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Abstract
We demonstrate that deep neural networks with the ReLU activation function can
efficiently approximate the solutions of various types of parametric linear transport
equations. For non-smooth initial conditions, the solutions of these PDEs are high-
dimensional and non-smooth. Therefore, approximation of these functions suffers
from a curse of dimension. We demonstrate that through their inherent composition-
ality deep neural networks can resolve the characteristic flow underlying the transport
equations and thereby allow approximation rates independent of the parameter
dimension.
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Curse of dimension · Transport equations
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1 Introduction

Linear parametric transport equations play an essential role in engineering, mod-
elling, and mathematical physics where they describe physical phenomena of heat
and mass transfer. A typical example is the transport of pollution in air or water

Communicated by: Jan Hesthaven

Philipp Petersen
Philipp.Petersen@univie.ac.at

Fabian Laakmann
Fabian.Laakmann@maths.ox.ac.uk

1 Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road,
Oxford, OX2 6GG, UK

2 Institut für Mathematik, Universität Wien, Kolingasse 14-16, 1090 Wien, Austria

(2021)  74 : 11Adv Comput Math

Published online: 28 January 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-020-09834-7&domain=pdf
http://orcid.org/0000-0003-3566-1020
mailto: Philipp.Petersen@univie.ac.at
mailto: Fabian.Laakmann@maths.ox.ac.uk


depending on a set of parameters such as the direction and intensity of the flow of
the fluid.

In this work, we study to what extent the solutions of various types of parametric
linear transport equations can be efficiently represented by deep neural networks.
Concretely, we study variations of the following problem: Let n, D, k ∈ N, and
T > 0. Let V ∈ Ck([0, T ] ×R

n × [0, 1]D;Rn), f ∈ Ck([0, T ] ×R
n × [0, 1]D) and

let u0 ∈ C1(Rn). We want to find u ∈ C1([0, T ] × R
n × [0, 1]D) such that

∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) = f (t, x, η),

u(0, x, η) = u0(x).
(1.1)

The PDE of (1.1) has been studied extensively (see, e.g., [2, 3, 10, 24]), and we
will recall the fundamentals in Section 3. The setup that we have in mind is one
where the dimension of the parameter space D is very high, V is smooth, and u0
is not very regular. Hence, direct approximation of u amounts to approximating a
high-dimensional function of low regularity. In this formulation, the task is extremely
challenging for classical methods.

While the global approximation problem is almost intractable, the method of
characteristics shows that, even though u is not smooth, its singularities revolve
along smooth curves, called characteristic curves. In this framework, the function
u can typically be written in a compositional form of two functions where one is
high-dimensional and smooth and the other is low-dimensional and (potentially)
rough.

Based on this split and the inherent compositionality of neural networks, we will
demonstrate that every u satisfying (1.1) can be approximated efficiently by neu-
ral networks with ReLU activation function. The approximation rate is significantly
better than that of any classical regularity-based approximation of u. In particular,
in the prescribed setup, we will observe an approximation rate independent of the
dimension D of the parameter space.

The material presented below was first established in a mini-project of the first
author at the University of Oxford, [37].

1.1 Applications and relevance

We believe that the efficient approximation of solutions of parametric transport equa-
tions with dimension-independent approximation rates is an interesting and relevant
problem in the following domains:

• Approximation theory: The class of functions that are solutions of high-
dimensional parametric linear transport equations is a relevant but non-standard
function class. This class while high-dimensional has a non-trivial but rigid struc-
ture imposed upon via the underlying PDE. It is, therefore, interesting to establish
to what extent deep neural networks can leverage on this structure. In this con-
text, similar approximation schemes based on structured systems were developed
for special types of (parametric) transport equations. For example, in [15, 16] and
[44] systems were introduced that approximate the solutions of linear transport
equations with linear or C2-regular characteristic curves. These constructions are
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closely tied to the type of characteristic curves. We demonstrate here that, in con-
trast to these systems, we do not choose specific types of deep neural networks
depending on the specific problem to achieve the presented rates. Indeed, the
only variable parameters are the depth and the width of neural networks. In that
sense, deep neural networks can automatically adapt to the underlying regularity
of the problems.

• Estimation: In machine learning and especially in deep learning, deep neural
networks are trained with gradient-based optimization algorithms to minimize
empirical energies based on random samples [26, 38]. These techniques have
proven to be extremely successful in a variety of applications.

Consider a parametric transport problem of the form (1.1) where u0, f , and V

are unknown, but samples (u(ti , xi, ηi))
N
i=1 are available through measurements.

Such a scenario could be encountered in the transport of pollution in fluids under
unknown circumstances, but with a control on parameters of the experiment. In
this formulation, the transport problem is a standard supervised learning prob-
lem. Moreover, classical methods to solve linear transport equations cannot be
used at all without knowledge of f and V in (1.1).

Certainly, this estimation problem can only be successfully solved with deep
learning techniques, if the correct solution to the problem can be represented or
closely approximated by a deep neural network. In this context, our results show
the feasibility of this approach.

• Numerical analysis:Deep neural networks have been employed as Ansatz spaces
for PDEs in multiple settings before [5, 19, 55]. Of course, the efficiency of these
methods depends on the capacity of the Ansatz space to capture the true solution.

Our proposed approximation of solutions of (1.1) by deep neural networks can
be thought of as a higher-order method that automatically adapts to the regularity
of the underlying characteristic curves.

An established method to solve (1.1) is by using (Petrov-) Galerkin-type
discretizations [14, 20]. These methods are, however, typically not adaptive to
singularities lying on lower-dimensional manifolds. In the model of (1.1), such
structured singularities evolve precisely along the characteristic curves. While
some advances to handle structured singularities have been made, e.g., [15], the
adaptivity to the manifold only uses low-order information on the smoothness
of the manifold. Our results demonstrate that an approximation via deep neural
networks adapts to any regularity of the characteristic curves in the sense that
the approximation quality improves for smoother characteristic curves. On the
contrary, standard discretization and time-stepping techniques such as finite dif-
ferences and Euler, Crank-Nicolson, or higher-order variants converge with rates
depending on the global regularity of the solution of the PDE which, in our setup,
is assumed to be quite low.

• Reduced-order models: In applications where the solution of (1.1) is requested
for many different parameter values, it is desirable to employ model reduction
techniques [31, 50]. It is well known that parametric linear transport problems
are highly challenging for linear reduced-order models because the dimension of
linear approximation spaces to capture the non-linear evolution of singularities
can be excessive [45, Section 5] [17, Section 6.3]. Indeed, linear reduced-order
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models typically succeed only if additional assumptions are made on the param-
eter dependence, such as a certain separability of the parametric dependence and
the spatial dependence of V [27].

The neural network-based approximation presented in this work requires
almost no structural assumption on the parametric dependence. Indeed, a smooth
dependence of V and f on the parameters is sufficient. In this context, a superi-
ority of deep neural network-based approaches over linear reduced-order models
to solve parametric transport equations was also empirically observed in [23].

1.2 Related work

This work describes the capacity of neural networks to approximate high-dimensional
functions with asymptotic rates independent of the underlying dimension. Of course,
approximation theory of deep neural networks is a well-established field. Therefore,
in order to place our contribution in the context of existing literature, we provide an
overview of classical and more modern developments in the field below.

1.2.1 Classical approximation

The first and probably most prominent result describing the approximation capa-
bilities of neural networks is the universal approximation theorem [13, 33]. This
theorem states that, on a compact domain, every continuous function can be arbitrar-
ily well approximated by a neural network in the uniform norm. These statements,
however, do not provide an estimate on the required sizes of the approximating neu-
ral networks. The typical approach to obtain a quantitative estimate on the order of
approximation is to re-approximate classical methods. For example, in [39] and [40],
it was shown that neural networks yield the same approximation rates as splines when
approximating smooth functions.

Recently, approximation by neural networks with the ReLU activation function
has received the most attention since this activation function is arguably the most
widely used in applications. It was demonstrated that deep neural networks with the
ReLU activation function achieve the same approximation rates as linear and higher-
order finite elements [30, 46], wavelets [54], and local approximation by Taylor
polynomials [57].

These classical approximation results show that deep neural networks are very
versatile by combining the approximation capabilities of a wide variety of classical
tools. However, they do not identify a particular situation where deep neural net-
works outperform the best classical method. This picture changes drastically, when
one considers high-dimensional approximation.

1.2.2 High-dimensional approximation

High-dimensional approximation generally suffers from a curse of dimension, mean-
ing that approximation rates deteriorate exponentially with increasing dimension [7,
43]. Nonetheless, if an additional structure is assumed, then the curse of dimension
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can be overcome. It turns out that deep neural networks can take advantage of a
wide variety of complex additional structural properties. For example, it was shown
in [4] that deep neural networks can approximate functions with bounded first
Fourier moments without a curse of dimension. Other regularity-based assumptions
were used in [41] and [56]. Further classes of functions with structural assump-
tions such as functions based on directed acyclic graphs [49] or functions admitting
strong invariances [48, Section 5] allow similar results. Finally, if the approxima-
tion error is evaluated on a low-dimensional manifold only, then [9, 11, 51, 54] show
approximation rates independent of the ambient dimension.

