

⎛

⎝
k−2∏

j=1

N̂ (σk−j )K̂(σk−j )
−1

⎞

⎠ ∂sN̂ (σ1)K̂(σ1)
−1B̂(σ1)
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− Ĉ(σk)K̂(σk)
−1

⎛

⎝
k−2∏

j=1

N̂ (σk−j )K̂(σk−j )
−1

⎞

⎠ N̂ (σ1)K̂(σ1)
−1

× ∂sK̂(σ1)K̂(σ1)
−1B̂(σ1)

+ Ĉ(σk)K̂(σk)
−1

⎛

⎝
k−2∏

j=1

N̂ (σk−j )K̂(σk−j )
−1

⎞

⎠ N̂ (σ1)K̂(σ1)
−1∂sB̂(σ1)

= C(σk)K(σk)
−1

⎛

⎝
k−2∏

j=1

N (σk−j )K(σk−j )
−1

⎞

⎠

︸ ︷︷ ︸
=:h1, hH

1 ∈ span(W)

∂sN (σ1)K(σ1)
−1B(σ1)

︸ ︷︷ ︸
∈ span(V )

− C(σk)K(σk)
−1

⎛

⎝
k−2∏

j=1

N (σk−j )K(σk−j )
−1

⎞

⎠N (σ1)K(σ1)
−1

︸ ︷︷ ︸
=: h2, hH

2 ∈ span(W)

× ∂sK(σ1)K(σ1)
−1B(σ1)

︸ ︷︷ ︸
∈ span(V )

+ C(σk)K(σk)
−1

⎛

⎝
k−2∏

j=1

N (σk−j )K(σk−j )
−1

⎞

⎠N (σ1)K(σ1)
−1

︸ ︷︷ ︸
= h2, hH

2 ∈ span(W)

∂sB(σ1)

= ∂s1Gk(σ1, . . . , σk),

where we used, as denoted by the underbraces, the construction of either span(W) or
span(V ), and the fact that the model reduction bases V and W are constant matrices.
As stated before, the results for the other partial derivatives follow analogously, which
proves interpolation of the full Jacobian in the end.

As in the previous section, by using two-sided projection, we can match interpo-
lation conditions for a larger number of interpolation points and higher subsystem
transfer functions. Following the results of Theorem 3 we can expect, using deriva-
tives for the two-sided projection, to match at least (k+�)+(θ +ν)+(k+�) ·(θ +ν)

transfer function values, where k, � relate to span(V ) and θ, ν to span(W), and where
� = �1 + . . . + �k and ν = ν1 + . . . + νθ denote the orders of the partial derivatives
and k, θ the subsystem order of the transfer functions to interpolate.

Theorem 7 (Hermite interpolation by two-sided projection) Let G and Ĝ be as in
Theorem 4 and let V be constructed as in Theorem 4 for a given set of interpolation
points σ1, . . . , σk ∈ C and orders of partial derivatives �1, . . . , �k , and W as in
Theorem 5 for another set of interpolation points ς1, . . . , ςθ ∈ C and orders of
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partial derivatives ν1, . . . , νθ , for which the matrix functions C(s),K(s)−1,N (s) and
B(s) are analytic and K̂(s) has full-rank. Then the subsystem transfer functions of Ĝ

interpolate those of G in the following way:

∂
s
j1
1

G1(σ1) = ∂
s
j1
1

Ĝ1(σ1), j1 = 0, . . . , �1,

...

∂
s
�1
1 ···s�k−1

k−1 s
jk
k

Gk(σ1, . . . , σk) = ∂
s
�1
1 ···s�k−1

k−1 s
jk
k

Ĝk(σ1, . . . , σk), jk = 0, . . . , �k,

∂
s
iθ
1

G1(ςθ ) = ∂
s
iθ
1

Ĝ1(ςθ ), iθ = 0, . . . , νθ ,

...

∂
s
i1
1 s

ν2
2 ···sνθ

θ

Gθ (ς1, . . . , ςθ ) = ∂
s
i1
1 s

ν2
2 ···sνθ

θ

Ĝθ (ς1, . . . , ςθ ), i1 = 0, . . . , ν1,

and, additionally,

∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

Gq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ )

= ∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

Ĝq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ )

holds for jq = 0, . . . , �q ; iθ−η+1 = 0, . . . , νθ−η+1; 1 ≤ q ≤ k and 1 ≤ η ≤ θ .

