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Abstract
In this paper, we show that certain trigonometric polynomial shearlets which are spe-
cial cases of directional de la Vallée Poussin-type wavelets are able to detect step
discontinuities along boundary curves of periodic characteristic functions. Motivated
by recent results for discrete shearlets in two dimensions, we provide lower and
upper estimates for the magnitude of the corresponding inner products. In the proof,
we use localization properties of trigonometric polynomial shearlets in the time and
frequency domain and, among other things, bounds for certain Fresnel integrals.
Moreover, we give numerical examples which underline the theoretical results.

Keywords Detection of step discontinuities · Trigonometric polynomial shearlets ·
Directional wavelets · Periodic wavelets
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1 Introduction

In many applications in signal or image processing, great importance is attached
to precise information about the location and order of singularities of signals. In
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one dimension, this corresponds to functions which are smooth apart from pointwise
singularities. Many authors discussed this problem when the Fourier coefficients of
a periodic function are given; see, e.g., [1, 6, 7, 27, 31, 34].

Because of their localization properties in the time and frequency domain, wavelet
expansions provide a powerful tool for detecting and analyzing point discontinu-
ities in one or more dimensions [18, 26]. The reason is that only very few wavelet
coefficients of translates near the location of the singularity are large in magnitude,
while all other wavelet coefficients corresponding to translates which are further
away from the point discontinuity decay rapidly. A framework for univariate peri-
odic wavelets was investigated by several authors [19, 28–30], and some of these
constructions were successfully used for the detection of pointwise singularities of
periodic functions [27].

In two dimensions, the situation is more complex since not only point singularities
can occur but also discontinuities along curves. To deal with these types of singu-
larities, along with many other constructions, the theory of the continuous shearlet
transform was developed [5, 11, 22] and defined as the mapping:

f → SHψf (a, s,p) = f, ψa,s,p

with scale parameter a > 0, orientation parameter s ∈ R and translation parameter
p ∈ R

2. The shearlets ψa,s,p are well-localized functions in the time and frequency
domain and provide directional sensitivity controlled by the parameter s. It turned out
that continuous shearlets provide a suitable tool to precisely describe different types
of discontinuities along curves with asymptotic estimates. In particular, let T ⊂ R

2

be a set with a smooth boundary ∂T . If either p /∈ ∂T or if s = s0 does not correspond
to the normal direction of ∂T at p, then

lim
a→0+ a−NSHψχT (a, s0,p) = 0 for all N > 0. (1)

Otherwise, if p ∈ ∂T and s = s0 corresponds to the normal direction of ∂T at p, then

lim
a→0+ a−3/4SHψχT (a, s0,p) = C > 0. (2)

The results were shown for continuous shearlets, which are compactly supported in
the time [23] or frequency domain [9, 13, 14, 21].

Based on these theoretical results, practical applications for the detection of edges
in images were developed [35]. Therefore, discrete frames of shearlets were con-
structed by sampling the parameters of the continuous shearlet systems in a suitable
way [20]. Based on the result for curvelets [4], it was possible to show that discrete
shearlet systems are essentially optimal for the sparse approximation of so-called
cartoon-like functions [12]. This result implies the upper estimate:

f, ψ k ≤ C 2−3j/2 (3)

for some constant C > 0 independent of the scale parameter j . In [17], the authors
showed the existence of a lower estimate χT , ψ k ≥ C 2−3j/2 if the localization
and orientation of the discrete shearlet are sufficiently close to the boundary curve
and its normal direction. These two estimates are the discrete analogs of Eqs. 1 and 2
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implying that discrete shearlets are able to detect step discontinuities along boundary
curves of characteristic functions.

The framework of multivariate periodic wavelets was developed for example in [8,
25]. In [3, 24], the corresponding wavelet functions were trigonometric polynomials
of Dirichlet and de la Vallée Poussin-type, which can be well localized in the time
and frequency domain. The construction allows for fast decomposition algorithms [2]
with many different dilation matrices on each scale, including shearing. This gives
rise to directional decompositions of the frequency domain similar to the tilling of
the frequency plane in the case of discrete shearlet systems [4, 17].

In this paper, we use the latter construction to prove two main theorems which
provide upper and lower bounds similar to [17], but this time for a discrete system
of periodic de la Vallée Poussin-type wavelets that are trigonometric polynomials.
The upper estimate in Theorem 1 refines the estimate Eq. 3 by including the local-
ization and orientation dependency of the shearlet coefficients in the decay estimate.
Theorem 2 is the analog of the main result in [17] and implies that the constructed
trigonometric polynomial shearlets in this paper are able to detect step discontinuities
along boundary curves of periodic functions.

The paper is organized as follows. We start with the construction of a special
case of directional de la Vallée Poussin wavelets in Section 2 which we will call
trigonometric polynomial shearlets and state the two main theorems of this paper in
Section 3. Section 4 provides a numerical example to illustrate the main results. After
some preliminaries, Section 5 is devoted to formulate and to prove all auxiliary lem-
mata which are needed for the proof of the main results. In Section 6, the proofs for
the upper and lower bounds of the corresponding inner products are given. Finally, we
consider the extension of the construction to higher dimensions and discuss possible
results in the case of corner points and smooth functions.

2 Trigonometric polynomial shearlets

If a nonnegative and even function g : R → R with supp g = − 2
3 ,

2
3 satisfies the

property:

z∈Z
g(x + z) = 1 for all x ∈ R,

we call it window function and write g ∈ W . If additionally g is q-times continu-
ously differentiable, we use the notation g ∈ Wq . We remark that a consequence of

the properties of a window function is g(x) = 1 for x ∈ − 1
3 ,

1
3 and g is monoton-

ically increasing for x ∈ − 2
3 , − 1

3 and monotonically decreasing for x ∈ 1
3 ,

2
3 .

Furthermore, we introduce functions g : R → R given by g(x) := g x
2 − g(x).

As an example of a window function, we consider:

r(x) = e−b/x2 , for x > 0,

0, for x ≤ 0,
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Fig. 1 Left: The window function g0.025 ∈ W∞ (see Eq. 4). Right: Visualization of suppΨ
(i)
10 (dark area)

and W
(i)
10 (light area) for = 5, 25 and i ∈ {h, v}. The red lines and the horizontal axis form the angles

θ
(i)
10

where b > 0 and define s(x) = r 2
3 + x r 2

3 − x . Then for

gb(x) = s(x)

k∈Z
s(x + k)

(4)

we have gb ∈ W∞ and this function is visualized in Fig. 1 for b = 0.025.
We denote two-dimensional vectors by x = (x1, x2)

T with the inner product
xTy := x1 y1 + x2 y2 and the usual Euclidean norm |x|2 := √

xTx. Let C(A) denote
the space of all continuous functions on a set A ⊆ R

2 equipped with the norm
f A,∞ := f C(A) := sup

x∈A

|f (x)|. For x ∈ R
2 and r = (r1, r2)

T ∈ N
2
0 and a

sufficiently smooth function f , we use the notation:

∂rf (x) := ∂r1+r2

∂x
r1
1 ∂x

r2
2

f (x)

and the space of all q-times continuously differentiable compactly supported func-
tions will be denoted by

C
q

0 (A) := f : A→R : ∂rf ∈ C(A) for all r ∈ N
2
0 with r1+r2 ≤ q, |supp f |<∞

with the norm

f Cq := f Cq(A) := sup
r1+r2≤q

sup
x∈A

∂rf (x) .

For i ∈ {h, v}, we consider bivariate horizontal (vertical) window functions Ψ (i) :
R
2 → R given by

Ψ (h)(x) := g(x1) g(x2), Ψ (v)(x) := g(x1) g(x2).
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We remark that for g ∈ Wq we have Ψ (i) ∈ C
q

0 (R2) and in this case use the notation
Ψ (i) ∈ Wq

2 . From the support properties of the function g ∈ W , it follows that:

suppΨ (h) = − 4
3 , − 1

3 ∪ 1
3 ,

4
3 × − 2

3 ,
2
3 ,

suppΨ (v) = − 2
3 ,

2
3 × − 4

3 , − 1
3 ∪ 1

3 ,
4
3 .

For even j ∈ N0 and ∈ Z with | | ≤ 2j/2, we define the matrices:

N(h) := 2j 2j/2

0 2j/2 , N(v) := 2j/2 0
2j/2 2j (5)

and the corresponding discrete angles

θ
(h) := arctan 2−j/2 , θ

(v) := arccot 2−j/2 .

Note that these matrices occur in the construction of discrete shearlet systems, for
example in [12, 17]. Based on this, we introduce the notation:

Ψ
(i)

(·) := Ψ (i) N(i)
−T · (6)

and, since detN(i) = 23j/2, it follows that

suppΨ
(i) = suppΨ (i) detN(i) = 8

3
23j/2. (7)

In polar coordinates, we define the sets

W
(h) := (ρ, θ) ∈ R × −π

2
,
π

2
: 2

j

3
< |ρ| < 2j+1, θ

(h)
−2 < θ < θ

(h)
+2 ,

W
(v) := (ρ, θ) ∈ R × [0, π ] : 2

j

3
< |ρ| < 2j+1, θ

(v)
+2 < θ < θ

(v)
−2

and based on ideas from [12, Proposition 2.1] we show the following lemma, which
is visualized on the right side of Fig. 1.

Lemma 1 For even j ≥ 10, ∈ Z with | | ≤ 2j/2 and i ∈ {h, v}, we have
suppΨ

(i)
(ρ, θ) ⊂ W

(i).

Proof We show only the case i = h since the other one is similar. In Eq. 6, we defined

Ψ
(h)

(ξ) = Ψ (h) N(h) −T
ξ = g(2−j ξ1) g 2−j ξ1 2j/2 ξ2

ξ1
−

with the support property

supp g(2−j ξ1) = ξ1 ∈ R : 2j

3
< |ξ1| <

2j+2

3
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and, assuming that ξ1 ∈ supp g(2−j ·), we have
supp g 2−j ξ1 2j/2 ξ2

ξ1
− = ξ2 ∈ R : 2−j ξ1 2j/2 ξ2

ξ1
− <

2

3

= ξ2 ∈ R : − 2j/2 ξ2

ξ1
<

2j+1

3 |ξ1|
⊂ ξ2 ∈ R : − 2j/2 ξ2

ξ1
< 2 .

In the following, we introduce polar coordinates with the notation ξ := ρ Θ(θ),
where Θ(θ) := (cos θ, sin θ)T. Recalling the discrete angles θ

(h) = arctan 2−j/2

we have

supp g 2−j ξ1 2j/2 ξ2

ξ1
− ⊂ θ ∈ −π

2
,
π

2
: − 2j/2 tan θ < 2

= θ ∈ −π

2
,
π

2
: θ

(h)
−2 < θ < θ

(h)
+2 .

Since ρ2 = ξ21 1 + tan2 θ and | | ≤ 2j/2 we can show

|ρ| ≤ 2j+2

3
1 + 2−j (| | + 2)2

1/2 ≤ 2j+2

3
2 + 22−j/2 + 22−j

1/2
< 2j+1,

where the last inequality holds for j ≥ 10. As a lower bound for the radius ρ, we
obtain:

|ρ| ≥ 2j

3
1 + 2−j (| | + 2)2

1/2
>

2j

3
.