1.2.3 Approximation of solutions of PDEs

The extraordinary efficiency in the approximation of certain high-dimensional func-
tions has been especially interesting in connection with the numerical solution of
PDEs [5, 19, 55]. For example, for high-dimensional Black Scholes-, Kolmogorov-
, or heat equations, deep neural networks can efficiently approximate the solutions
thereof in a regime where any mesh-based method would fail [6, 8, 21, 34]. In these
works, a compositional structure of the solution of a PDE is derived via the Feynman-
Kac formula. The approach via the method of characteristics of our work can be
interpreted as a special case of the approach via the Feynman-Kac formula.

Moreover, in the framework of parametric problems, high-dimensional problems
can be efficiently represented if there exist suitable representations thereof in a
general reduced basis [36], or as a polynomial chaos expansion [47, 52].

1.3 Outline

In Section 2, we introduce all notions and fundamental results associated with neural
networks. Section 3 is devoted to the introduction of various types of linear transport
equations. In Section 4, we present the four main results of this work: Theorems 4.3,
4.4, 4.6, and 4.8. These results describe approximation rate bounds for the solutions
of the equations of Section 3 by deep neural networks. Finally, in Section 5, we
discuss natural extensions of the presented results. Some auxiliary results have been
deferred to the Appendices A and B.

1.4 Notation

Below, we collect some notation that is used throughout the manuscript. This notation
is mostly standard; hence, this section can be skipped and only be referred to when a
symbol is unclear.

We denote by N = {1, 2, ...} the set of all natural numbers and define, for k ∈ N,
the set N≥k := {n ∈ N : n ≥ k}. For d1, d2 ∈ N we denote by Id

R
d1 the identity on

R
d1 and by 0

R
d1×d2 we denote the map from R

d1 to Rd2 that vanishes everywhere. We
denote by 0

R
d1 the zero vector in R

d1 . On R
d1×d2 we denote by the Euclidean

norm and by ∞ the maximum norm. The number of nonzero entries of a matrix
or vector A ∈ R

d1×d2 is counted by 0, where A 0 := |{(i, j) : Ai,j = 0}|.
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If d1, d2, d3 ∈ N, and A ∈ R
d1×d2 , B ∈ R

d1×d3 , then we use the block matrix
notation and write for the horizontal concatenation of A and B

A B ∈ R
d1,d2+d3 or A B ∈ R

d1,d2+d3 ,

where the second notation is used if a stronger delineation between different blocks
is appropriate. A similar notation is used for the vertical concatenation of A ∈ R

d1×d2

and B ∈ R
d3×d2 .

For d1, d2 ∈ N, and ⊂ R
d1 , we denote by Lp

R
d2), p ∈ [1, ∞] the R

d2 -
valued Lebesgue spaces, where we setLp := Lp

R). For k ∈ N, we denote by
Wk,∞ , the space of k-times weakly differentiable functions that have all deriva-
tives of order at most k in L∞ . The space W

k,∞
loc consists of functions such

that their restriction to every compact K ⊂ is in Wk,∞(K). By Ck
R

d2), we
denote the set of k-times continuously differentiable functions mapping from to
R

d2 , where we set Ck := Ck
R). By Ck

c , we denote all functions in Ck

that have compact support.
For a Lipschitz continuous function f : Rd1 → R

d2 , we denote:

Lipf := sup
x=y

f (x) − f (y)

x − y
.

Let a > 0, then we say for two functions f : (0, a) → [0, ∞) and g : (0, a) →
[0, ∞) that f (ε) is in O(g(ε)) for ε → 0 if there exists 0 < δ < a and C > 0 such
that f (ε) ≤ Cg(ε) for all ε ∈ (0, δ).

2 Neural networks

In this section, we define neural networks and then recall a couple of operations on
these objects that will be used frequently in the sequel. In the definition of neural
networks, we distinguish between a neural network as a set of weights and an associ-
ated function that we call the realization of the neural network. This formal approach
was introduced in [48], but we recall here a slightly different formulation of [28] for
neural networks that allow so-called skip connections.

Definition 2.1 Let d, L ∈ N. A neural network (NN) with input dimension d and
L layers is a sequence of matrix-vector tuples

= ((A1, b1), (A2, b2), . . . , (AL, bL)),

where, for N0 = d and N1, . . . , NL ∈ N, each A is an N × −1
k=0 Nk matrix, and

b ∈ R
N .

Let : R → R be the ReLU, i.e., = max{0, x} and let be a NN as above.
Then, we define the associated realization of as the map R : Rd → R

NL such
that

R = xL,
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where xL results from the following scheme:

x0 := x,

x := A xT
0 . . . xT−1

T + bl , for = 1, . . . L − 1,

xL := AL xT
0 . . . xT

L−1
T + bL.

Here, acts componentwise, i.e., = [ 1 m)] for y = [y1, . . . , ym]
∈ R

m. We sometimes write A in block-matrix form as

A = A 0 . . . A −1 ,

where A is an N × Nk matrix for k = 0 − 1 and = 1, . . . , L. Then

x = A 0x0 + . . . + A −1x −1 + b , for = 1, . . . L − 1,

xL = AL,0x0 + . . . + AL,L−1xL−1 + bL.

We call := d + L
j=1 Nj the number of neurons of the NN , L =

the number of layers, and := L
j=1( Aj 0 bj 0) is called the number of

weights of . Moreover, we refer to NL as output dimension of .

2.1 Standard operations on neural networks

We collect four standard operations that can be performed with NNs below. First,
we can concatenate two NNs 1 2 in such a way that the realization of the
concatenation is a composition of the individual realizations of 1 2.

Proposition 2.2 ([28, Remark 2.8]) Let 1 2 be two NNs such that the input
dimension d of 1 is equal to the output dimension of 2. Then, there exists a NN

1 2 such that

• L 1 2 = L 1 + L 2 ,
• W 1 2 ≤ 2W 1 + 2W 2 ,
• R 1 2 (x) = R 1 ◦ R 2 (x) for all x ∈ R

d .

We call 1 2 the sparse concatenation of 1 and 2.

An additional operation that is frequently applied to NNs in the sequel is that
of parallelization. This procedure puts NNs in parallel such that the output of the
realization is a vector containing the outputs of the original NNs.

Proposition 2.3 ([28, Remark 2.10]) Let n, d ∈ N and, for i = 1, . . . , n, let i

be a NN with d-dimensional input and Li ∈ N layers. Then there exists a NN
P 1 n) with d-dimensional input such that

• L P 1 n = max{L1, . . . , Ln},
• W P 1 n = n

i=1 W i ,
• R P 1 n (x) = R 1 (x), . . . ,R ( n) (x) for all x ∈ R

d .

11Adv Comput Math (2021)47: 11
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We call P 1 n) the parallelization of 1 n.

We will occasionally need to construct NNs the realization of which is the sum
of functions that we had approximated beforehand by realizations of NNs. In this
situation, the following operation that emulates a sum of NNs is convenient.

Proposition 2.4 (Sum of NNs) Let d ∈ N, and 1 2 be two NNs with d-
dimensional input and one-dimensional output. Then there exists a NN 1 ⊕ 2 with
d-dimensional input such that

• L 1 ⊕ 2 = max{ 1 2)},
• W 1 ⊕ 2 = 1) + 2),
• R 1 ⊕ 2 (x) = R 1)(x) + R 2)(x) for all x ∈ R

d .

We call 1 ⊕ 2 the sum of 1 and 2.

Proof Let

((A1, b1), (A2, b2), . . . , (AL, bL)) := P 1 2).

Then we set
AL := 1 1 AL and bL := 1 1 bL.

Clearly, AL 0 AL 0 and b̃L 0 bL 0 . We define

1 ⊕ 2 := (A1, b1), (A2, b2), . . . , (AL−1, bL−1), AL, b̃L .

Per construction,

R 1 ⊕ 2 (x) = 1 1
R 1 (x)

R 2)(x)
= R 1 (x)

+R 2 (x) for every x ∈ R
d .

Finally, we can construct a NN that represents the multiplication of two NNs 1

and 2 in the sense that its realization is close to the multiplication of the realizations
of 1 and 2. In contrast to the previous operations, this emulation of the multi-
plication is not exact but requires a parameter ε > 0 describing how accurately the
multiplication is implemented.