Proof As for Theorem 3, the first parts of the result just summarize the theorems
stating the one-sided projection approaches (Theorems 4 and 5), i.e., we only need
to prove the additional interpolation constraints with the mixed partial derivatives. It
holds

∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

Gq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ )

= ∂sνθ (ĈK̂−1)(ςθ ) · · · ∂s
νθ−η+2 (N̂ K̂−1)(ςθ−η+2)∂s

iθ−η+1 (N̂ K̂−1)(ςθ−η+1)

×∂sjq (N̂ K̂−1)(σq)∂
s
�q−1 (N̂ K̂−1)(σq−1) · · · ∂s�1 (N̂ K̂−1B̂)(σ1)

= ∂sνθ (CK−1)(ςθ ) · · · ∂s
νθ−η+2 (NK−1)(ςθ−η+2)∂s

iθ−η+1 (NK−1)(ςθ−η+1)
︸ ︷︷ ︸

=:h, h ∈ span(W)

× ∂sjq (NK−1)(σq)∂
s
�q−1 (NK−1)(σq−1) · · · ∂s�1 (NK−1B)(σ1)

︸ ︷︷ ︸
∈ span(V )

= ∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

Ĝq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ ),

for jq = 0, . . . , �q ; iθ−η+1 = 0, . . . , νθ−η+1; 1 ≤ q ≤ k and 1 ≤ η ≤ θ .

For an easier understanding of Theorem 7, we consider here a small theoretical
example, where we only interpolate the linear part choosing k = θ = 1, the interpo-
lation points σ, ς , and for the partial derivatives � = �1 = 2 and ν = ν1 = 1. Then
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using the first part of Theorem 7, we enforce interpolation of the following terms by
means of span(V ):

G1(σ ), ∂s1G1(σ ), ∂s2
1
G1(σ ),

And similarly via span(W), we enforce interpolation of

G1(ς), ∂s1G1(ς).

By using two-sided projection, we can now additionally match higher subsystem
transfer functions and their partial derivatives, namely

G2(σ, ς), ∂s1G2(σ, ς), ∂s2G2(σ, ς),

∂s2
1
G2(σ, ς), ∂s1s2G2(σ, ς), ∂s2

1 s2
G2(σ, ς).

As already realized in Theorem 6, two-sided projection with the same sets of inter-
polation points leads to additional interpolation of derivatives. This also works in
combination with Theorem 7. The following corollary states a particular special case.

Corollary 1 Assume G and Ĝ are constructed as in Theorem 7 for identical sets of
interpolation points σ1, . . . , σk ∈ C and matching orders of the partial derivatives,
i.e., �1 = ν1, . . . , �k = νk . Then additionally to the interpolation results of Theorem 7
it holds

∇
(

∂
s
�1
1 ···s�k

k

Gk

)
(σ1, . . . , σk) = ∇

(
∂
s
�1
1 ···s�k

k

Ĝk

)
(σ1, . . . , σk).

Proof The proof follows directly from Theorem 6 by setting the last partial derivative
as the final interpolation condition of the left and right projection spaces.

3.3 Heuristics for selecting interpolation points

A crucial step in the success of interpolatory methods is clearly the selection of
good/optimal interpolation points. Choosing optimal interpolation points is an open
problem even in the case of structure-preserving interpolation for linear systems. For
the numerical experiments in Section 3.4, based on some successful heuristics from
the linear case, we suggest and compare three strategies for choosing the interpolation
points in the proposed framework of structure-preserving bilinear transfer function
interpolation. Below we summarize these three approaches.

First is the classical choice of taking logarithmically equidistant points on the
imaginary axis in a frequency range of interest. The major advantage of this idea is
its simplicity, as the points do not need any further methods to be computed but are
directly given via the frequency interval and the chosen reduced order, e.g., in MAT-
LAB, they can be simply generated via the logspace function. Often, this approach
catches a good overall behavior of the system but misses specific features that are not
close enough to the interpolation points. In principle, it is possible to choose a new
set of interpolation points for every subsystem transfer function. Via combining dif-
ferent sets, this leads to an exponentially growing number of interpolation conditions
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to be met, and thus exponentially growing subspace dimensions. Instead, to have a
better control on the resulting reduced order, we suggest to use the same interpola-
tion points on each transfer function level, i.e., for given points σ (1), . . . , σ (�) ∈ C

with interpolation up the k-th subsystem transfer function, the interpolation point
sequences are set to be

σ (1) = σ
(1)
1 = . . . = σ

(1)
k ,

...

σ (�) = σ
(�)
1 = . . . = σ

(�)
k ,

(19)

such that the following transfer function values are interpolated:

G1(σ
(1)), G2(σ

(1), σ (1)), . . . Gk(σ
(1), . . . , σ (1)),

...

G1(σ
(�)), G2(σ

(�), σ (�)), . . . G3(σ
(�), . . . , σ (�));

see, e.g., [16–19].
The second strategy we will employ relates to the H2-norm of dynamical sys-

tems. The Iterative Rational Krylov Algorithm (IRKA) can be used in the case of
linear (unstructured) first-order systems to compute a locally optimal approximation
in the H2-norm via interpolation [31]. For unstructured quadratic-bilinear systems,
using IRKA based on the linear dynamics (first subsystem) to generate optimal inter-
polation points and then using the resulting interpolation points as in (19) for the
subsystem interpolation was already applied successfully in [32]. In our setting, this
would amount to applying IRKA first to a structured linear dynamical system. How-
ever, there is no known general structure-preserving variant of IRKA compliant with
the setting in [26], except for some extensions to special cases [33–38]. But in [39],
the H2-optimal interpolation theory for unstructured systems was extended to gen-
eral linear transfer functions via Transfer Function IRKA (TF-IRKA) by allowing the
reduced model to be unstructured. The basic idea is, in every iteration step, to evalu-
ate the given transfer function and its first derivative at the current interpolation points
and then to use the Loewner framework [40] to construct an interpolating unstruc-
tured linear system. As extension to our structured bilinear systems framework, we
will employ TF-IRKA to compute optimal interpolation points for the structured lin-
ear subsystem and then use the resulting points for the subsystem interpolation as
in (19).