The pattern of a regular matrix M ∈ Z
2×2 is defined by P(M) := M−1

Z
2 ∩

− 1
2 ,

1
2

2
. As a consequence of [24, Lemma 2.4], the patterns of the matrices in Eq. 5

are independent of the parameter and have the tensor product structure:

P N(h) = 2−j z1 : z1 = −2j−1, . . . , 2j−1 − 1

× 2−j/2 z2 : z2 = −2j/2−1, . . . , 2j/2−1 − 1 ,

P N(v) = 2−j/2 z1 : z1 = −2j/2−1, . . . , 2j/2−1 − 1

× 2−j z2 : z2 = −2j−1, . . . , 2j−1 − 1 .

For i ∈ {h, v} and Ψ (i) ∈ Wq

2 the translates of the de la Vallée Poussin wavelet

functions (see [3]) on the pattern points y ∈ P(N(i)
) are trigonometric polynomials

given by

ψ
(i)

y(x) :=
k∈Z2

Ψ
(i)

(k) eik
T(x−2πy),

where

y :=
⎧
⎨

⎩

y − (2−j−1, 0)T, for y ∈ P N(h)
,

y − (0, 2−j−1)T, for y ∈ P N(v) .
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In the following, we call the functions ψ
(i)

y trigonometric polynomial shearlets.

3 Main results

Let ρ(t) : [0, 2π) → [0, π) fulfilling

sup
0≤t<2π

|ρ (t)| ≤ κ < ∞

and let γ : [0, 2π) → (−π, π)2 be a closed curve with

γ (t) := ρ(t)
cos t

sin t
, t ∈ [0, 2π),

which is a parametrization of the boundary of a set T ⊂ (−π, π)2. The space Cu(κ)

is defined as the collection of all functions of the form

f = f0 + f1χT , (8)

where f0, f1 ∈ Cu([−π, π ]2), u ≥ 2.
Following the ideas from [4, 12], let Qj , j ∈ N0, be the set of dyadic squares

Q ⊆ [−π, π)2 of the form (Fig. 2)

Q = 2πn1 2
−j/2 − π, 2π(n1 + 1) 2−j/2 − π

× 2πn2 2
−j/2 − π, 2π(n2 + 1) 2−j/2 − π (9)

with n1, n2 = 0, . . . , 2j/2 − 1. Let Q ∈ Q1
j ⊆ Qj if ∂T ∩ Q = ∅ and for the non-

intersecting squares we define Q0
j

:= Qj \ Q1
j . We remark that Q0

j ≤ C 2j and

Q1
j ≤ C2 2j/2 (see [4, 12]).

For Lebesgue measurable sets A ⊆ R
2 and functions f : A → R define

f A,p :=
A

|f (x)|p dx
1/p

, 1 ≤ p < ∞,

and let Lp(A) denote the collection of functions satisfying f A,p < ∞. In partic-
ular, two-dimensional 2π -periodic functions f : T2 → R are defined on the torus
T
2 := R

2 \ 2π Z
2. Recall that the usual inner product of the Hilbert space L2(T

2) is
given by:

f, g 2 := (2π)−2

T2
f (x)g(x) dx, f, g ∈ L2(T

2),

and for f ∈ L1(R
2) we call

f 2π :=
n∈Z2

f (· + 2πn) (10)

the 2π -periodization of f .

The main results of this paper are stated in the following two theorems.
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Fig. 2 Left: Characteristic function of a set T ⊂ (−π, π)2 with boundary ∂T . Right: Decomposition into
dyadic squares for j = 10, where Q ∈ Q0

j are colored white and Q ∈ Q1
j along ∂T are colored dark

Theorem 1 Let f ∈ C2(κ) and Ψ (i) ∈ W2q
2 , i ∈ {h, v} for q ≥ 2. Moreover for

Q ∈ Q1
j let x0 := x0(Q) ∈ ∂T ∩ Q and γ := γ (x0) such that (cos γ, sin γ )T is the

normal direction of the boundary curve ∂T in x0. Then, we have:

f 2π , ψ
(i)

y 2
≤C(q)

Q∈Q1
j

1+2j |x0−2πy|22
−q

1+2j/2 sin(θ(i)−γ )
−5/2

.

If y ∈ P N(i) is sufficiently far away from the boundary curve, Theorem 1

implies

f 2π , ψ
(i)

y 2
≤ C(q)2−j (q−1/2).

For the special case f0 = 0 and f1 = 1 in Eq. 8 we define T = χT and denote by
T 2π the 2π -periodization of T .

Theorem 2 Let Ψ (i) ∈ W2q
2 for sufficiently large q ∈ N and y ∈ P N(i) for large

j . If there exists x0 ∈ ∂T with the normal direction (cos γ, sin γ )T and curvature A0

in that point, fulfilling |x0 − 2πy|2 ≤ C 2−j/2 and θ
(i) ≤ γ ≤ θ

(i)
+1 for i ∈ {h, v},

then there is a constant C(q, A0) > 0 such that

T 2π , ψ
(i)

y 2
≥ C(q, A0).

4 Numerical examples

In this section, we give numerical examples to underline the main results of this paper
by computing the shearlet coefficients of a characteristic function of a rotated ellipse.
In order to do that, we need to compute the Fourier transform of the characteristic
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function of a disc, given by

D(x) := 1 for |x|2 ≤ 1,

0 else.

We transform ξ = ρ Θ(θ) and x = r Θ(φ) into polar coordinates and use ξTx =
rρ cos (θ − φ) to obtain

F[D](ξ) = 1

(2π)2

R2

D(x) e−iξTx dx

= 1

(2π)2

1

0

2π

0

e−irρ cos(θ−φ) r dφ dr = 1

2π

1

0

r J0(rρ) dr,

where J0 is the Bessel function of the first kind and zero order. The integral identity
u

0

t J0(t) dt = u J1(u)

together with the change of variable λ = rρ leads to

F[D](ξ) = 1

2π

1

0

r J0(rρ) dr = 1

2π ρ2

ρ

0

λ J0(λ) dλ = J1(ρ)

2πρ
= J1 |ξ |2

2π |ξ |2
.

For a, b > 0, we define Da,b(x) := D(a−1x1, b
−1x2) and convert the circle into

a characteristic function of an ellipse with major semi-axis of length a and minor
semi-axis of length b. By the scaling property of the Fourier transform, we have:

F Da,b (ξ) = ab J1 |(aξ1, bξ2)|2
2π |(aξ1, bξ2)|2

.

If we further rotate the function Da,b by an angle γ ∈ [0, 2π) we obtain a
rotated ellipse Da,b,γ (x) := Da,b Rγ x and its Fourier transform is given by
F Da,b,γ (ξ) = F Da,b (RTξ).

In order to calculate the shearlet coefficients of a rotated ellipse, we consider the
2π -periodized function D2π

a,b,γ (x). We use Eq. 15 to see that the Fourier coefficients
of this function are given by

ck(D
2π
a,b,γ ) = F Da,b,γ (k), k ∈ Z

2,

and Parseval’s identity finally gives

D2π
a,b,γ , ψ

(i)
y 2

=
k∈Z2

F Da,b,γ (k) Ψ
(i)

(k) e2π ik
Ty. (11)

In our numerical example, we calculate the inner product Eq. 11 withMathematica
12. We fix the characteristic function of the rotated ellipse D2π

1,3, π
6
, which is depicted

on the left side in Fig. 3 (gray area). For the one-dimensional window function, we
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Fig. 3 Left: Characteristic function D2π
1,3, π

6
(gray) and magnitude of the inner product D2π

1,3, π
6
, ψ

(h)
10,−3,y 2

(red) for every y ∈ P(M10). Right: Magnitude of
2j/2−1

=−2j/2+1
D2π

1,3, π
6
, ψ

(i)
10 y 2

for every y ∈ P(M10)

and i ∈ {h, v}.

use the smooth function g0.025 ∈ W∞ constructed in Eq. 4. We fix the scale j = 10
and for a better visualization we consider the matrix M10 = 210 I2, where I2 is
the two-dimensional identity matrix and compute the shearlet coefficients in Eq. 11
on the pattern P(M10), which corresponds to a two-dimensional equidistant grid of
1024×1024 points. Thus, the images in this example are of size 1024×1024, where
every pixel corresponds to the magnitude of the inner product with a translate of the
trigonometric polynomial shearlet ψ(i)

y, y ∈ P(M10).
On the left side of Fig. 3, we set the directional parameter to = −3 and observe

that the magnitude of the coefficients

D2π
1,3, π

6
, ψ

(h)
10,−3,y 2

is very close to zero except for the pattern points y ∈ P(M10), for which the function
ψ

(h)
10,−3,y is close to points x ∈ ∂D2π

1,3, π
6
on the boundary with normal direction almost

parallel to the direction induced by the angle θ
(h)
10,−3.

To make this more clear, the left image of Fig. 4 zooms into the upper right black
square. The dotted line is parallel to the line, which forms the angle θ

(h)
10,−3 with

the horizontal axis. One can observe that the only significant shearlet coefficients
are close to the boundary and nearly orthogonal to this line. In other words, only if
the trigonometric shearlet ψ(h)

10,−3,y is almost aligned with the boundary ∂D2π
1,3, π

6
, the

inner product Eq. 11 yields large values. The right graph in Fig. 4 is a logarithmic plot

of the shearlet coefficients D2π
1,3, π

6
, ψ

(h)
10,−3,y 2

for every y ∈ P(M10) in descending

order. The red part of the line corresponds to the coefficients visible in the left picture
of Fig. 3.
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0.017

0.034

0.051

0.068

0.085

0.102

0.119

0.136

0.153

0.170

Fig. 4 Left: Zoom into the upper right window from the left image of Fig. 3. Left: Logarithmic plot of the

shearlet coefficients D2π
1,3, π

6
, ψ

(h)
10,−3,y 2

for every y ∈ P(M10) in descending order

The right image illustrates the capability of the trigonometric polynomial shearlets
to detect step discontinuities along the boundary of characteristic functions. For i ∈
{h, v} and = −2j/2 + 1, . . . , 2j/2 − 1, we compute all the pictures of the shearlet
coefficients similar to the left image in Fig. 3 and add them component-wise to get
the final result. Thus, every pixel of the image is given by the sum:

2j/2−1

=−2j/2+1

D2π
1,3, π

6
, ψ

(i)
10 y 2

, i ∈ {h, v} , y ∈ P(M10),

and one can clearly see the only significant coefficients for all the directions are exact
on the boundary of D2π

1,3, π
6
.

Besides the visual representations of the detection of step discontinuities with
trigonometric polynomial shearlets, we want to illustrate the upper and lower esti-
mates given in the two main theorems. In order to do so for the upper bound, we
compute the quantity:

U
(i) := max

y∈P(Mj )

D2π
1,3, π

6
, ψ

(i)
y 2

Q∈Q1
j

1 + 2j |x0 − 2πy|22 −q
1 + 2j/2 sin(θ(i) − γ )

−5/2
.

In the left graph of Fig. 5, the values U
(i) are plotted for different orientation angles

θ
(i) . One can see that the quotientU(i) is bounded from above by a moderate constant

for every j and which confirms that the estimate in Theorem 1 provides a valid
upper bound.