Proposition 2.5 (Multiplication of NNs) Let 1 2 be NNs with input dimen-
sions d1 and d2 and output dimension 1. Then, for every ε ∈ (0, 1), there exists
a NN 1 ⊗ε 2 such that, for a universal constant c1 > 0 and for c2 =
c2( R 1) L∞ , R 2) L∞) > 0, there holds

• L 1 ⊗ε 2 ≤ max{L 1 , L 2 } + c1 ln(1/ε) + c2,
• W 1 ⊗ε 2 ≤ c1 ln(1/ε) + c2 + 2W 1 + 2 2),
• R 1 ⊗ε 2 − R 1 R 2

L∞ ≤ ε.

11 (2021)47: 11Adv Comput Math
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Proof By [57, Proposition 3], there exists, for every ε ∈ (0, 1) and M ∈ N, a NN
×ε,M with two-dimensional input and one-dimensional output satisfying

R ×ε,M (x, y) − xy ≤ ε,

for all x, y ∈ [−M, M]. Moreover,

W ×ε,M ≤ c2 − c1 ln(ε), L ×ε,M ≤ c2 − c1 ln(ε)

for a universal constant c1 and c2 = c2(M).
We set M := max R 1) L∞ , R 2) L∞} and define

1 ⊗ε 2 := ×ε,M P 1 2).

The result now follows from Propositions 2.2 and 2.3.

2.2 Approximation of smooth functions

In addition to the operations on NNs described in the previous section, we will fre-
quently invoke the following standard approximation result of smooth functions by
realisations of NNs.

Theorem 2.6 ([57, Theorem 1]) Let k, d ∈ N and

Fk,d := f ∈ Wk,∞ [0, 1]d f Wk,∞([0,1]d ) ≤ 1 .

Then there exists c = c(k, d) > 0 such that, for every f ∈ Fk,d and every ε ∈ (0, 1),
there exists a NN f,ε with d-dimensional input such that,

• f,ε) ≤ c · (ln(1/ε) + 1),
• f,ε) ≤ c ε−d/k · (ln(1/ε) + 1),
• f − R f,ε) L∞ < ε.

Remark 2.7 (i) The norm we use for Wk,∞([0, 1]d) is

f Wk,∞([0,1]d ) := max
α:|α|≤k

ess sup
x∈[0,1]d

|Dαf (x)|.

(ii) The space Wk,∞([0, 1]d) can be identified with the set of k − 1-times con-
tinuously differentiable functions all derivatives of order k − 1 of which are
Lipschitz continuous.

(iii) If we consider the ball with radius R in Wk,∞([0, 1]d), i.e.,

FR
k,d := f ∈ Wk,∞([0, 1]d) f Wk,∞([0,1]d ) ≤ R

instead of the unit ball Fk,d then the constant c from Theorem 2.6 also depends
on R. However, the asymptotic behavior with respect to ε remains unchanged.
The same change holds if we consider the space Wk,∞([0, R]d) instead of
Wk,∞([0, 1]d).
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3 Linear transport equations

In this section, we introduce the Cauchy problem for the parametric linear transport
equation, state the most important existence results for several types of linear trans-
port equations, and provide expressions for their solutions. Here, we mainly follow
the French book [24]. An English translation of this source can be found in the lecture
notes [25]. For more information on linear transport equations, see also [2, 3, 10].

Definition 3.1 The Cauchy problem of the parametric linear transport equation is
given by

∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) = 0, (3.1a)

u(0, x, η) = u0(x), (3.1b)

where t ∈ [0, T ], x ∈ R
n, and η ∈ [0, 1]D for some n, D ∈ N, and T > 0. The vector

field V ∈ Ck([0, T ] × R
n × [0, 1]D;Rn) and the initial condition u0 ∈ Cs(Rn;R)

are given with s, k ∈ N.

It is well known that linear transport equations can be solved via the method of
characteristics [12, 22, 35]. The idea of this method is to consider characteristic
curves that are defined so that the solution u of (3.1) is constant along these curves.
Then, the solution at a point (t, x, η) equals the initial data evaluated at the origin of
this curve.

Definition 3.2 The characteristic curve of the transport operator ∂t +V (t, x, η) · ∇x

passing through x at time s = t is given by the set {(s, γ (s)) : s ∈ [0, T ]}, where γ

is the solution of the characteristic system of ordinary differential equations

γ̇ (s) = V (s, γ (s), η), (3.2a)

γ (t) = x. (3.2b)

Let us briefly showwhy the solution u of (3.1) does not change along characteristic
curves. Considering the case where V (t, x, η) ≡ v for a v ∈ R

n and dropping the
η-dependency, we have

d

dt
u(t, γ (t)) = ∂tu(t, γ (t)) + ∇xu(t, γ (t)) · γ̇ (t)

= ∂tu(t, γ (t)) + ∇xu(t, γ (t)) · v

= (∂t + V (t, x) · ∇x)u(t, γ (t)) = 0,

where the last equality is due to (3.1).
To make the method of characteristics work, we have to ensure that the characteris-

tic curves are diffeomorphisms and that there exists a global solution of system (3.2).
Therefore, we make the following assumptions on the vector field V : Let n, D ∈ N,
and T > 0.

(H1) For some k ∈ N, there holds V ∈ Ck([0, T ] × R
n × [0, 1]D;Rn).

11 (2021)47: 11Adv Comput Math
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(H2) There exists a C > 0 s.t.

|V (t, x, η)| ≤ C (1 + |x|) for all (t, x, η) ∈ [0, T ] × R
n × [0, 1]D .

The following theorem states that these assumptions lead to global existence of
the characteristic curves and characterizes their regularity.

Theorem 3.3 ([25, Theorem 2.2.2]) Let V satisfy (H1) and (H2) with n, D, k ∈ N,
and T > 0. Then, for all (t, x, η) ∈ [0, T ] × R

n × [0, 1]D , the system of (3.2) has a
unique solution γ ∈ Ck([0, T ]). Furthermore, the map X defined by

X(s, t, x, η) := γ (s)

is in Ck([0, T ] × [0, T ] × R
n × [0, 1]D).

Proof The proof presented in [25] can directly be extended to the parametric case.
Moreover, the differentiability with respect to η is a standard result: compare [29,
Corollary 4.1].

Remark 3.4 The previous theorem implies that X is bounded on [0, T ] × [0, T ] ×
K × [0, 1]D for every compact domain K ⊂ R

n. Therefore, the final bound in our
main result depends additionally on K and the velocity field V . An explicit bound for
X Ck in terms of the given data seems to be very technical to derive. In Appendix A,
we compute precise bounds for k = 0 and k = 1, which are explicitly used in
in the proof of Theorem 4.3 and Theorem 4.8. The argument there suggests that a
bound on X Ck in terms of |K| and V Ck could likely be established, however
with considerable technical effort.

3.1 Solutions of the standard linear transport equation

The next theorem states the existence of a solution for the linear transport equation
of (3.1). Furthermore, the theorem establishes that the solution has a composi-
tional structure resulting from composing the initial data with the solution of the
characteristic system of ODEs starting at (t, x, η) evaluated at s = 0.

Theorem 3.5 ([25, Theorem 2.2.4]) Let V satisfy the assumptions (H1) and (H2)
with n, D, k ∈ N, and T > 0. Furthermore, let u0 ∈ Cs(Rn), s ∈ N. Then, the
Cauchy problem for the parametric linear transport equation of (3.1) has a unique
solution u ∈ Cmin{s,k}([0, T ] × R

n × [0, 1]D) which is given by

u(t, x, η) = u0(X(0, t, x, η)).

For initial conditions that are not differentiable, it makes sense to introduce a weak
notion of a solution. The following definition and proposition were taken from [18].
A proof for the simplified case, where divxV = 0 can be found in [42, Theorem 3.12].

11Adv Comput Math (2021)47: 11
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Definition 3.6 ([18]) Let V satisfy the assumptions (H1) and (H2) with n, D, k ∈ N,
and T > 0. Furthermore, let u0 ∈ L∞(Rn). A weak solution to (3.1) is a function
u ∈ L∞([0, T ] × R

n × [0, 1]D) which satisfies the weak formulation

T

0 Rn

u(t, x, η) [∂tϕ + V (t, x, η) · ∇xϕ(t, x) + divxV (t, x, η)ϕ(t, x)] dx dt

+
Rn

u0(x)ϕ(0, x) dx = 0 (3.3)

for all ϕ ∈ C1
c ([0, T ) × R

n) and all η ∈ [0, 1]D .

As for strong solutions of the transport equation, the solution of the weak for-
mulation is given by a composition of the initial condition with a flow along the
characteristic curves.

Proposition 3.7 ([18]) Let V satisfy the assumptions (H1) and (H2) with n, D, k ∈
N, and T > 0. Furthermore, let u0 ∈ L∞(Rn). Then there exists a global weak
solution u ∈ L∞([0, T ] × R

n × [0, 1]D) to (3.1) which is given by

u(t, x, η) = u0(X(0, t, x, η)).