As the third and final strategy, we will consider a greedy selection of interpola-
tion points based on the H∞-norm. Here, we will make use of the ideas developed
in [41, 42] to use the large-scale sparse H∞-norm computation methods from [43–
45]. The main idea is to choose the next interpolation point, during the iteration, as
the frequency where the H∞-norm of the error system is attained, i.e., the frequency
for which the approximation error attains the maximum. Here, we further extend this
approach to multivariate transfer functions of structured bilinear systems based on
the following observation: To interpolate a higher-level transfer function, the vectors
from previous levels need to be included in the projection space. Therefore, assume
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we have just computed the vectors up to level k − 1 with vk−1 for the right truncation
matrix V corresponding to the interpolation points σ1, . . . , σk−1. To interpolate now
the k-th subsystem transfer function, we need to employ those previous vectors and
observe that the transfer function satisfies

Gk(σ1, . . . , σk−1, sk) = C(sk)K(sk)N (σk−1)vk−1.

This is again a univariate transfer function in the k-th frequency argument as the
previous interpolation points are fixed, where the input function is just the constant
vector N (σk−1)vk−1. Therefore, we can do a greedy search for the current sub-
system transfer function, interpolate in the resulting point, update the error system,
and repeat this procedure with the next higher subsystem transfer function. This is
precisely what we will do. In the literature, there are other approaches for greedy
selections, e.g., by using error estimators [46, 47]. However, employing these ideas
will first require developing appropriate estimators for structured bilinear systems.
This remains an open problem to be investigated in future work.

3.4 Numerical examples

We illustrate the SISO analysis and the strategies for the interpolation point selection
using two numerical examples, having the structured bilinearities as in Sections 2.3.1
and 2.3.2. We compare our resulting structure-preserving interpolation framework to
other approaches from the literature that have been used to approximate structured
bilinear systems without preserving the structure, as in, e.g., [3, 25].

We will compute reduced-order models using the three interpolation point selec-
tion strategies from Section 3.3, where we will denote the equidistant points as equi.,
the IRKA-based points by IRKA, and the greedy selection by H∞. We compare
the approximation error both in time and frequency domains. In time domain, we
consider a point-wise relative output error for a given input signal, namely

errt(t) := |y(t) − ŷ(t)|
|y(t)| ,

for t ∈ [0, tf ], and in frequency domain, we use the point-wise relative error of the
first and second subsystem transfer functions, i.e.,

errf,1(ω1) := |G1(ω1i) − Ĝ1(ω1i)|
|G1(ω1i)| and

errf,2(ω1, ω2) := |G2(ω1i, ω2i) − Ĝ2(ω1i, ω2i)|
|G2(ω1i, ω2i)| ,

for the frequencies ω1, ω2 ∈ [ωmin, ωmax].
The experiments reported here have been executed on a machine with 2 Intel(R)

Xeon(R) Silver 4110 CPU processors running at 2.10 GHz and equipped with 192 GB
total main memory. The computer runs on CentOS Linux release 7.5.1804 (Core)
using MATLAB 9.7.0.1190202 (R2019b).
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3.4.1 Time-delayed heated rod

First, we consider an example for a bilinear time-delay system as in Section 1. This
example, taken from [25], models a semi-discretized heated rod with distributed con-
trol and homogeneous Dirichlet boundary conditions, which is cooled by a delayed
feedback and is described by the partial differential equation

∂tv(ζ, t) = ∂ζ 2v(ζ, t) − 2 sin(ζ )v(ζ, t) + 2 sin(ζ )v(ζ, t − 1) + u(t),

with (ζ, t) ∈ (0, π) × (0, tf ) and boundary conditions v(0, t) = v(π, t) = 0 for
t ∈ [0, tf ]. After a spatial discretization using centered finite differences, we obtain
a bilinear time-delay system of the form

ẋ(t) = Ax(t) + Adx(t − 1) + Nx(t)u(t) + Bu(t),

y(t) = Cx(t),

with A, Ad, N ∈ R
n×n, B, CT ∈ R

n. We chose n = 5000 for our experiments.
To compare with our structure-preserving approximation (StrInt), in this exam-

ple, we use the approach from [25] to construct an unstructured bilinear system (2)
without time delay using the bilinear Loewner framework, denoted by BiLoewner.
For the structured interpolation, we have computed 4 interpolation points for the
interpolation of the first two subsystem transfer functions with each strategy. For the
equidistant points, we used ±logspace(-3, 3, 2)i. The resulting interpola-
tion points for the first subsystem transfer function using the three different strategies
can be seen in Fig. 1. Note that since the interpolation points appear as conjugate
pairs in the subspace construction, in Fig. 1, we only depict the top half of the
complex plane. While the points generated by equi. and H∞ appear very similar,
the IRKA-based points are distinguishably different and even involve 2 real inter-
polation points. The interpolation points ±10−3i are obtained by equi. as well as
H∞ due to the focus on the frequency range of interest to [10−3, 103] rad/sec. The
structured interpolations were then obtained via the two-sided projection approach
from Theorem 3. The resulting reduced-order bilinear time-delay systems are of
order r = 8. For the bilinear Loewner method, we chose the interpolation points
±logspace(-3, 3, 80)i and used the rank truncation idea to obtain a classical
(unstructured) bilinear system, also of order 8.