For the lower bound, we collect all pattern points y ∈ P(Mj ) for which there
exists x0 ∈ ∂T with the normal direction (cos γ, sin γ )T fulfilling |x0 − 2πy|2 ≤

17Adv Comput Math (2021)47: 17
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Fig. 5 Left: U
(i) for j = 4 (blue line), j = 6 (red line) and j = 8 (black line). Middle: L

(i) for j = 8

and ∈ Z with | | < 2j/2 (dark points), L(h)
8,−8 (red points) and L

(v)
8,−8 (green points). Right: L(i),max (red

line), L(i),min (blue line) and the curvature values 1
20 κ(x) (black line)

C 2−j/2 and θ
(i) ≤ γ ≤ θ

(i)
+1 and call this set L

(i) . As an example, the set L
(i) is

shown in the middle of Fig. 5 for j = 8 and all ∈ Z with | | < 2j/2 together with
L

(h)
8,−8 and L

(v)
8,−8. The latter two sets include pattern points which are close to bound-

ary points x0 ∈ ∂T with normal direction (cos γ, sin γ )T fulfilling θ
(i)
8,−8 ≤ γ ≤ θ

(i)
8,−7

for i ∈ {h, v}. By Theorem 2, we expect the values of the shearlet coefficients cor-
responding to the shearlets ψ

(i)
8,−8,y for y ∈ L

(i)
8,−8 to be bounded from below by a

constant. Therefore, we compute the values

L
(i),max := max

y∈L
(i)

D2π
1,3, π

6
, ψ

(i)
y 2

, L
(i),min := min

y∈L
(i)

D2π
1,3, π

6
, ψ

(i)
y 2

and show them in the right graph of Fig. 5 as functions of the orientation angles θ
(i) .

One can clearly see that the minimal values L
(i),min are bounded from below, which

confirms the result of Theorem 2. In our numerical example, a parametrization of the
boundary ∂D1,3, π

6
is given by γ (x) = 1

2

√
3 cos x +3 sin x, 3

√
3 sin x − cos x

T and

the curvature in each point is given by κ(x) = 3 (5 + 4 cos(2x))−3/2. On the right
side of Fig. 5, the values of the curvature κ(x) are shown in the points x0 ∈ ∂T ,
where the normal direction of x0 is orthogonal to θ

(i) for | | < 2j/2. As anticipated in

Theorem 2, one can see that the magnitude of the coefficients L
(i),max

, L
(i),min varies

as the curvature of the ellipse changes. If the curvature is small, which corresponds to
the “stretched” part of the boundary, the values become larger. Intuitively, this makes
sense since in that case a large part of the boundary is aligned with the corresponding
shearlet.
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5 Auxiliary results

For two-dimensional vector norms, we use the notation:

|x|p := |x1|p + |x2|p 1/p
, if 1 ≤ p < ∞,

max {|x1| , |x2|} , if p = ∞
and for binary relations and exponentials of vectors we write x ≤ y if x1 ≤ y1 and
x2 ≤ y2, xy := x

y1
1 x

y2
2 and xβ := xβ1 = x

β

1 x
β

2 for β ∈ R. Moreover for k,n ∈ N
2
0

with k ≤ n and n ∈ N0 with k ≤ n1 we define k! := k1! k2! and
n
k

:= n!
k!(n − k)! = n1

k1

n2

k2
,

n

k
:= n!

k!(n − |k|1)! .

The Fourier coefficients of a function f ∈ L1(T
2) are given by

ck(f ) := (2π)−2

T2
f (x) e−ikTx dx, k ∈ Z

2.

The Fourier transform of f ∈ L1(R
2) is defined as

F[f ](x) := Ff (x) := (2π)−2

R2
f (ξ) e−iξTx dξ , x ∈ R

2,

and we have the operator

F−1[f ](x) := F−1f (x) :=
R2

f (ξ) eiξ
Tx dξ , x ∈ R

2.

For f ∈ L1(R
2) and Ff ∈ L1(R

2), the inversion formula f (x) = FF−1f (x) =
F−1Ff (x) holds for all x ∈ R

2. We recall some basic results about the Fourier
transform and its connection to Fourier series via the Poisson summation formula.
Let q ∈ N0 and r ∈ N

2
0 with |r|1 ≤ q. If f ∈ L1(R

2) and (i x)q f ∈ L1(R
2), then

Ff ∈ Cq(R2) and
∂rFf (ξ) = F (i x)r f (x) (ξ). (12)

Moreover for f ∈ Cq(R2) and ∂rf ∈ L1(R
2), we have

F ∂rf (ξ) = (i ξ)r Ff (ξ). (13)

It is well known that there are constants C1(q, f ), C2(q, f ) > 0 such that for f ∈
C

q

0 (R2) with q ∈ N0 and all x ∈ R
2, we have:

|Ff (x)| ≤ C1(q, f )

(1 + |x|2)q , |F−1f (x)| ≤ C2(q, f )

(1 + |x|2)q . (14)

The sum in Eq. 10 converges for almost every x ∈ T
2 and f 2π ∈ L1(T

2). For the
Fourier coefficients, we have:

ck(f
2π ) = Ff (k), k ∈ Z

2. (15)

It is a consequence of Eq. 14 and [33, Corollary VII.2.6] that for a function f ∈
C

q

0 (R2) with q > 2, the Poisson summation formula

k∈Z2

Ff (k) eik
Tx =

n∈Z2

f (x + 2πn) = f 2π (x) (16)
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holds true for all x ∈ R
2.

In the following, we prepare the proof of Theorem 1 with several auxiliary lem-
mata. Note that in the proofs we only show the case i = h since the other case can be
handled similarly.

Lemma 2 For i ∈ {h, v} and q ∈ N0 let Ψ (i) ∈ Wq

2 be given. Then for r ∈ N
2
0 with|r|1 ≤ q and a rotation matrix Rγ with γ ∈ [0, 2π) we have

∂rΨ
(i)

(Rγ ξ) ≤ C(q) 2−j |r|1 1 + 2(j+1)/2 sin θ
(i) − γ

r1

× 1 + 2(j+1)/2 cos θ
(i) − γ

r2
.

Proof We have Rγ = cos γ − sin γ

sin γ cos γ
and use Eq. 6 to see

Ψ
(h)

(Rγ ξ) = g 2−j/2(ξ1 sin γ + ξ2 cos γ ) − 2−j (ξ1 cos γ − ξ2 sin γ )

×g 2−j (ξ1 cos γ−ξ2 sin γ ) .

In this proof, we will omit the long arguments of the function of the last line and
simply write g and g. Form = (m1, m2)

T with |m|1 ≤ q, we use the chain rule to get

∂mg = g Cq 2−j |m|1 |cos γ |m1 |sin γ |m2 ≤ C(q) 2−j |m|1

and, since = 2j/2 tan θ
(h) , we have

∂mg = g Cq 2−j/2 sin γ − 2−j cos γ
m1

2−j/2 cos γ + 2−j sin γ
m2

= C2(q) 2−j |m|1
⎛

⎝2j/2
sin θ

(h) − γ

cos θ
(h)

⎞

⎠

m1 ⎛

⎝2j/2
cos θ

(h) − γ

cos θ
(h)

⎞

⎠

m2

.

For sufficiently smooth functions f, g : R
2 → R, we employ the multivariate

Leibniz rule

∂r(fg) =
0≤s≤r

r
s

∂sf ∂r−sg, (17)

which together with the triangle inequality and the binomial theorem implies

∂rΨ
(h)

(Rγ ξ) ≤ C3(q) 2−j |r|1
0≤s≤r

r
s

⎛

⎝2j/2
sin θ

(h) − γ

cos θ
(h)

⎞

⎠

s1

×
⎛

⎝2j/2
cos θ

(h) − γ

cos θ
(h)

⎞

⎠

s2

≤ C4(q) 2−j |r|1 1 + 2(j+1)/2 sin θ
(i) − γ

r1

× 1 + 2(j+1)/2 cos θ
(i) − γ

r2
,
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since 2−1/2 ≤ cos θ
(h) ≤ 1.

In the following, we use notations and ideas from [4, 12] and fix a function φ ∈
C∞
0 ([−π, π ]2). Denote φj (x) := φ 2j/2 x and for Q ∈ Qj given by Eq. 9 we define

φQ(x) := φ 2j/2(x1 + π) − π(2k1 − 1), 2j/2(x2 + π) − π(2k2 − 1)

for k1, k2 = 1, . . . , 2j/2 and assume that φ defines a smooth partition of unity

Q∈Qj

φQ(x) = 1, x ∈ [−π, π)2. (18)

The ideas of the proof of the next lemma can be found in [4, 12].

Lemma 3 For u ∈ N let f ∈ Cu(R2) and fj := f φj . Then for i ∈ {h, v} and any
r ∈ N

2
0 we have

suppΨ
(i)

∂r Ffj (ξ)
2 dξ ≤ C(u, r) 2−j (2u+1+|r|1).

Proof Since φj ∈ C∞
0 (R2) we have fj ∈ Cu(R2) and using Eq. 17 we get

∂(u,0)fj =
u

s=0

u

s
∂(s,0)φj ∂(u−s,0)f =

u

s=0

ηs,

where ηs := u
s

∂(s,0)φj ∂(u−s,0)f . The function ηs is s-times continuously differen-
tiable with respect to the variable ξ1. For 0 ≤ t ≤ s, we can estimate:

∂(s+t,0)φj
R2,∞ = 2j (s+t)/2 ∂s+tφ

∂ξ s+t
1

2j/2·
R2,∞

≤ C1 2
j (s+t)/2 ≤ C1 2

js,

which leads to

∂(s,0)ηs
R2,∞ = u

s

s

t=0

s

t
∂(s+t,0)φj ∂(u−t,0)f

R2,∞
≤ C2(u, s) 2js .

By definition of the function φj , we have suppφj ≤ 2−j and with property Eq. 13
and the Plancherel theorem we get

R2
(2π)(i ξ1)

s Fηs(ξ)
2 dξ =

R2
∂(s,0)ηs(x)

2
dx ≤ C2(u) 2j (2s−1).

For the first variable in suppΨ
(i) we have 2j−1 ≤ ξ1 ≤ 2j+1 leading to

(2π)2(i 2j−1)2s

W
(i)

|Fηs(ξ)|2 dξ ≤
W

(i)
(2π)(i ξ1)

s Fηs(ξ)
2 dξ

≤ C2(u) 2j (2s−1),

which implies

W
(i)

|Fηs(ξ)|2 dξ ≤ C3(u) 2−j (19)
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for all 0 ≤ s ≤ u. Using again Eq. 13, it follows that

(i ξ1)
u Ffj = F ∂(u,0)fj =

u

s=0

Fηs,

which leads together with Eq. 19 to

W
(i)

Ffj (ξ)
2 dξ ≤ C4(u) 2−2ju

W
(i)

(i ξ1)
u Ffj (ξ)

2 dξ

≤ C5(u) 2−2ju
u

s=0 W
(i)

|Fηs(ξ)|2 dξ

≤ C6(u) 2−j (2u+1). (20)

Next, we consider the function

xrfj (x) = 2−j |r|1/2f (x) 2j |r|1/2 xrφj (x) = 2−j |r|1/2 f (x) φr 2j/2 x ,

where φr(x) := xr φj (x) and see that φr 2j/2· ∈ C∞
0 (R2) with |suppφr| ≤ 2−j is

fulfilled. Thus, the Fourier transform of the function f (x) φr 2j/2x satisfies Eq. 20
with a constant C6(u, r). We use Eq. 12 to deduce

∂rFfj (ξ) = F (i x)rfj (x) (ξ) = ir 2−j |r|1/2 F f (x) φr 2j/2x (ξ),

which leads to

W
(i)

∂rFfj (ξ)
2 dξ = 2−j |r|1

W
(i)

F f (x) φr 2j/2x (ξ)
2
dξ

≤ C7(u, r) 2−j (2u+1+|r|1).

