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Abstract
This paper discusses model order reduction of linear time-invariant (LTI) systems
over limited frequency intervals within the framework of balanced truncation. Two
new frequency-dependent balanced truncation methods are developed, one is single-
frequency (SF)-type frequency-dependent balanced truncation to cope with the cases
that only a single dominating point of the operating frequency interval is pre-known,
and the other is interval-type frequency-dependent balanced truncation to deal with
the case that both the upper and lower bounds of the relevant frequency interval
are known a priori. Error bounds for both approaches are derived to estimate the
approximation error over a pre-specified frequency interval. In contrast to other
error bounds for frequency-weighted or frequency-limited balanced truncation, these
bounds are given specifically for the interval under consideration and are thus often
sharper than the global bounds for previous methods. We show that the new meth-
ods generally lead to good in-band approximation performance, and at the same time
provide accurate error bounds under certain conditions. Examples are included for
illustration.
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1 Introduction and problem formulations

We study model order reduction for linear time-invariant continuous-time systems,
where, by abuse of notation, we will denote the system and its transfer function by
G, and we will use the following representations in state-space, block matrix, and
frequency domain form:

G : ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
⇐⇒ G ∼= A B

C D

⇐⇒ G(jω) := C(jωI − A)−1B + D,

(1)

where A ∈ C
n×n, B ∈ C

n×m, C ∈ C
p×n, D ∈ C

p×m, and at time t ∈ [0, ∞],
x(t) ∈ C

n is the state vector, u(t) ∈ C
m is the input signal, and y(t) ∈ C

p is the
output signal. Furthermore, j := √−1 is the imaginary unit and ω ∈ R is the angular
frequency in radians per second.

Modeling of complex physical processes frequently leads to large order n. The
corresponding high storage requirements and expensive computations make it often
difficult to simulate or optimize such systems, and may be prohibitive to design a
controller for such plant models. In these situations, model order reduction (MOR)
becomes an expedient tool; see [1–8] for overviews on MOR techniques and applica-
tions. It consists in approximating the system (1) by a reduced-order model (ROM)
(or “reduced-order system”):

Gr : ẋr (t) = Arxr(t) + Bru(t)

yr(t) = Crxr(t) + Dru(t)
⇐⇒ Gr(jω) ∼= Ar Br

Cr Dr

⇐⇒ Gr(jω) := Cr(jωI − Ar)
−1Br + Dr,

(2)

where Ar ∈ C
r×r , Br ∈ C

n×m, Cr ∈ C
p×n, Dr ∈ C

p×m with r n, and such that
y ≈ yr for all feasible input signals u.

Balanced truncation is a well-studied and the most commonly used MOR scheme
in systems and control theory; see [1–3, 5, 9] for details and recent surveys. The
standard form is sometimes called Lyapunov balanced truncation, which was first
introduced in the systems and control literature by Moore [10]. The prominent advan-
tages of balanced truncation are that it preserves stability and provides an a priori
error bound over the entire frequency range as a by-product of the procedure to com-
pute a ROM. In detail, it provides an upper bound of the following entire-frequency
(EF) type approximation performance index function:

σmax(G(jω) − Gr(jω)) for all ω ∈ [−∞, +∞], (3)

where σmax( . ) denotes the maximum singular value of a matrix.
In many practical applications, the operating frequency of the input signal belongs

to a fully or partially known finite-frequency range such as a limited interval (i.e.,
ω ∈ [ 1 2 ]). For those cases, the ROM is only needed to capture the input-
output behavior of the original system for input signals with admissible frequency.
Correspondingly, good in-band approximation performance is expected, while the
out-of-band approximation performance might be neglected; see, e.g., [11–18] for
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such methods. In other words, the objective of finite-frequency (FF) MOR is to
minimize the following FF-type performance index function:

σmax(G(jω) − Gr(jω)) for all ω ∈ [ 1 2 ]. (4)

Since standard balanced truncation is intrinsically frequency-independent, we will
call it frequency-independent balanced truncation (FIBT) in the sequel. For FIBT,
pre-known frequency information cannot be used to further improve the in-band
approximation performance (4). To enhance the approximation performance over
a pre-specified frequency range, several balancing-related approaches have been
developed. Some popular ones include:
1. Singular perturbation approximation (SPA) SPA is a balancing-related method

based on the standard FIBT, first introduced by Liu and Anderson [11]. Although
FIBT and SPA yield the same EF-type error bound, the characteristics of them
complement each other. The ROMs generated by FIBT generally have a smaller
error at high frequencies (as the error tends to zero when ω tends to infinity),
and tend to be larger at low frequencies. In contrast, SPA generally leads to good
approximation performance at small frequencies as for SPA, G(0) = Gr(0)

holds. Therefore, SPA is particularly suited for solving MOR problems where
good steady-state performance is desired. For a flexible trade-off between the
local approximation performance over low-frequency ranges and the global
approximation performance over the entire frequency range, a generalized SPA
algorithm has been developed by parametrizing the ROM using a user-defined
adjustable scalar defining where interpolation is achieved (instead of ω = 0 as
in standard SPA) [9, Section 1.3].

2. Frequency-weighted balanced truncation (FWBT) In the fields of system analysis
and control theory, frequency-weighting functions are conventional tools widely
applied for solving various analysis and synthesis problems with pre-known fre-
quency information. For FF-MOR problems, utilizing the frequency-weighting
technique and combining it with the standard balanced truncation method is very
common. During the last three decades, many frequency-weighted balanced trun-
cation approaches have been developed; see, e.g., [13, 16, 18–21]. The common
procedure of FWBT is to build a frequency-weighted model first by introducing
input/output frequency-weighted transfer functions and then to apply the stan-
dard FIBT to the frequency-weighted model. Indeed, good frequency-specific
approximation performance may be obtained if the selected weighting function
is an appropriate one. However, the design iterations to search for an appropriate
weighting transfer function can be tedious. Besides, FWBT also suffers from the
drawback of the increased order of the weighted plant model.

3. Frequency-limited balanced truncation (FLBT) This was first introduced by
Gawronski and Juang in [14]. The FLBT methodology stems from changing
the definition of the standard Gramians via their integral formulation over the
whole imaginary axis to the frequency-limited case, where the integral is lim-
ited to the desired frequency interval, and then applying the standard balanced
truncation procedure using the frequency-limited Gramians. See, e.g., [15, 17]
for enhancements of this technique and [12] for an algorithm applicable to truly
large-scale problems with sparse A. A disadvantage of FLBT is that, so far, no
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Table 1 Characterizations of various balancing-related methods

Assumption Method Error bound desired Error bound available

for σmax(E(jω)) for σmax(E(jω))

EF-MOR FIBT ∀ω ∈ [−∞,+∞] ∀ω ∈ [−∞,+∞]
ω ∈ [−∞,+∞]
FF-MOR SPA ∀ω ∈ [0 2] ∀ω ∈ [−∞,+∞]
ω ∈ [ 1,+ 2] FWBT ∀ω ∈ [ 1 2] ∀ω ∈ [−∞,+∞]

FLBT ∀ω ∈ [ 1 2] ∀ω ∈ [−∞,+∞]
FDBT (this paper) ∀ω ∈ [ 1 2] ∀ω ∈ [ 1 2]

Here, E(s) := G(s) − Gr(s) denotes the error system for the ROMs computed by the various approaches

computable error bound is known. To overcome this drawback, several modified
FLBT schemes providing error bounds have been proposed [15, 17].