Fig. 1 Computed interpolation points for structured interpolation of the first subsystem transfer function
for the time-delay system (points appear in conjugates pairs, only top half of the complex plane is depicted)
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Fig. 2 Frequency domain results of the first subsystem transfer functions for the time-delay system

First, we consider our computed approximations in frequency domain. Those
results are plotted in Figs. 2 and 3 for the first and second subsystem transfer
functions. It is clearly visible that the structure-preserving approximation of any

Fig. 3 Relative errors of the second subsystem transfer functions for the time-delay system

43   Page 22 of 38 Adv Comput Math (2021) 47: 43



Table 1 Maximum relative
approximation errors for the
time-delay system

StrInt(equi.) StrInt(IRKA) StrInt(H∞) BiLoewner

max(errf,1) 6.5768e-04 5.1859e-03 7.1636e-04 1.4683e-01

max(errf,2) 1.7612e-03 4.8620e-03 1.3815e-03 1.0530e+00

max(errt) 8.1166e-03 2.1001e-05 1.2843e-05 2.5705e+00

interpolation point selection strategy performs significantly better than the unstruc-
tured bilinear Loewner framework. This is due to the time-delay structure being
preserved in the reduced-order models. Concerning the selection of interpolation
points, no clear winner can be deduced from the plots. Looking at the maximum rel-
ative approximation errors in Table 1, for the first subsystem transfer function, the
equidistant and greedy H∞ methods perform best, while for the second-level transfer
function, the three methods behave similarly.

For a complete comparison of the reduced-order models, we simulated the systems
in time domain with the input signal

u(t) = cos(10t)
20 + cos(5t)

20 ,

from [25], in the time range [0, 10] s. Figure 4 shows that (a) the output trajectories
of the original system, the structure-preserving interpolations and the bilinear system
without time-delay are indistinguishable in the eye ball norm but (b) the relative error
reveals that all structured interpolations perform several orders of magnitude better
than BiLoewner while having the same state-space dimension. A look into Table 1
reveals that the interpolation methods perform at least three orders of magnitude
better than Loewner and that this time, IRKA and H∞ points perform best while
gaining two orders of magnitude in accuracy compared to the equidistant points.

3.4.2 Damped mass-spring system

Next, we consider a damped mass-spring system. The linear parts of the dynam-
ics are modeled as in [48], describing a chain of masses connected by springs and

Fig. 4 Time simulation results for the time-delay system

Page 23 of 38    43Adv Comput Math (2021) 47: 43



dampers, where each mass is additionally connected to a separate spring and damper.
In order to focus on the mechanical structure only, we removed the holonomic con-
straint from [48]. For the bilinear part, the springs are modeled to be dependent on
the applied external force, such that a displacement to the right increases the stiffness
due to compression of the springs and to the left decreases it due to the appearing
strain. This results in a structured bilinear control system of the form

Mq̈(t) + Dq̇(t) + Kq(t) = Npq(t)u(t) + Buu(t),

y(t) = Cpq(t),
(20)

with M, D, K, Np ∈ R
n×n and Bu, C

T
p ∈ R

n. The input matrix is chosen to apply
the external force only to the first mass, i.e., B = e1, and the output gives the dis-
placement of the second mass, i.e., C = eT

2, where ei denotes the i-th column of the
identity matrix In. The bilinear term is a scaled version of the stiffness matrix

Np = −SKS,

where S is a diagonal matrix with diagonal entries linspace(0.2, 0, n). For
our experiment, we chose the original system to consist of n = 1 000 masses.

We construct three types of reduced-order models: (i) our structure-preserving
bilinear interpolation, denoted by StrInt, (ii) two unstructured classical bilinear
approximations by converting (20) to first-order form (13) followed by interpola-
tory model reduction of this first-order system, denoted by FOInt, which has the
same order as StrInt, and FOInt2, which will be twice as large as StrInt. Note that
FOInt and FOInt2 yield reduced-order models of the form (2), which do not retain
the underlying physical structure. Also, it needs to be remarked that the computa-
tional effort for the construction of FOInt is higher than for the structure-preserving
approach due to solving underlying linear systems of double size, even in a structure
exploiting implementation; see, e.g., [49]. Since the original system is a mechani-
cal model, we use only a one-sided projection to preserve the mechanical properties
in the reduced-order model, i.e., we apply Theorem 1 and set W = V . As before,
we interpolate the first two subsystem transfer functions via all three strategies
for choosing interpolation points from Section 3.3, where the equidistant points
for StrInt and FOInt were ±logspace(-2, 2, 3)i and for FOInt2 they were
±logspace(-2, 2, 6)i. The interpolation points for the structure-preserving
approach are shown in Fig. 5, where their complex conjugates are omitted for sim-
plicity. The H∞ points are clustered around 10−1 rad/sec and the IRKA points have
basically the same imaginary part and only change in their real parts. The reduced-
order models denoted by StrInt and FOInt are by construction of order r = 12, and
the ones for FOInt2 are of order r = 24.