Lemma 4 For u∈N let f ∈Cu(R2) and fj :=f φj . Moreover, for i ∈{h, v} and q ≥
2 let Ψ (i) ∈ Wq

2 be given. Then for Q ∈ Q0
j and any r ∈ N

2
0 with |r|1 ≤ q we have

∂r F[fj ]Ψ (i)
2

R2,2
≤ C(u, q) 2−j (2u+1+|r|1).

Proof For the partial derivative of the product inside of the norm, we use the
multivariate Leibniz rule Eq. 17 and obtain

∂r F[fj ]Ψ
(i)

2

R2,2
≤

0≤s≤r

r
s R2

∂s FfQ (ξ) ∂r−s Ψ
(i)

(ξ)
2
dξ .

Lemma 2 implies that for all ξ ∈ R
2 the inequality

∂r−s Ψ
(i)

(ξ)
2 ≤ C1(q) 2−j (|r|1−|s|1)
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holds, independent of the orientation parameter . Together with Lemma 3, we have

∂r F[fj ]Ψ
(i)

2

R2,2
≤

0≤s≤r

r
s

sup
ξ∈R2

∂r−s Ψ
(i)

(ξ)
2

×
suppΨ

(i)
∂s Ffj (ξ)

2 dξ

≤
0≤s≤r

r
s

C2(u, q) 2−j (|r|1−|s|1) 2−j (2u+1+|s|1)

= C3(u, q) 2−j (2u+1+|r|1).

Following the approach from [4, Chapter 6.1], we assume that for j ≥ j0 the edge
curve ∂T can be parametrized on the support of φQ, Q ∈ Q1

j , either as (x1, E(x1))
T

or (E(x2), x2)
T.

Definition 1 For x2 ∈ −2−j/2, 2−j/2 let (E(x2), x2)
T be a parametrization of ∂T

with E(0) = E (0) = 0. For f ∈ C2(R2), we call:

Ej (x) = f (x) φj (x) χ{x1≥E(x2)}(x)
standard edge fragment.

Let Ej,x0,γ be an arbitrary edge fragment, which tangent in the point x0 ∈ ∂T is
pointing in the direction (cos γ, sin γ )T for γ ∈ [0, 2π). Clearly, Ej,0,0 = Ej is a
standard edge fragment. Moreover, in [4, Corollary 6.7], it is remarked that, although
an arbitrary edge fragment Ej,x0,γ can not be obtained via rotation and translation of
a standard edge fragment, we have the connection:

FEj,x0,γ (ξ) = e−i xT0 ξ FEj (RT
γ ξ) (21)

of their Fourier transforms. The following lemma is a consequence of [4, Corollary 6.6].

Lemma 5 For j ∈ N let Ij = 2j−1, 2j+1 and Ej be a standard edge fragment.
Then for angles θ, γ ∈ [0, 2π) and r ∈ N

2
0, we have:

|ρ|∈Ij

∂r FEj ρ Θ(θ − γ )
2
dρ ≤ C(r)2−j (2+|r|1) 1 + 2j/2 |sin (θ − γ )| −5

.

We can deduce the following result, whose proof uses ideas from [12, Proposition 2.1].

Lemma 6 For i ∈ {h, v} let Ψ (i) ∈ Wq

2 . Then for a standard edge fragment Ej , a
rotation matrix Rγ by the angle γ ∈ [0, 2π) and r ∈ N

2
0 we have

suppΨ (i)

∂r FEj RT
γ ξ

2
dξ ≤ C(r) 2−j (3/2+|r|1) 1 + 2j/2 sin(θ(i) − γ )

−5
.
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Proof From Lemma 1, we know suppΨ
(i) ⊂ W

(i) and we transform the integral into
polar coordinates and use Lemma 5 to obtain:

suppΨ (i)

∂r FEj RT
γ ξ

2
dξ ≤ 2j+1

θ
(i)

+2

θ
(i)

−2

2j+1

2j
3

∂r FEj ρ Θ(θ − γ )
2
dρ dθ

≤ C(r) 2−j (1+|r|1)
θ

(i)
+2

θ
(i)

−2

1+2j/2 |sin(θ−γ )| −5
dθ

≤ C2(r) 2−j (3/2+|r|1) 1+2j/2 sin(θ(i)−γ )
−5

.

Lemma 7 For i ∈ {h, v} let Ψ (i) ∈ Wq

2 . Then for a standard edge fragment Ej , a
rotation matrix Rγ by the angle γ ∈ [0, 2π) and r ∈ N

2
0 we have

∂r FEj (RT
γ ·) Ψ

(i)
2

R2,2
≤ C(q) 2−j (3/2+|r|1) 1 + 2j/2 sin(θ(i) − γ )

−5
.

Proof We repeat the steps of the proof of Lemma 4 and use Lemma 6 instead of
Lemma 3 in the last step.

The Laplace operator is denoted by Δ := ∂(2,0) + ∂(0,2) and for q ∈ N0 we have

Δq =
|r|1=q

q

r
∂2r. (22)

For the next lemma, we define the second-order differential operator L := I + 2jΔ,
which was already used in [4, 12]. Using Eq. 22, we have:

Lq = I + 2jΔ
q =

q

s=0

q

s
2js Δs =

q

s=0

q

s
2js

|r|1=s

s

r
∂2r. (23)

Lemma 8 For u ∈ N let f ∈ Cu(R2) and fj := f φj . Moreover for i ∈ {h, v} let
Ψ (i) ∈ W2q

2 with q ≥ 2. Then we have

Lq F[h]Ψ (i)
2

R2,2
≤
⎧
⎨

⎩

C1(u, q) 2−j (2u+1), h = fj ,

C2(q) 2−3j/2 1+2j/2 sin θ
(i)−γ

−5
h=Ej (RT

γ ·).
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Proof By applying the Cauchy-Schwarz inequality twice, we obtain

Lq F[h]Ψ (i)
2

R2,2
≤ q

q

s=0

q

s

2

(s + 1) 22js

|r|1=s

s

r

2

∂2r F[h]Ψ (i)
2

R2,2

and get the result by inserting the corresponding upper bounds for the norm from
Lemma 4 and Lemma 7.

The last part of this section consists of lemmata which are needed to proof
Theorem 2. We start with some important localization properties.

Lemma 9 For i ∈ {h, v} and q ≥ 2 let Ψ (i) ∈ W2q
2 be given. Then for all x ∈

[−π, π)2 we have

ψ
(i)

y(x) ≤ C(q) 23j/2 min

⎧
⎪⎨

⎪⎩
1,

1 + 2(j+1)/2 sin θ
(i) − γ

q

2j |x − 2πy|2 q

⎫
⎪⎬

⎪⎭
,

where x − 2πy = |x − 2πy|2 (cos γ, sin γ )T for γ ∈ [0, 2π).

Proof The function Ψ
(h) is nonnegative leading to

ψ
(h)

y(x) ≤
k∈Z2

Ψ
(h)

(k) = ψ
(h)

y(2πy) ≤ C1 2
3j/2,

where the last estimate follows from Eq. 7.
Since Ψ

(h) ∈ W2q
2 , we can use the Poisson summation formula Eq. 16 to arrive at

ψ
(h)

y(x) =
k∈Z2

Ψ
(h)

(k) eik
T(x−2πy)

=
n∈Z2

F−1Ψ
(h) x − 2π(y − n) ≤

n∈Z2

|S(n)| , (24)

where

S(n) :=
R2

Ψ
(h)

(ξ) ei ξ
T(x−2π(y−n))dξ .

Let Rγ be a rotation matrix by the angle γ . Then

RT
γ (x − 2πy) = |x − 2πy|2RT

γ (cos γ, sin γ )T = |x − 2πy|2 (1, 0)T

and in the integral S(0) we use this rotation matrix for a change of variable to see

S(0) =
R2

Ψ
(h)

(Rγ ξ) ei ξ1|x−2πy|2dξ .
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Since the function Ψ
(h) is compactly supported, we can use q-times partial integra-

tion together with Lemma 2 and Eq. 7 to deduce

|S(0)| ≤
sup
ξ∈R2

∂(q,0)Ψ
(h)

(Rγ ·)

|x − 2πy|q2
suppΨ

(h)
(Rγ ·)

dξ

≤
C(q) 23j/2 1 + 2(j+1)/2 sin θ

(h) − γ
q

2j |x − 2πy|2 q . (25)

Using the same idea as before, we substitute with the rotation matrices Rγn in
the integrals S(n), where γn is the direction of the vector x − 2π (y − n). Similar to
Eq. 25 we use 2q-times integration by parts with respect to the first variable, Lemma
2 and Eq. 7 to obtain

|S(n)| ≤
C2(q) 23j/2 1 + 2(j+1)/2 sin θ

(h) − γn
2q

2j |x − 2π(y − n)|2 2q

≤ C3(q) 23j/2

2j/2 |x − 2π(y − n)|2 2q
. (26)

Observe that

π2 ≥ π |x − 2πy|∞ ≥ π√
2

|x − 2πy|2 ≥ |x − 2πy|2
and with the inverse triangle inequality we can estimate

|x − 2π(y − n)|2 ≥ 2π |n|∞ − |x − 2πy|∞ ≥ |x − 2πy|2(2 |n|∞ − 1).

Since n ∈ Z
2 ; |n|∞ = k, k ∈ N = 8k we use Eq. 26 to conclude

n∈Z2\{0}
|S(n)| ≤ C3(q) 2−jq 23j/2

n∈Z2\{0}
|x − 2π(y − n)|−2q

2

≤ C3(q) 23j/2

2j |x − 2πy|2 q

∞

k=1

8k

(2k − 1)2q
(27)

and the infinite sum in the last line converges because q ≥ 2. We finish the proof by
making use of Eqs. 25 and 27 in Eq. 24.