3.2 Solutions of extensions of the parametric linear transport equation

In Section 4, we extend our main result to linear transport equations that include
source terms and are formulated in conservative form. The following two proposi-
tions present the corresponding existence results and the form of the solutions for
problems with source terms and in conservative form.

Proposition 3.8 ([42, Theorem 3.9]) Let V satisfy assumptions (H1) and (H2) with
n, D, k ∈ N, and T > 0. Furthermore, let u0 ∈ Cs(Rn) and f ∈ Cs ([0, T ] ×
R

n × [0, 1]D), where s, s ∈ N. Then the Cauchy problem for the non-homogeneous
parametric linear transport equation

∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) = f (t, x, η), (3.4a)

u(0, x, η) = u0(x), (3.4b)

has a unique solution u ∈ Cmin{s,s ,k}([0, T ] × R
n × [0, 1]D) which is given by

u(t, x, η) = u0(X(0, t, x, η)) +
t

0
f (s, X(s, t, x, η), η) ds. (3.5)

Remark 3.9 Similar to Proposition 3.7, one can prove the existence and uniqueness
of a weak solution with a source term f ∈ C0([0, T ]×R

n×[0, 1]D). In this case, the
associated weak formulation is given by (3.3) after replacing the right-hand side by

T

0 Rn f (t, x, η)ϕ(t, x, η) dx dt . The weak solution u ∈ L∞([0, T ]×R
n ×[0, 1]D)

of that problem is still given by (3.5). Here, one only needs to assume that u0 is
continuous, [42, Remark 3.13] or [18].
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Proposition 3.10 ([25, Theorem 2.3.6]) Let V satisfy assumptions (H1) and (H2)
with n, D, k ∈ N, and T > 0. Furthermore, let u0 ∈ Cs(Rn), s ∈ N. Then the
Cauchy problem for the conservative parametric linear transport equation:

∂tu(t, x, η) + divx(V (t, x, η)u(t, x, η)) = 0, (3.6a)

u(0, x, η) = u0(x), (3.6b)

has a unique solution u ∈ Cmin{s,k}([0, T ] × R
n × [0, 1]D) which is given by

u(t, x, η) = u0(X(0, t, x, η))J (0, t, x, η) (3.7)

with

J (s, t, x, η) = det(DxX(s, t, x, η)).

Remark 3.11 Again, one can show that there exists a unique weak solution for the
conservative formulation which is given by (3.7). See [25, Section 2.3] for more
information about this problem.

Remark 3.12 The conservative form (3.6) simplifies to the original linear transport
(3.1) if divxV = 0.

4 DNN approximation of solutions of linear transport equations

Theorem 3.5 and Propositions 3.8 and 3.10 suggest that the solutions of parametric
linear transport equations are of a compositional form, where the initial condition
is composed with a flow along characteristic curves. Since realizations of NNs are
naturally of compositional structure, it is therefore conceivable that the form of the
solutions of linear transport equations can be efficiently resolved by NNs. Indeed,
based on this observation we present, for each of the cases discussed in Section 3,
an approximation result for the solution of the associated parametric linear transport
equations by NNs.

4.1 Standard linear transport equations

We start by presenting an approximation result for the solutions of standard linear
transport equations as described in Theorem 3.5. We will assume that the initial con-
dition can be approximated reasonably well by NNs. For this, we use the following
definition:

Definition 4.1 Let n ∈ N and r > 0, a function f ∈ L∞(Rn) is r-approximable by
NNs if, for every compact set K ⊂ R

n, there exists a constant c = c(K, r, f ) > 0
such that for every ∈ (0, 1) there exists a NN f,ε such that

• L f,ε ≤ c · (ln(1/ε) + 1),
• W f,ε ≤ c ε−1/r (ln(1 + 1),
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• f − R L∞(K) ≤ ε.

Remark 4.2 By Theorem 2.6, every function f ∈ Cs(Rn) is r approximable for
r = s/n .

We now present the main theorems of this section for the strong and weak formu-
lations of standard linear transport equations below. Afterward, in Remark 4.2, we
discuss to what extent the resulting approximation rates improve upon a direct appli-
cation of Theorem 2.6 to the solution u of a linear transport equation. We present the
proofs of the theorems at the end of this subsection.

Theorem 4.3 Let V satisfy assumptions (H1) and (H2) for k, n, D ∈ N, and T > 0.
Further let, for r > 0, u0 ∈ C1(Rn) be r-approximable by NNs. Let u ∈ C1([0, T ]×
R

n × [0, 1]D) denote the unique solution of the Cauchy problem for the parametric
linear transport equation

∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) = 0,

u(0, x, η) = u0(x).

Then, for every ε ∈ (0, 1) and every compact subset K ⊂ R
n, there exists a NN

u,ε with d-dimensional input, where d := 1 + n + D, such that for the restriction
u := u [0,T ]×K×[0,1]D there holds that, for c = c(n, r, d, k, K, T , V, u0) > 0,

(i) L u,ε ≤ c · (ln(1/ε) + 1),
(ii) u,ε) ≤ c · ε−1/r + ε−d/k · (ln(1/ε) + 1),
(iii) u − R u,ε

L∞([0,T ]×K×[0,1]D)
< ε,

In Theorem 4.3 above, the initial condition is required to be continuously differ-
entiable. In the following result, we extend Theorem 4.3 to initial conditions that
are Lipschitz continuous only. To handle initial conditions that are not continuously
differentiable, we have to consider weak solutions as described in Definition 3.6.

Theorem 4.4 Let V satisfy assumptions (H1) and (H2) for k, n, D ∈ N, and T > 0.
Further let, for r > 0, u0 ∈ W

1,∞
loc be r-approximable by NNs. Let u(t, x, η) =

u0(X(0, t, x, η)) denote the weak solution of the Cauchy problem for the parametric
linear transport equation of (3.1) according to Proposition 3.7.

Then, for every ε ∈ (0, 1) and every compact subset K ⊂ R
n, there exists a NN

u,ε with d-dimensional input, where d := 1 + n + D, such that for the restriction
u := u [0,T ]×K×[0,1]D there holds that

(i) L u,ε ≤ c · (ln(1/ε) + 1),
(ii) W u,ε ≤ c · ε−1/r + ε−d/k · (ln(1/ε) + 1),
(iii) u − R u,ε

L∞([0,T ]×K×[0,1]D)
< ε,

for c = c(n, r, d, k, K, T , V, u0) > 0.
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Proof of Theorem 4.3 Recall that, by Theorem 3.5, the unique solution u ∈ C1([0,
T ] × R

n × [0, 1]D) of (3.1) is given by

u(t, x, η) = u0(X(0, t, x, η)).

Moreover, X ∈ Ck([0, T ] × [0, T ] × R
n × [0, 1]D) by Theorem 3.3. Therefore,

X := X(0, ·, ·, ·) ∈ Ck([0, T ] × R
n × [0, 1]D).

The idea of the proof is to first approximate the functions u0 and X separately
by realizations of NNs using Theorem 2.6 and then to concatenate these NNs by
Proposition 2.2. To apply Theorem 2.6, we restrict the function X to U := [0, T ] ×
K × [0, 1]D and u0 to BG(0) where BG(0) ⊂ R

n denotes the ball of radius G

around 0 with G = (|K| + CT ) exp(CT ) from (A.1). Then, Definition 4.1 and
Theorem 2.6 imply that there exist NNs u0,δ1 and X,δ2 with n and d dimensional
input dimension, respectively, such that for δ1 := ε/2 and δ2 := ε/(2 Lipu0

) there
holds

u0 − R u0,δ1
L∞(BG(0)) < δ1 and X − R X,δ2

L∞(U)
< δ2.

Invoking the triangle inequality, we conclude for the concatenated network u,ε :=
u0,δ1 X,δ2 that

u−R u,ε
L∞(U)

= u0 ◦ X − R u0,δ1 X,δ2

L∞(U)

= u0 ◦ X − R u0,δ1 ◦ R X,δ2

L∞(U)

≤ u0 ◦ X − u0 ◦ R X,δ2

L∞(U)

+ u0 ◦ R X,δ2 − R u0,δ1 ◦ R X,δ2

L∞(U)

≤ Lipu0
X−R X,δ2

L∞(U)
+ u0−R u0,δ1

L∞(BG(0))

≤ ε

2
+ ε

2
= ε.

Additionally, we compute the number of weights of u,ε using Proposition 2.2,
Definition 4.1, Theorem 2.6, Remark 2.7, and Remark 3.4 as

W u,ε ≤ 2 · W u0,δ1 + W X,δ2 ≤ c · ε−1/r + ε−d/k · (ln (1/ε) + 1)

with c = c(n, r, d, k, K, T , V, u0) > 0. Moreover, by Proposition 2.2, Defini-
tion 4.1, Theorem 2.6, Remark 2.7, and Remark 3.4, we have that u,ε) ≤
c · (ln(1/ε) +1).

