
https://doi.org/10.1007/s10444-021-09860-z

A space-time certified reduced basis method
for quasilinear parabolic partial differential equations

Michael Hinze1 · Denis Korolev1

Received: 29 April 2020 / Accepted: 19 March 2021 /
© The Author(s) 2021

Abstract
In this paper, we propose a certified reduced basis (RB) method for quasilinear parabolic
problems with strongly monotone spatial differential operator. We provide a residual-
based a posteriori error estimate for a space-time formulation and the corresponding
efficiently computable bound for the certification of the method. We introduce a
Petrov-Galerkin finite element discretization of the continuous space-time problem
and use it as our reference in a posteriori error control. The Petrov-Galerkin dis-
cretization is further approximated by the Crank-Nicolson time-marching problem. It
allows to use a POD-Greedy approach to construct the reduced-basis spaces of small
dimensions and to apply the Empirical Interpolation Method (EIM) to guarantee the
efficient offline-online computational procedure. In our approach, we compute the
reduced basis solution in a time-marching framework while the RB approximation
error in a space-time norm is controlled by our computable bound. Therefore, we
combine a POD-Greedy approximation with a space-time Galerkin method.

Keywords Parametrized parabolic equations · Certified reduced basis · Space-time
Petrov-Galerkin · A posteriori error estimate · Empirical interpolation method

Mathematics Subject Classification (2010) 35K15 · 35K55 · 65M15 · 65M60

1 Introduction

The certified reduced basis method is known as an efficient method for model order
reduction of parametrized partial differential equations (see, e.g. [9, 15], where also
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the terminology used in the present article is well-explained). The efficiency comes
from the use of the Greedy search algorithm in the basis construction for the numeri-
cal approximation of the problem and a posteriori control of the approximation error.
The later serves not only for rigorous certification of the method but also as the selec-
tion criterion in the Greedy selection process. This process provides incrementally
better bases for the approximation and further significant speed-up in multi-query
numerical simulations-relevant, for example, in the design, optimization and control
contexts, through the use of RB surrogate models.

The reduced basis method was successfully applied to linear [7, 19, 20] and
non-linear parabolic problems with polynomial [22, 23] and non-polynomial non-
linearities [5]. In general, there are two approaches for the reduced basis methods
applied to unsteady problems: (1) first discretize, then estimate and reduce, (2) first
estimate, then discretize and reduce. The approach (1) [5, 7, 8] is based on a time-
marching problem in the offline phase and the error bounds or indicators are then
stem from the structure of the discrete problem. The POD-Greedy procedure [8] is
commonly used to construct the reduced-basis spaces and the Empirical Interpola-
tion Method (EIM) [3, 6, 14] is used to treat non-affine and non-linear problems [5].
In particular, the approach (1) is applied in [5] to semilinear parabolic problems with
monotone non-polynomial non-linearities. However, in this paper, we treat quasilin-
ear parabolic problems with the approach (2). The techniques of [5] in our opinion are
not directly applicable to the class of problems we consider. The approach (2) starts
from a weak space-time variational formulation (see, e.g. [19, 20, 22, 23]). The error
bounds and estimates are then derived in the appropriate Bochner spaces with respect
to the natural space-time norms. In this approach, time is treated as a variable and
thus it resembles the reduced-basis setting for elliptic problems [16]. The reduced-
basis space is consequently constructed in the offline phase out of the space-time
snapshots, obtained, for example, with the related Petrov-Galerkin discrete scheme.
However, the appropriate choice of the discrete spaces in the Petrov-Galerkin scheme
results in a time-marching interpretation (see, e.g. [20, 22]) of the discrete problem.
In this way, the time-marching procedure allows to use the standard POD-Greedy
approximation and to treat time as the parameter, which leads to the reduced-basis
time-marching problem, but the error certification is accomplished with the nat-
ural space-time norm error bound. We refer to [4] for the detailed overview and
comparison of these two approaches in the context of linear parabolic equations.

We propose an L2(0, T ; V ) a posteriori error estimate, based on the space-
time variational formulation of quasilinear parabolic PDEs with strongly monotone
differential operators. We introduce a Petrov-Galerkin projection to approximate
the continuous variational problem and provide its reduced-basis counterpart. The
Petrov-Galerkin problem with its solution uδ serves as our reference in a posteri-
ori error control. For computational purposes, we approximate the solution uδ by
the solution of the Crank-Nicolson time-marching scheme and consequently use the
POD-Greedy procedure to construct the reduced-basis spaces of small dimension.
The right-hand side in our error estimate is approximated with a computable bound,
which is used in the computational procedure.

The time-marching Crank-Nicolson approximation of the Petrov-Galerkin prob-
lem also allows to treat the non-linearity with the EIM in order to have offline-online
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decomposition for our problem available. Moreover, the parameter separability in
time, achieved with the EIM, leads to a significant speed-up factor in the computa-
tional procedure. The error of the EIM is then also incorporated in the error estimate.
We note that on the discrete level, the EIM error is approximated with a computable
surrogate and requires one full evaluation of the non-linearity. Hence, the certification
procedure is not fully decoupled from operations on a finite-element mesh, compared
to standard reduced-basis methods.

Our work is motivated by the structure of the magnetoquasistatic approxima-
tion of Maxwell’s equations (the eddy current model) and is an extension of the
reduced-basis methods for quasilinear PDEs with their applications to magnetostat-
ics problems [11]. This equation finds its place in important applications, such as the
computation of magnetic fields in the presence of eddy currents in electrical machines
[17]. The development of fast and accurate simulation methods for such problems is
of great importance in the optimization and design of electrical machines and other
devices [1, 12]. Therefore, there is a demand for reduced order models (see, e.g. [13])
of this quasilinear PDE, which can be further used as surrogates in the optimization
procedure. Our approach is applicable to the 2D magnetoquasistatic problem as well,
and we present according numerical results.

2 Space-time truth solution

In this section, we consider a space-time variational formulation of quasilinear
parabolic partial differential equations, which we denote as the exact problem. The
corresponding discrete Petrov-Galerkin approximation is called the truth problem, as
it is common in the RB setting. We assume that the solution to the exact problem can
be approximated arbitrarily well by the discrete solution of the truth problem. We
then neglect the corresponding approximation error.

2.1 Space-time formulation

Let Ω ⊂ R
d be the spatial domain and μ ∈ D ⊂ R

p, where D is a com-
pact parameter set. Let V ⊂ H 1(Ω) be a separable Hilbert space and H :=
L2(Ω). We denote by 〈·, ·〉V , 〈·, ·〉H and ‖·‖V , ‖·‖H corresponding inner prod-
ucts and induced norms, respectively. To V and H , we associate the Gelfand triple
V ↪→ H ↪→ V ′ with duality pairing 〈·, ·〉V ′V . The norm of l ∈ V ′ is defined
by ‖l‖V ′ := sup

ψ∈V,‖ψ‖V 	=0
〈l, ψ〉V ′V /‖ψ‖V . We consider a parametrized quasilinear,

bounded differential operator A : V × D → V ′ with induced quasilinear form

〈A(u, μ), v〉V ′V := a[u](u, v; μ) =
∫

Ω

ν(u(x); μ)∇u · ∇v dx, (1)

where the non-linearity satisfies ν(·; μ) ∈ C1(R). We assume that the forms (1) are
strongly monotone on V with monotonicity constants ma(μ) > 0, i.e.

a[v](v, v − w; μ) − a[w](w, v − w; μ) ≥ ma(μ)‖v − w‖2
V ∀ v, w ∈ V, (2)
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and Lipschitz continuous on V with Lipschitz constants La(μ) > 0, i.e.

|a[u](u, v; μ) − a[w](w, v; μ)| ≤ La(μ)‖u − w‖V ‖v‖V ∀ u, w, v ∈ V . (3)