We consider first the results in the frequency domain, where the maximum relative
approximation errors for the first subsystem transfer function can be found in Table 2
and for the second subsystem transfer function in Table 3. In general, the unstructured
interpolation, FOInt, performs worst for all interpolation point choices but especially
bad for IRKA and H∞ points. The unstructured interpolation of double size, FOInt2,
is compatible with the structured interpolation. The IRKA interpolation points are the
exception, for which the structured interpolation performs three orders of magnitude
better than FOInt2. Also, comparing only the structured results, one can see that
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Fig. 5 Computed interpolation points for structured interpolation of the first subsystem transfer function
for the damped mass-spring system (points appear in conjugates pairs, only top half of the complex plane
is depicted)

the IRKA points perform overall best, while the H∞ points perform worst. For an
easier overview, we decided to plot only the frequency domain results of the three
approaches using the IRKA points in Figs. 6 and 7.

As for the previous example, for a proper comparison of the complete bilinear
systems, we simulated the original and reduced-order models in the time interval
[0, 100] s using the input signal

u(t) = sin(200t) + 200,

which can be seen as a step signal with a sinusoidal disturbance. The worst case rela-
tive approximation errors can be found in Table 4. First, note that for some choices of
interpolation points, the unstructured reduced-order model outputs grow unbounded
in the time simulation due to instability. This is the case for FOInt(equi.), FOInt(H∞),
and FOInt2(H∞). On the other hand, all structure-preserving reduced-order model
outputs are bounded for the chosen input signal, i.e., behave as stable models. Best
performing are, ordered by their worst case errors, StrInt(IRKA), StrInt(H∞), and
FOInt2(IRKA), whereas in the frequency domain, the structure-preserving method
with IRKA points is the best. But also StrInt(equi.) is compatible as it is only one
order of magnitude worse than the best reduced-order model. For this choice of
points, only FOInt2 behaves stable and is another order of magnitude worse than the
structure-preserving variant. Also note that the worst structure-preserving reduced-
order model still performs one order of magnitude better than the only stable FOInt.
As for the frequency domain results, we decided to plot only the time domain results
using the IRKA interpolation points in Fig. 8.

Table 2 Maximum relative
approximation errors of the first
subsystem transfer functions
max(errf,1) for the damped
mass-spring system

StrInt FOInt FOInt2

equi. 1.3852e-05 4.3641e-03 1.2199e-05

IRKA 2.3105e-06 2.7126e+01 1.4166e-03

H∞ 5.7449e-03 7.2879e+02 2.6656e-02
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Table 3 Maximum relative
approximation errors of the
second subsystem transfer
functions max(errf,2) for the
damped mass-spring system

StrInt FOInt FOInt2

equi. 1.6742e-04 2.8235e-02 1.3956e-04

IRKA 3.4370e-06 8.6974e+01 1.3253e-03

H∞ 4.3940e-03 9.0163e+02 4.4294e-02

4 Interpolation of multi-input multi-output systems

In this section, we will generalize the results from SISO structured bilinear systems
to MIMO ones as in (9) and give a numerical example to illustrate the theory.

4.1 Matrix interpolation

In principle, all the results from Section 3 can directly be extended to the MIMO
system case (9). However, one needs to realize that in this case the subsystem transfer
functions to be interpolated are matrix-valued. The main difference from the SISO
case lies in the collection of the bilinear terms into N (s) = [

N1(s) . . . Nm(s)
]

and the corresponding Kronecker products that produce the different combinations
of the linear and bilinear parts in the k-th subsystem transfer function, e.g., in (5).
Additionally, we will use the following notation:

Ñ (s) :=
⎡

⎢⎣
N1(s)

...
Nm(s)

⎤

⎥⎦

as an alternative way of concatenating the bilinear terms. In this paper, we will only
focus on matrix interpolation, i.e., we will interpolate the full matrix-valued struc-
tured subsystem transfer functions. There is a concept of tangential interpolation [20,
50] to handle matrix-valued functions in which interpolation is enforced only in

Fig. 6 Frequency domain results of the first subsystem transfer functions for the damped mass-spring
system
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Fig. 7 Relative errors of the second subsystem transfer functions for the damped mass-spring system

selected directions. We will consider that framework in a separate work since the def-
inition of tangential interpolation is not unified yet for bilinear systems [51, 52], let
alone the structured ones we consider here.