A common feature of the existing finite-frequency balancing-related approaches is
that they continue to use the entire-frequency type index (3) to evaluate the actual
finite-frequency approximation performance (see Table 1 for an overview).

As illustrated in Table 1, there exists an incompatibility between the intrinsic
required and the available error bounds with respect to the existing FF-oriented
balancing-related approaches. Since only EF-type error bounds are available, these
bounds also bound the error outside the interesting frequency range, and this error
can be large as it is of no importance for the method. Thus, these error bounds tend
to be very pessimistic w.r.t. predicting the in-band performance of the FF-type meth-
ods, and they are often even worse than the standard balanced truncation error bound
for FIBT—as FIBT tries to approximate the system over the entire frequency range,
no part of the frequency band is neglected by the approximation! Requiring a good
approximation over a (small) finite frequency range, one would expect a better error
bound than that available for the whole frequency range, and a better true approx-
imation quality in the frequency band of interest. This motivates us to revisit the
finite-frequency model reduction problems.

In this paper, we are concerned with the FF MOR problem within the frame-
work of balanced truncation. The main conceptual innovation of this paper can be
seen in establishing new methods coming with FF-type error bounds instead of EF-
type error bounds to estimate the in-band approximation error. First, we focus on
the case that only a single dominating operating frequency point is pre-known.
By exploiting a special class of parameterized Möbius transformations, an SF-type
frequency-dependent balanced truncation (FDBT) method is developed based on the
generalized Kalman-Yakubovich-Popov (KYP) lemma (developed by Iwasaki and
Hara in [22]). It is shown that the proposed SF-type FDBT method provides a scal-
able SF-type error bound with respect to a user-defined parameter. By adjusting the
parameter, satisfactory approximation performance can be obtained. Second, we dis-
cuss the cases that both an upper and a lower bound for the operating frequency
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interval are known. Following the same generalized KYP lemma–based method-
ology as before, an interval-type frequency-dependent balanced truncation method
is developed. Moreover, an interval-type error bound for this approach is derived.
The interval-type FDBT method generally gives rise to good in-band approxima-
tion performance. In particular, we show that a small in-band approximation error
with small interval-type error bound can be simultaneously generated as long as the
pre-specified interval is small enough.

The remainder of this paper is organized as follows: First, we introduce the gen-
eralized KYP lemma in Section 2. Then, we derive the SF-type FDBT method and
the interval-type FDBT method in Sections 3 and 4, respectively. Next, we demon-
strate the effectiveness and advantages of the proposed methods by several examples
in Section 5. Finally, we end with conclusions and an outlook on future work in
Section 6.

Notation For a matrix M , MT and M∗ denote its transpose and conjugate transpose,
respectively. The symbol ∗ within a matrix represents entries known due to sym-
metry. He(M) denotes 1

2 (M + M∗), i.e., the Hermitian part of a matrix. σmax(M)

represents the maximum singular value of a matrix M . Re(x) and Im(x) are the real

and imaginary parts of the complex quantity x, respectively, and j := √−1. M
1
2 is

a square root of the matrix M and M
1
2 denotes the positive principle square root of

M (i.e., all the eigenvalues of M
1
2 have positive real part). I represents the identity

matrix of appropriate dimension. M > 0 stands for “M is positive definite,” while
M ≥ 0 denotes positive semi-definiteness. In, or I if the dimension is clear from the
context, is the identity matrix of size n × n.

2 The fundamental tool

The KYP lemma [23] is a cornerstone in systems and control theory. In fact, the
EF-type error bound provided by the standard FIBT can be proved and interpreted
with the aid of the KYP lemma. In [22], Iwasaki and Hara successfully generalized
the KYP lemma from the EF case to FF cases. The generalized KYP lemma plays a
fundamental role in our development, and therefore it is stated here.

Proposition 1 [Generalized KYP lemma, [22]] Consider the continuous-time system
(1), then the following statements are equivalent:

(i) The frequency domain inequality:

σmax(G(jω)) ≤ γ holds for all ω ∈ [ω1, ω2]. (5)

(ii) There exist Hermitian matrices P and Q > 0 of appropriate dimensions,
satisfying the linear matrix inequality:

−He (A(ω1)QA(ω2)
∗) + L(P ) A(ωc)QC∗ + PC∗ + BD∗

∗ −CQC∗ + DD∗ − γ 2I
≤ 0,

(6)
where L(P ) := AP + PA∗ + BB∗ and A(ω) := jωI − A for ω ∈ R.
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3 Frequency-dependent balanced truncation over uncertain
frequency interval

In this section, we focus on the MOR problem for an uncertain frequency interval
(i.e., ω ∈ [ − + δ], where denotes the pre-known dominating frequency
point, and δ denotes the unknown size parameter of the frequency interval). First,
we construct a class of parameterized frequency-dependent extended systems, which
plays an important role in the development of SF-type FDBT. Then, the related results
and algorithm are presented.

Definition 1 (SF-type frequency-dependent extended systems) Given an LTI system
(1) and a pre-specified frequency point , the SF-type frequency-dependent extended
systems are constructed as:

G (jω) ∼= A B

C D

= − + A −1A + A −1B

+ A −1 D + + A −1B
,

(7)
where 0 is a user-specified real scalar and A( . ) is defined as in Proposition 1.

In the above definition, should be a scalar satisfying the condition:

= − − λi)

to ensure the invertibility of + − A), where λi , i = 1, . . . , n, denote the
eigenvalues of the matrix A.

An interpretation of the transformation used in Definition 1 as a Möbius transfor-
mation follows from the following result, which can be proved by simple algebraic
manipulations.

Proposition 2 For a given LTI system (1), the corresponding SF-type frequency-
dependent extended system (7) can be obtained by applying a particular Möbius
transformation as follows:

G (jω) = G
a · jω + b

c · jω + d
,

where a = − , b = − 2, c = −1, d = + .

We obtain the following basic properties.

Proposition 3 The following statements hold.
(a) If the original LTI system (1) is Hurwitz stable and 0, then the correspond-

ing SF-type frequency-dependent extended system is stable.
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(b) If the original LTI system (1) is unstable with the unstable eigenvalues of A

denoted by λ+
i , i = 1, . . . , nu, then the corresponding SF-type frequency-

dependent extended system is stable if satisfies

0 min
i=1,...,nu

{ +
i },

where +
i = − Im(λi))

2/ Re(λi) + Re(λi).

Proof 1. Let us denote by λi , i = 1, 2, . . . , n, and λ , i = 1, 2, . . . , n,
the eigenvalues of the matrices A and A , respectively. According to the
mapping between A and A given in (7), we know that

λ = − − λi + − λi)
−1, i = 1, . . . , n.

Noticing that Re(λi) < 0 if the system G(jω) is stable, the following inequality

Re(λ = −− Re(λi − Re(λi)) + − Im(λi))
2

− Re(λi))2 + − Im(λi))2
< 0, i = 1, . . . , n, (8)

holds if 0, which proves Part (a).
2. Denote by λ+ , i = 1, . . . , nu, the eigenvalues of A mapped from λ+

i ,
i.e.

λ+ = − − λ+
i + − λ+

i )−1, i = 1, . . . , nu,

then it can be concluded that Re(λ+ 0, i = 1, . . . , nu, for all satisfy-

ing 0 mini=1,...,nu{ +
i }, according to the formula (8). This completes the

proof.