In addition, we assume that these conditions hold uniformly:

ma := inf
μ∈D

ma(μ) > 0, La := sup
μ∈D

La(μ) < ∞. (4)

For given (g(·; μ), uo) ∈ L2(I ; V ′) × H , we consider the quasilinear parabolic
initial value problem of finding u(t) := u(t; μ) ∈ V, t ∈ I a.e. on the time interval
I = (0, T ], such that

u̇(t) + A(u(t), μ) = g(t) in V ′, u(0) = uo in H, (5)

where u̇ := ∂u
∂t

is understood in the generalized sense [23]. We now define a space-
time variational formulation of (5). We use the trial space

X := W(0, T ) = L2(I ; V ) ∩ H 1(I ; V ′) = {v ∈ L2(I ; V ) : v, v̇ ∈ L2(I ; V ′)}
with the norm ‖w‖2

X := ‖ẇ‖2
L2(I ;V ′) + ‖w‖2

L2(I ;V )
, and the test space Y :=

L2(I ; V ) × H with the norm ‖v‖2
Y := ‖v(1)‖2

L2(I ;V )
+ ‖v(2)‖2

H for v := (v(1), v(2)).
The weak formulation of problem (5) reads: find u := u(μ) ∈ X such that

B[u](u, v; μ) = F(v; μ), ∀ v ∈ Y, (6)

where

B[u](u, v; μ) :=
∫

I

〈u̇, v(1)〉V ′V + a[u](u, v(1); μ)dt + 〈u(0), v(2)〉H , and (7)

F(v; μ) :=
∫

I

〈g(μ), v(1)〉V ′V dt + 〈uo, v
(2)〉H . (8)

Since X ↪→ C(I ; H), the initial value u(0) is well-defined in H [24]. We note that
(2) implies coercivity of the quasilinear form a[·](·, ·; μ) and (3) implies hemicon-
tinuity, i.e. the continuity of the mapping s → 〈A(u + sw, μ), v〉V ′V for s ∈ [0, 1]
and all u, w, v ∈ V . All together, the well-posedness of problem (6) follows, so that
(6) admits a unique solution u ∈ X , see e.g. [25, Theorem 30.A].

2.2 Petrov-Galerkin truth approximation

From here onwards, we omit the dependence on μ wherever appropriate. For the
temporal discretization of (6), we use the time grid 0 = t0 < t1 < ... < tK = T

and set I k = (tk−1, tk] for k = 1, ..., K . We set �tk = tk − tk−1 and define �t :=
max1≤k≤K �tk . For the spatial discretization, we set Vh = span{φ1, ..., φNh

} ⊂ V ,
where dim Vh = Nh and h denotes the spatial discretization parameter. The functions
φi will be defined in the numerical examples. With δ := (�t, h), we introduce the
discrete trial space

Xδ := {uδ ∈ C0(I ; V ), uδ|I k ∈ P1(I
k, Vh), k = 1, ..., K} ⊂ X
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and the discrete test space

Yδ := {vδ ∈ L2(I ; V ), vδ|I k ∈ P0(I
k, Vh), k = 1, ..., K} × Vh ⊂ Y .

With these choices of spaces, the truth approximation problem reads: find uδ :=
uδ(μ) ∈ Xδ , such that u0

δ := uδ(0) = P h
H uo and

B[uδ](uδ, vδ; μ) = F(vδ; μ) ∀vδ ∈ Yδ, (9)

where P h
H : H → Vh denotes the H -orthogonal projection onto Vh. It follows as for

(6) that problem (9) admits a unique solution uδ ∈ Xδ .
The Petrov-Galerkin space-time discrete formulation (9) is approximated by the

Crank-Nicolson time-stepping scheme. Indeed, since the test space Yδ consists of
piecewise constant polynomials in time, the problem can be solved via the following
procedure for k = 1, ..., K:∫

I k

〈u̇δ, vh〉V ′V + a[uδ](uδ, vh; μ)dt =
∫

I k

〈g(μ), vh〉V ′V dt ∀vh ∈ Vh. (10)

Since the trial space Xδ consists of piecewise linear and continuous polynomials in
time with the values ûk

δ := uδ(t
k) and ûk−1

δ := uδ(t
k−1), we can represent uδ on I k

as the linear function

uδ(t) = 1

� tk
{(tk − t)ûk−1

δ + (t − tk−1)ûk
δ}, t ∈ I k . (11)

We use the representation (11) in (10), test (10) against the basis functions φi ∈
Vh (i = 1, ...,Nh) and use the trapezoidal quadrature rule for the approximation
of the appearing integrals. In this way, we obtain the Crank-Nicolson time-stepping
scheme, which for k = 1, ..., K reads

〈uk
δ − uk−1

δ , φi〉H + � tk

2
{a[uk

δ ](uk
δ , φi; μ) + a[uk−1

δ ](uk−1
δ , φi; μ)} = (12)

= � tk

2
{〈g(tk; μ), φi〉V ′V + 〈g(tk−1; μ), φi〉V ′V }, 1 ≤ i ≤ Nh,

where we consider uk
δ as our approximation of ûk

δ . Here, we recall that the initial
condition u0

δ is obtained as an H -orthogonal projection of uo onto Vh. Given the

ansatz uk
δ = ∑Nh

i=1 uk
i φi and defining uk

δ := {uk
i }Nh

i=1 ∈ R
Nh , the resulting non-linear

algebraic equations are then solved by applying Newton’s method for finding the root
uk

δ of

Gh(uk
δ; μ) : = 1

�tk
Mh(uk

δ − uk−1
δ ) − 1

2 [gk
h(μ) + gk−1

h (μ)] (13)

+ 1
2 [Ah(uk

δ; μ)uk
δ + Ah(u

k−1
δ ; μ)uk−1

δ ],
where Mh := {〈φi, φj 〉H }Nh

i,j=1, Ah(uk
δ; μ) := {a[uk

δ ](φi, φj ; μ)}Nh

i,j=1 ∈ R
Nh×Nh

and gk
h(μ) := {〈g(tk; μ), φi〉V ′V }Nh

i=1 ∈ R
Nh . The initial condition for (13) is given

by u0
δ := {〈uo, φi〉H }Nh

i=1 ∈ R
Nh . The strong monotonicity of the quasilinear form (2)

guarantees that (13) admits a unique root uk
δ for every parameter μ ∈ D.
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Newton’s iteration for finding a root of (13) reads: starting with uk,(0)
δ , for z =

0, 1, ... solve the linear system

Jh(u
k,(z)
δ ; μ)δuk,(z)

δ = −Gh(u
k,(z)
δ ; μ) (14)

to obtain δuk,(z)
δ , and then update the solution uk,(z+1)

δ := uk,(z)
δ +δuk,(z)

δ . The system
Jacobian matrix is given by

Jh(uk
δ; μ) = 1

� tk
Mh + 1

2
A′

h(u
k
δ; μ), (15)

where A′
h(u

k
δ; μ) := {da[uk

δ ](φi, φj ; μ)}Nh

i,j=1 ∈ R
Nh×Nh . Here, we assume the exis-

tence of the Fréchet derivative A′(u; μ) : V × D → V ′ of the non-linear operator
A(u; μ) for every parameter μ ∈ D, which induces the corresponding bilinear form
〈A′(u; μ)v, w〉V ′V = da[u](v, w; μ). We will specify it later for our examples. We
note that A′

h(u
k
δ; μ) is positive definite, since da[u](·, ·; μ) is coercive due to the

strong monotonicity of A; therefore, the system (14) admits a unique solution.

3 The reduced basis method

In this section, we introduce the reduced basis model and its numerical realization.
Then, we introduce our a posteriori error bound and discuss its efficient evaluation.