Let γ : [0, 2π) → ∂T be a parametrization of the boundary ∂T . We assume
there is M ∈ N such that for each x ∈ [ak, bk], k = 1, . . . , M, the curve γ can
either be represented as a horizontal curve (x, f (x))T or a vertical curve (f (x), x)T.
Depending on the choice of the parameter i ∈ {h, v}, we will distinguish if a curve is
horizontal or vertical. If i = h then (f (x), x)T with f (x) ≤ 1 is a vertical curve
and (x, f (x))T with f (x) < 1 is a horizontal curve. On the other hand, if i = v
then (f (x), x)T with f (x) < 1 is a vertical curve and (x, f (x))T with f (x) ≤ 1
is a horizontal curve.
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Let y = (y1, y2)
T ∈ P N(h) . We assume that the boundary curve can be ver-

tically parametrized by (f (x), x)T for |x − 2πy2| ≤ 2−j/2. For m := f (2πy2) ∈
[−1, 1] and A := 1

2 f (2πy2) let

Ty(x) = f (2πy2) + m(x − 2πy2) + A(x − 2πy2)
2 (28)

be the second-order Taylor approximation for f (x) in the point x0 = 2πy2. Denote
by T (h)

y the modified version of T by replacing the function f (x) by the approxima-
tion Ty(x) for |x − 2πy2| ≤ 2−j/2 if the corresponding parametrization is a vertical

curve and similarly T (v)
y as the modified version of T if the parametrization is a hor-

izontal curve. Although this notation seems to be counterintuitive, it is convenient
since by Lemma 11 only the interaction of horizontal wavelets with vertical curves
and vertical wavelets with horizontal curves contributes to the desired lower bound in
Theorem 2. The analog of the following lemma can be found in [17] for the discrete
and in [13, 14] for the continuous setting.

Lemma 10 For i ∈ {h, v} and large q ∈ N let Ψ (i) ∈ W2q
2 be given. Then for

y ∈ P N(i) we have

T 2π − T (i)
y

2π
, ψ

(i)
y

2
≤ C(q) 2−j/4.

Proof We only show the proof for i = h since the other case is similar. For this proof,
we define the set Bj = (x1, x2)

T ∈ [−π, π)2 : |x2 − 2πy2| ≤ 2−7j/16 and write

T 2π − T (h)
y

2π
, ψ

(h)
y

2
≤

T2

ψ
(h)

y(x) χT (x) − χ
T

(h)
y

(x) dx

=
Bj

+
Bc

j

ψ
(h)

y(x) χT (x) − χ
T

(h)
y

(x) dx

= : I1 + I2.

Using the definition of Ty(x) in Eq. 28, we can estimate

f (x) − Ty(x) ≤ C |x − 2πy2|3

for the area between T and T (h)
y if |x − 2πy2| ≤ 2−j/2. From Lemma 9, we can

obtain the uniform bound ψ
(h)

y(x) ≤ C(q) 23j/2 and we can estimate the first

integral by

|I1| ≤ C(q) 23j/2

|x−2πy2|≤2−7j/16

|x − 2πy2|3 dx ≤ C(q) 23j/22−7j/4 = C(q) 2−j/4.
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In addition, we use again Lemma 9 but this time for the decay term in the minimum
to arrive at

|I2| ≤ C(q) 23j/2

|x−2πy2|>2−7j/16

2j/2 |x − 2πy2|
−q

dx

≤ C3(q) 23j/2 2−jq/2 27(q−1)j/16 = C3(q) 2−j (q/16−17/16)

for the second integral, which shows that the lemma is proved for q ≥ 21.

From the divergence theorem, one can see that the Fourier transform of a
characteristic function T = χT is given by

FT (ξ)=(2π)−2

R2

χT (x) e−ixTξ dx = i (2π)−2

|ξ |2
∂T

e−ixTξ ΘT(θ)n(x) dσ(x) (29)

with the outer normal vector n(x). We remind the parametrization of ∂T given by
γ (x), x ∈ [0, 2π) and use polar coordinates to represent the line integral Eq. 29 as

FT (ρ, θ) = i

(2π)2 ρ

2π

0

e−iρ ΘT(θ)γ (x)ΘT(θ)n(γ (x)) γ (x) 2 dx

= i

(2π)2 ρ

M

k=1

Ik(ρ, θ),

where

Ik(ρ, θ) :=
bk

ak

e−iρ ΘT(θ) γ k(x) ΘT(θ)βk(x) dx (30)

and βk(x) := n(γ k(x)) 1 + fk(x)
2. Using this, we can conclude:

F−1 F[T ]Ψ (i)
(2πy) =

R2
FT (ξ) Ψ

(i)
(ξ) e2π iξ

Tydξ

= i

(2π)2

M

k=1

∞

0

2π

0

Ψ
(i)

(ρ, θ) e2π iρΘT(θ) y Ik(ρ, θ) dθ dρ

= 2j i

(2π)2

M

k=1

∞

0

2π

0

Ψ
(i)

(2j ρ, θ) e2π i2
j ρΘT(θ) y

× Ik(2
j ρ, θ) dθ dρ, (31)

where we again transformed the integral into polar coordinates and the interchange
of summation and integration is valid since the function Ψ

(i) has finite support.

Denote by M(h) ⊂ {1, . . . , M} the set of all indices such that for k ∈ M(h) the
curve γ k is horizontal and by M(v) ⊂ {1, . . . , M} the set of all indices such that for
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k ∈ M(v) the curve γ k is vertical. Obviously we have M(h) ∪ M(v) = {1, . . . , M}
and can prove the following lemma, whose idea of proof was given in [17].

Lemma 11 For i ∈ {h, v} and q ∈ N let Ψ (i) ∈ Wq

2 be given. Then for any n ∈ N

there is a constant C(n) > 0 such that for every k ∈ M(i) we have

∞

0

2π

0

Ψ
(i)

(2j ρ, θ) e2π i2
j ρ ΘT(θ) y Ik(2

j ρ, θ) dθ dρ ≤ C(n) 2−jn.

Proof We show the result for i = h since the other case is similar. Suppose that
k ∈ M(h) and γ k(x) = (x, fk(x))T for x ∈ [ak, bk]. Hence, the outer normal vector
in x is given by n(γ k(x)) = (fk(x), −1)T leading to

Ik(2
j ρ, θ) =

bk

ak

e−i2j ρ ΘT(θ) (x,fk(x))T (fk(x), −1)Θ(θ) βk(x) dx.

From the assumption on horizontal curves for i = h we have fk(x) < 1 and the

support properties of the function Ψ
(h) given in Lemma 1 imply

|θ | ≤ θ
(h)
j,2j/2+2

= arctan 1 + 21−j/2 ≤ π

4
+ δ

for some small δ > 0. From that, we conclude:

∂

∂x
(x, fk(x))Θ(θ) = ∂

∂x
cos θ(x + fk(x) tan θ)

≥ |cos θ | (1 − fk(x) tan θ ) ≥ C.

For n ∈ N, we do n-times integration by parts with respect to the variable x and
obtain Ik(2j ρ, θ) ≤ 2−jN , which leads to

∞

0

2π

0

Ψ
(h)

(2j ρ, θ) e2π i2
j ρΘT(θ) y Ik(2

j ρ, θ) dθ dρ ≤ C(n) 2−jn suppΨ
(h)

(2j ·) .

Lemma 1 implies suppΨ
(h)

(2j ·) ≤ C and since n ∈ N was arbitrary the lemma is

proven.

The proof of the following lemma was given in [14].

Lemma 12 For i ∈ {h, v} and q ∈ N let Ψ (i) ∈ Wq

2 and y = (y1, y2)
T ∈ P N(i)

be given. Then for any n ∈ N there is a constant C(n) > 0 such that

∞

0

2π

0 |x−2πy2|>2−j/2

Ψ
(i)

(ρ, θ) ei2
j ρΘT(θ)(2πy−γ (x)) ΘT(θ)β(x) dx dθ dρ

≤ C(n) 2−jn.
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Fig. 6 Visualization of the functions F+(x) (black), F−(x) (blue) and 1 + √
2 F−(x) (red) for x ∈

[0, 20] together with upper and lower bounds of these functions (dashed lines) and the local extremal
points from Lemma 14

The following lemma is a special case of [32, Proposition 8.3], called method of
stationary phase.

Lemma 13 Let φ and ϕ be smooth functions on the real line. Suppose φ (t0) = 0
and φ (t0) = 0. If ϕ is supported in a sufficiently small neighborhood of t0, then

R

eiΛ φ(t) ϕ(t) dt = a0 Λ−1/2 + O(Λ−1)

as Λ → ∞, where a0 = 2π i
|φ (t0)|

1/2
ϕ(t0).

For x ∈ (0, ∞), we introduce the so-called Fresnel integrals

Fc(x) :=2

√
x

0

cos v2 dv=
x

0

cos (v)√
v

dv, Fs(x) := 2

√
x

0

sin t2 dt =
x

0

sin (v)√
v

dv

and define the functions F+(x) := Fc(x)+Fs(x) and F−(x) := Fc(x)−Fs(x) to
show the following lemma (Fig. 6).

Lemma 14 We have

F+(x) > F−(x) > 0 for 0 < x < 3π
4 ,

F+(x) > 1 + √
2 F−(x) for x ≥ 3π

4 .

Proof It is clear that Fc(0) = Fs(0) = 0 and for x > 0 it is well known that Fc(x)

> 0 and Fs(x) > 0, which implies

F+(x) > Fc(x) > F−(x). (32)
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Moreover, we have
d

dx
F+(x) = cos x + sin x√

x
= 0

for xk := 3π
4 + kπ, k ∈ N0 and

d2

dx2
F+(x) = cos x − sin x√

x
− cos x + sin x

2(
√

x)3
.

Since

cos xk − sin xk√
xk

− cos xk + sin xk

2(
√

xk)3
= cos xk − sin xk√

xk

=
⎧
⎨

⎩

− 2
xk

< 0 for k even,

2
xk

> 0 for k odd,

we see that xk is a local maximum point of F+ for k even and a local minimum point
for k odd. To get information about global extremal points, we define

I0 :=
x0

0

cos v + sin v√
v

dv and Ik :=
xk

xk−1

cos v + sin v√
v

dv for k ≥ 1

and write F+(xk) =
k

j=0
Ij . For v ∈ (xk−1, xk) we have (cos v + sin v) > 0 for

k even and (cos v + sin v) < 0 for k odd. It follows that Ik > 0 for k even and
Ik < 0 for k odd. Additionally, we have I0 > 3.36 > 1.45 > |I1| and since v−1/2 is
monotonically decreasing we have |Ik| > |Ik+1| for k ≥ 1.

Putting these observations together, we obtain (Ik + Ik+1) > 0 for k even and
(Ik +Ik+1) < 0 for k odd. From that, we deduce that x0 = 3π

4 is the global maximum
point of F+ since for even k > 0 we have

F+(xk) = I0 +
k

j=1

Ij < I0 = F+(x0) < 3.37. (33)

Similarly for k > 1 odd, we can write

F+(xk) = I0 + I1 +
k

j=2

Ij > I0 + I1 = F+(x1) > 1.91, (34)

which shows that smallest local minimum is obtained at the point x1 = 7π
4 and thus

1.91 < F+(x) < 3.37 for x ≥ x0. For 0 ≤ x < x0 we clearly have 0 ≤ F+(x) <

3.37.
Similarly, one can show that xk := π

4 + kπ, k ∈ N0, is a local maximum point
of F− for k even and a local minimum point for k odd. Since x0 < 3π

4 < x1 = 5π
4

and F−( 3π4 ) > 0.14 > 0 we have F−(x) > 0 for 0 < x < 3π
4 , which together with

Eq. 32 gives the first statement of the lemma.
With similar arguments as in Eqs. 33 and 34, we have

−0.69 < F−(x1) ≤ F−(x) ≤ F−(x2) < 0.53
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for x ≥ 3π
4 . Since 1 + √

2 0.69 < 1.91 we obtain F+(x) > 1 + √
2 F−(x)

for x ≥ 3π
4 and the proof is complete.