Definition 2 (SF-type frequency-dependent Lyapunov equations) Given a linear
continuous-time system (1) and one of its corresponding Hurwitz stable SF-type
frequency-dependent extended systems (7, then the following two Lyapunov equa-
tions:

A + W ∗ + B ∗ = 0,

A∗ + W + C∗ = 0
(9)

are the SF-type frequency-dependent controllability and observability Lyapunov
equations of the continuous-time system (1). Furthermore, their respective solu-
tions W and W will be referred to as SF-type frequency-dependent
controllability and observability Gramians of the continuous-time system (1).

Definition 3 (SF-type frequency-dependent balanced realization) Given a linear
continuous-time system (1) and one of its Hurwitz stable SF-type frequency-
dependent extended systems (7). If the corresponding SF-type frequency-dependent
controllability and observability Gramians are equal and diagonal, i.e., the following
Lyapunov equations:

A + Σ ∗ + B ∗ = 0,

A∗ + Σ + C∗ = 0
(10)
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simultaneously hold, then this particular realization will be referred to as SF-type
frequency-dependent balanced realization.

Proposition 4 Suppose the given system (1) is stable and let Wc, Wo, Σ denote its
standard controllability, observability, and balanced Gramian matrices, respectively,
then the following statements hold:
1. Wc ≥ W ≥ 0, Wo ≥ W ≥ 0, Σ ≥ Σ ≥ 0;
2. limε→0 W = 0, limε→0 W = 0, limε→0 Σ = 0;
3. limε→∞ W = Wc, limε→∞ W = Wo, limε→∞ Σ = Σ .

Proof 1. It is well known (see, e.g., [1, 2, 9, 24]) that the standard controllability
and observability Gramian matrices Wc, Wo of system (1) satisfy the following
standard frequency-independent Lyapunov equations:

AWc + WcA
∗ + BB∗ = 0,

A∗Wo + WoA + C∗C = 0.
(11)

Now post-and-pre multiply the SF-type frequency-dependent Lyapunov equa-
tions (9) by −1 + − A) and use the notation from Proposition 1 to
obtain:

AW + W ∗ − 2 −1A A ∗ + BB∗ = 0,

A∗W + W − 2 −1A ∗W A + C∗C = 0.
(12)

Furthermore, the following equations can be derived by subtracting equations
in (11) from the corresponding ones in (12):

A(Wc−W + (Wc−W ∗ + 2 −1A A ∗ =0,

A∗(Wo− vW + (Wo−W + 2 −1A ∗W A =0.

(13)

From standard Lyapunov stability theory (e.g., [25, Chapter 13, Proposition
1]), it follows that W are positive semidefinite due to stabil-
ity of A (implied by Proposition 3 a) and positive semidefiniteness of
B ∗ and C ∗C . Thus, using the same argument from stabil-
ity theory, we can also conclude that (Wc−W ≥ 0 and (Wo−W ≥
0 since

2A A ∗ ≥ 0 and
2A ∗W A ≥ 0.

Thus, the proof for the controllability and observability Gramians is complete.
The result for the balanced Gramians follows from that for the two separate
Gramians of the original and transformed systems, respectively, by observing
that they are equal to Σ and Σ in the balanced case.

2. We prove this for W , the existence of the other limits can be shown
analogously. Re-writing the first equation in (12) as

2
AW + W ∗ + BB∗ = A A ∗
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and noting that W is bounded from above and below due to (a), the limit
for → 0 of the left hand-side exists and is zero. Hence, the limit of the right-
hand side exists as well and is zero:

0 = lim→0
A A ∗ = A lim→0

W A ∗.

The result follows by noting that A = − A is invertible for all ∈ R

due to the stability of A.
3. It can be easily observed from the identity

( + A )−1 = I − A + A −1

that the -dependent matrices A will recover A, B, C as
→ ∞, i.e.

limε→∞ A = limε→∞ − ( + A )−1 A = A,

limε→∞ B = limε→∞ ( + A )−1 B = B,

limε→∞ C = limε→∞ ( + A )−1 = C.

Then, we can conclude from Eq. (12), using the boundedness of the parameter-
dependent Gramians due to (a), that

lim→∞ W = Wc, lim→∞ W = Wo, lim→∞ Σ = Σ .

Two remarks are in order.

Remark 1 The inequalities in Proposition 4 a become strict inequalities if we
assume that the original and transformed systems are minimal, i.e., controllable and
observable.

Remark 2 The behavior of the parameter-dependent Gramians in their limits indi-
cates that one should choose the parameter neither too small nor too large, as they
would carry little information for too small , or no new information compared to the
original Gramians for too large . Nevertheless, there is no quantitative answer on
how to choose the parameter that can be deduced from this result.

Now, we are ready to state the main result about SF-type balanced truncation. Note
that in order to ease notation, we omit the frequency and parameter dependence of
the matrices defining the ROM.

Theorem 1 (SF-type frequency-dependent balanced truncation) Given a linear
continuous-time system (1) and the fixed operating frequency ω = , then for any
one of its Hurwitz stable SF-type frequency-dependent extended systems (7) given in
balanced realization, i.e.,

Σ = diag(Σ 1 2
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with

Σ 1 = diag(σ 1 2 (14)

Σ 2 = diag(σ +1 +2 (15)

where σ 1 ≥ . . . ≥ σ +1 ≥ . . . ≥ σ the truncated
rth-order model

Gr(jω) ∼= Ar Br

Cr Dr

is given by (defining Zr := [I r×r 0r×(n−r)]):
Ar = − r − A T

r − Zr − A T
r )−1,

Br = −1 + − Ar)ZrB

Cr = −1C T
r + − Ar),

Dr = D − Cr + − Ar)
−1Br .

(16)

Furthermore, we obtain the following approximation error bounds for Gr :
1. SF-type error bound at the given operating frequency ω = :

σmax − Gr ≤ 2
n

i=r+1

σ . (17)

2. EF-type error bound:

G − Gr ∞ ≤ 2
n

i=r+1

σ + G − G ∞ + Gr − G ∞ , (18)

where G ∞ := supω∈R σmax(G(jω)) is the (Hardy) H∞-norm of a stable
rational function G and

G ∼= A B

C D

= − + Ar
−1Ar + Ar

−1Br

r + Ar
−1 Dr + Cr + Ar

−1Br

(19)

with Ar (ω) := jωI − Ar for ω ∈ R.

Proof 1. The detailed proof for r = n − 1 will be provided in the sequel, and the
r = n − 2, . . . , 1 cases can then be easily completed step by step.

The error system is realized by

En(jω) = G(jω) − Gn−1(jω)

=: Aen Ben

Cen Den
=

⎡
⎣ An−1 0 Bn−1

0 A B

−Cn−1 C D − Dn−1

⎤
⎦ .

(20)

Page 10 of 34 Adv Comput Math (2020 ) 46: 8282



From the error system En(jω), we construct a dilated system En(jω) as follows:

En(jω) = Aen Ben

Cen Den

=
⎡
⎢⎣Aen Ben Bdn

Cen Den D11
dn

Cdn D12
dn D22

dn

⎤
⎥⎦ .

where Bdn, Cdn, D12
dn, D21

dn, and D22
dn are auxiliary “dilated” matrices, which are

constructed as follows:

Bdn = −σ + − Aen)
Zn−1
−I

Σ−1 ∗,

C∗
dn = −σ + − Aen)

T −Zn−1
−I

Σ−1

D12
dn = −Cen + − Aen)

−1Bdn + 2σ

D21
dn = −Cdn + − Aen)

−1Ben + 2σ

D22
dn = −Cdn + − Aen)

−1Bdn.