The following theorem extends the results from Theorems 1, 2, and 3 to MIMO
structured bilinear systems.

Theorem 8 (Matrix interpolation) Let G be a bilinear system, as described by (9),
and Ĝ the reduced-order bilinear system, constructed by (10). Given sets of

Table 4 Maximum relative
approximation errors of the time
simulation max(errt) for the
damped mass-spring system

StrInt FOInt FOInt2

equi. 1.4916e-03 2.6223e+06 6.7979e-02

IRKA 1.6791e-04 5.4102e-02 5.6114e-04

H∞ 3.9867e-04 8.2374e+04 1.0453e+13
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Fig. 8 Time simulation results for the damped mass-spring system

interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, for which the matrix
functions C(s), K(s)−1, N (s), B(s) are defined and K̂(s) is full-rank, the following
statements hold:

(a) If V is constructed as

V1 = K(σ1)
−1B(σ1),

Vj = K(σj )
−1N (σj−1)(Im ⊗ Vj−1), 2 ≤ j ≤ k,

span(V ) ⊇ span ([V1, . . . , Vk]) ,

then the following interpolation conditions hold true:

G1(σ1) = Ĝ1(σ1),

G2(σ1, σ2) = Ĝ2(σ1, σ2),

...

Gk(σ1, . . . , σk) = Ĝk(σ1, . . . , σk).

(b) If W is constructed as

W1 = K(ςθ )
−HC(ςθ )

H,

Wi = K(ςθ−i+1)
−HÑ (ςk−i+1)

H(Im ⊗ Wi−1), 2 ≤ i ≤ θ,

span(W) ⊇ span ([W1, . . . , Wθ ]) ,

then the following interpolation conditions hold true:

G1(ςθ ) = Ĝ1(ςθ ),

G2(ςθ−1, σθ ) = Ĝ2(ςθ−1, σθ ),

...

Gθ(ς1, . . . , ςθ ) = Ĝθ (ς1, . . . , ςθ ).
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(c) Let V be constructed as in part (a) and W as in (b), then, additionally to the
results in (a) and (b), the interpolation conditions

Gq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ ) = Ĝq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ ),

hold for 1 ≤ q ≤ k and 1 ≤ η ≤ θ .

Proof Starting with part (a), we remember that the transfer functions can be rewritten
by multiplying out the Kronecker products as

Gk(σ1, . . . , σk) = [C(σk)K(σk)
−1N1(σk−1) · · ·N1(σ1)K(σ1)

−1B(σ1)
−1,

C(σk)K(σk)
−1N1(σk−1) · · ·N2(σ1)K(σ1)

−1B(σ1)
−1,

· · ·
C(σk)K(σk)

−1Nm(σk−1) · · ·Nm(σ1)K(σ1)
−1B(σ1)

−1].
From the construction of V , it follows that applying Theorem 1 for the trans-
fer functions in each single entry gives the result. Part (b) directly follows from
part (a) by replacing the matrix functions by their Hermitian conjugate versions
except for N (s) = [

N1 . . . Nm

]
, where the single entries have to be trans-

posed conjugated. Therefore, the differently stacked Ñ (s) is used here to give
Ñ (s)H = [

N1(s)
H . . . Nm(s)H

]
. Finally, part (c) follows directly from part (a), (b)

and Theorem 3 for the single transfer function entries.

For Hermite interpolation as in Theorems 4, 5, and 7, a similar extension to the
MIMO case follows.

Theorem 9 (Hermite matrix interpolation) Let G be a bilinear system, described
by (9), and Ĝ the reduced-order bilinear system, constructed by (10). Given sets
of interpolation points σ1, . . . , σk ∈ C and ς1, . . . , ςθ ∈ C, for which the matrix
functions C(s), K(s)−1, N (s), B(s) are analytic and K̂(s) is full-rank, the following
statements hold:

(a) If V is constructed as

V1,j1 = ∂sj1 (K−1B)(σ1), j1 = 0, . . . , �1,

V2,j2 = ∂sj2K−1(σ2)∂s�1 (N (Im ⊗ K−1B))(σ1), j2 = 0, . . . , �2,

...

Vk,jk
= ∂sjkK−1(σk)

×
⎛

⎝
k−2∏

j=1

∂
s
�k−j

(
(Imj−1 ⊗ N )(Imj ⊗ K)

)
(σk−j )

⎞

⎠

×∂s�1 ((Imk−2 ⊗ N )(Imk−1 ⊗ K)(Imk−1 ⊗ B))(σ1), jk = 0, . . . , �k,

span(V ) ⊇ span([V1,0, . . . , Vk,�k
]),
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then the following interpolation conditions hold true:

∂
s
j1
1
G1(σ1) = ∂

s
j1
1

Ĝ1(σ1), j1 = 0, . . . , �1,

...

∂
s
�1
1 ···s�k−1

k−1 s
jk
k

Gk(σ1, . . . , σk) = ∂
s
�1
1 ···s�k−1

k−1 s
jk
k

Ĝk(σ1, . . . , σk), jk = 0, . . . , �k .