Proof of Theorem 4.4 The proof is very similar to the proof of Theorem 4.3, but
requires an application of Proposition 3.7 instead of Theorem 3.3. All further esti-
mates are then analogous to those in the proof of Theorem 4.3 where only Lipschitz
continuity of u0 was used.
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4.2 Framework for efficient approximation

Theorems 4.3 and 4.4 describe achievable approximation rates for solutions of para-
metric transport equations by realizations of NNs. To assess if these rates describe
an efficient way of approximating these functions they should be contrasted with a
direct approximation, that is not based on the special structure of these functions.
Morally, we expect our results to yield improved rates if the solution of a paramet-
ric transport equation u is a high-dimensional, non-smooth function, but splits into a
high-dimensional smooth function and a low-dimensional rough function.

Below, we describe two situations where the aforementioned splitting yields
through Theorems 4.3 and 4.4 highly efficient approximation rates, i.e., rates that
are significantly better than those resulting from a direct approximation of u by
Theorem 2.6. Afterward, we add a concrete example where the described situation
appears.

The typical framework in which we expect to apply Theorems 4.3 and 4.4 above
is that where V is substantially smoother than the initial condition u0. Concretely, in
the following two situations we have that the approximation rates resulting from an
application of Theorem 4.3 or 4.4 are significantly better than those resulting from a
direct approximation of u by Theorem 2.6.

• The initial condition u0 is smooth but not sufficiently smooth to set off the high
dimension of the parameter space: Assume that, in the notation of Theorems
4.3 and 4.4, n ≤ s d ≤ k, and u0 ∈ Cs . In this situation, the dimension
of the parameter space is significantly larger than the dimension of the physical
domain. The dependence of V on the parameters is, however, very regular.

Then u ∈ Cs([0, T ] × K × [0, 1]D) and a direct application of Theorem 2.6
would yield an approximating network with a complexity bound for the number
of weights of the form c · ((ln(1/ε) + 1)ε−d/s). On the other hand, Theo-
rem 2.6 yields that u0 is 1-approximable by NNs and hence Theorem 4.3 yields
a complexity bound that is not worse than c · ((ln(1/ε) + 1 −1.

• The initial condition u0 is rough but can be efficiently represented by realisations
of NNs:Assume thatD ∈ N, in the notation of Theorems 4.3 and 4.4, n n+D,
and k = d . Moreover, assume that u0 ∈ W

2,∞
loc , but u0 ∈ W

1,∞
loc and u0 can be

very efficiently represented by the realisation of a NN. A typical example is that
u0 is a ramp function along a hyperplane or a piecewise affine function. In this
case, u0 is r-approximable for every r ∈ R. Since in applications, u0 is often
known, it is conceivable that one can establish r-approximability of u0 without
using classical smoothness-based arguments.

Then we have that u ∈ W 2,∞([0, T ] × K × [0, 1]D) and therefore a direct
application of Theorem 2.6 to approximate u would again yield a NN with a
complexity bound for the number of weights of the form c·((ln(1/ε)+1)ε−d). On
the other hand, Theorem 4.4 yields a complexity bound of c · ((ln(1/ε)+1)ε−1).

A practical example of the above setting is, for instance, given by monoener-
getic radiative transfer models. For further information and numerical methods for
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these models, refer to [14, 15]. A core constituent of radiative transfer models is
described by⎧⎪⎨

⎪⎩
∂tu(t, x, η) + η · ∇xu(t, x, η) + a(t, x, η)u(x, t, η) = f (t, x, η),

u(0, x, η) = u0(x),

u(t, x, η) = u−
b (t, x, η), for (x, η) ∈ −,

with
− := (x, η) ∈ × [0, 1]D : η · ν < 0

where ν denotes the unit outward normal vector of . This model includes a source
term f , a cross section function a and inflow boundary conditions u−

b . We derive
the corresponding approximation results for this more general form of a transport
equation in the next sections. The above formulation belongs to the setting of dom-
inating transport problems for the common class of kinetic models that describe the
propagation of particles in a collisional medium. The parameter η can, for example,
describe a unit direction vector taken from the (n − 1)-dimensional unit sphere. In
this case, the model assumes that all particles have the same kinetic energy. For this
problem, the velocity field V (t, x, η) = η obviously fulfils the assumptions (H1) and
(H2) with k = ∞. Therefore, an approximation independent of the dimension of η is
possible for suitable initial data.

4.3 Non-vanishing source term

In the following, we extend Theorem 4.3 to non-vanishing source terms. We state our
results for two different types of source terms. For V satisfying assumptions (H1) and
(H2) with k, n, D ∈ N, and T > 0, we assume that one of the following properties
holds:

(i) f (t, x, η) = f1(t, x) ∈ Cs ([0, T ] × R
n), for s : (n + 1)k/d , (4.1)

(ii) f (t, x, η) = f2(t, x, η) ∈ Cs ([0, T ] × R
n × [0, 1]D), for s := k. (4.2)

In words, we assume high regularity of f if it depends on η while much less regularity
of f is sufficient for the η-independent case.

Remark 4.5 In both cases, (4.1) and (4.2), Theorem 2.6 demonstrates that for every
ε ∈ (0, 1) there exists a NN f,ε such that

• f,ε) ≤ c · (ln(1/ε) + 1),
• f,ε) ≤ c ε−d/k · (ln(1/ε) + 1),
• f − R f,ε) L∞ < ε.

Based on the assumption on the source term, we next present an approximation
result for solutions of non-homogeneous parametric linear transport equations.

Theorem 4.6 Let V satisfy assumptions (H1) and (H2) for k, n, D ∈ N, and T > 0.
Further let, for r > 0, u0 ∈ C1(Rn) be r-approximable by NNs and let f and s be
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as in (4.1) or (4.2). Let u ∈ C1([0, T ] ×R
n × [0, 1]D) denote the unique solution of

the Cauchy problem for the non-homogeneous parametric linear transport equation

∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) = f (t, x, η),

u(0, x, η) = u0(x).

Then, for every ε ∈ (0, 1) and every compact subset K ⊂ R
n, there exists a NN

u,ε with d-dimensional input, where d := 1 + n + D, such that for the restriction
u := u [0,T ]×K×[0,1]D there holds that

(i) L u,ε ≤ c · (ln(1/ε) + 1),
(ii) W u,ε ≤c · ε−1/r + ε−(d+1)/k−1 · (ln(1/ε) + 1),
(iii) u − R u,ε

L∞([0,T ]×K×[0,1]D)
< ε,

for c = c(n, r, d, k, K, T , V, u0, f
Cs ) > 0.

Remark 4.7 • If u0 ∈ Cs(Rn), then Remark 4.2 demonstrates that we can replace
r in Theorem 4.6 by s/n and the constant c in Theorem 4.6 depends more
specifically on u0 Cs .

• As for Theorem 4.3, one can immediately generalize Theorem 4.6 to represent
solutions of weak formulations via Remark 3.9.

Proof of Theorem 4.6 Recall that, by Proposition 3.8, the unique solution u ∈
C1([0, T ] × R

n × [0, 1]D) of (3.4) is given by

u(t, x, η) = u0(X(0, t, x, η)) +
t

0
f (τ, X(τ, t, x, η), η) dτ, (4.3)

for all (t, x, η) ∈ [0, T ] × R
n × [0, 1]D .

The proof, therefore, proceeds as follows: First, via Proposition B.1, we construct
a NN the realization of which approximates the antiderivative of f with respect to
the first coordinate by a NN. Then, we construct a second NN via Theorem 4.3 the
realisation of which approximates u0 ◦ X. Finally, Proposition 2.4 yields a NN such
that the associated realization approximates (4.3).

Concretely, let G = G(k, d, T , K, V ) > 0 be the upper bound for X Ck . Defini-
tion 4.1 and Theorem 2.6 imply that there exist NNs u0,δ1 , X,δ2 and f,δ3 with n,
d + 1, and d-dimensional input respectively such that, for

δ1 := ε/6, δ2 := ε/(12 max{Lipu0
,Lipf }), δ3 := ε/12, (4.4)

we have that

u0 − R u0,δ1
L∞(BG(0)) < δ1,

X − R X,δ2

L∞([0,T ]×[0,T ]×K×[0,1]D)
< δ2, and

f − R f,δ3

L∞([0,T ]×BG(0)×[0,1]D)
< δ3.
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Let τ := 1 0 . . . 0 , 0 be a NN with one layer and input dimension 2 +
n + D. Moreover, let

η := 0
RD×(2+n) IdRD , 0RD .

We have that R τ )(τ, t, x, η) = τ and R η)(τ, t, x, η) = η, for all (τ, t, x, η) ∈
[0, T ]×[0, T ]×K×[0, 1]D . Setting X,δ2,full :=P τ

X,δ2
η), we now have that

sup
(τ,t,x,η)∈[0,T ]×[0,T ]×K×[0,1]D

(τ, X (τ, t, x, η) , η) − R X,δ2,full ≤ δ2.