Next, we define the Lyapunov variables Qen = Q∗
en ≥ 0 and Pen = Pen as

follows:

Qen = 2 Zn−1
I

Σ
Zn−1

I

T

+ 2σ 2 −Zn−1
I

Σ−1 −Zn−1
I

T

,

Pen = Zn−1
I

Σ
Zn−1

I

T

+ σ 2 −Zn−1
I

Σ
−Zn−1

I

T

.

Now, we substitute the Lyapunov variables Qen, Pen into the left-hand side of
the SF-type matrix inequality (6) for the error system:

− − Aen)Qen − Aen)
∗ + Len(Pen − Aen)C

∗
en + PenC

∗
en + BenD

∗
en

∗ −CenQenC
∗
en + DenD

∗
en − (2σ 2I

=: 11 12

∗ 22
=:

⎡
⎢⎣

11
1
12

2
12

∗ 11
22

12
22

∗ ∗ 22
22

⎤
⎥⎦ ,

where Len(Pen) := AenPen + PenA
∗
en + BenB

∗
en. Combined with the bal-

anced SF-type frequency-dependent Lyapunov 10, one can derive the following
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equations for the blocks in the above block matrices:

11 = − − Aen)Qen − Aen)
∗ + AenPen + PenA

∗
en + BenB

∗
en

= 1 + − Aen) 1
1 + − Aen)

∗
,

1
12 = − Aen)QenC∗

en + PenC∗
en + BenD∗

en

= [ + − Aen)] 2 + − A)−1
∗
C∗,

2
12 = − Aen)QenC∗

en + PenC∗
en + BenD∗

en

= [ −1 + − Aen)] 3Σ
−1 [ + − A)−1]B,

11
22 = −CenQenC∗

en + Den D12
dn Den D12

dn

∗ − (2σ 2I

= −Cen 2 + − A)−∗C∗ − + − A)−1 ∗
2Cen

∗,
12
22 = −CenQenC∗

en + Den D12
dn D21

dn D22
dn

∗

= − + − A)−1] 2C∗
dn − σ Cen 3Σ

−1

+ − A)−1B,

22
22 = −CenQenC∗

en + Ddn21 D22
dn D21

dn D22
dn

∗ − (2σ 2I

= −σ 2

B∗[ + − A)−1]∗Σ−1

3 + ∗
3)Σ

−1 [ + − A)−1]B,

where

1 = A 0
0 A

Zn−1Σ
T
n−1 Zn−1Σ

Σ T
n−1 Σ

+ σ 2 Zn−1Σ
−1ZT

n−1 −Zn−1Σ
−1

−Σ −1ZT
n−1 Σ −1

+ Zn−1Σ
T
n−1 Zn−1Σ

Σ T
n−1 Σ

+ σ 2 Zn−1Σ
−1ZT

n−1 −Zn−1Σ
−1

−Σ −1ZT
n−1 Σ −1

A 0
0 A

+ Zn−1B

B

Zn−1B

B

∗
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+ σ 2 Zn−1Σ
−1C ∗

Σ −1C∗
Zn−1Σ

−1C ∗
Σ −1C∗

∗

= 0,

2 = Zn−1Σ
T
n−1 Zn−1Σ

Σ T
n−1 Σ

−Zn−1
I

+ σ 2 Zn−1Σ
−1ZT

n−1 −Zn−1Σ
−1

−Σ −1ZT
n−1 Σ −1

−Zn−1
I

+ 2σ
σ n−1Σ

−1

−σ −1

= 0,

3 = Zn−1Σ
T
n−1 Zn−1Σ

Σ T
n−1 Σ

−Zn−1
−I

+ 2σ
σ−1

n−1Σ

σ−1

+ σ 2 Zn−1Σ
−1ZT

n−1 −Zn−1Σ
−1

−Σ −1ZT
n−1 Σ −1

−Zn−1
−I

= 0.

Now, according to the generalized KYP lemma (Proposition 1), the dilated error
system En(jω) satisfies:

En ∞ ≤ 2σ .

Therefore, for the error system En(jω), it holds that

En ∞ ≤ En ∞ ≤ 2σ .

This completes the proof SF-type error bound (17) for r = n−1. The remainder
of the proof for the r = n−2, . . . , 1 can be easily completed in a recursive way.

2. From Eqs. 16 and 19, it can be concluded that the SF-type frequency-dependent
extended system G (jω) of the reduced system Gr(jω) can be obtained by
applying the standard FIBT algorithm for G (jω). Therefore, we have:

σmax(G (jω) − G (jω)) ≤ 2
n

i=r+1

σ for all ω ∈ [−∞, +∞].

Noting that

G(jω)−Gr(jω) = (G (jω)−G (jω))+(G(jω)−G (jω))+(G (jω)−Gr(jω))

Page 13 of 34Adv Comput Math (2020 ) 46: 82 82



and using the triangle inequality, we get:

σmax(G(jω) − Gr(jω))

≤ σmax(G (jω) − G (jω)) + σmax(G(jω) − G (jω))

+σmax(Gr(jω) − G (jω))

≤ 2
n

i=r+1

σ + G(jω) − G (jω) ∞ + Gr(jω) − G (jω) ∞

for all ω ∈ [−∞, +∞]. This completes the proof of the entire-frequency error
bound (18).

Based on the above results, we are now able to present the SF-type frequency-
dependent balanced truncation algorithm, shown in Algorithm 1.

Algorithm 1 SF-type FDBT.

Input: Full-order model (A, B, C, D), frequency , user-defined parameter and
the desired order of the ROM, r .

Output: ROM (Ar, Br, Cr, Dr).
Step 1. Solve the SF-type frequency-dependent Lyapunov equations (9)
Step 2. Get the SF-type frequency-dependent balanced realization of the given
system by coordinate transformation:

A B

C D

= T −1 T −1

C D + C ( + − A )−1B
,

where T is the matrix that simultaneously diagonalizes the matrices W

and W , i.e.,

T −1 = T ∗ −∗ = Σ .

Step 3. Compute the reduced-order model as:

Ar = − r − A T
r − Zr − A T

r )−1,

Br = 1
( + − Ar)ZrB

Cr = 1
C T

r ( + − Ar) ,

Dr = D − Cr ( + − Ar)
−1 Br .
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Some remarks are in order.

Remark 3 According to Proposition 4, the SF-type error bound can be regulated to
an arbitrary small value by decreasing the parameter . In other words, arbitrary
approximation accuracy at the given frequency point ω = can be obtained. In
order to achieve satisfactory approximation performance in the neighboring intervals
(ω ∈ [ − + δ]), the value of the parameter should be selected carefully.
One possible way to pick an appropriate value of is to plot the graphs of the SF-
type error bound (17) and the EF-type error bound (18) with respect to the parameter
, then one can choose a proper value ∗ trading off the SF-type and EF-type error

against each other. Furthermore, it is suggested to choose the value of to be smaller
than ∗ if there exists an estimate (δ̂) on the size of the uncertain frequency interval.
The smaller δ̂ is, the smaller value of can be chosen in general.