(b) If W is constructed as

W1,iθ = ∂siθ (K−HCH)(ςθ ), iθ = 0, . . . , νθ ,

W2,iθ−1 = ∂
siθ−1 (K−HÑH)(ςθ−1)

× (
Im ⊗ ∂sνθ (K−HCH)(ςθ )

)
, iθ−1 = 0, . . . , νθ−1,

...

Wθ,i1 = ∂si1 (K−HÑH)(ς1)

×
(

θ−1∏

i=2

∂sνi (Imi−1 ⊗ K−HÑH)(ςi)

)

× (
Imθ−1 ⊗ ∂sνθ (K−HCH)(ςθ )

)
, i1 = 0, . . . , ν1,

span(W) ⊇ span([W1,0, . . . , Wθ,νθ ]),

then the following interpolation conditions hold true:

∂
s
iθ
1

G1(ςθ ) = ∂
s
iθ
1

Ĝ1(ςθ ), iθ = 0, . . . , νθ ,

...

∂
s
i1
1 s

ν2
2 ···sνθ

θ

Gθ(ς1, . . . , ςθ ) = ∂
s
i1
1 s

ν2
2 ···sνθ

θ

Ĝθ (ς1, . . . , ςθ ), i1 = 0, . . . , ν1.

(c) Let V be constructed as in part (a) and W as in part (b), then, additionally to
the results in (a) and (b), the conditions

∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

Gq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ )

= ∂
s
�1
1 ···s�q−1

q−1 s
jq
q s

iθ−η+1
q+1 s

νθ−η+2
q+2 ···sνθ

q+η

Ĝq+η(σ1, . . . , σq, ςθ−η+1, . . . , ςθ ),

hold for jq = 0, . . . , �q ; iθ−η+1 = 0, . . . , νθ−η+1; 1 ≤ q ≤ k and 1 ≤ η ≤ θ .

Proof The results follow directly from Theorems 4, 5, and 7 with the same
argumentation as in Theorem 8.

For completeness, also the implicit interpolation results are stated in the following
corollary without additional proofs.
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Corollary 2 (Two-sided matrix interpolation with identical point sets) Let G be a
bilinear system, described by (9), and Ĝ the reduced-order bilinear system, con-
structed by (10). Given a set of interpolation points σ1, . . . , σk ∈ C, for which the
matrix functions C(s), K(s)−1, N (s), B(s) are analytic and K̂(s) is full-rank, the
following statements hold:

(a) Let V and W be constructed as in Theorem 8 (a) and (b) for the interpolation
points σ1, . . . , σk , then additionally it holds

∇Gk(σ1, . . . , σk) = ∇Ĝk(σ1, . . . , σk).

(b) Let V and W be constructed as in Theorem 9 (a) and (b) for the interpolation
points σ1, . . . , σk and orders of partial derivatives �1, . . . , �k , then additionally
it holds

∇
(

∂
s
�1
1 ···s�k

k

Gk

)
(σ1, . . . , σk) = ∇

(
∂
s
�1
1 ···s�k

k

Ĝk

)
(σ1, . . . , σk).

4.2 Numerical example

We illustrate the matrix interpolation results using a numerical example. The exper-
iments reported here have been executed on the same machine and with the same
MATLAB version as in Section 3.4. The error measures were accordingly adapted to
the MIMO case by

errt(t) := ‖y(t)−ŷ(t)‖2‖y(t)‖2
,

for time domain simulations, and

errf,1(ω1) := ‖G1(ω1i) − Ĝ1(ω1i)‖2

‖G1(ω1i)‖2
and

errf,2(ω1, ω2) := ‖G2(ω1i, ω2i) − Ĝ2(ω1i, ω2i)‖2

‖G2(ω1i, ω2i)‖2
,

for the first and second subsystem transfer functions for the frequency domain error
measures.

We reconsider the damped mass-spring system example from Section 3.4.2 with
the following modifications: The mass, damping, and stiffness matrices from (20)
stay unchanged. The input forces are now applied to the first and last masses, i.e., the
input term becomes Bu = [

e1, −en

]
, and we observe the displacement of the second

and fifth masses, which gives the output matrix Cp = [
e2, e5

]T. Therefore, we have
2 inputs and outputs. We consider the same idea of bilinear springs as before, but
working in different directions, i.e., we have

Np,1 = −S1KS1 and Np,2 = S2KS2,
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Fig. 9 Computed interpolation points for structured interpolation of the first subsystem transfer function
for the MIMO damped mass-spring system (complex conjugates are not shown)

where S1 is chosen, as before, as diagonal matrix with linspace(0.2, 0, n),
and S2 is chosen to be a diagonal matrix with linspace(0, 0.2, n) as entries.
Overall, we have a damped mass-spring system of the form

Mẍ(t) + Dẋ(t) + Kx(t) = Np,1x(t)u1(t) + Np,2x(t)u2(t) + Buu(t),

y(t) = Cpx(t),
(21)

with n = 1000 masses for our experiments.
As in Section 3.4.2, we compare the structure-preserving interpolation method

(StrInt) with two unstructured ones, using the first-order realization of (21)
(FOInt, FOInt2). As before, the interpolation points are chosen as suggested
in Section 3.3, where for the equidistant points for StrInt and FOInt were
±logspace(-2, 2, 3)i and for FOInt2 ±logspace(-2, 2, 6)i. The
interpolation points with nonnegative imaginary parts for the structured interpolation
are plotted in Fig. 9 and closely resemble the points in Fig. 5. Also, we want again to
interpolate the first and second subsystem transfer functions, and restrict ourselves to
a one-sided projection as in part (a) of Theorem 8 by setting W = V , which yields
the reduced orders r = 36 for StrInt and FOInt, and r = 72 for FOInt2.