Denoting f X(τ, t, x, η) :=f (τ, X(τ, t, x, η), η), we have by the triangle inequality that

sup
(τ,t,x,η)∈[0,T ]×[0,T ]×K×[0,1]D

f X(τ, t, x, η) − R f,δ3 X,δ2,full (τ, t, x, η)

≤ sup
(τ,t,x,η)∈[0,T ]×[0,T ]×K×[0,1]D

f X(τ, t, x, η) − f ◦ R X,δ2,full (τ, t, x, η)

+ sup
(τ,t,x,η)∈[0,T ]×[0,T ]×K×[0,1]D

f ◦ R X,δ2,full (τ, t, x, η)

−R f,δ3 X,δ2,full (τ, t, x, η)

≤ Lipf δ2 + δ3. (4.5)

Let A be the matrix satisfying A(t, x, η) = (t, t, x, η) for (t, x, η) ∈ [0, T ] × K ×
[0, 1]D . Then, for

N := 15

ε
max T 2 f X

C1 , 1 f L∞([0,1]×BG(0)×[0,1]D) , (4.6)

we define with Proposition B.1

f,anti := IN
f,δ3 X,δ2,full A, 0 .

We have the following estimate:
t

0
f (τ, X(τ, t, x, η), η) dτ − R f,anti (t, x, η)

≤
Prop. B.2

IN(f X)(t, t, x, η) − R f,anti (t, x, η) + 2T 2 f X
C1

N

≤ IN(f X)(t, t, x, η) − R IN
f,δ3 X,δ2,full (t, t, x, η) + 2T 2 f X

C1

N

≤
Rem. B.3

IN f X (t, t, x, η) − IN R f,δ3 X,δ2,full) (t, t, x, η)

+2T 2 f X
C1

N
+ 3 R f,δ3 X,δ2,full

L∞
N

≤ IN f X (t, t, x, η) − IN R f,δ3 X,δ2,full (t, t, x, η)

+2T 2 f X
C1

N
+ 3 R f,δ3

L∞

N
.
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By elementary estimates, we therefore conclude that

t

0
f (τ, X(τ, t, x, η), η) dτ − R f,anti (t, x, η)

≤ sup
(τ,t,x,η)∈[0,T ]×[0,T ]×K×[0,1]D)

f X(τ, t, x, η)−R f,δ3 X,δ2,full (τ, t, x, η) +

+2T 2 f X
C1 + 3 R f,δ3

L∞

N

≤
(4.5)

Lipf δ2 + δ3 + 2T 2 f X
C1 + 3 R f,δ3

L∞

N
. (4.7)

Setting X := X(0, ·, ·, ·), we conclude for the NN u,ε := u0,δ1 X,δ2) ⊕
f,anti that

u − R u,ε
L∞([0,T ]×K×[0,1]D)

= u0 ◦ X +
t

0
f (τ, X(τ, t, x, η), η) dτ

−R u0,δ1 X,δ2 − R f,anti

L∞([0,T ]×K×[0,1]D)

≤
(4.7)

u0 ◦ X − R u0,δ1) ◦ R X,δ2)
L∞([0,T ]×K×[0,1]D)

+Lipf δ2 + δ3 + 2T 2 f X
C1 + 3 R f,δ3

L∞

N

≤ δ1 + Lipu0
δ2 + Lipf δ2 + δ3 + 2T 2 f X

C1 + 3 R f,δ3
L∞

N

≤ ε

6
+ ε

12
+ ε

12
+ ε

12
+ ε

3
< ε,

where we have used (4.6) and (4.4).
We compute the number of weights using Definition 4.1 Theorem 2.6, Proposi-

tions 2.2, B.1, and Remark 4.5 as

W u,ε ≤ W u0,δ1 X,δ2 + W f,anti

≤ c · (ε−1/r + ε−d/k) · (ln(1/ε) + 1) + c · N · W f,δ3 X,δ2,full

≤ c · ε−1/r + ε−d/k · (ln(1/ε) + 1) + c · ε−1 · ε−d/k + ε−(d+1)/k

≤ c · (ε−1/r + ε−(d+1)/k−1) · (ln(1/ε) + 1)

with c = c (n, r, d, k, K, T , V, u0, f
Cs ) > 0. The number of layers is c ·

(ln(1/ε)+1), for c = c (n, r, d, k, K, T , V, u0, f
Cs ) > 0, by the same results.

11 (2021)47: 11Adv Comput Math



Page 21 of 32

4.4 Conservative form

Next, we extend our results to transport equations in conservative form by invoking
Proposition 3.10.

Theorem 4.8 Let V satisfy assumptions (H1) and (H2) with n, D, k ∈ N, and T > 0.
Further let, for r > 0, u0 ∈ C1(Rn) be r-approximable by NNs. Let u ∈ C1([0, T ]×
R

n × [0, 1]D) denote the unique solution of the Cauchy problem for the conservative
parametric linear transport equation:

∂tu(t, x, η) + divx(V (t, x, η)u(t, x, η)) = 0,

u(0, x, η) = u0(x).

Then, for every ε ∈ (0, 1) and every compact subset K ⊂ R
n, there exists a NN

u,ε with d-dimensional input, where d := 1 + n + D, such that for the restriction
u := u [0,T ]×K×[0,1]D there holds

(i) L u,ε ≤ c · (ln(1/ε) + 1),
(ii) W u,ε ≤ c · 1 + ε−1/r + ε−d/(k−1) · (ln(1/ε) + 1),
(iii) u − R u,ε

L∞([0,T ]×K×[0,1]D)
< ε,

for c = c(n, r, d, k, K, T , V, u0) > 0.

Remark 4.9 • If u0 ∈ Cs(Rn), then Remark 4.2 demonstrates that we can replace
r in Theorem 4.8 by s/n and the constant c in Theorem 4.8 depends more
specifically on u0 Cs .

• As in earlier results, the statement of Theorem 4.8 extends to a weak formulation
of the transport equation via Remark 3.11.

Proof Recall that, by Proposition 3.10, the unique solution u ∈ C1([0, T ] × R
n ×

[0, 1]D) of (3.1) is given by

u(t, x, η) = u0(X(0, t, x, η))J (0, t, x, η).

Moreover, X ∈ Ck([0, T ] × [0, T ] × R
n × [0, 1]D) by Theorem 3.3 and therefore

J ∈ Ck−1([0, T ] × [0, T ] × R
n × [0, T ]D). We define X := X(0, ., ., .) and J :=

J (0, ., ., .).
The proof proceeds by first approximating J by a NN with help of Theorem 2.6,

then invoking the known approximation of u0◦X via Theorem 4.3, and then applying
the multiplication of NNs by Proposition 2.5.

Let G1 := max{G0, T V C1 exp(T V C1)} be the bound of X C1 from (A.2).
The Hadamard inequality [32, Corollary 7.8.2] implies that

J L∞([0,T ]×K×[0,1]D) ≤ sup
(t,x,η)∈[0,T ]×K×[0,1]D

n

i=1

(DxX(0, t, x, η))i 2

≤
n

i=1

n X 2
C1 = nn/2 X n

C1 ≤ nn/2Gn
1 =: GJ ,

11Adv Comput Math (2021)47: 11



Page 22 of 32

where (DxX(s, t, x, η))i denotes the i-th column vector of the matrix DxX.
Theorem 2.6 implies that there exist NNs u0,δ1 , X,δ2 , and J ,δ3 with n, d , and
d-dimensional input dimension respectively such that, for δ1 := ε/(8GJ ), δ2 :=
ε/(8 Lipu0

GJ ), and δ3 := ε/(4 u0 L∞), there holds

u0 − R u0,δ1
L∞ < δ1, X − R X,δ2

L∞ < δ2, and

J − R J ,δ3

L∞ < δ3.

We conclude for u,ε := u0,δ1 X,δ2) ⊗ε/4 J ,δ3 that

u − R u,ε
L∞([0,T ]×K×[0,1]D)

= u0 ◦ X · J − R u0,δ1 X,δ2 ⊗ε/4 J ,δ3

L∞([0,T ]×K×[0,1]D)

= u0 ◦ X · J − R u0,δ1 ◦ R X,δ2 · R J ,δ3

L∞([0,T ]×K×[0,1]D)
+ ε

4

≤ u0 ◦ X · J − R u0,δ1 ◦ R X,δ2 · J
L∞([0,T ]×K×[0,1]D)

+ R u0,δ1 ◦ R X,δ2 · J

− R u0,δ1 ◦ R X,δ2 R J ,δ3

L∞([0,T ]×K×[0,1]D)
+ ε

4

≤ u0 ◦ X − R u0,δ1 ◦ R X,δ2

L∞([0,T ]×K×[0,1]D)
J L∞([0,T ]×K×[0,1]D)

+ R u0,δ1 ◦ R X,δ2

L∞([0,T ]×K×[0,1]D)

× J − R J ,δ3

L∞([0,T ]×K×[0,1]D)
+ ε

4

≤ ε

4
+ u0 ◦ X − R u0,δ1 ◦ R X,δ2

L∞([0,T ]×K×[0,1]D)

× J − R J ,δ3

L∞([0,T ]×K×[0,1]D)

+ u0 ◦ X
L∞([0,T ]×K×[0,1]D)

J − R J ,δ3

L∞([0,T ]×K×[0,1]D)
+ ε

4

≤ ε

4
+ ε

4
+ ε

4
+ ε

4
= ε.