Remark 4 For the sake of theoretical completeness, the SF-type FDBT approach
is developed in a complex setting. The original system matrices and the reduced
system matrices are allowed to be complex. This is not an issue if the ROM is
used, e.g., in frequency-response analysis where complex data are generated any-
way. In this situation, only a good approximation quality and the fast evaluation
of the ROM are of importance. In other applications like transient simulations or
feedback control design, only realizations with real system matrices may be of prac-
tical interest. Restricting the ROM to be real, the proposed SF-type FDBT can only
be applied in the case that = 0. It is easy to find that the involved matri-
ces W and the generated ROM (Ar, Br, Cr, Dr) are all real
if the original system is real and the frequency point is = 0. In the frame-
work of balancing-related methods, the proposed SF-type FDBT is not the only way
for solving model order reduction problems assuming the dominating frequency is

= 0. As discussed in Section 1, SPA is also regarded as an effective way for
improving the approximation performance over low-frequency ranges. However, it
should be noticed that the underlying mechanisms and the algorithms of SPA and
SF-type FDBT are totally different. Which one will perform better regarding the
low-frequency approximation accuracy depends on the given original system model.
From the results of Example 3 in Section 5, to say the least, the proposed SF-type
FDBT can be viewed as a viable alternative option besides SPA.

Remark 5 It is well-known that the conventional balanced truncation methods (such
as the abovementioned FIBT, SPA, FWBT, and FGBT) are developed for stable
systems. To make those methods applicable for unstable system, techniques based
essentially on decomposing the system in its stable and unstable parts can be
employed; see [26–29] for different approaches to achieve this. According to Propo-
sition 3, one can always find a stable SF-type frequency-dependent extended system
by choosing a proper , even if the given original system is unstable. Thus, the SF-
type FDBT can be used for coping with model reduction of unstable systems directly.
The price to be paid is that stability of the ROM cannot be guaranteed even if the
original system is stable.
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4 Frequency-dependent balanced truncation over known frequency
intervals

In this section, we present our results for the cases that the operating frequency
belongs to a pre-known limited interval, i.e., ω ∈ [ 1 2]. We will present some
necessary definitions first and then show the related results and the interval-type
frequency-dependent balanced truncation algorithm.

Definition 4 (Interval-type frequency-dependent extend systems) Given a linear
continuous-time system as in (1) and a pre-known frequency interval [ 1 2], an
interval-type frequency-dependent extended system is constructed as follows:

G 1 2(jω) ∼= 1 2) 1 2)

1 2) 1 2)
, (21)

where

1 2) = A,

1 2) = [ 2
d 1I − A)−1

2I − A)−1] 1
2 B,

1 2) = C[ 2
d 1I − A)−1

2I − A)−1] 1
2 ,

1 2) = D + C[ cI − 1I − A)−1
2I − A)]−1B,

and

d = 2 − 1)/2 c = 2 + 1)/2.

Definition 5 (Interval-type frequency-dependent Lyapunov equations) Given a lin-
ear continuous-time system as in (1) and a pre-specified frequency interval [ 1 2],
then the following two Lyapunov equations:

1 2)Wc 1 2) + Wc 1 2)A
∗

1 2) + 1 2)B
∗

1 2) =0,

A∗
1 2)Wo 1 2) + Wo 1 2 1 2) + C∗

1 2 1 2) =0
(22)

are called interval-type frequency-dependent controllability and observability Lya-
punov equations of the continuous-time system (1). Furthermore, the solutions
Wc 1 2) and Wo 1 2) are referred to as interval-type frequency-dependent
controllability and observability Gramians of the continuous-time system (1).

Definition 6 (Interval-type frequency-dependent balanced realization) Given a lin-
ear continuous-time system (1) and a pre-specified frequency interval [ 1 2]. If the
corresponding interval-type frequency-dependent controllability and observability
Gramians in Eq. (22) are equal and diagonal, i.e., the following Lyapunov equations

1 2 1 2) + 1 2)A
∗
( 1 2) + 1 2)B

∗
1 2) = 0,

A∗
1 2 1 2) + 1 2 1 2) + C∗

1 2 1 2) = 0
(23)

hold simultaneously, then this particular realization will be referred to as interval-type
frequency-dependent balanced realization.
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For this setup, we can now state the first main result.

Theorem 2 (Interval-type frequency-dependent balanced truncation) Given a linear
continuous-time system as in (1) with a pre-specified frequency interval [ 1 2],
and assume the system is given by a interval-type frequency-dependent balanced
realization with respect to the interval-type frequency-dependent Gramian:

1 2) = diag(σ1 1 2), . . . , σr 1 2), σr+1 1 2), . . . , σn 1 2)),

with

σ1 1 2) ≥ . . . ≥ σr 1 2) > σr+1 1 2) ≥ . . . ≥ σn 1 2).

Let the rth-order ROM:

Gr(jω) ∼= Ar Br

Cr Dr

be defined via

Ar = ZrAZT
r ,

Br = [ 2
d 1I − Ar)

−1
2I − Ar)

−1]− 1
2 Zr 1 2),

Cr = 1 2)Z
T
r [ 2

d 1I − Ar)
−1

2I − Ar)
−1]− 1

2 ,

Dr = 1 2) − Cr [ cI − 1I − Ar)
−1

2I − Ar)]−1Br,

(24)

where Zr = [ I r×r 0r×(n−r) ]. Then, the truncated model Gr(jω) has the following
properties:
(a) If the original system is stable then the ROM is stable.
(b) The approximation error between the original system model (1) and the trun-

cated rth-order ROM (24) satisfies the following interval-type error bound in
the given frequency interval:

σmax(G(jω) − Gr(jω)) ≤
n

i=r+1

ηi 1 2) for all ω ∈ [ 1 2],
(25)

where

ηi 1 2) = σmax (2σi 1 2))
2I + . . .

. . . He −CeiNeiBeiHe
0
I

2σi 1 2)[ I 0 ]
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and

Bei = Bei Bdi (26)

= M−1
ei

Zi−1
Zi

1 2) σi 1 1)M−1
ei Σ−1

ei

Zi−1
−Zi

C∗
1 2) ,

C ∗
ei = C∗

ei C∗
di (27)

= M−∗
ei

Zi−1
−Zi

C∗
1 2) σi 1 2)M−∗

ei Σ−1
ei

Zi−1
Zi

1 2) ,

Nei = diag(Ni−1, Ni) (28)

= diag [ cI − Ai−1 1I − Ai−1)
−1

2I − Ai−1)
−1],

[ cI − Ai 1I − Ai)
−1

2I − Ai)
−1] ,

Mei = diag(Mi−1, Mi) (29)

= diag [ 2
d 1I − Ai−1)

−1
2I − Ai−1)

−1] 1
2 ,

[ 2
d 1I − Ai)

−1
2I − Ai)

−1] 1
2 ,

Σei = diag(Σi−1 1 2), Σi 1 2))}) (30)

= diag Zi−1 1 2)Z
T
i−1, Zi 1 2)Z

T
i .