For the next lemma, we define the integrals

a(λ, p, A) :=
∞

0
g 2

√
Aλ v + p λ + g 2

√
Aλ v − p λ cos v√

v
dv, (35)

b(λ, p, A) :=
∞

0
g 2

√
Aλ v + p λ + g 2

√
Aλ v − p λ sin v√

v
dv. (36)

Lemma 15 For λ ∈ 1
3 ,

4
3 , p ∈ − 1

4 ,
1
4 and A > 0 we have a(λ, p, A) > 0 and

b(λ, p, A) > 0 and at least one of the inequalities

a(λ, p, A) − b(λ, p, A) > 0

or

a(λ, p, A) + b(λ, p, A) > 1 + √
2 a(λ, p, A) − b(λ, p, A)

is true.

Proof We consider only the case p ∈ 0, 1
4 because a(λ, p, A) and b(λ, p, A) are

symmetric in that variable. Let the function h± : 1
3 ,

4
3 × 0, 1

4 ×(0, ∞)×[0, ∞) →
R be given by

h±(λ, p, A, v) := 2
√

Aλ v ± p λ.

For fixed (λ, p, A) ∈ 1
3 ,

4
3 × 0, 1

4 × (0, ∞), we have

− 1

3
≤ −pλ = h−(λ, p, A, 0) ≤ h+(λ, p, A, 0) = pλ ≤ 1

3
(37)

and the functions h± are monotonically increasing in the variable v ≥ 0. Since
g ∈ Wq this implies that in the variable v the functions g h+(λ, p, A, v) and

g h−(λ, p, A, v) and hence the sum g h+(λ, p, A, v) + g h−(λ, p, A, v) are

also monotonically decreasing. Similarly, we have

h+(λ, p, A, v) ≥ h−(λ, p, A, v) ≥ 2

3
if

v ≥ p

3A
+ 1

9Aλ
+ p2λ

4A
=: r(λ, p, A) > 0,

which leads to g h+(λ, p, A, v) + g h−(λ, p, A, v) = 0 for v ≥ r(λ, p, A).

Moreover, Eq. 37 implies

lim
v→0+ g h+(λ, p, A, v) + g h−(λ, p, A, v) = 2
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and we use the mean value theorem of integration to deduce that there exists x ∈
(0, r(λ, p, A)] such that

a(λ, p, A) ± b(λ, p, A) =
r(λ,p,A)

0

g 2
√

Aλv + pλ

+g 2
√

Aλv − pλ
cos v ± sin v√

v
dv

= 2F±(x).

Using Lemma 14, the proof is finished.

For the last lemma of this section, we define the following integrals:

P1(D, p, A) :=
4
3

1
3

g(λ) λ−1 a(λ, p, A) + b(λ, p, A) cos(Dλ)

+ a(λ, p, A) − b(λ, p, A) sin(Dλ) dλ,

P2(D, p, A) :=
4
3

1
3

g(λ) λ−1 a(λ, p, A) + b(λ, p, A) sin(Dλ)

− a(λ, p, A) − b(λ, p, A) cos(Dλ) dλ.

Lemma 16 There is a constant C > 0 such that for all D ∈ − 3π
4 , 3π

4 , p ∈
− 1

4 ,
1
4 and A > 0 at least one of the inequalities

P1(D, p, A) ≥ C or P2(D, p, A) ≥ C (38)

is true.

Proof We define

P +(D, p, A) := P1(D, p, A) + P2(D, p, A)

= 2

4
3

1
3

g(λ) λ−1 b(λ, p, A) cos(Dλ) + a(λ, p, A) sin(Dλ) dλ

and show that there exists a constant C > 0 that either one of the statements in
Eq. 38 or equivalently P +(D, p, A) ≥ C is true. For the rest of the proof, the

variables p ∈ − 1
4 ,

1
4 and A > 0 will be arbitrary and fixed. For simplicity, we

assume D ∈ [0, 3π
4 ] since the proof for negative values of D is similar. We consider

different intervals for the variable D and show that at least one of the equivalent
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propositions, see Eq. 38 or P +(D, p, A) ≥ C , is true. From the construction

of the window function, we deduce g(λ) λ−1 > 0 and from Lemma 15 we know

a(λ, p, A) + b(λ, p, A) > 0 for λ ∈ 1
3 ,

4
3 . Thus, for D = 0, it holds that

P1(0, p, A) =
4
3

1
3

g(λ) λ−1 a(λ, p, A) + b(λ, p, A) dλ > 0.

For D ∈ 0, 3π
8 , we have Dλ ∈ 0, π

2 leading to sin(Dλ) > 0 and cos(Dλ) > 0

and from Lemma 15 we know a(λ, p, A) > 0 and b(λ, p, A) > 0 which gives
P +(D, p, A) > 0.

For D ∈ 3π
8 , 3π

4 , we split up

4
3

1
3

=
⎛

⎝
π
2D

1
3

+
π
D

π
2D

+
4
3

π
D

⎞

⎠ and write

P2(D, p, A) := P21(D, p, A) + P22(D, p, A) + P23(D, p, A),

P +(D, p, A) := P +
1 (D, p, A) + P +

2 (D, p, A) + P +
3 (D, p, A).

Since 4
3 ≤ π

D
and supp g = 1

3 ,
4
3 , it follows that P23(D, p, A)=P +

3 (D, p, A)=0.

We assume a(λ, p, A) > b(λ, p, A) > 0 (the first case of Lemma 15). In the
integral P +

1 we have Dλ ∈ π
8 , π

2 , hence sin(Dλ) > 0 and cos(Dλ) > 0. This
leads directly to P +

1 (D, p, A) > 0. Since Dλ ∈ π
2 , π implies cos(Dλ) < 0 and

sin(Dλ) > 0 in the integral P +
2 we can estimate

P +
2 (D, p, A) >

π
D

π
2D

g(λ) λ−1 a(λ, p, A) cos(Dλ) + sin(Dλ) dλ

=
π
D

π
2D

h(λ, p, A) cos(Dλ) + sin(Dλ) dλ (39)

with h(λ, p, A) := g(λ) λ−1 a(λ, p, A). This function is monotonically decreasing

for λ ∈ 2
3 ,

4
3 . Using the substitution t = Dλ − 3π

4 , we obtain

P +
2 (D, p, A) > −

√
2

D

π
4

− π
4

h
3π + 4t

4D
, p, A sin t dt

=
√
2

D

π
4

0

h
3π−4t

4D
, p, A −h

3π+4t

4D
, p, A sin t dt >0, (40)
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where we used the monotonicity of the function h to deduce the last inequality. Over-

all, for D ∈ 3π
8 , 3π

4 and a(λ, p, A) > b(λ, p, A) > 0 we showed P +
1 (D, p, A) >

0, P +
2 (D, p, A) > 0 and P +

3 (D, p, A) = 0, which leads to P +(D, p, A) > 0 in that
case.

Let us assume a(λ, p, A) + b(λ, p, A) > 1 + √
2 a(λ, p, A) − b(λ, p, A)

(the second case of Lemma 15). In P21 we have Dλ ∈ π
8 , π

2 , hence

1 + √
2 sin(Dλ) > cos(Dλ) > 0, which allows for the estimate

P21(D, p, A) >

π
2D

1
3

g(λ)λ−1 a(λ, p, A) − b(λ, p, A)

× 1 + √
2 sin(Dλ) − cos(Dλ) dλ

> 0.

To estimate the integral P22 we can use exactly the same arguments as in Eqs. 39 and
40 but this time with the function h(λ, p, A) := g(λ) λ−1 a(λ, p, A) + b(λ, p, A)

instead of h which gives P22(D, p, A) > 0 and overall P2(D, p, A) > 0.

6 Proof of themain results

We start with the proof of Theorem 1.
Recall that we denote the set of dyadic squares Q ⊆ [−π, π)2 of the form Eq. 9

for j ∈ N0 by Qj and smooth functions φQ with support on these dyadic squares
with the property

Q∈Qj

φQ(x) = 1, x ∈ [−π, π)2,

are defined in Eq. 18. Moreover, for u ∈ N let f ∈ Cu(R2) and define fQ := f φQ

for Q ∈ Qj . We can decompose

f =
Q∈Qj

fQ =
Q∈Q0

j

fQ +
Q∈Q1

j

fQ, (41)

where Q ∈ Q1
j ⊆ Qj if ∂T ∩ Q = ∅. For the non-intersecting squares we define

Q0
j

:= Qj \ Q1
j .

According to Eq. 10, we denote by f 2π
Q the 2π -periodization of fQ. From the

finite support of fQ, we deduce fQ ∈ L1(R
2) and from Eq. 15 we get

ck(f
2π
Q ) = F[fQ](k), k ∈ Z

2.

Moreover by Eq. 12, we have FfQ ∈ Cq(R2) for all q ∈ N0. The smoothness

assumption on the window function Ψ
(i) ∈ W2q

2 implies F[fQ] Ψ
(i) ∈ C

q

0 (R2).
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Thus, the estimates Eq. 14 hold for this function and with Parseval’s identity and the
Poisson summation formula it follows:

f 2π
Q , ψ

(i)
y 2

=
k∈Z2

F[fQ](k) Ψ
(i)

(k) e2π ik
Ty

=
n∈Z2

F−1 F[fQ]Ψ (i) 2π(y + n) =
n∈Z2

SQ(n),

where

SQ(n) :=
R2

F[fQ](ξ) Ψ
(i)

(ξ) e2π iξ
T(y+n) dξ .

For Q ∈ Q0
j , we choose x1 ∈ [−π, π ]2 such that

1 ≤ |2πy − x1|∞ ≤ |2πy − x1|2 ≤ π (42)

and define f (x) := fQ(x−x1). From Eq. 21, we see thatF[f ](ξ) = ei x
T
1 ξ F[fQ](ξ)

and since Ff Ψ
(i) ∈ C

q

0 (R2) we can use integration by parts repeatedly in both

variables for every r ∈ N
2
0 with |r|1 ≤ q to obtain

2π i(y + n) − x1
r
SQ(n) =

R2
∂r F[f ]Ψ (i)

(ξ) ei ξ
T(2π(y+n)−x1)dξ .

With the calculation

1 + 2j |2π(y + n) − x1|22
q =

q

s=0

q

s
2js

|r|1=s

s

r
2π(y + n) − x1

2r

and the representation Eq. 23 of the q-th order differential operator Lq we have

1 + 2j |2π(y + n) − x1|22
q

SQ(n) =
R2

Lq F[f ] Ψ
(i)

(ξ) ei ξ
T(2π(y+n)−x1)dξ .