We have assumed without loss of generality that J−R J ,δ3) L∞([0,T ]×K×[0,1]D) ≤
1 and have used the previous result from Theorem (4.3) to bound u0◦X−R u0,δ1)◦
R X,δ2) L∞([0,T ]×K×[0,1]D).
We compute the number of weights with Definition 4.1, Theorem 2.6, Proposition
2.2, and 2.5 as

W u,ε ≤ c · (ln(1/ε) + 1) + 2 · W u0,δ1 X,δ2 + W J,δ3

≤ c · 1 + ε−1/r + ε−d/k + εd/k−1 · (ln(1/ε) + 1)

with c = c(n, r, d, k, K, T , V, u0) > 0. The number of layers is c · (ln(1/ε) + 1) by
the same theorems and propositions.
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5 Extensions

Below, we discuss some natural extensions of our work to more general settings.

• Bounded domains and boundary conditions: The previous theory was formu-
lated for = R

n to avoid the discussion of boundary conditions and solutions
were approximated on compact subsets. Most of the results can be extended to
boundary value problems in a straightforward manner. To avoid technicalities in
the following discussion, we assume that is a bounded and convex subset of
R

n with smooth boundary. Firstly, we mention the case of a pure characteristic
boundary, i.e.:

V (t, x, η) · ν = 0 ∀x ∈ ∈ [0, T ], η ∈ [0, 1]D,

where ν denotes the unit outward normal vector of . In this case no bound-
ary conditions have to be prescribed and the solution of (3.1) is given as before
by u0(X(0, t, x)); therefore, all the previous results immediately extend to this
case. The same holds for periodic boundary conditions on a cube [0, L]n, L > 0
with periodic initial conditions since the solution is just the restriction on [0, L]n
of the corresponding Cauchy problem on = R

n [1, Remark 2.2.9].
For inflow boundary conditions, we discuss the case of V (t, x, η) = Ṽ (η) in
more detail. The results can be extended to x-dependent vector fields under fur-
ther geometric assumptions on the vector field which can, for instance, include
that any integral curve of the vector field that is tangent to the boundary of the
domain remains in the complement of the domain. We define:

− := (x, η) ∈ × [0, 1]D : Ṽ (η) · ν < 0

and the exit time

τt,x,η = inf s ≥ 0 : X(s, t, x, η) ∈ .

Then [1, Theorem 2.2.6] implies that for u−
b ∈ C1([0, T ] × −) there holds

that the problem⎧⎪⎨
⎪⎩

∂tu(t, x, η) + Ṽ (η) · ∇xu(t, x, η) = 0,

u(0, x, η) = u0(x),

u(t, x, η) = u−
b (t, x, η), for (x, η) ∈ −,

(5.1)

has a unique solution u ∈ C1([0, T ] × × [0, 1]D) which is given by

u(t, x, η) = u0(X(0, t, x, η)), τt,x,η = 0,

u−
b (τt,x,η, x

∗, η), τt,x,η > 0,
(5.2)

with x∗ = X(τt,x,η, t, x, η), if and only if, for all (y, η) ∈ − there holds

u−
b (0, y, η) = u0(y), ∂tu

−
b (0, y, η) + Ṽ (η) · ∇u0(y) = 0.

These results also hold for transport equations that include source terms and
amplification factors; see [1, Theorem 2.2.7].
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To give an intuition what a NN approximation of (5.2) can look like, we
further suppose that u−

b and u0 are compatible such that there exists a ũ ∈
C1([0, T ] × × [0, 1]D) with

ũ(t, x, η) = u0(x), if t = 0,

u−
b (t, x, η), if (x, η) ∈ −.

Then, the solution (5.2) can be written as

u(t, x, η) = ũ(τt,x,η, X(τt,x,η, t, x, η), η).

Since the solution now has a compositional structure, the concepts we used pre-
viously can be used to construct a NN approximation. Note that τt,x,η is smooth
for the prescribed case of a convex domain with smooth boundary and a velocity
field independent of x and t . For more general domains, the efficiency of the NN
approximation depends mainly on the regularity of the exit time τt,x,η.

• Non-linear transport equations: An immediate question is to what extent the
results carry over to the non-linear setting. We believe that it is highly unlikely
that similar results hold in this regime without overly restrictive assumptions.
Indeed, in the non-linear case, non-smoothness of the initial condition u0
potentially implies non-smoothness of the characteristic curves described by
X. This can already be seen in the one-dimensional case. We consider the
one-dimensional non-linear transport equation:

∂tu(t, x, η) + ∂x[f (u(t, x, η))] = 0,

u(0, x, η) = u0(x).

The characteristic system of ODEs is then given by [53, p. 26] as

∂sX(s, t, x, η) = f (u(t, X(s, t, x, η), η)), (5.3a)

X(t, t, x, η) = x. (5.3b)

Hence, the regularity of the characteristic curves described by X depends on the
global regularity of u and therefore on the regularity of u0; therefore, X is not
guaranteed to be smooth.

If X is non-smooth, then the fundamental backbone of the argument, which
is that u can be written as the composition of a high-dimensional smooth and
low-dimensional (potentially) rough function, collapses.

• Non-smooth velocity fields: As mentioned above, if X cannot be guaranteed to
be smooth, our argument cannot be made in the same way as before.

However, it is conceivable that one can have efficient approximations of
X by realizations of NNs if X is non-smooth. This is the case if X pos-
sesses specific additional structure, such as compositionality. For example, if
X(s, t, x, η) = X1(s, t, x, X2(η)) with X1 : [0, T ] × [0, T ] × × [0, 1] → ,
and X2 : [0, 1]D → [0, 1], where X2 is smooth but X1 is non-smooth. Then
similar arguments as earlier can be used to establish that X can be efficiently
approximated by realizations of NNs.

11 (2021)47: 11Adv Comput Math



Page 25 of 32

• Damping/amplification: The extension of our results to parametric linear trans-
port equations that include an amplification or damping factor is straight-
forward. More precisely, we consider solutions of the equation:

∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) + a(t, x, η)u(t, x, η) = 0, (5.4a)

u(0, x, η) = u0(x), (5.4b)

where a is, similarly to (4.1) and (4.2), either given by a(t, x, η) = a1(t, x) ∈
Cs ([0, T ] × R

n), for s : (n + 1)k/d , or a(t, x, η) = a2(t, x, η) ∈
Cs ([0, T ] × R

n × [0, 1]D), for s := k.
If V satisfies assumptions (H1) and (H2) with n, D, k ∈ N, T > 0, and
u0 ∈ C1(Rn) being r-approximable by NNs for r > 0, then one can show, see
[25], that there exists a unique solution of (5.4) which is given by

u(t, x, η) = u0(X(0, t, x, η)) exp −
t

0
a(τ, X(τ, t, x, η), η) dτ . (5.5)

To get an estimate on the sizes of approximating NNs for functions of the form
of (5.5), we only have to combine previous results. Section 4.3 describes how
to approximate the map (t, x, η) → − t

0a(τ, X(τ, t, x, η), η) dτ by realizations
of NNs. This approximation can be concatenated with an approximation of the
smooth, one-dimensional exponential function via Proposition 2.2. Finally, the
result may be multiplied, via Proposition 2.5, with the already known approxi-
mation of u0(X(0, t, x, η)) from Theorem 4.3. This yields a NN u,ε such that
the realization of u,ε approximates (5.5) up to an error of ε > 0. Estimating the
individual sizes of the networks involved in the construction of u,ε yields that

L u,ε ≤ c · (ln(1/ε) + 1) ,

W u,ε ≤ c · ε−1/r + ε−(d+1)/k−1 · (ln(1/ε) + 1) ,

with c = c(n, r, d, k, K, T , V, u0, a
Cs ) > 0. As before, if u0 ∈ Cs(Rn), then

r = s/n.
• Parameter dependence of initial condition: We only considered the case where

u0 does not depend on the parameters. It is not hard to see that, in the frame-
work of r-approximability, the same result would hold if u0 depended on the
parameters. However, if u0 ∈ Cs(Rn × [0, 1]D), then Remark 4.2 would yield
an approximation rate depending on the dimension D of the parameter space.