3.1 Empirical interpolation of the non-linearity

We use the Empirical Interpolation Method (EIM) [3] to ensure the availability of
an affine decomposition for the quasilinear form a[uk

δ ](·, ·; μ) for every parameter
μ ∈ D. We then need to find a parameter-separable (affine) counterpart νM(·; μ)

of the non-linear non-affine function ν(·; μ). For EIM non-linearity approxima-
tion, we treat time as an additional parameter in the problem; thus, we set I :=
{1, ..., K} as our discrete time set. Given an EIM tolerance εEIM > 0 and a fine
sample DEIM

train ⊂ D of size nEIM
train, we construct with Algorithm 1 the nested sam-

ple sets Sν
M ⊂ DEIM

train and I
ν
M ⊂ I, where Sν

M := {μν
1 ∈ DEIM

train, ..., μν
M ∈

DEIM
train} and I

ν
M := {kM

1 ∈ I, ..., kM
M ∈ I}, and associated approximation spaces

Wν
M := span{ν(u

kM
m

δ (·; μν
m);μν

m), 1 ≤ m ≤ M} = span{q1, ..., qM}. Algorithm
1 also provides the nested sets of interpolation points TM = {xM

1 , ..., xM
M }, 1 ≤

M ≤ Mmax. We build an affine approximation νM(uk
δ(x); μ) of ν(uk

δ(x); μ) for our
time-marching scheme according to

νM(uk
δ(x); μ) :=

M∑
m=1

ϕk
m(μ)qm(x) (16)

=
M∑

m=1

(B−1
M νk

μ)mqm(x̂) = ν(uk
δ(x); μ) + εk

M(x; μ),
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where εk
M(·; μ) is the EIM approximation error: it holds ‖εk

M(·; μ)‖L∞(Ω) < εEIM

for all k ∈ I, μ ∈ DEIM
train. In (16), we also have νk

μ := {ν(uk
δ(x

M
m );μ)}Mm=1 ∈ R

M

and BM ∈ R
M×M is the lower triangular interpolation matrix (BM)ij = qj (xi) with

(BM)ii = 1 (i = 1, ..., M) by construction.

Algorithm 1 : EIM algorithm.

Input: Tolerance εEIM , max. number of iterations Mmax, parameter set DEIM
train.

Output: Nested approximation spaces {Wν
m}Mm=1, nested interpolation points

{Tm}Mm=1.

1: (μν
1, k

M
1 ) := arg max

(μ,k)∈DEIM
train×I

‖ν(uk
δ(·);μ)‖L∞(Ω)

2: Sν
1 × I

ν
1 := {μν

1} × {kM
1 }

3: r1(x) := ν(u
kM

1
δ (x; μν

1);μν
1)

4: xM
1 := arg max

x∈Ω

|r1(x)|, q1 := r1/r1(x
M
1 )

5: T1 := {xM
1 }, Q1 := {q1}, Wν

1 := span(Q1)

6: while 2 ≤ m ≤ Mmax and δmax
m > εEIM do

7: (μν
m, kM

m ) := arg max
(μ,k)∈DEIM

train×I

‖ν(uk
δ(·);μ) − νm(uk

δ(·);μ)‖L∞(Ω)

8: δmax
m := max

(μ,k)∈DEIM
train×I

‖ν(uk
δ(·);μ) − νm(uk

δ(·);μ)‖L∞(Ω)

9: Sν
m := Sν

m−1 ∪ {μν
m}, I

ν
m := I

ν
m−1 ∪ {kM

m }
10: rm(x) := ν(u

kM
m

δ (x; μν
m);μν

m) − νm(u
kM
m

δ (x; μν
m);μν

m)

11: xM
m := arg max

x∈Ω

|rm(x)|, qm := rm/rm(xM
m )

12: Tm := Tm−1 ∪ {xM
m }, Qm := Qm−1 ∪ {qm}, Wν

m := span(Qm)

13: m ← m + 1
14: end while

We then have the EIM approximation ã[·](·, ·; μ) of the quasilinear form
a[·](·, ·; μ), which admits the affine decomposition

ã[uk
δ ](uk

δ , v; μ) =
M∑

m=1

ϕk
m(μ)ãm(uk

δ , v), ãm(uk
δ , v) =

∫
Ω

qm∇uk
δ · ∇v dx. (17)

For mathematical convenience, we assume that the EIM approximation ã[·](·, ·; μ)

is sufficiently accurate in the sense that the form ã[·](·, ·; μ) is strongly monotone on
Vh with monotonicity constant m̃a(μ) := ma(μ) ± εa > 0, i.e. for all vh, wh ∈ Vh it
holds

ã[vh](vh, vh − wh; μ) − ã[wh](wh, vh − wh; μ) ≥ m̃a(μ)‖vh − wh‖2
V , (18)
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and Lipschitz continuous on Vh with Lipschitz constants L̃a(μ) := La(μ) ± εa > 0,
i.e. for all uh, wh, vh ∈ Vh it holds

|ã[uh](uh, vh; μ) − ã[wh](wh, vh; μ)| ≤ L̃a(μ)‖uh − wh‖V ‖vh‖V , (19)

where εa ∈ R+ is small enough and is related to the EIM approximation error.
However, in the EIM practice, we can guarantee that conditions (18) and (19) hold
uniformly together with εa < εEIM only on DEIM

train. It is difficult to check these prop-
erties a priori for μ ∈ D \DEIM

train, so that arguing the well-posedness of the upcoming
discrete systems (23) and (24) in general is not possible.

We also assume the affine decomposition

〈g(tk; μ), v〉V ′V =
Qg∑
q=1

θk
g,q(μ)〈gq, v〉V ′V (20)

for the right-hand side, where θk
g,q : D → R are parameter-dependent functions and

parameter-independent forms gq : V → R, k = 1, ..., K , q = 1, ..., Qg . If (20) is
not available, the EIM procedure can be similarly applied.

3.2 Reduced basis approximation with the POD-Greedy method

The idea of the reduced-basis approximation consists in replacing the “truth” (high-
dimensional) space Vh in the definition of Xδ and Yδ by a low-dimensional subspace
VN ⊂ Vh. With VN available, we introduce the corresponding reduced trial space

X�t,N := {uN ∈ C0(I ; V ), uN |I k ∈ P1(I
k, VN), k = 1, ..., K}

and the reduced test space

Y�t,N := {vN ∈ L2(I ; V ), vN |I k ∈ P0(I
k, VN), k = 1, ..., K} × VN .

We construct VN := span{ξ1, ..., ξN } ⊂ Vh by the POD-Greedy procedure in
Algorithm 2, compare, e.g. [8]. We denote by Dtrain ⊂ D a fine sample of size
ntrain. In our setting, the POD-Greedy algorithm constructs iteratively nested spaces
Vn, 1 ≤ n ≤ N using an a posteriori error estimator �(Y ; μ) (see the next section
for details on a posteriori error analysis), which predicts the expected approximation
error for a given parameter μ ∈ Dtrain in the space Y := Y�t,n. We want the expected
approximation error to be less than the prescribed tolerance εRB > 0. We initiate the
algorithm with the choice of the initial basis vector ξ1 := u0

δ/‖u0
δ‖V ; this choice is

motivated by the assumption in Proposition 1. The snapshots uk
δ(μ) for the procedure

are provided by the Crank-Nicolson scheme (12). Next, we proceed as stated in the
following Algorithm 2.
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Algorithm 2 : POD-Greedy algorithm.

Input: Tolerance εRB , max. number of iterations Nmax, V1 = span{ξ1}, parame-
ter set Dtrain.

Output: RB spatial spaces {Vn}Nn=1, RB trial spaces {X�t,n}Nn=1, RB test spaces
{Y�t,n}Nn=1.