(c) The approximation error between the original system (1) and the rth-order
ROM (24) over the entire frequency range satisfies the following EF-type error
bound:

σmax (G(jω) − Gr(jω)) ≤ 2
n

i=r+1
σi 1 2) + G(jω) − G 1 2(jω) ∞

+ Gr(jω) − G 1 2(jω) ∞
(31)

for all ω ∈ [−∞, +∞], where G 1 2(jω) represents the corresponding
interval-type frequency-dependent extended system corresponding to Gr(jω),
i.e.,

G 1 2(jω) ∼= Ar 1 2) Br 1 2)

Cr 1 2) Dr 1 2)
, (32)

with

Ar 1 2) = Ar = Zr 1 2)Z
T
r ,

Br 1 2) = [ 2
d 1I − Ar)

−1
2I − Ar)

−1] 1
2 Br = Zr 1 2),

Cr 1 2) = Cr [ 2
d 1I − Ar)

−1
2I − Ar)

−1] 1
2 = 1 2)Z

T
r ,

Dr 1 2) = Dr + Cr [ cI − Ar 1I − Ar)
−1

2I − Ar)]−1Br

= 1 2).

Proof (a) This part can be easily proved as in the proof of stability preservation for
classic FIBT; see, e.g., [24].
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(b) Similar to the proof of the SF-type error bound provided in Theorem 1, we only
sketch the proof for the case r = n−1. The error system En(jω) expressing the
difference between the original system G(jω) and the (n − 1)st-order system
Gn−1(jω) can be represented as:

En(jω) = Gn(jω) − Gn−1(jω) = G(jω) − Gn−1(jω)

∼= Aen Ben

Cen Den
=

⎡
⎣ An−1 0 Bn−1

0 An Bn

−Cn−1 Cn Dn − Dn−1

⎤
⎦ .

Based on the error system En(jω), we construct a dilated system En(jω) as
follows:

En(jω) ∼= Aen Ben

Cen Den

=
⎡
⎣ Aen Ben Bdn

Cen Den −CenNenBdn + 2σn 1 2)I

Cdn −CdnNenBen + 2σn 1 2)I −CdnNenBdn

⎤
⎦ ,

where Ben,Bdn, Cen, Cdn, and Nen are defined as in Eq. (26)–Eq. (30). Next, we
choose two symmetric Lyapunov variables Qen = Q∗

en ≥ 0 and Pen = P∗
en

as follows:

Qen = Nen(ω1, ω2)BenB∗
enNen(ω1, ω2)

∗ + Nen(ω1, ω2)BdnB∗
dnNen(ω1, ω2)

∗

and

Pen = He (jωd) (jω1I − Aen)
−1 BenB∗

en (jω2I − Aen)
−∗

+He (jωd) (jω1I − Aen)
−1 BdnB∗

dn (jω2I − Aen)
−∗

−ω2
dHe (jω1I − Aen)

−1 M−1
en

Zn−1
I

Σ(ω1, ω2)[ ZT
n−1 I ]

M−∗
en (jω2I − Aen)

−∗

−σ 2
n ω2

dHe (jω1I − Aen)
−1 M−1

en

−Zn−1
I

Σ(ω1, ω2)
−1[−ZT

n−1 I ]
M−∗

en (jω2I − Aen)
−∗ .

Combining the interval-type balanced frequency-dependent Lyapunov (23) and
following the proof of Theorem 1, one can derive the inequality:

⎡
⎣ −He Ren 1)QenRen 2)

∗ + Len(Pen) Ren c)C ∗
en + PenC ∗

en + BenD∗
en

∗ −CenQenC ∗
en + DenD∗

en − ηnI

⎤
⎦

= 0 0
0 (2σn 1 2))

2 − ηn 1 2) I + Ten

≤ 0,
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where Len(Pen) = AenPen+PenA
∗
en+BenB

∗
en, Ren(ω) = jωI −Aen, and

Ten = He −CeiNeiBeiHe
0
I

(2σn 1 2))[ I 0 ]

According to the generalized KYP lemma (Proposition 1), the dilated error
system En(jω) thus satisfies:

σmax(En(jω)) ≤ ηn 1 2) for all ω ∈ [ 1 2].
Therefore, the error system satisfies the following inequality:

σmax(En(jω)) ≤ σmax(En(jω)) ≤ ηn 1 2) for all ω ∈ [ 1 2].
This completes the proof of the interval-type error bound (25) for r = n − 1,
the cases r = n − 2, . . . , 1 follow step by step.

(c) The proof of the EF-type error bound (31) for interval-type FDBT can be com-
pleted in full analogy to the proof of the EF-type error bound (18) for SF-type
FDBT.

Similar to the SF-type balanced realization case, we can also study the limiting
behavior of the interval-type frequency-dependent Gramians.

Proposition 5 Assuming that the Lyapunov equations (11) corresponding to the
original system (1) has unique solutions and a balanced realization of (1) exists.
Then, the interval-type frequency-dependent Gramians have the following properties:
1. lim

d→0 Wc 1 2) = 0, lim
d→0 Wo 1 2) = 0,

lim
d→0 Σ 1 2) = 0.

2. lim
d→∞ Wc 1 2) = Wc, lim

d→∞ Wo 1 2) = Wo,
lim

d→∞ Σ 1 2) = Σ .
3. lim

d→0 ηi 1 2) = 0 for i = 1, . . . , n.

Proof 1. It can be easily observed that:

lim
d→0

1 2) = lim
d→0

A = A,

lim
d→0

1 2) = lim
d→0

2
d 1I − A)−1

2I − A)−1
1
2

B = 0,

lim
d→0

1 2) = lim
d→0

C 2
d 1I − A)−1

2I − A)−1
1
2 = 0.

From the interval-type frequency-dependent Lyapunov (22), we thus get:

A lim
d→0

Wc 1 2) + lim
d→0

Wc 1 2)A
∗ = 0,

A∗ lim
d→0

Wo 1 2) + lim
d→0

Wo 1 2)A = 0.

The unique solvability of the Lyapunov equations (11) implies that the Lya-
punov operators X → AX + XA∗ as well as Y → A∗Y + YA have trivial
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kernels. This implies lim
d→0 Wc 1 2) = 0 and lim

d→0 Wo 1 2) =
0. The result for Σ 1 2) follows using the balanced realization.

2. Similar to the proof of part 1, we have:

lim
d→∞ 1 2) = lim

d→∞ A = A,

lim
d→∞ 1 2) = lim

d→∞
2
d 1I − A)−1

2I − A)−1
1
2

B = B,

lim
d→∞ 1 2) = lim

d→∞ C 2
d 1I − A)−1

2I − A)−1
1
2 = C.

and

A lim
d→∞ Wc 1 2) + lim

d→∞ Wc 1 2)A
∗ + BB∗ = 0,

A∗ lim
d→∞ Wo 1 2) + lim

d→∞ Wo 1 2)A + C∗C = 0.

Thus, again employing the unique solvability of the Lyapunov (11), we can
conclude:

lim
d→∞ Wc 1 2) = Wc and lim

d→∞ Wo 1 2) = Wo.

The result for Σ 1 2) follows using the balanced realization.
3. As σi 1 2) are the diagonal entries of Σ 1 2), it follows from part 1

that

lim
d→0

σi 1 2) = 0.

With this and the definition of ηi 1 2) as well as the boundedness of Cei ,
Nei and Bei as d → 0, part 3 follows.

Finally, we need a simple identity to derive the interval-type FDBT method. The
following lemma directly follows from the definition of matrix functions.

Lemma 1 The equation

T −1[ 2
d 1I − A)−1

2I − A)−1] 1
2 T

= 2
d 1I − T −1AT )−1

2I − T −1AT )−1
1
2

holds for any invertible matrix T ∈ C
n×n.

With these preparations, the interval-type FDBT algorithm is stated as Algorithm
2.

Remark 6 Compared with other balancing-related approaches, the most distinctive
feature of the proposed interval-type FDBT method is that it gives an interval-type
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Algorithm 2 Interval-type FDBT.