For an application of Remark 4.2 it is required that u0 is a low-dimensional
function. Hence, if u0 ∈ Cs depends on very few parameters, say the first t

D, then all main theorems can be extended directly. Instead of approximating
x → u0(x) with a NN up to an error of 0 and having to use O −n/s)

many weights for ε → 0, one would instead approximate x → u0(x, η1, . . . , ηt )

which requires O −(n+t)/s) many weights for ε → 0.
A second framework in which u0 could be guaranteed to be r-approximable
with large r while having low spatial smoothness is that where the parameter
dependence is decoupled from the dependence on the spatial coordinates. For
example, if u0(x, η) = ũ0(x) · κ1(η) + κ2(η) for smooth κ1, κ2, then again low
regularity of ũ0 could suffice to achieve fast rates.
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• Weak solutions with discontinuous initial condition: Since realizations of deep
neural networks are always continuous functions, we cannot hope to obtain
approximation results in the uniform norm as studied in this work. However, if
one considers Lp-approximation, for p ∈ [1, ∞) instead, then approximation of
piecewise regular functions is possible. This situation was studied in [48].

• Numerical proof-of-concept: While we observe theoretically that solutions of
certain transport equations can be very well approximated by neural networks
with rates virtually independent of the ambient dimension, the asymptotic esti-
mates mask the existence of constants that may be dimension dependent. Hence,
it is very well possible that the presented results do not effect practical scenar-
ios. In this context, a comprehensive numerical study should be carried out to
analyze the practical effect of the smoothness and the dimensions of parameter
spaces and spatial dimension on the approximability of solutions of associated
transport equations.

Appendix 1: Bounds for X Ck , k = 0, 1

Proposition A.1 Let X be defined as in Theorem 3.3. Then, for every compact set
K ⊂ R

n there holds

X C0([0,T ]×[0,T ]×K×[0,1]D) ≤ (|K| + CT ) exp(CT ) := G0 (A.1)

X C1([0,T ]×[0,T ]×K×[0,1]D) ≤ max G0, T V C1 exp(T V C1) (A.2)

with V C1 V C1([0,T ]×BG0 (0)×[0,1]D).

Proof We start with the definition of X given by

The fundamental theorem of calculus implies

X(s, t, x, η) = x +
s

t

V (τ, X(τ, t, x, η), η) dτ . (A.4)

With the help of the sub-linear growth-condition (H2), we conclude

|X(s, t, x, η)| ≤ |x| +
s

t

|V (τ, X(τ, t, x, η), η)| dτ

≤ |x| + C
s

t

(1 + |X(τ, t, x, η)|) dτ

≤ |x| + CT + C
s

t

|X(τ, t, x, η)| dτ .
Moreover, by Gronwall’s inequality

sup
s∈[0,T ]

|X(s, t, x, η)| ≤ (|x| + CT ) exp(CT ).
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Hence,

X C0([0,T ]×[0,T ]×K×[0,1]D) ≤ (|K| + CT ) exp(CT ).

We have by (A.3a)

∂sX C0 V C0 .

Furthermore, applying Leibniz integral rule to (A.4) yields

∂tX(s, t, x, η) = −V (t, x, η) +
s

t

∇xV (τ, X(τ, t, x, η), η)∂tX(τ, t, x, η) dτ

and therefore

|∂tX(s, t, x, η) V C0 V C1

s

t

|∂tX(τ, t, x, η)| dτ .

Gronwall’s inequality implies then

∂tX C0 V C0 exp(T V C1).

The same procedure results for ∇xX and ∇ηX in

xX C0 ≤ exp(T V C1),

ηX C0 ≤ T V C1 exp(T V C1).

Thus, we get after assuming without loss of generality that T ≥ 1, V C1 ≥ 1

X C1 ≤ max G0, T V C1 exp(T V C1) . (A.5)

Appendix 2: Construction of a NN emulating the left Riemann sum

Proposition B.1 Let d ∈ N≥2, T > 0, ⊂ R
d−1, and let be a NN with d-

dimensional input. Then there exists a NN IN such that

• L IN = + c1,

• W IN ≤ c2 · N ·

• sup
t∈[0,T ],x∈

R IN − 1

N

tN/T 1

i=0

R
iT

N
, x ≤ c3

N
, (B.1)

where c1, c2 > 0 are independent of and c3 := 3 R L∞([0,T ]× .

Proof Let, for i ∈ {0, 1, . . . , N}, ti := iT /N . We define, for i ∈ {0, . . . , N − 1},
(shift)
i := 0 0

0 IdRd−1
,

ti
0

.
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Then R (shift)
i )(t, x) = R i , x), for all t ∈ [0, T ], x ∈ . Moreover, (shift)

i )

≤ 2 + 2d and (shift)
i ) = + 2 by Proposition 2.2. Next, we define the

following indicator networks for i ∈ {0, . . . , N − 1}:

(ind)
i := ([1 0 . . . 0] , 0) ,

1 0Rd

1 0Rd
,

−ti

−ti+1
, N −N | 0 | 0Rd , 0 .

We have that (ind)
i ) = 7, (ind)

i ) = 3 and, for t ∈ [0, T ] and x ∈ ,

R (ind)
i (t, x)=N · −ti )− −ti+1))=

⎧⎨
⎩
0 if t ≤ ti ,

N · (t−ti ) if ti <t <ti+1,

1 if t ≥ ti+1.
(B.2)

Let ā R L∞([0,T ]× . Now we set, for i ∈ {0, . . . , N − 1},

(clip)
i := 2ā 1

2ā 0
,

−ā

−ā
, ([1 − 1 | 0 0] , 0) P (ind)

i
(shift)
i .

We have that

R (clip)
i (t, x) = 2āR (ind)

i (t, x) + R (shift)
i (t, x) − ā

− 2āR (ind)
i (t, x) − ā . (B.3)

It follows from (B.2) and (B.3) that, for t ∈ [0, T ] and x ∈ ,

R (clip)
i (t, x) = 0, if t ≤ ti (B.4)

R (clip)
i (t, x) = R (shift)

i (t, x), if t ≥ ti+1, (B.5)

R (clip)
i (t, x) ≤ 2ā, else. (B.6)

In addition, by Propositions 2.2 and 2.3,

L
(clip)
i = 2 + max{3 + 2}, (B.7)

W
(clip)
i ≤ 16 + 2 · (7 + 2 + 2d). (B.8)

Finally, we set

IN := 1

N
. . .

1

N
, 0 P (clip)

0
(clip)
N−1 .
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Now we have that t ≤ ti if tN/T i and t ≥ ti+1 if i tN/T 1. Hence, for
t ∈ [0, T ] and x ∈ ,

R IN (t, x) = 1

N

N−1

i=0

R (clip)
i (t, x)

=
(B.4)

1

N

tN/T 1

i=0

R (clip)
i (t, x)

=
(B.5)

1

N

tN/T 2

i=0

R (shift)
i (t, x) + 1

N
R (clip)

tN/T 1 (t, x)

= 1

N

tN/T 2

i=0

R ( ) (ti , x) + 1

N
R (clip)

tN/T 1 (t, x)

= 1

N

tN/T 1

i=0

R ( ) (ti , x)

+ 1

N
R (clip)

tN/T 1 (t, x) − R ( ) t tN/T 1, x .

Since, by (B.6),

1

N
R (clip)

tN/T 1 (t, x) − R ( ) t tN/T 1, x ≤ 3 R L∞([0,T ]× ,

we conclude the proof by observing with (B.7) and (B.8) that

L IN ≤ 3 + max{3 + 2},
W IN ≤ 2N + N · (32 + 4 · (7 + 2 + 2d))

= 62N + 8 + 8dN .

Proposition B.2 (Left Riemann sum) Let M > 0, n ∈ N, f ∈ C1([0, T ] ×
[−M, M]n;R), and N ∈ N. The approximation of the integral of f with respect to
its first argument from 0 to t ≤ T , T ≥ 1 by the left Riemann sum is given by

Then

sup
t∈[0,T ],x∈[−M,M]n

t

0
f (τ, x) dτ − IN(f )(t, x) ≤ 2T 2

N
f C1 .
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Proof Let N(t) := max{i ∈ N | ti < t}. Then
t

0
f (τ, x) dτ − IN(f )(t, x)

=
N(t)

i=0

ti+1

ti

f (τ, x) − f (ti , x) dτ −
tN(t)+1

t

f (τ, x) dτ

≤
N(t)

i=0

ti+1

ti

f (τ, x) − f (ti , x) dτ +
tN(t)+1

t

f (τ, x) dτ

≤ T 2

N
f C1 + T

N
f C0 ≤ 2T 2

N
f C1 .

Remark B.3 Equation (B.1) implies that for a NN with n + 1-dimensional input
there holds

sup
t∈[0,T ],x∈[−M,M]n

R IN − IN(R ≤ c

N

with c = 3 R L∞([0,T ]× > 0.
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