1: while 2 ≤ n ≤ Nmax and εn := max
μ∈Dtrain

� (Y�t,n, μ) > εRB do

2: [εn, μn] ← arg max
μ∈Dtrain

� (Y�t,n−1, μ)

3: ek
n := uk

δ(μn) − PV uk
δ(μn), k = 1, ..., K

4: ξn := POD1({ek
n}Kk=1)

5: Vn := Vn−1
⊕

span{ξn}
6: X�t,n ← X�t,n−1, Y�t,n ← Y�t,n−1
7: n ← n + 1
8: end while

In Algorithm 2, PV : Vh → Vn denotes the V -orthogonal projection, and the
operation POD1({ek

n}Kk=1) denotes the extraction of the dominant mode of the Proper
Orthogonal Decomposition (see, e.g. [21]). We also note that more modes could be
extracted in every step of the algorithm: it reduces the offline computational time, but
the produced reduced-basis space will be of larger dimension in general, compared
to the approach, which we use here.

The reduced-basis approximation of problem (9) reads: find uN := uN(μ) ∈
X�t,N , such that u0

N := uN(0) = P N
H uo and

B̃[uN ](uN, vN ; μ) = F̃ (vN ; μ) ∀vN ∈ Y�t,N , (21)

where

B̃[uN ](uN, vN ; μ) = ∫
I
〈u̇N , v

(1)
N 〉V ′V + ã[uN ](uN, v

(1)
N ; μ)dt + 〈P N

H uo, v
(2)
N 〉H ,

F̃ (vN ; μ) : = ∫
I
〈g(μ), v

(1)
N 〉V ′V dt + 〈u0

δ , v
(2)
N 〉H ,

and P N
H : Vh → VN denotes the H -orthogonal projection onto VN . It follows as for

Eq. 6 from our assumptions (18) and (19) that problem (21) admits a unique solution
uN(μ) ∈ X�t,N for all μ ∈ D.

Problem (21) is approximated by the reduced-basis Crank-Nicolson time-
marching scheme with the EIM approximation of the non-linearity, i.e.

〈uk
N − uk−1

N , v
(1)
N 〉H + � tk

2
{ã[uk

N ](uk
N , v

(1)
N ; μ) + ã[uk−1

N ](uk−1
N , v

(1)
N ; μ)}

= � tk

2
{〈g(tk; μ), v

(1)
N 〉V ′V + 〈g(tk−1; μ), v

(1)
N 〉V ′V }, (22)

where the initial condition u0
N is obtained as an H -projection of u0

δ onto VN . The
resulting non-linear algebraic equations are then solved with the RB counterpart of
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Newton’s method by finding the root of

GN,M(uk
N ; μ) = 1

� tk
MN(uk

N − uk−1
N ) − 1

2
[gk

N (μ) + gk−1
N (μ)]

+ 1

2
[AN,M(uk

N ; μ)uk
N + AN,M(uk−1

N ; μ)uk−1
N ], (23)

where MN := {〈ξi, ξj 〉H }Ni,j=1, AN,M(uk
N ; μ) := {ã[uk

N ](ξi, ξj ; μ)}Ni,j=1 ∈ R
N×N

and gk
N (μ) := {〈g(tk; μ), ξi〉V ′V }Ni=1 ∈ R

N . The initial condition is given by
u0

N := {〈u0
δ , ξi〉H }Ni=1 ∈ R

N . The strong monotonicity (18) of the quasilinear form
(17) guarantees that (23) admits a unique root uk

N for every parameter μ ∈ D. We
remind that the strong monotonicity property (18) is based on the assumption about
the accuracy of EIM.

The Newton’s iteration for finding a root of (23) reads: starting with uk,(0)
N , for

z = 0, 1, ... solve the linear system

JN,M(uk,(z)
N ; μ)δuk,(z)

N = −GN,M(uk,(z)
N ; μ) (24)

to obtain δuk,(z)
N , and then update the solution uk,(z+1)

N := uk,(z)
N +δuk,(z)

N . The system
Jacobian matrix is given by

JN,M(uk
N ; μ) = 1

� tk
MN + 1

2
A′

N,M(uk
N ; μ). (25)

If the mapping μ �→ A′
N,M(·; μ) is bounded in μ ∈ D, then for � tk ≤ C(D), where

C(D) > 0 is some constant, the Jacobian matrix (25) is invertible.
We will comment on the computation of the reduced parametrized counterpart

A′
N,M(uk

N ; μ) := {dã[uk
N ](ξi, ξj ; μ)}Ni,j=1 ∈ R

N×N of A′
h(u

k
δ; μ) in (25). We have

ã[uk
N ](uN, ξi; μ) =

N∑
j=1

M∑
m=1

ϕk
m(μ)ãm(ξj , ξi)u

k
N,j , 1 ≤ i ≤ N . (26)

With the EIM approximation of the non-linearity, it follows that

M∑
s=1

(BM)m,sϕ
k
m,s(μ) = ν(uk

N(xM
m ; μ);μ), 1 ≤ m ≤ M (27)

= ν(

N∑
n=1

uk
N,nξn(x

M
m );μ), 1 ≤ m ≤ M .

Plugging (27) into (26) results in

ã[uk
N ](uN, ξi; μ) =

N∑
j=1

M∑
m=1

DN,M
i,m (uk

N ; μ)ν(

N∑
n=1

uk
N,nξn(x

M
m );μ)uk

N,j (28)
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with DN,M(uk
N ; μ) = AN,M(uk

N ; μ)(BM)−1 ∈ R
N×M . Taking the derivative of (28)

with respect to the components uk
N,j (μ), 1 ≤ j ≤ N , we derive the formula for

A′
N,M(uk

N ; μ) = AN,M(uk
N ; μ) + EN,M(uk

N ; μ), where

(EN,M(uk
N ; μ))i,j =

N∑
s=1

uk
N,s

M∑
m=1

DN,M
i,m (uk

N ; μ)
∂

∂uk
N,j

ν(uk
N(xM

m );μ) (29)

We will give the exact form of ∂

∂uk
N,j

ν(uk
N(xM

m );μ) in the upcoming examples. We

note that a more complicated formula for (29) can be obtained in the presence of
geometry parametrisation [11].

The proposed reduced numerical scheme contains parameter-separable matrices
and thus allows offline-online decomposition. The offline phase (model construc-
tion) depends on expensive high-dimensional finite element simulations and thus on
N , but should be performed only once. However, the assembling of all the high-
dimensional parameter-dependent quantities is computationally simplified due to
the affine dependence on the parameters (17),(20). In the online phase (RB model
simulation), the computational complexity scales polynomially in N and M , inde-
pendently of N and thus is inexpensive. The operation count associated with each
Newton update of the residual GN,M(uk,(z)

N ) in the online phase is O(N2Qa + N2 +
M2 + NQfo) and the Jacobian JN,M(uk,(z)

N,M) is assembled at cost O(MN3) with the

dominant cost of assembling EN,M(uk
N ; μ), and then inverted at cost O(N3).

3.3 Reduced basis certification

An important ingredient of the reduced basis methodology is the verification of the
error (certification of the reduced basis method). In the present work, we provide a
residual-based a posteriori error estimate. We denote by R(·; μ) ∈ Y ′

δ the residual of
the problem, defined naturally as:

R(vδ; μ) := F(vδ; μ) − B̃[uN ](uN, vδ; μ)=
∫

I

〈r(t; μ), vδ〉V ′V dt ∀vδ ∈ Yδ . (30)

We have the following

Proposition 1 (A posteriori Error Estimate) Let ma(μ) > 0 be a monotonicity con-
stant from (2) and assume that u0

δ ∈ VN . Then, the error e(μ) = uδ(μ) − uN(μ) of
the reduced basis approximation is bounded by

‖e(μ)‖Y ≤ 1

ma(μ)
(‖R(·; μ)‖Y ′

δ
+ δM(μ)‖uN(μ)‖L2(I ;V )) =: �c

N,M(μ), (31)

where

δM(μ) = sup
t∈I

sup
x∈Ω

|νM(uN(x, t); μ) − ν(uN(x, t); μ)| (32)

denotes the approximation error of the non-linearity.
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Proof Since in the case e = 0 there is nothing to show, we assume that e 	= 0. We
have u0

δ ∈ VN and P N
H

∣∣
VN

= Id; therefore, u0
N := P N

H u0
δ = u0

δ . It implies that
‖e(0)‖H = 0, ‖e‖Y = ‖e‖L2(I ;V ) and ‖R(·; μ)‖Y ′

δ
= ‖R(·; μ)‖L2(I ;V ′

h). First, we
obtain the following estimate by applying Cauchy-Schwartz inequality:

ã[uN ](uN, e; μ) − a[uN ](uN, e; μ) =
∫

Ω

[νM(uN ; μ)−ν(uN ; μ)]∇uN ·∇e dx(33)

≤ sup
x∈Ω

|νM(uN(x, ·); μ) − ν(uN(x, ·); μ)| ‖uN‖V ‖e‖V .