Input: Full-order model (A, B, C, D), frequency interval 1 2) with 0 ≤ 1 <

2, order of r of the ROM.
Output: ROM (Ar, Br, Cr, Dr).
Step 1. Solve the interval-type frequency-dependent Lyapunov (22)
Step 2. Get the frequency-dependent realization of the given system by coordinate
transformation:

⎡
⎣Ab Bb

Cb Db

⎤
⎦ =

⎡
⎣T −1

1 2 1 2) T −1
1 2)B

1 2) D + Cb[ cI − Ab 1I − Ab)
−1

2I − Ab)
−1]Bb

⎤
⎦ ,

(33)

where 1 2) is a matrix that simultaneously diagonalizes the matrices
Wc 1 2) and Wo 1 2), i.e.,

T −1
1 2)Wc 1 2 1 2) = T ∗

1 2)Wo 1 2)T
−∗

1 2) = 1 2),

Step 3. Compute the reduced-order model as:

Ar = ZrAbZ
T
r ,

Br = [ 2
d 1I − Ar)

−1
2I − Ar)

−1]− 1
2 Zr [ 2

d 1I − Ab)
−1

2I − Ab)
−1] 1

2 Bb,

Cr = Cb[ 2
d 1I − Ab)

−1
2I − Ab)

−1] 1
2 ZT

r [ 2
d 1I − Ar)

−1
2I − Ar)

−1]− 1
2 ,

Dr = D + Cb[ cI − Ab 1I − Ab)
−1

2I − Ab)
−1]Bb

− Cr [ cI − Ar 1I − Ar)
−1

2I − Ar)
−1]Br .

(34)

error bound (25). To the best of our knowledge, it is the first time such an interval-
type error bound is provided using the interval-type index (4). In particular, as
revealed by Proposition 5, the interval-type error bound (25) always tends to zero
when the interval size tends to zero. This property means that the interval-type FDBT
generally will give rise to good in-band approximation performance as long as the
size of frequency interval is small enough. On the other hand, the interval-type error
bound may be increasing quickly with respect to the size of the frequency interval.
So, there is still need for improvement in order to have a proven small error in larger
frequency intervals.

Remark 7 The interval-type FDBT is presented in a rather general form, i.e., the
system matrices are allowed to be complex or real and the frequency interval might
be symmetric or non-symmetric w.r.t. the origin. It can be easily verified that the
interval-type FDBT will generate real reduced models for real full models if the given
frequency interval is symmetric (i.e., 1 = − 2). For applications with real sys-
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tem parameter restriction in asymmetric frequency interval cases (ω ∈ [ 1 2]),
the interval-type FDBT can also be applied in a conservative way by modifying the
frequency as ω ∈ [− max max] with max = max{| 1| , | 2|}.

5 Numerical examples

Example 1 Consider an LTI system (1) defined by the following data:

A B

C D
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2128 0.7749 0.1945 −0.2864 0.0501 −0.0464 0.9673

−0.6613 −2.6801 −0.8468 −0.5733 −0.7945 0.9653 −1.4467

0.2423 −0.8043 −0.7669 −0.5423 −0.9032 0.1441 −1.2514

−0.1508 0.5229 0.6927 −0.0704 0.8778 −0.5350 −0.4141

0.3542 0.7882 0.3681 −0.2077 −0.1705 −0.7660 −0.6560

−0.6424 −0.5045 −0.0252 0.6453 0.9838 −0.9392 −0.1651

−1.5883 −1.3181 0.5656 1.1507 −0.5106 −0.7736 3.9764

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, we assume that the frequency of the input signal belongs to an uncertain inter-
val around = 0. The task is to build a ROM of order 3 approximating the frequency
domain dynamic behavior of the original model well in the neighborhood of = 0.
Among the existing balancing-related methods, the (generalized) SPA is the most
suitable one for coping with this kind of MOR problem. At the same time, our pro-
posed SF-type FDBT method can also be applied for this kind of problems. The
sigma plots of the error systems generated by generalized SPA and SF-type FDBT
are depicted in Figs. 1 and 2, respectively. As these figures show, both of them can
give rise to a small approximation error around = 0. Moreover, one can make
a tradeoff between the local approximation performance and global approximation
performance by adjusting the user-defined parameter (ρ for generalized SPA and
for SF-type FDBT). In this example, the generalized SPA and the SF-type FDBT per-
form very similarly. However, a huge variety in their performance may occur in some
cases; see, e.g., Example 3 below, in which only the SF-type FDBT is effective.

Besides, the corresponding SF-type error bound and EF-type error bound with
respect to different values of provided by SF-type FDBT are plotted in Fig. 3.
According to the error bounds, we know that the local and global approximation
performance could be well balanced by picking the value of parameter larger than
3 and smaller than 5. In this way, the trial-and-error procedure to find an appropriate

can be shortened or avoided. Furthermore, if the parameter satisfies 25 4,
the EF-type error bound of SF-type FDBT will even be smaller than the EF-type error
bound of FIBT.
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Fig. 1 Sigma plot of error systems generated via generalized SPA and FIBT
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Fig. 2 Sigma plot of error systems generated via SF-type FDBT and FIBT
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Fig. 3 SF-type error bound and EF-type error bound with respect to the parameter

Example 2 Now, consider an LTI system (1) given via

A B

C D
=

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.62 0.44 −0.03 −0.00 −0.31

0.44 −3.64 0.59 0.02 0.47

0.03 −0.59 −6.80 −0.46 0.12

−0.00 0.02 0.46 −5.64 −0.00

−0.31 0.47 −0.12 −0.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎦

Here, the frequency range of the input signals is assumed to be pre-known, and we
consider the following two different cases:

Case 1: ω ∈ [−0.4, +0.4];
Case 2: ω ∈ [−0.8, +0.8].
Among the existing balancing-related methods, FGBT [17] is the one developed for
solving such interval-type finite-frequency MOR problems. Our proposed interval-
type FDBT also aims at solving this kind of problems. We will show the differences
between them by this example. The sigma plot of the error systems and the corre-
sponding error bound are given in Figs. 4 and 5. A striking difference on the type
of error bounds can be observed in these plots. FGBT provides an error bound for
the entire-frequency range; in contrast, the interval-type FDBT procedure yields an
error bound for the pre-specified frequency interval. Since it is assumed that the oper-
ating frequencies belong to the given intervals, the interval-type error bounds are
adequate for approximation of the true errors. Compared with the standard FIBT,
both the FGBT and the interval-type FDBT methods are effective in improving the
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Fig. 4 Sigma plot of error models and the corresponding error bounds (2nd -order ROMs)

approximation performance in the specified frequency interval. At the same time,
the interval-type FDBT has the advantage that it gives rise to better approximation
performance and smaller error bound simultaneously.
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Fig. 5 Sigma plot of error systems and the corresponding error bounds (1st -order ROMs)
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As depicted by Figs. 4 and 5, the interval-type error bound provided by interval-
type FDBT for case 2 is larger than the interval-type error bound for case 1. To further
show the properties of the interval-type error bound, we plot the curves of the two
interval size ( l)-dependent indices in Figs. 6 and 7. As expected, it can be observed
that the interval-type error bound appears to be increasing with respect to the interval
size. Moreover, the interval-type FDBT outperforms FGBT and FIBT w.r.t. both the
in-band approximation performance and the error bound for the cases that l < 1.5.