(43)
A consequence from Hölder’s inequality for a set A ⊂ R

2 with finite Lebesgue
measure |A|, parameters 1 ≤ p ≤ s < ∞ and a function f ∈ Ls(A) is the estimate

f A,p ≤ |A|(s−p)/(p s) f A,s . (44)

From Lemma 8, we concludeLq F[f ]Ψ (i) ∈ L2(R
2) and with the estimate Eq. 44

for p = 1 and s = 2 together with the upper bound for the support size of Ψ
(i) given

by Eq. 7 we see that

Lq F[f ] Ψ
(i)

R2,1
≤ 23j/4 Lq F[f ]Ψ (i)

R2,2
. (45)

Next, Eqs. 43 and 45 and Lemma 8 for u = 2 imply

f 2π
Q , ψ

(i)
y 2

≤
n∈Z2

Lq F[f ]Ψ (i)

R2,1
1 + 2j |2π(y + n) − x1|22

−q

≤ C(q) 2−7j/4

n∈Z2

1 + 2j |2π(y + n) − x1|22
−q

. (46)
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We split up the infinite sum in the last line into

1 + 2j |2πy − x1|22
−q +

n∈Z2\{0}
1 + 2j |2π(y + n) − x1|22

−q

, (47)

where due to Eq. 42 the summand corresponding to n = 0 is bounded from above
by C(q) 2−jq . With the monotonicity of finite vector norms and the inverse triangle
inequality, we get

|2π(y + n) − x1|2 ≥ |2π(y + n) − x1|∞ ≥ π 2 |n|∞ − 2y − x1
π ∞

≥ π(2 |n|∞ − 1)

for n = 0, because again with Eq. 42 we have 2 y − x1
π ∞ ≤ 1. Moreover the

equation n ∈ Z
2 ; |n|∞ = k, k ∈ N = 8k holds, leading to

n∈Z2\{0}
1 + 2j |2π(y + n) − x1|22

−q ≤ C(q) 2−jq
∞

k=1 |n|∞=k

(2 |n|∞ − 1)−2q

= C(q) 2−jq
∞

k=1

8k

(2k − 1)2q

≤ C2(q) 2−jq . (48)

Using the splitting Eq. 47 and the corresponding upper bound Eq. 48 for the infinite
sum in Eq. 46, we get:

f 2π
Q , ψ

(i)
y 2

≤ C(q) 2−j (7/4+q)

in the case Q ∈ Q0
j .

For Q ∈ Q1
j , we use Eq. 21 to write

SQ(n) :=
R2

F[Ej ](RT
γ ξ) Ψ

(i)
(ξ) ei ξ

T(2π(y+n)−x0) dξ ,

where Ej is a standard edge fragment. With the same arguments as in the first case
and again Lemma 8, we can deduce:

f 2π
Q , ψ

(i)
y 2

≤
n∈Z2

Lq F[Ej ](RT
γ ·) Ψ

(i)

R2,1
1+2j |2π(y + n) − x0|22

−q

≤ C 1 + 2j/2 sin(θ(i) − γ )
−5/2

×
n∈Z2

1 + 2j |2π(y + n) − x0|22
−q

(49)
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and we split up the infinite sum into

1 + 2j |2πy − x0|22
−q +

n∈Z2\{0}
1 + 2j |2π(y + n) − x0|22

−q

.

Using the same arguments, which led to Eq. 48, we see that the infinite sum in the
last equation is bounded from above by C(q) 2−jq implying

f 2π
Q , ψ

(i)
y 2

≤ C(q) 1 + 2j/2 sin(θ(i) − γ )
−5/2

1 + 2j |x0 − 2πy|22
−q

in the case Q ∈ Q1
j .

To finish the proof, we use the decomposition Eq. 41 and the fact that Q0
j ≤ C 2j

to get

f 2π , ψ
(i)

y 2
≤

Q∈Q0
j

f 2π
Q , ψ

(i)
y 2

+
Q∈Q1

j

f 2π
Q , ψ

(i)
y 2

≤ C3(q)

Q∈Q1
j

1 + 2j/2 sin(θ(i) − γ )
−5/2

× 1 + 2j |x0 − 2πy|22
−q

.

We proceed with the proof of Theorem 2.
For y ∈ P(N(i)

) let T (i)
y be the modified version of T (i) as explained in the

paragraph after Eq. 28. Since T (i)
y ∈ L1(R

2), i ∈ {h, v} , we use Eq. 15 to get
ck((T (i)

y )2π ) = FT (i)
y (k), k ∈ Z

2.

From the finite support of T (i)
y , we deduce FT (i)

y ∈ C2q(R2) for all q ∈ N0.

The smoothness assumption on the window Ψ
(i) ∈ W2q

2 implies F[T (i)
y ]Ψ (i) ∈

C
2q
0 (R2). Similar as in the proof of Theorem 1, this product fulfills Eq. 14 and with

Parseval’s identity and the Poisson summation formula it follows:

T (i)
y

2π
, ψ

(i)
y

2
=

n∈Z2

F−1 F[T (i)
y ]Ψ (i)

(2π(y + n)) =
n∈Z2

S(n),

where

S(n) :=
R2

F[T (i)
y ](ξ) Ψ

(i)
(ξ) e2π iξ

T(y+n) dξ .

Using again the decomposition Eq. 41 for T we can repeat the arguments from the
proof of Theorem 1 to see that

n∈Z2\{0}
|S(n)| ≤ C1(q) 2−jq .

Assume that we can show
|S(0)| ≥ C2(q). (50)
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With the inverse triangle inequality, we can deduce

T (i)
y

2π
, ψ

(i)
y

2
≥ |S(0)| −

n∈Z2\{0}
|S(n)| ≥ C3(q)

and again with the inverse triangle inequality and Lemma 10 we finally get

T 2π , ψ
(i)

y 2
≥ T (i)

y

2π
, ψ

(i)
y

2
− T 2π − T (i)

y

2π
, ψ

(i)
y

2
≥C4(A0, q).

Thus, it is left to show the existence of a constant C2(q) > 0 such that Eq. 50 is
fulfilled.

From Eqs. 30 and 31, we recall the representation:

S(0) = 2j i

(2π)2

M

k=1

∞

0

2π

0

Ψ
(i)

(2j ρ, θ) e2π i2
j ρΘT(θ) y Ik(2

j ρ, θ) dθ dρ,

and consider only the case i = h since the other case is similar. First, we use Lemma
11 and the inverse triangle inequality to see that |S(0)| is bounded from below by

2j

(2π)2
k∈M(v)

∞

0

2π

0

Ψ
(h)

(2j ρ, θ) e2π i2
j ρΘT(θ) yIk(2

j ρ, θ) dθdρ − M(h) C(n)2−jn ,

where the last term is negligible for large j and n ∈ N. Assume that there is k∗ ∈
M(v) such that 2πy2 − π 2−j/2, 2πy2 + 2−j/2 ⊆ [ak∗, bk∗]. In the following, we
omit the index k∗ for simplicity and let ε = 2−j/2. Lemma 12 and the inverse triangle
inequality lead to

k∈M(v)

∞

0

2π

0

Ψ
(h)

(2j ρ, θ) e2π i2
j ρΘT(θ) yI(2j ρ, θ) dθ dρ

≥
∞

0

2π

0

2πy2+ε

2πy2−ε

Ψ
(h)

(2j ρ, θ) ei2
j ρΘT(θ) 2πy−(f (x),x)T ΘT(θ)β(x) dx dθ dρ

−C2 2
−jn.

From the previous observations, we conclude that, if we want to show |S(0)| ≥ C(q),
it is enough to find a constant C2(q) > 0 such that

∞

0

2π

0

2πy2+ε

2πy2−ε

Ψ
(h)

(2j ρ, θ) ei2
j ρΘT(θ) 2πy−(f (x),x)T ΘT(θ)β(x) dx dθ dρ

≥ C2(q) 2−j .
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We write the last integral as

I :=
∞

0

2π

0

2πy2+ε

2πy2−ε

Ψ
(h)

(2j ρ, θ) ei2
j ρΘT(θ) 2πy−(f (x),x)T ΘT(θ)β(x) dx dθ dρ

=
∞

0

π
2

− π
2

+
3π
2

π
2

2πy2+ε

2πy2−ε

Ψ
(h)

(2j ρ, θ)ei2
j ρΘT(θ) 2πy−(f (x),x)T

× ΘT(θ)β(x)dxdθdρ

=: I1 + I2.

In the integral I2, we substitute θ = τ + π and use the symmetry properties of the
univariate window functions g and g to see

g (ρ cos(τ + π)) = g (−ρ cos τ) = g (ρ cos τ)

and

g ρ cos(τ + π)(2j/2 tan(τ + π) − = g ρ cos τ(2j/2 tan τ − ,

which lead together with Θ(τ + π) = −Θ(τ ) to I = 2 i Im(I1) = 2 i Im(I2) since

I2 =
∞

0

π
2

− π
2

2πy2+ε

2πy2−ε

Ψ
(h)

(2j ρ, τ + π) ei2
j ρΘT(τ+π) 2πy−(f (x),x)T

× Θ(τ + π)β(x) dx dτ dρ

= −
∞

0

π
2

− π
2

2πy2+ε

2πy2−ε

Ψ
(h)

(2j ρ, θ) e−i2j ρΘT(θ) 2πy−(f (x),x)T

× Θ(θ)β(x) dx dθ dρ = −I1.

Let us first assume A = 1
2f (2πy2) > 0. The case A < 0 is similar and will be

omitted and the case A = 0 will be discussed separately in the end of the proof. With
Lemma 10 we can replace the function f (x) locally for |x − 2πy2| < 2−j/2 by

Ty(x) = f (2πy2) + m(x − 2πy2) + A(x − 2πy2)
2.

For every x0 = (f (x0), x0)
T ∈ ∂T with |x0 − 2πy|2 ≤ C 2−j/2 we can write

Ty(x) = C + B(x − x0) + A(x − x0)
2,

whereB := m+2(x0−2πy2),C := f (2πy2)+m(x0−2πy2)+(x0−2πy2)
2 andm =

f (2πy2) ∈ [−1, 1]. We choose x0 ∈ ∂T such that there is ∈ −2j/2, . . . , 2j/2

with 2j/2B + ≤ 1
4 and y1 = 2−j (z1 − 1

2 ), z1 = −2j−1, . . . , 2j−1 − 1 such that
2j (2π y1 − C) ≤ 3π

4 .
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We follow the ideas of [17, Section 3.2] and change the variable to v = x − x0.
Thus, we can rewrite I1 as

I1 =
∞

0

π
2

− π
2

2ε

−2ε

Ψ
(h)

(2j ρ, θ) e−i 2j ρ ΘT(θ)(Av2+Bv+C−2πy1,v)T ϕ(v) dv dθ dρ

=
∞

0

π
2

− π
2

Ψ
(h)

(2j ρ, θ) ei 2
j ρ cos θ 2πy1

2ε

−2ε

eiΛ R(v) ϕ(v) dv dθ dρ, (51)

where Λ := 2j ρ, ϕ(v) := −1, f (v + x0) Θ(θ) β(v + x0) and

R(v) := −ΘT(θ)(Av2 + Bv + C, v)T

= − cos θ A v + B + tan θ

2A

2

+ C − (B + tan θ)2

4A
.