Integrating (33) in t and applying the Cauchy-Schwartz inequality to the correspond-
ing integral, we get:∫

I

ã[uN ](uN, e; μ) − a[uN ](uN, e; μ)dt ≤ δM(μ)‖uN‖L2(I ;V )‖e‖Y .

We then use the identity∫
I

〈ė, e〉V ′V dt = 1

2
‖e(T )‖2

H − 1

2
‖e(0)‖2

H (34)

together with the strong monotonicity condition (2) and the estimate above to derive
the bound:

ma(μ)‖e‖2
Y ≤

∫
I

a[uδ](uδ, e; μ) − a[uN ](uN, e; μ)dt + 1

2
‖e(T )‖2

H

=
∫

I

〈ė, e〉V ′V dt +
∫

I

a[uδ](uδ, e; μ) − a[uN ](uN, e; μ)dt + 1

2
‖e(0)‖2

H

=
∫

I

〈ė, e〉V ′V dt +
∫

I

a[uδ](uδ, e; μ) − ã[uN ](uN, e; μ)dt + ‖e(0)‖2
H

+
∫

I

ã[uN ](uN, e; μ) − a[uN ](uN, e; μ)dt

≤ ‖R(·; μ)‖Y ′
δ
‖e‖Y + δM(μ)‖uN‖L2(I ;V )‖e‖Y ,

where we added and subtracted ã[uN ](uN, e; μ) to get the definition of the residual
(30). Dividing both sides by ‖e‖Y yields the result.

We note that the assumption u0
δ ∈ VN implies that ‖e(0)‖H = 0. We can guarantee

this by choosing ξ1 := u0
δ/‖u0

δ‖V as the initial basis for VN in the POD-Greedy
procedure.

The computation of ‖R(·; μ)‖Y ′
δ

requires the knowledge of its Riesz representer
vδ,R(μ) ∈ Yδ . Thanks to the Riesz representation theorem, it can be obtained from
the equation

(vδ,R(μ), vδ)Y = R(vδ; μ) ∀vδ ∈ Yδ . (35)

Since the test space Yδ consists of piecewise constant polynomials in time, the
problem (35) can be solved via the time-marching procedure for k = 1, ..., K as
follows: ∫

I k

〈vδ,R(t; μ), vh〉V dt =
∫

I k

〈r(t; μ), vh〉V ′V dt ∀vh ∈ Vh. (36)
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We note that v̂k
R(μ) := vδ,R(μ)

∣∣
I k is constant in time; hence, the integration on the

left-hand side of (36) is exact. For the right-hand side of (36), we represent uN(μ) ∈
X�t,N as the linear function (11) on I k and use it as an input for the residual (30).
We then apply the trapezoidal quadrature rule for the approximate evaluation of the
integral. The quadrature rule is chosen such that the quadrature error is of the size of
the error of the truth Crank-Nicolson solution. We thus need to solve the following
problems:

〈vk
R(μ), vh〉V = Rk(vh; μ) ∀vh ∈ Vh (k = 1, ..., K), (37)

where vk
R(μ) is our approximation of v̂k

R(μ) and the right-hand side is given by

Rk(vh; μ) = 1

2
[〈g(tk; μ) + g(tk−1; μ), vh〉V ′V − ã[uk

N ](uk
N , vh; μ)

−ã[uk−1
N ](uk−1

N , vh; μ)] − 1

�tk
〈uk

N − uk−1
N , vh〉H . (38)

Therefore, the computation of the Riesz representer leads to a sequence of K

uncoupled spatial problems in Vh. The parameter separability structure of the residual

Rk(vh; μ) =
QR∑
q=1

θk
R,q(μ)Rq(vh)

is transferred by the linearity of the Riesz isomorphism to the parameter separability
of its Riesz representer vk

R(μ) together with the parameter dependent functions θk
R,q :

D → R. Therefore, for 1 ≤ q ≤ QR , we have

vk
R(μ) =

QR∑
q=1

θk
R,q(μ)vR,q with (vR,q, vh)V = Rq(vh) ∀vh ∈ Vh. (39)

Finally, we state the formulas for the residual norm as well as the spatio-temporal
norm of uN . Since vδ,R(μ)

∣∣
I k is constant in time, the integration on I k is exact and

we can compute the spatio-temporal norm of vδ,R(μ) as follows:

‖vδ,R(μ)‖2
Y =

K∑
k=1

�tk‖v̂k
R(μ)‖2

V ≈
K∑

k=1

�tkΘk
R(μ)T GRΘk

R(μ),

where GR := {〈vR,q, vR,q ′ 〉}QR

q,q ′=1 ∈ R
QR×QR and Θk

R(μ) := {θk
R,q(μ)}QR

q=1 ∈ R
QR .

The isometry of the Riesz isomorphism implies that ‖R(·; μ)‖Y ′
δ

= ‖vδ,R(μ)‖Y .

Since uN(μ)|I k is a linear function in time, the trapezoidal quadrature rule on I k

is exact. We then can compute the spatio-temporal norm ‖uN‖Y of uN ∈ X�t,N

according to

‖uN‖2
Y ≈

K∑
k=1

� tk

2
(‖uk

N‖2
V + ‖uk−1

N ‖2
V ) + ‖u0

N‖2
H (40)

=
K∑

k=1

� tk

2
[uk T

N KN uk
N + uk−1 T

N KN uk−1
N ] + u0 T

N MNu0
N,
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where KN := {〈ξi, ξj 〉V }Ni,j=1 ∈ R
N×N . Since in our case the reduced basis is

orthonormal in V , KN is the identity matrix. Despite of our quadrature rule exact-
ness, the right-hand side of (40) serves as our approximation of ‖uN‖2

Y , since we
use the solution of problem (22) in computing the norm of the reduced-basis prob-
lem (21). The operation count in the online phase, associated with computation of the
residual norm and the spatio-temporal norm on Y is correspondingly O(Q2

RK) and
O(NK + N2).

We note that our a posteriori error estimate takes into account the error of the
non-linearity approximation (32). In our discrete time setting, it is approximated by
a computable quantity

δM(μ) ≈ max
k∈K

max
x∈Ω

|νM(uk
N(x); μ) − ν(uk

N(x); μ)|. (41)

Since the EIM approximation νM(·; μ) is constructed out of truth solutions, we
assume that N is chosen in such a way that νM(uk

N(x); μ) ≈ νM(uk
δ(x); μ). We note

that (41) requires the knowledge of ν(uk
N(μ); x; μ) and thus one full evaluation of

the non-linearity for all K time steps on our finite-element mesh. Therefore, the cer-
tification procedure is not fully mesh-independent in the online phase and requires
our mesh storage.

