
https://doi.org/10.1007/s10444-020-09804-z

An integral equation–based numerical method
for the forced heat equation on complex domains

Fredrik Fryklund1 ·Mary Catherine A. Kropinski2 ·Anna-Karin Tornberg1

Received: 18 July 2019 / Accepted: 19 June 2020 /

© The Author(s) 2020

Abstract
Integral equation–based numerical methods are directly applicable to homogeneous
elliptic PDEs and offer the ability to solve these with high accuracy and speed on
complex domains. In this paper, such a method is extended to the heat equation with
inhomogeneous source terms. First, the heat equation is discretised in time, then in
each time step we solve a sequence of so-called modified Helmholtz equations with
a parameter depending on the time step size. The modified Helmholtz equation is
then split into two: a homogeneous part solved with a boundary integral method and
a particular part, where the solution is obtained by evaluating a volume potential over
the inhomogeneous source term over a simple domain. In this work, we introduce two
components which are critical for the success of this approach: a method to efficiently
compute a high-regularity extension of a function outside the domain where it is
defined, and a special quadrature method to accurately evaluate singular and nearly
singular integrals in the integral formulation of the modified Helmholtz equation for
all time step sizes.

Keywords Heat equation · Boundary integral method · Modified Helmholtz
equation · Yukawa potential · Quadrature · Complex domains · Function extension ·
Rothe’s method

Mathematics Subject Classification (2010) 65M70 · 65M80 · 65R20

Communicated by: Leslie Greengard

� Fredrik Fryklund
ffry@kth.se

Mary Catherine A. Kropinski
mkropins@sfu.ca

Anna-Karin Tornberg
akto@kth.se

1 Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

2 Department of Mathematics, Simon Fraser University, Burnaby, Canada

Adv Comput Math (2020) 46: 69

Published online: 20 August 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-020-09804-z&domain=pdf
http://orcid.org/0000-0002-0434-2580
mailto: ffry@kth.se
mailto: mkropins@sfu.ca
mailto: akto@kth.se

1 Introduction

In this paper, we present a highly accurate numerical method for solving the forced
isotropic heat equation with Dirichlet data on complex multiply connected domains
in two dimensions. We adapt the solution methodology introduced by Kropinski and
Quaife in [1], but extend and generalise their work to allow for fewer restrictions on
the forcing term, including nonlinear forcing, with improved discretisation in time
and uniform accuracy all the way up to the boundary. First, the heat equation is dis-
cretised in time with an implicit treatment of the diffusion term, an approach that is
sometimes referred to as elliptic marching or Rothe’s method [2, 3]. This results in
a sequence of modified Helmholtz equations, also known as the linearised Poisson-
Boltzmann equation, to be solved at each time step. Doing so advances the solution to
the parabolic heat equation in time. A relaxed definition of the modified Helmholtz
equation reads α2u − �u = f , with α2 inversely proportional to the time step. Util-
ising the linearity, this equation is further split into two: one that finds a particular
solution for the specific right-hand side without enforcing the boundary conditions,
and a homogeneous problem that ensures that the sum of the two solutions solves
the original problem. The homogeneous problem is solved with a boundary inte-
gral method with a panel-based Nyström quadrature scheme, as introduced in [4] by
Kropinski and Quaife. The particular solution is written as a volume potential with
the free space Green’s function for the modified Helmholtz equation, also known as
the Yukawa-or screened Columb potential. To avoid constructing quadrature methods
for the evaluation of this volume potential over complex domains, an extension of the
right-hand side f is introduced, allowing for integration over a simple rectangular
domain. In [1] the authors demonstrated the potential of developing an efficient and
accurate general boundary integral solver for the heat equation on complex domains.
Moreover, they list the major remaining issues that require further investigation.
At that time only examples for which a continuous extension of f could be con-
structed by hand were considered, thus excluding complex geometries and general
data. Another impediment was the loss of accuracy for evaluating layer potentials
close to their sources. Their solution was to over-resolve the boundary, but the loss of
accuracy is still significant as a target point approaches the boundary. In this paper,
we introduce the following developments:

• High-order adaptive methods for time evolution.
• A method to efficiently compute a high-regularity extension of a function f to

an enclosing and geometrically simple domain, given only its values at discrete
locations in �.

• A special purpose quadrature method to avoid loss of accuracy when evaluating
layer potentials close to the boundary where the kernel becomes nearly singular.

Two main groups of semi-implicit time stepping methods are Runge-Kutta meth-
ods [5] and spectral deferred correction methods [6–8]. We use the former, but the
approach we propose is general with respect to the choice of semi-implicit time
stepper.