The equation R (v) = 0 gives vθ = −B+tan θ
2A . Let φ(v) = R(v) − R(vθ ). Then

φ(vθ ) = φ (vθ ) = 0 and φ (vθ ) = R (vθ ) = −2A cos θ = 0. Hence, we can write
I1 as

I1 =
∞

0

π
2

− π
2

Ψ
(h)

(2j ρ, θ) ei 2
j ρ cos θ 2πy1eiΛ R(vθ )

2ε

−2ε

eiΛ φ(v) ϕ(v) dv dθ dρ. (52)

We apply Lemma 13 for t0 = vθ , which leads to

2ε

−2ε

eiΛ φ(v) ϕ(v) dv = 2π i

|φ (vθ )|
1/2

ϕ(vθ )Λ− 1
2 + O(Λ−1)

= C
√

π i (2j ρ |A cos θ |)− 1
2 ϕ(vθ ) + O((2j ρ)−1). (53)

From Lemma 1, we have ρ ∈ 1
2 , 2 so that the notation O((2j ρ)−1) can be

identified with a function r(j) such that |r(j)| ≤ C2 2−j as j ≥ j0. As explained in
[17, p. 115] the constant C2 > 0 is independent of θ , ρ, j , , y. With Eq. 53 we can
write the integral in Eq. 52 as I1 = I11 + I12, where

I11 = C 2−j/2
√

π i

∞

0

π
2

− π
2

Ψ
(h)

(2j ρ, θ)ei 2
j ρ cos θ 2πy1 eiΛ R(vθ )

×(ρ |A cos θ |)− 1
2 ϕ(vθ ) dθ dρ,

I12 = C2 2
−j

∞

0

π
2

− π
2

Ψ
(h)

(2j ρ, θ)ei 2
j ρ cos θ 2πy1 eiΛ R(vθ )dθ dρ.

17Adv Comput Math (2021)47: 17



Page 36 of 41

In the integrals I11 and I12 we substitute t = 2j/2 tan θ − or equivalently θ := θt =
θ

(h)
+t leading to dθ = 2−j/2 cos2 θt dt . We remind that by Lemma 1

suppΨ
(h)

(2j ρ, θt )⊂ (ρ, θ) ∈ R× −π

2
,
π

2
: 1
3

< |ρ|<2, θ
(h)

−2<θt <θ
(h)

+2

implying that I11 = I12 = 0 for |t | > 2. With the last change of variable we have

I11 = C 2−j
√

π i

2

1
3

2

−2

g (ρ cos θt ) g (t ρ cos θt )

e
−iρ cos θt 2j C− 1

4A 2j/2B+ +t
2−2j 2πy1

×(ρ |A cos θt |)− 1
2 ϕ(vθt ) cos

2 θt dt dρ,

I12 = 2−3j/2

2

1
3

2

−2

Ψ
(h)

(2j ρ, θ)e
−iρ cos θt 2j C− 1

4A 2j/2B+ +t
2−2j 2πy1 cos2 θt dt dρ.

It is straightforward to see that I12 is negligible since

|I12| ≤ C 2−3j/2, (54)

where C is independent of j , , and y. We use the notation

p := 2j/2B + := 2j (2π y1 − C) (55)

and from the choice of x0 ∈ ∂T we have |p| ≤ 1
4 and |D| ≤ 3π

4 . We show that for
this choice inequality Eq. 50 is fulfilled.

In the following, we adapt some of the ideas from [17]. Since 2−j t ≤ 2−j+1 for
|t | ≤ 2 we have cos θt = μ + O(2−j/2) and sin θt = (2−j/2 + O(2−j/2),
where μ := (1 + (2−j/2 2)−1/2 fulfilling 2−1/2 ≤ μ ≤ 1. There exists
sufficiently small q such that β(q ) − β(vθt ) = O(2−j/2) and β(q ) = 0 and
similarly we can approximate f (q̃ ) − f (vθt ) = O(2−j/2) and f (q̃ ) = 0. To
get the lower bound for I11, after ignoring the higher order decay term we can replace
β(vθt ) by a constant β(q ), f (vθt ) by a constant f (q̃ ), and cos θt by the constant
μ . Hence, using the notation δ := β(q )(−μ + f (q̃ )(2−j/2 ) and
the substitution λ = ρ μ , we can express I11 as

I11(D, p) = C 2−j μ
3/2 π i

A

2

1
3

∞

−∞
g ρ μ e

i ρ μ D+ 1
4A (p+t)2

× g t ρ μ ρ−1/2 dt dρ (56)

= C2 2
−j i

A

4
3

1
3

g(λ) eiD λ λ−1/2 H(λ, p, A) dλ (57)
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with

H(λ, p, A) :=
∞

−∞
g (t λ) ei λ

1
4A (p+t)2dt =

∞

−∞
g ((u − p) λ) ei λ

u2
4A du.

We want to emphasize the dependency of the integral I11 on the the parameters p

and D defined in Eq. 55. A direct computation with the change of variable v = λ u2

4A
shows that

H(λ, p, A) = A

λ

∞

0

g 2
√

Aλ v + p λ + g 2
√

Aλ v − p λ
ei v√

v
dv

= A

λ
a(λ, p, A) + i b(λ, p, A) ,

where a(λ, p, A) and b(λ, p, A) are defined in Eqs. 35 and 36. With the represen-
tation of H(λ, p, A) and the positive solution

√
i = 1+i√

2
we can write the integral

Eq. 57 as I11(D, p) = Re(I11(D, p)) + i Im(I11(D, p)) with

Im(I11(D, p)) = C 2−j

4
3

1
3

g(λ) λ−1 a(λ, p, A) + b(λ, p, A) cos(Dλ)

+ a(λ, p, A) − b(λ, p, A) sin(Dλ) dλ.

Using the connection I2 = −I1, we can start at Eq. 51, use again Eq. 13 and repeat
all the previous steps for I2 instead of I1, to get I2 = I21 + I22 with |I22| ≤ C 2−3j/2

and I21(D, p) = Re(I21(D, p)) + i Im(I21(D, p)) with

Im(I21(D, p)) = C 2−j

4
3

1
3

g(λ) λ−1 a(λ, p, A) + b(λ, p, A) sin(Dλ)

− a(λ, p, A) − b(λ, p, A) cos(Dλ) dλ.

As a consequence of the relation I = 2 i Im(I1) = 2 i Im(I2) we see that I =
2 i Im(I11 + I12) = 2 i Im(I21 + I22). By the inverse triangle inequality, Eq. 54 and
its analog for I22 we can use Lemma 16 in order to finish the proof of the Theorem 2
for A > 0.

In the case A = 0 we see that Eq. 51 simplifies to

I1 =
π
2

− π
2

2ε

−2ε

Ψ
(h)

(2j ρ, θ) e−i ρ cos θ 2j/2v 2j/2B+2j/2 tan θ +2j (C−2πy1) ϕ(v) dv dθ dρ.

Note that Lemma 13 can not be applied in this case. Instead we use the substitutions
u = 2j/2v and similar to the previous case t = 2j/2 tan θ − and λ = ρ μ together
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with the simplifications and notations from the last pages to arrive at the analogous
integral to Eq. 57, which in this case is given by

I1(D, p) = C 2−j

∞

0

2

−2

∞

−∞
g (ρ cos θt ) g (t ρ cos θt ) e

−i ρ cos θt (p+t)u−D du dt dρ

= C 2−j

∞

0

2

−2

∞

−∞
g (λ) g (t λ) e−i λ (p+t)u−D du dt dλ.

Some direct calculations after the change of variable y = t λ show that

I1(D, p) = C 2−j

∞

0

g (λ) λ−1 eiD λ

∞

−∞

⎛

⎝
∞

−∞
g (y) e−i y u dy

⎞

⎠ e−ip λ u du dλ

= C 2−j

∞

0

g (λ) λ−1 eiD λ

⎛

⎝
∞

−∞
Fg(u) e−ip λu du

⎞

⎠ dλ

= C 2−j

∞

0

g (λ) λ−1 eiD λ g(−pλ) dλ

and since g(−pλ) = 1 for λ ∈ 1
3 ,

4
3 and p ∈ − 1

4 ,
1
4 this implies

Im(I1(D, p)) = C 2−j

∞

0

g (λ) λ−1 sin(Dλ) dλ > 0

for 0 < |D| ≤ 3π
4 . For the case D = 0, we slightly modify the function g to make it

odd. Then with a similar argument as before we see that I = 2Re(I1(0, p)) > 0.

7 Generalizations and possible extensions

In this paper, we showed that trigonometric polynomial shearlets based on the con-
struction of multivariate periodic de la Vallée Poussin-type wavelets are able to detect
step discontinuities along boundary curves of characteristic functions.

Since the constructions and results in [3] are given in d dimensions, there is a
natural extension of the trigonometric polynomial shearlets to higher dimensions.
If for example the dimension is d = 3, the multivariate window functions become
Ψ (1)(x) := g(x1) g(x2) g(x3), Ψ (2)(x) := g(x1) g(x2) g(x3), Ψ (3)(x) := g(x1)

g(x2) g(x3).
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For even j ∈ N0 and = 1 2)
T ∈ Z

2 with | 1| ≤ 2j/2 and | 2| ≤ 2j/2 the
matrices analog to Eq. 5 are given by

N(1)
j,

:=
⎛

⎝
2j

1 2j/2
2 2j/2

0 2j/2 0
0 0 2j/2

⎞

⎠ , N(2)
j,

:=
⎛

⎝
2j/2 0 0
1 2j/2 2j

2 2j/2

0 0 2j/2

⎞

⎠

and

N(3)
j,

:=
⎛

⎝
2j/2 0 0
0 2j/2 0

1 2j/2
2 2j/2 2j

⎞

⎠ .

We define the three-dimensional trigonometric polynomial shearlets by

ψ
(i)
j, ,y(x) :=

k∈Z3

Ψ
(i)
j, (k) eik

T(x−2πy), i ∈ {1, 2, 3} .

As in the two-dimensional case, this construction is similar to the classical shearlets
and its higher-dimensional generalizations.

The authors in [15] proved in detail that continuous shearlet systems in three
dimensions are able to detect boundary curves of piecewise smooth surfaces. As
remarked in [17], an analogous result holds for discrete shearlets in dimension 3. We
are convinced that it should be possible to derive a similar result for trigonometric
polynomial shearlets, but a detailed proof is not in the focus of this paper.

Another interesting open question is the behavior of the shearlet coefficients near
corner points. If γ : [0, 2π) → ∂T is a parametrization of the boundary ∂T , we call
x0 = γ (t0) ∈ ∂T a corner point, if γ (t+0 ) = ±γ (t−0 ). For continuous shearlets,
this question was answered in [14] and in a more general setting in the context of
parabolic molecules in [10]. As far as we know, there is no result for corner points
in the discrete setting until now. It would be very interesting to investigate in which
way the techniques of the continuous setting can be combined with the ideas of this
paper to prove similar results for discrete shearlets. We will leave this question as a
topic for future research.

In many applications, such as image processing, the functions to be analyzed are
piecewise smooth and not characteristic functions of sets as discussed in this paper.
In [10, 16], it was shown that the continuous shearlet coefficients of functions of the
form B(x) = f (x) χT (x) with f ∈ C∞(R2) exhibit the same decay rate as Eq. 1 if
p /∈ ∂T or if s = s0 does not correspond to the normal direction of ∂T at p. If p ∈ ∂T

and s = s0 corresponds to the normal direction of ∂T at p, then

0 < lim
a→0+ a−(n/2+3/4)SHψB(a, s0,p) < ∞,

where n denotes the number of vanishing derivatives of f at p. As in the case of
corner points, there is no analogous result for discrete shearlet systems yet. To give
a proof for the case of piecewise smooth functions is again beyond the scope of this
paper and will be addressed in a forthcoming article.
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