We note that we performed the series of numerical approximations in order to
provide a computable bound for the right-hand side of (31). In particular, the residual
(30) coincides with the residual (38) for the Crank-Nicolson time-marching scheme
(12) after application of the trapezoidal quadrature rule. However, in order to invoke
the definition of the residual (30), uδ must be the solution to our reference problem
(9). We also replace δM(μ) by its computable surrogate (41). This finally gives

�N,M (μ) ≈ �c
N,M(μ), (42)

where �N,M(μ) is the computable. However, the bound in general is not rigorous,
since we can not guarantee that �c

N,M(μ) ≤ �N,M(μ) holds.

4 Examples and numerical results

In this section, we consider examples of quasilinear parabolic PDEs with strongly
monotone differential operators and apply the proposed reduced-basis techniques to
these problems.

4.1 1D magnetoquasistatic problem: analysis

For the first numerical example, we choose a 1D magnetoquasistatic approxima-
tion of Maxwell’s equations (see, e.g. [2, 17]). Let d = 1, Ω = (0, 1) and V :=
H 1

0 (Ω) ↪→ L2(Ω) =: H . The norm on V is ‖u‖2
V := 〈u′, u′〉L2 , which is indeed

a norm due to Poincare-Friedrichs inequality. We use the time interval I = (0, 0.2]
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and the parameter set D := [1, 5.5] ⊂ R. For a parameter μ ∈ D, we want to find
u := u(μ) which solves

u̇ − (ν(|u′|; μ)u′)′ = g

u(t, x) = 0

uo(x) = 0

on I × Ω,

∀ (t, x) ∈ I × ∂Ω,

∀ x ∈ Ω .

(43)

We here used g(x, t) := 12 sin(2πx) sin(2πt) and define ν(s; μ) = exp (μs2) + 1
as the reluctivity function.

We consider the quasilinear form for the weak formulation (6), which here is given
by

a[u](u, v; μ) =
∫

Ω

ν(|u′|; μ)u′v′dx. (44)

If the function ν(·; μ)· : R+
0 → R

+
0 is strongly monotone, i.e. if

(ν(s2; μ)s2 − ν(s1; μ)s1)(s2 − s1) ≥ ma(μ)(s2 − s1), ∀s2, s1 ∈ R
+
0 (45)

holds, then (44) satisfies the strong monotonicity condition (2). Indeed, we set s1 =
w′, s2 = v′ and integrating we get

a[v](v, v − w) − a[w](w, v − w) = ∫
Ω

(ν(v′; μ)v′ − ν(w′; μ)v′)(v′ − w′)dx

≥ ma(μ)
∫
Ω

(v′ − w′)2dx = ma(μ)‖v − w‖2
V .

It is clear that the reluctivity function ν(s; μ) in our example satisfies (45). Further-
more, the monotonicity constant can be taken as ma = inf

μ∈D
inf

s∈R+
ν(s; μ); hence, we

have ma = 2 for our problem and the constant is parameter-independent. We also
note that continuity of ν(·; μ) implies hemicontinuity of (44) for every parameter
μ ∈ D. Thus, the weak formulation (6) of the PDE (43) admits a unique solution.

We specify the bilinear form 〈A′(u; μ)v, w〉V ′V = da[u](v, w; μ) induced by the
Fréchet derivative A′(u; μ) : V × D → V ′ of the non-linear operator A(u; μ). It
is then used to compute the Jacobian matrix (15) for Newton method. In the present
example, we have

da[u](v, w; μ) =
∫

Ω

(
2μ ν′(|u′|; μ)u′ + ν(|u′|; μ)

)
v′w′ dx.

The derivative for the reduced-basis scheme in the formula (29), thanks to the chain
rule, is given by

∂

∂uk
N,j

ν(|u′k
N (xM

m )|; μ) = 2μν′(|u′k
N (xM

m )|; μ)u′k
N (xM

m )ξ ′
j (x

M
m ),

where all the indices are according to (29). In our numerical experiments, we drop the
term EN,M(uk

N ; μ) in A′
N,M(uk

N ; μ). This then corresponds to an inexact Newton-
like method, which we use in our numerical experiments and which performed well.

Page 15 of 26    36Adv Comput Math (2021) 47: 36



4.2 1D magnetoquasistatic problem: numerical results

The truth approximation is performed by the Petrov-Galerkin scheme, which is
introduced in Section 2, where Vh is the finite element space, composed of piece-
wise linear and continuous functions, defined on the partition of Ω̄ into 100 equal
subintervals and Nh = 98 nodes (excluding Dirichlet boundary nodes). For the
time discretization, we divide the interval I into K = 200 subintervals of length
�t = 10−3. We solve the problem with the Crank-Nicolson scheme (12), while
applying Newton’s method, described in Section 2.2 on each time step for the numer-
ical computation of the time snapshots. We iterate the Newton’s method unless the
norm of the residual (13) is less than the tolerance level, which we set to 10−8.

We generate the RB-EIM model as follows: we start from DEIM
train ⊂ D (a uniform

grid of size 200) and compute truth solutions for each parameter in DEIM
train to approx-

imate the non-linearity ν with its EIM counterpart νM . We set Mmax = 8 as the
maximal dimension of the EIM approximation space. Next, we run the POD-Greedy
procedure with M = Mmax and obtain Nmax = 5 for εRB = 10−5, where Dtrain is a
uniform grid over D of size 400. For the POD-Greedy procedure and method certi-
fication, we use the computable bound �N,M (42) for our error estimate �c

N,M (31).
We solve the problem with the reduced Crank-Nicolson scheme (22), while applying
RB Newton’s method, described in Section 3.2 on each time step for the numerical
computation of the time snapshots. We iterate the Newton’s method unless the norm
of the residual (23) is less than the tolerance level, which we set to 10−8.

Next, we introduce a test sample Dtest ⊂ D of size 200 (uniformly random sample
from D) and the maximum of the estimator max �N,M := max

μ∈Dtest

�N,M (μ). We also

introduce the following approximation of the “truth norm” error

εtrue
N,M(μ):=

(
K∑

k=1

� tk

2
(‖uk

δ(μ) − uk
N(μ)‖2

V +‖uk−1
δ (μ) − uk−1

N (μ)‖2
V )

)1/2

, (46)

and its maximum over the test sample max εtrue
N,M := max

μ∈Dtest

εtrue
N,M(μ), where we use

the Crank-Nicolson solutions uk
δ(μ) and uk

N(μ) to compute (46). Hence, εtrue
N,M(μ) is

only an estimate for ‖e(μ)‖Y in (31), where the solution uδ(μ) of (9) and uN(μ) of
(21) enters. Once the reduced-basis model is constructed (Nmax = 7, Mmax = 8), we
verify the convergence with N of max �N,M and max εtrue

N,M on a test sample Dtest

and plot in Fig. 1 the N-M convergence curves for different values of M . We can
see that the estimator in Fig. 1b reaches the desired tolerance level εRB = 10−5 for
(Nmax, Mmax) = (5, 8).