It is not a simple problem to construct a high regularity extension of a function, for
which only its values are known at discrete points inside the original domain �. In

Adv Comput Math (2020) 46: 6969 Page 2 of 36

[1], Kropinski and Quaife considered only examples for which a continuous exten-
sion could be constructed by hand. We use a partition of unity extension technique
(PUX) by Fryklund, Lehto, and Tornberg in [9]. They solve the Poisson equation
with the abovementioned split into a particular and an homogeneous problem. We
now use this method for function extension in the context of the modified Helmholtz
equation with excellent results and can consider a larger class of forcing terms com-
pared with [1]. An alternative approach for function extension is given in [10], where
the function to be extended outside of � sets the boundary Dirichlet data on ∂� for
the Laplace equation in R

2 \ �. The solution to this problem is computed with an
integral equation–based method, and defines a continuous function extension. See [9]
and the references therein for other extension techniques, such as Fourier continua-
tion methods or extending the unknown solution or solution from previous time step
[11–13].

When evaluating a layer potential close to a boundary, the kernel becomes nearly
singular. A well-known challenge with boundary integral–based methods is accurate
numerical integration of singular (for evaluation on the boundary) and nearly singular
kernels. The comparative study [14] complemented with [15] gives an overview of
state of the art methods. The latter includes panel-based explicit kernel-split schemes
with product integration, pioneered by Helsing and Ojala [16] for the Laplace equa-
tion. This methodology is applicable to a large class of linear elliptic PDEs, and
achieves excellent results also for e.g. the Helmholtz [15] and Stokes equations [17].
However, for the modified Helmholtz equation, product integration may fail alto-
gether for sufficiently large α, i.e., for small time steps in our setting. The quadrature
rule will in this case require an unfeasibly high resolution of the boundary, which
is not motivated by the geometry nor the resolution requirement for the layer den-
sity. This spurred the development of a quadrature scheme to solve this problem.
The Yukawa potential decays as exp (−α)

√
π/(2α); thus, the kernel becomes more

localised as α increases. In this process, the product integration requires an increas-
ing amount of upsampling, but only over a decreasing interval, and hence only local
upsampling is needed. In a separate paper [18], we present an adaptive quadrature
scheme in the spirit of [19] that lifts the previous restriction on α. This scheme is also
used to solve the modified Stokes equation in [20].

A parallel development of a boundary integral–based solver for the heat equation
is based on direct approximation of the heat kernel, thus avoiding discretisation of the
differential operator with respect to time. In the initial work [21], it was observed that
to achieve the desired accuracy for domains with high curvature the time step must be
considerably smaller than the formal rate of convergence would suggest. The authors
refer to this as geometrically induced stiffness, a phenomenon specific to this frame-
work. In recent work towards solving the heat equation with said method , Wang et
al. have developed a hybrid method that allows for evaluation of the boundary and
volume potentials including the space-time heat kernel without the constraints from
geometric stiffness [22].

Efforts to solve the heat equation with boundary integral equation–based tech-
niques are not only motivated by that specific task. Surely, there are other methods
to solve the heat equation on a complex domain, such as finite element meth-
ods. However, the algorithmic development in these efforts is essential to increase

Adv Comput Math (2020) 46: 69 Page 3 of 36 69

the applicability of integral equation–based numerical methods which sport several
attractive features, including that complex geometry naturally enters the problem and
generation of an unstructured mesh is redundant, ill-conditioning associated with dis-
cretising the operators is avoided, high accuracy can be attained, and boundary data
and far-field conditions are simple to incorporate. Developments for the heat equation
are also related to extension from Stokes to Navier-Stokes equations [20].

The focus of this paper is on the heat equation. However, fast integral equations
for the modified Helmholtz equation are of interest for the many applications that
equation applies to. These include, but are not limited to, electrostatic interactions in
protein and related biological functions, macroscopic electrostatics, Debye–Huckel
theory for dilute electrolytes, water wave problems, in the linearisation of the
Poisson–Boltzmann equation, and approximation of surfaces [23–28]. Consequently,
there is active research on solution methods and analysis thereof for the modified
Helmholtz equation. In [29], the method of fundamental solution is used, while in
[30] it is solved by plane wave functions.

1.1 Overview of the paper

The mathematical problem is formulated in Section 2, both for the heat equation
and the modified Helmholtz equation. Section 3 contains the numerical methods
for solving the homogeneous problem and the particular problem for the modified
Helmholtz equation, including an introduction to the partition of unity extension
technique (PUX). It is assumed that the heat equation has been appropriately dis-
cretised in time. Thereafter, we present the numerical results in Section 4, for the
modified Helmholtz equation, the heat equation, and a reaction-diffusion type prob-
lem. Finally, we present our conclusions and an outlook in Section 5. See Appendix
A.1 for more details on how IMEX Runge-Kutta methods reduce the heat equation
to a sequence of modified Helmholtz equations. There are simple examples, Butcher
tableaus, and a note on adaptivity. In Appendix B, we present a graphical overview
of the solution procedure for the modified Helmholtz equation.