Table 5 shows the relative approximation errors for the first subsystem transfer
functions. In contrast to the corresponding numerical example in the SISO case, here
FOInt2 with equidistant points has the smallest maximum relative error, directly fol-
lowed by StrInt(IRKA) and StrInt(equi.). Also, it is interesting to observe that again
the unstructured approach of double order performs worse, more specifically two
orders of magnitude worse, for the choice of IRKA interpolation points. We decided
to plot again only the results for the IRKA interpolation points as the first subsystem

Table 5 Maximum relative
approximation errors of the first
subsystem transfer functions
max(errf,1) for the MIMO
damped mass-spring system

StrInt FOInt FOInt2

equi. 5.3753e-07 7.4705e-04 1.0971e-07

IRKA 1.5318e-07 1.8550e+02 2.1566e-05

H∞ 2.2538e-03 4.6784e+02 3.6330e-02
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Fig. 10 Frequency domain results of the first subsystem transfer functions for the MIMO damped mass-
spring system

transfer functions can be seen in Fig. 10. The results for the second subsystem trans-
fer functions are given in Table 6. Here, StrInt(IRKA) is now the best with a similar
maximum relative approximation error as for the first subsystem transfer function.
Also, for the choice of equidistant interpolation points, the maximum relative approx-
imation errors of all three approaches increased by around one order of magnitude.
Figure 11 illustrates the relative approximation errors for the IRKA points.

Finally, we compare the computed reduced-order models in a time simulation in
the interval [0, 100] s with the input signal

u(t) =
[

sin(200t) + 200
− cos(200t) − 200

]
.

The maximum relative approximation errors can be found in Table 7. Note that the
reduced-order models with positive (large) exponents in the approximation errors, in
fact, correspond to the unstable dynamics in the time simulation for the given input
signal. Here, StrInt(IRKA) performs best, where actually all structure-preserving
methods are compatible. Of the unstructured reduced-order models, only FOInt2
with either equidistant or IRKA points have a stable simulation behavior. Those two
reduced-order models are one order of magnitude worse in the approximation error
than StrInt(IRKA), but compatible with the other structure-preserving reduced-order
models. The time simulations with errors for the IRKA-based interpolation points are
displayed in Fig. 12.

Table 6 Maximum relative
approximation errors of the
second subsystem transfer
functions max(errf,2) for the
MIMO damped mass-spring
system

StrInt FOInt FOInt2

equi. 6.7652e-06 4.9870e-03 1.1460e-06

IRKA 1.1663e-07 1.4009e+02 1.6429e-05

H∞ 1.7164e-03 4.2192e+02 1.0338e-02

Page 33 of 38    43Adv Comput Math (2021) 47: 43



Fig. 11 Relative errors of the second subsystem transfer functions for the MIMO damped mass-spring system

Table 7 Maximum relative
approximation errors of the time
simulation max(errt) for the
MIMO damped mass-spring
system

StrInt FOInt FOInt2

equi. 4.3568e-05 3.6023e+04 7.5375e-04

IRKA 2.7527e-06 2.4655e+03 2.5988e-05

H∞ 1.5408e-04 1.4151e+16 1.4218e+09

Fig. 12 Time simulation results for the MIMO damped mass-spring system
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5 Conclusions

We extended the structure-preserving interpolation framework to bilinear control sys-
tems. First, we developed the subspace conditions for structured interpolation for
single-input single-output systems, both for simple and Hermite interpolation. These
results were extended to structured multi-input multi-output bilinear systems as well
in the setting of full matrix interpolation. The effectiveness of the proposed approach
was illustrated for two structured bilinear dynamical systems: a mass-spring-damper
system and a model with internal delay. The theory developed here can be applied to
a much broader class of structures than these two examples.

In our examples, we compared three strategies for choosing interpolation points
inspired by the techniques developed for linear systems. The question for a guar-
anteed high-fidelity or optimal choice of interpolation points in the considered
structured bilinear setting remains open. This issue is not fully resolved even for
structure-preserving interpolation of linear dynamical systems. Another issue to fur-
ther investigate is the rapidly enlarging reduced-order dimension in case of the matrix
interpolation approach for multi-input multi-output systems. While in the linear case,
tangential interpolation can be used to control the growth of the basis, there is no uni-
form treatment of tangential interpolation for bilinear systems yet. This issue will be
studied in a forthcoming work.
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