Next, we investigate the influence of the EIM approximation error in the estima-
tion process. We can split the bound (42) into two parts: the reduced-basis and the
non-linearity approximation error estimation contributions

�RB
N,M (μ) ≈ 1

ma

‖R(·; μ)‖Y ′
δ

and �EI
N,M (μ) ≈ δM(μ)

ma

‖uN(μ)‖Y . (47)

36   Page 16 of 26 Adv Comput Math (2021) 47: 36



Fig. 1 a Convergence with N of max εtrue
N,M for different values of M on the test set, 1D example. b

Convergence with N of max �N,M for different values of M on the test set, 1-D example

We compute these contributions as described in Section 2.2 and note that they serve
only as computable surrogates for the respective contributions in our error estimate
(31). We then set

�RB
N,M := max

μ∈Dtest

�RB
N,M (μ), �EI

N,M := max
μ∈Dtest

�EI
N,M (μ). (48)

In Fig. 2a, we plot �RB
N,M and �EI

N,M for 1 ≤ N ≤ 5 and M = 4, M = 8: we can

see that M has nearly no influence on �RB
N,M , but we observe the “plateau” in �EI

N,M ,
which limits the convergence of the bound (42) with increasing N . The separation
points, or “knees”, of the N-M-convergence curves then reflect a (close-to) balanced
contribution of both error terms.

a

0 0.05 0.1 0.15 0.2
2

2.5

3

3.5

4

4.5

b

Fig. 2 a The dependence of �RB
N,M and �EI

N,M contributions with N for fixed values of M . b: The reluc-

tivity function ν(|u′k
N |2;μ) and its EI-approximation (M = 8) νM(|u′k

N |2;μ) for the parameter μ = 5.5 at
t = 0.2 (b)
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Table 1 Performance of the 1D RB-EIM magnetoquasistatic approximation of Maxwell’s equations on
the test set

N M max �N,M �RB
N,M �EI

N,M max εtrue
N,M η̄N,M

2 2 6.10 E−03 5.60 E−03 7.60 E−04 1.60 E−03 4.00

3 4 5.62 E−04 5.05 E−04 1.12 E−04 1.32 E−04 5.82

5 8 6.25 E−06 4.47 E−06 1.81 E−06 1.79 E−06 4.58

In Table 1, we present, as a function of N and M , the values of max �N,M ,
�RB

N,M , �EI
N,M , εtrue

N,M and mean effectivities η̄N,M := 1
|Dtest |

∑
μ∈Dtest

ηN,M(μ),
where ηN,M(μ) := �N,M(μ)/‖uδ(μ)−uN(μ)‖Y . We note that the tabulated (N, M)

values correspond roughly to the “knees” of the N-M-convergence curves. We can
see that the effectivities are lower bounded by 1 and are of moderate size; thus, the
bound (42) is reliable and there is no significant overestimation of our approximation
of the “truth norm” error (46).

We then plot (see Fig. 2b) the reluctivity function ν(|u′k
N |; μ) and its EI approxi-

mation νM(|u′k
N |; μ) for the parameter μ = 5.5 at t = 0.2; we can see that there is no

visible difference between the original function and its EIM counterpart. Although
the problem at hand is merely chosen to illustrate the methodology, we report on
the average CPU time for comparison. The finite element method takes ≈ 0.47 s to
obtain the solution, and the RB method (Nmax, Mmax), which takes ≈ 0.08/0.10 s
without and with the a-posteriori certification and results in the speed-up factor of
5.87/4.701. We note that our implementation in the offline phase needs a large num-
ber of high-fidelity finite element solutions for the EIM approximation and the Riesz
representers in (39). This implies large offline computational costs. However, these
computations can be done in parallel to significantly reduce the time needed for the
offline phase.

4.3 2D magnetoquasistatic problem: analysis

As second example, we consider a 2D magnetoquasistatic problem for modelling of
eddy currents in a steel pipe2. Let Ω̄ = Ω̄1

⋃
Ω̄2 be a circular cross-section of the

steel pipe with radius r2, where Ω1 is the conducting domain (iron) and Ω2 is the
non-conducting domain of radius r1. The wire is represented by the part with the
radius r0 and the complementary part is the air gap (see Fig. 3a). We assume that
the magnetic reluctivity function and the electric conductivity function have different
structures on conducting and non-conducting domains, respectively, i.e.

ν(x, s) =
{

ν1(s), for x ∈ Ω1,

ν2, for x ∈ Ω2
and σ(x) =

{
σ1 > 0, for x ∈ Ω1,

ε > 0, for x ∈ Ω2,

1All the computations are performed in MATLAB on Intel Xeon(R) CPU E5-1650 v3, 3.5 GHz x 12 cores,
64 GB RAM
2http://www.femm.info/wiki/TubeExample
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where ν2, σ1 > 0 denote constants. We assume that the reluctivity function satisfies

0 < νLB ≤ ν(x, s) ≤ νUB, ∀x ∈ Ω, s ∈ R
+
0 , (49)

where νLB and νUB are accessible constants. We note that the air-gap and the coils in
the steel pipe are electrically non-conductive, i.e. σ(ξ) = 0 for ξ ∈ Ω2. However, we
introduce a regularization parameter ε = 10−8 as a value of σ for the non-conducting
domain. This allows us to consider a pure parabolic problem instead of a parabolic-
elliptic system with differential-algebraic structure (see, e.g. [13]). We set μ := σ1
and define the parameter set D = [5 · 106, 107] and the time interval I = (0, 0.02].
We thus have a parametrized quasilinear parabolic equation

σ(x; μ)u̇ − ∇ · (ν(x, |∇u|)∇u) = g

u(t, x) = 0

uo(x) = 0

on I × Ω,

∀ (t, x) ∈ I × ∂Ω,

∀ x ∈ Ω .

(50)

The right-hand side is the electric-flux density

g(x, t) =
{

Ie(t)
2πr0

, for x ∈ Ω1,

0, for x ∈ Ω2,

where Ie(t) = 100 · sin(100πt) is the electric current.
We consider the quasilinear form for the weak formulation (6), which here is given

by
a[u](u, v; μ) =

∫
Ω

ν(x, |∇u|; μ)∇u · ∇v dx. (51)

In practical applications, the non-linear reluctivity function is often defined through
magnetization curves or |B|-|H | curves. The underlying physical properties of ferro-
magnetic materials determine the |B|-|H | curve. These curves are naturally strongly
monotone and, in practice, their analytical form is unknown. Instead, only a finite
number of discrete points (|Hk|, |Bk|), k = 1, ..., Kc with |Hk|, |Bk| denoting the
magnitude of the magnetic field (measured in ampere/meter) and magnetic flux (mea-
sured in tesla), is given from the real life measurements. In order to reconstruct
a continuous, monotone |B|-|H | curve, monotonicity-preserving interpolation with
cubic splines is applied [10]. We define a mapping g1 : R

+
0 → R

+
0 which deter-

mines the magnetization curve via |B| = g1(|H |). An example of a |B|-|H | curve,
based on the measurements of a ferromagnetic material, which is used in our prob-
lem, is given in Fig. 3b; the real life measurements were provided by [18]. The
mapping s �→ ν1(s)s, s ∈ R+ then denotes the inverse g−1

1 of g1 and thus also
is strongly monotone. The non-linear reluctivity function ν1 : R

+
0 → R

+
0 then is

given by ν1(s) := g−1
1 (s)/s, s ∈ R+; it is required that ν1 ∈ C1(R+

0 ;R+) and the
spline approximation technique guarantees this property. If g−1

1 (s) = ν1(s)s satis-
fies the strong monotonicity condition (45), then the mapping s �→ ν1(|s|)s, s ∈ R

2

is strongly monotone with monotonicity constant νLB and Lipschitz continuous with
Lipschitz constant νUB . An example of magnetic reluctivity function ν1(|B|) of fer-
romagnetic material used in our simulations is given in Fig. 3c; here, we note that
the magnitude of the magnetic flux |B| corresponds to |∇u| in our case. The map-
ping s �→ ν2s, s ∈ R

2 is linear; therefore, s �→ ν(x, |s|)s is strongly monotone for all
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a b

c

Fig. 3 a Geometry of the computational domain: the wire (dark grey), the air gap (white), the iron (bright
grey). b An example of |B|-|H | curve g1 of ferromagnetic material used in our simulations (the mea-
surements are denoted by dots). c An example of magnetic reluctivity function ν1(|B|) of ferromagnetic
material used in our simulations

x ∈ Ω . The form (51) then is strongly monotone with the monotonicity constant νLB

and Lipschitz continuous with the Lipschitz constant 3νUB (see [10] for the corre-
sponding proofs). Hence, the weak formulation (6) of the PDE (50) admits a unique
solution.