As discussed in Remark 6, the interval-type FDBT always provides a small error
bound as long as the size of the frequency interval is small enough. To show this, a
randomization experiment was carried out. We randomly generate 100 stable systems
of order 4. (The off-diagonal elements of matrix A and each element of matrices
B, C, D are obtained with a zero mean and unitary variance normal distribution, the
diagonal element of matrix A are obtained with mean −5.5 and variance 4.5.) To
compare the average performance between FGBT and interval-type FDBT, several
indices are defined in Table 2.

In Table 2, l represents the upper bound of the symmetric frequency interval, r

is the order of the ROM, and Gl
Dr(jω), Gl

Sr(jω), Gl
Gr(jω), and Gl

Ir (jω) represent
the ROMs of order r generated by interval-type FDBT, SPA, FGBT, and the classic
FIBT for the lth random model, respectively. Figures 8 and 9 display the experimental
results for these error indices.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8
x 10

−4

upper bound of the frequency interval ϖ
l

2nd order case

 

 

EB(ϖ
l
) via  FIBT

Err(ϖ
l
) via  FIBT

EB(ϖ
l
)  via FGBT

Err(ϖ
l
)  via FGBT

EB(ϖ
l
) via interval type FDBT

Err(ϖ
l
) via interval type FDBT

Fig. 6 Curves of maximum error and error bound (1st -order ROM). l ) represents the maximum
approximation error for the frequency interval [− l l ], i.e., l ) = σmax(G(jω)−Gr(jω)),∀ω ∈
[− l 1], where Gr(jω) denotes the ROM generated by the specified method. l ) represents the
interval-type error bound for interval-type FDBT
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Fig. 7 Curves of maximum error and error bound (2nd -order ROM). l ) represents the maximum
approximation error for the frequency interval [− l l ], i.e., l ) = σmax(G(jω)−Gr(jω)),∀ω ∈
[− l 1], where Gr(jω) denotes the ROM generated by the specified method. l ) represents the
interval-type error bound for interval-type FDBT

Figure 8 validates that the interval-type error bound provided by interval-type
FDBT generally is smaller than the EF-type error bound generated by FIBT and
FDBT for the cases that the interval size is small enough (about 1 in this
experiment). Although the advantage w.r.t. the error bound is restricted for small
interval-size cases, it is suggested to take the interval-type FDBT as a feasible option
even for medium interval-size cases. According to our experiment, the interval-type
FDBT generally also gives rise to better in-band approximation performance than
FIBT and FGBT for medium interval-size cases (see Fig. 9 for an illustration).

Table 2 Indices used to compare the approximation error and error bound generated by different methods

Indexes Computation formula

Err( l , r , FDBT) 1
L

L

l=1

σmax(Gl (jω)−Gl
Dr (jω)), ω∈[− l ,+ l ]

σmax(Gl (jω)−GIr
l (jω)) ω∈[− l ,+ l ]

Err( l , r , FGBT) 1
L

L

l=1

σmax(Gl (jω)−Gl
Gr (jω)), ω∈[− l ,+ l ]

σmax(Gl (jω)−Gl
Ir (jω)), ω∈[− l ,+ l ]

Eb( l , r , FDBT) 1
L

L

l=1

upper bound of σmax(Gl (jω)−Gl
Dr (jω)), ω∈[− l ,+ l ]

upper bound of σmax(Gl (jω)−GIr
l (jω)) ω∈[−∞,+∞]

Eb( l , r , FGBT) 1
L

L

l=1

upper bound of σmax(Gl (jω)−Gl
Gr (jω)), ω∈[−∞,+∞]

upper bound of σmax(Gl (jω)−Gl
Ir (jω)), ω∈[−∞,+∞]
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Fig. 8 Randomized experiment results on actual error

Example 3 Consider the 201st -order RLC ladder circuit example provided in [17].
As pointed out in [17], approximating the ladder circuit is quite difficult in the frame-
work of balancing related model order reduction approaches since neither the Hankel
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Fig. 9 Randomized experiment results on error bound
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nor the singular values decay to any extent. In particular, its dynamic behavior over
low frequency ranges is too complex to be well approximated due to the special dis-
tribution of its poles and zeros. Here, we are interested to approximate this circuit in
the following cases:

Case 1: The frequency of the input signal belongs to an unknown neighborhood of
dominating operating frequency point ( = 0).

Case 2: The frequency of the input signal is known to be within the interval (ω ∈
[−0.5, +0.5]).

First, let us consider case 1 and apply FIBT and generalized SPA to build ROMs. The
frequency response of the full-order model and the ROM of order 181 are shown in
Fig. 10, i.e., only 20 states are removed here from the system.

As indicated by the visual inspections of the frequency response of the reduced
vs. the full system from Fig. 10, the standard FIBT fails to approximate the dynamic
behaviors around ω = 0 even when the order of the ROM is 181. Besides, it is sur-
prising and remarkable that the generalized SPA method also fails here. Although
the generalized SPA approach generally leads to good approximation performance
around ω = 0, it is incapable to cope with this example. Now, let us resort to the pro-
posed SF-type FDBT for dealing with the MOR problem in case 1. Our experimental
results show that good approximants can be generated via SF-type FDBT as long
as the order of the ROM is larger than 50. The frequency responses of the full and
reduced systems shown in Fig. 11 show a success of SF-type FDBT for this exam-
ple. In addition, the frequency response of a ROM generated by Padé approximation
(i.e., moment-matching at zero) is also included in Fig. 11. It can be seen that Padé
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Sigma plot of 201th order RLC Ladder Circuit system [1] and the 181th order approximants obtained via FIBT and SPA

frequency ω

 

 

201th order original RLC Ladder Circuit system

181th order reduced system via FIBT

181th order reduced system via generalized SPA (ρ=0)

181th order reduced system via generalized SPA (ρ=1)

181th order reduced system via generalized SPA (ρ=10)

181th order reduced system via generalized SPA (ρ=100)

Fig. 10 Approximating the ladder circuit in Case I via FIBT & Generalized SPA
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Fig. 11 Approximating the ladder circuit in case I via SF-type FDBT and Moment matching

approximation also leads to good approximation performance, which is both natural
and expected since it is an inherent local approximation method. It is interesting that
the performance of interval-type FDBT is very similar to Padé approximation for this
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Fig. 12 Approximating the ladder circuit in case II via interval-type FDBT and FGBT
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example. This provides an example that good local approximation performance of
the ladder circuit may also be obtained in the balancing-related framework.

Finally, consider the stated MOR problem in case 2 and apply the interval-type
FDBT and FGBT [17] to build ROMs. Figure 12 shows the frequency response of
the full-order model and ROMs of order 61 and 51. The results show that only the
interval-type FDBT leads to satisfactory in-band approximation performance.

6 Conclusions and future work

This paper revisited model order reduction over limited frequency intervals in the
framework of balanced truncation. We have developed SF-type and interval-type
frequency-dependent balanced truncation methods to cope with the partially pre-
known frequency interval cases and the completely pre-known frequency interval
cases, respectively. Moreover, for the first time, SF-type and interval-type error
bounds have been established that assess the error only in the desired frequency
band and are thus sharper than previous bounds that use the entire frequency range.
Numerical examples illustrate the efficiency and advantages of the proposed meth-
ods. Future work will focus on developing frequency-dependent balanced truncation
algorithms in other forms to get even sharper frequency-dependent error bounds.
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