We specify the bilinear form 〈A′(u; μ)v, w〉V ′V = da[u](v, w; μ) induced by the
Fréchet derivative A′(u; μ) : V × D → V ′ of the non-linear operator A(u; μ). It is
then used to compute the Jacobian matrix (15) for Newton method. With

n[u] =
{ ∇u

|∇u| , for ∇u 	= 0,

0, for ∇u = 0,
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we have

da[u](v, w; μ)=
∫

Ω

ν′(x, |∇u|; μ)(n[u] · ∇w)(∇u · ∇v)

+ν(x, |∇u|; μ)∇v · ∇w dx,

and the derivative for the reduced-basis scheme in the formula (29), thanks to the
chain rule, is given by

∂

∂uk
N,j

ν(x; |∇uk
N(xM

m )|; μ) := ν′(x; |∇uk
N(xM

m )|; μ)n[uk
N ](xM

m ) · ∇ξj (x
M
m ),

where all the indices are according to (29).
In this example, the monotonicity constant ma(μ) is not available analytically. As

it was mentioned earlier in the discussion on |B|-|H | curves, we can choose νLB > 0
as our monotonicity constant. However, since for each parameter μ ∈ D there holds

ma(μ) := min
k∈K

min
x∈Ω

ν1(|∇uk
N(x)|; μ) ≥ νLB, (52)

and the computation of (52) only requires one full evaluation of the non-linearity,
which already has been performed to evaluate (41), we here use ma(μ) as our
constant for the estimation.

4.4 2D magnetoquasistatic problem: numerical results

The truth approximation is performed by the Petrov-Galerkin scheme, which is intro-
duced in Section 2, where Vh is the finite element space, composed of piecewise
linear and continuous functions, defined on a triangle mesh containing 4374 triangles
and Nh = 2107 nodes (excluding Dirichlet boundary nodes). For the time discretiza-
tion, we divide the interval I into K = 200 subintervals of length �t = 10−4. The
non-linear reluctivity function ν1 is reconstructed from the real B −H measurements
using monotonicity-preserving cubic spline interpolation and ν2 value is chosen as
the reluctivity of air. We then solve the problem with the Crank-Nicolson scheme
(12), while applying Newton’s method, described in Section 2.2, on each time step
for the numerical computation of the time snapshots. We iterate the Newton’s method
unless the norm of the residual (13) is less than the tolerance level, which we set to
10−8.

We generate the RB-EIM model as follows: we start from DEIM
train ⊂ D (a uni-

form grid of size 200) and compute truth solutions for each parameter in DEIM
train to

approximate the non-linearity ν1 with the EIM counterpart νM
1 . We set Mmax = 44

as the maximal dimension of the EIM approximation space. Next, we run the POD-
Greedy procedure with M = Mmax and obtain Nmax = 14 for εRB = 10−4, where
Dtrain is a uniform grid over D of size 400. For the POD-Greedy procedure and
method certification, we use the computable bound �N,M (42) for our error estimate
�c

N,M (31). The monotonicity constant is evaluated as in (52). We solve the problem
with the reduced Crank-Nicolson scheme (22), while applying RB Newton’s method,
described in Section 3.2, on each time step for the numerical computation of the time
snapshots. We iterate the Newton’s method unless the norm of the residual (23) is
less than the tolerance level, which we set to 10−8.
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Fig. 4 a Convergence with N of max εtrue
N,M for different values of M on the test set, 2D example. b

Convergence with N of max �N,M for different values of M on the test set, 2D example

Then, we verify the convergence with N of max εtrue
N,M (Fig. 4a) and max �N,M

(Fig. 4b) on a test sample Dtest (a uniformly random sample of size 200) for different
values of M . We can see that the estimator in Fig. 3b reaches the desired tolerance
level εRB = 10−4 for (Nmax, Mmax) = (14, 44). We note that the convergence is
not monotone at some points due to the EIM interpolation of the non-polynomial
non-linearity behind the problem. We can also see from Fig. 4a that increasing M

above 20 has nearly no impact on the convergence of the approximation of the “truth
norm” error (46), but the bound (42) in Fig. 4b still shows a considerable decrease
with increasing M . Indeed, in Fig. 5a, we plot �RB

N,M and �EI
N,M as defined in (48) for

1 ≤ N ≤ 14 and M = 20, M = 44: we can see that M has nearly no influence on
�RB

N,M , but we can observe the “plateau” in �EI
N,M , which limits the convergence of

Fig. 5 a The dependence of �RB
N,M and �EI

N,M contributions with N for fixed values of M . b Values of
εtrue
N,M and max �N,M for (Nmax,Mmax) = (14, 44) on the test set
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Table 2 Performance of 2-D RB-EIM model on the test set

N M max �N,M �RB
N,M �EI

N,M max εtrue
N,M η̄N,M

6 16 1.60 E−03 6.68 E−04 1.40 E−03 2.15 E−05 98.06

9 20 4.34 E−04 1.94 E−04 3.67 E−04 5.40 E−06 89.84

11 36 1.76 E−04 1.38 E−04 1.04 E−04 4.68 E−06 64.28

14 44 6.97 E−05 4.63 E−05 5.81 E−05 1.93 E−06 48.27

the bound (42) with increasing N . We also plot the values of �N,M(μ) and εtrue
N,M(μ)

and the error (46) for (Nmax, Mmax) for every parameter μ ∈ Dtest in Fig. 5b.
In Table 2, we present, as a function of N and M , the values of max �N,M ,

�RB
N,M , �EI

N,M , max εtrue
N,M and the mean effectivities η̄N,M . We note that the tabulated

(N, M) values correspond roughly to the “knees” of the N-M-convergence curves
(see example 1 for the terminology and definitions). We can see that the effectivities
are lower bounded by 1, but the values are relatively large. Based on our experience
with magnetostatics problems [11], we conject that this is related to the structure of
the non-linearity and the effectivities are proportional to C · νUB/νLB , where C is
some constant.
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Fig. 6 The truth magnetic flux density |∇uk
δ | for μ = 107 at a t = 0.01, b t = 0.02. The reduced-basis

magnetic flux density |∇uk
N | for μ = 107 at c t = 0.01, d t = 0.02
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In Fig. 6, we show the truth finite element magnetic flux density |∇uk
δ(x, μ)| and

the corresponding reduced magnetic flux density |∇uk
N(x, μ)| for μ = 107 and t =

0.01 and t = 0.02. We observe that flux densities look very similar. Next, we compare
the average CPU time required for both the finite element method, which takes ≈ 70 s
to obtain the solution, and the RB method with (Nmax, Mmax) = (14, 44), which
takes ≈ 1.80/2.42 without and with the a posteriori certification and results in the
speed-up factors (rounded) of 39 and 29, respectively. The offline phase requires
the knowledge of the truth finite-element solutions for the EIM approximation step.
Since 200 truth solutions were generated in the consecutive order, it takes ≈ 4 h. The
generation of these truth solutions could be performed in parallel which would reduce
the offline time. The POD-Greedy sampling takes ≈ 40 min for our implementation.
We note that our implementation in the offline phase needs a large number of high-
fidelity finite element solutions for the EIM approximation and the Riesz representers
in (39). This implies large offline computational costs. However, these computations
can be done in parallel to significantly reduce the time needed for the offline phase.

5 Conclusion

In this paper, we propose the space-time reduced-basis method for quasilinear
parabolic PDEs. We think that our space-time formulation combined with the cho-
sen Petrov-Galerkin discretization provides an elegant approach to treat these kind
of problems. We present a new a posteriori error estimate together with a com-
putable bound, and we use it for the reduced basis construction with the POD-Greedy
procedure. The developed methodology is applied to the magnetoquasistatic approxi-
mation of Maxwell’s equations and numerical results confirm a good speed-up factor,
which supports the validity of this approach. The reduced-basis methods developed
in the paper will further be extended to treat more complicated industrial problems.
It will further have a significant impact on the PASIROM project3, where the sur-
rogate reduced-basis models are planned to be used in the optimization of electrical
machines.
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