2 Formulation

Consider the forced isotropic heat equation:

∂U(t, x)
∂t

− �U(t, x) = F(t, x), t0 < t, x ∈ � ⊂ R
2, (1)

U(t0, x) = U0(x), x ∈ �, (2)

U(t, x) = g(t, x), x ∈ �, (3)

subject to initial data U0 and Dirichlet boundary data g. To fix notation, let � be a
time-independent, compact (N� + 1)-ply connected region in R2 with a boundary �

consisting of (N� + 1) closed curves. These form the set � = {�n}N�

n=0, where �0 is
the outer boundary of the region�; see Fig. 1. The component curves are individually

Adv Comput Math (2020) 46: 6969 Page 4 of 36

Fig. 1 The heat equation (1)–(3) is defined in �. It is enclosed in a box B = [L,L]2 and E is the
complement to �̄ relative B. The boundaries are denoted �n, n = 0, . . . , N� . The outer boundary is �0
and the outward directed normal is denoted by ν

smooth and a parametrisation for each is assumed to be known. The outward directed
normal at y ∈ � is denoted ν(y) = νy and κ(y) denotes the curvature at y ∈ �.

2.1 Discretising in time and themodified Helmholtz equation

The heat equation (1) is first discretised in time, an approach known as elliptic march-
ing or Rothe’s method. To prevent severe time step restrictions, an implicit-explicit
(IMEX) scheme is used. It consists of using an implicit discretisation of the stiff
terms and an explicit one for the nonstiff terms [31]. Regardless of the specifics of
the IMEX scheme, to advance the solution U in discrete time, a sequence of modified
Helmholtz equations is solved. The modified Helmholtz equation is stated as:

α2u(x) − �u(x) = f (x), x ∈ �, (4)

u(x) = g(x), x ∈ �, (5)

with u unknown in �. The scalar parameter α2 is inversely proportional to the time
step δt ; its explicit form along with f and g is given by the specific IMEX scheme.
We use an adaptive IMEX Runge-Kutta method of fourth order in this paper (see
Appendix A.1), as we have found it to be very effective. However, what follows holds
for any IMEX scheme.

Using the linearity of the differential operator α2 − �, the solution u to (4)–(5) is
decomposed into a homogeneous solution uH and a particular solution uP , such that

Adv Comput Math (2020) 46: 69 Page 5 of 36 69

u(x) = uH (x)+uP (x) for x ∈ �. First, the particular solution is acquired by solving
a free space problem:

α2uP (x) − �uP (x) = f e(x), x ∈ R
2, (6)

u(x) → 0, |x| → ∞, (7)

assuming the existence of an extension f e ∈ Ck(R2), for some k ≥ 0, of the right-
hand side f from (4) such that:

f e(x) = f (x), ∀x ∈ �, (8)

supp(f e) ⊂ B = [−L, L]2, (9)

for some finite L. The boundary condition, given by the Dirichlet data g in (5), is
satisfied by u if uH is a solution to:

α2uH − �uH = 0, x ∈ �, (10)

uH = g̃(x) = g(x) − uP (x)|�, x ∈ �. (11)

In short, first solve the free space problem (6) to obtain the boundary data for the
homogeneous problem (10)–(11). The solution to the modified Helmholtz equation
is the sum of the two solutions, u(x) = uH (x) + uP (x) for x ∈ �. See the flowchart
in Appendix B for a graphical overview.

2.1.1 The inhomogeneous modified Helmholtz equation

Let ûP = ûP (ξ) and f̂ e = f̂ e(ξ) denote the Fourier transforms for uP and f e,
respectively. Here ξ = [ξ1, ξ2] ∈ R

2 with ξ = |ξ |. Then under the Fourier transform
(6) is:

α2ûP (ξ) + ξ2ûp(ξ) = f̂ e(ξ), ξ ∈ R
2 (12)

and we obtain

ûP (ξ) = f̂ e(ξ)

α2 + ξ2
, ξ ∈ R

2. (13)

Note that the above expression is free of singularities, since α2 	= 0. The solution to
(6)–(7) is given by the inverse Fourier transform:

uP (x) = 1

(2π)2

∫

R2

ûP (ξ)eiξ ·x dξ . (14)

For it to be well defined, the extension f e must be in L1(R2). How to construct said
extension and compute an approximation of uP is presented in 3.1.

2.1.2 The homogeneous modified Helmholtz equation

Consider the homogeneous modified Helmholtz equation (10)–(11). The free-space
Green’s function G(x, y) for the operator α2 − � is:

G(x, y) = α2

2π
K0 (α‖y − x‖) , (15)

Adv Comput Math (2020) 46: 6969 Page 6 of 36

where K0 denotes the zeroth-order modified Bessel function of the second kind.
In other contexts, the kernel G(x, y) is also referred to as the Yukawa or screened
Coulomb potential. As in [1, 4], we seek the solution uH (x) for x ∈ � in the form of
a double layer potential:

uH (x) = α2

2π

∫

�

M (x, y) μ(y) dsy, ∀x ∈ �, (16)

with the kernel

M (x, y) = ∂

∂νy
K0 (α‖y − x‖) = −αK1 (α‖y − x‖) y − x

‖y − x‖ · νy, (17)

where K1 denotes the first-order modified Bessel function of the second kind. The
limiting value as x goes to y along a boundary segment �n is well defined:

lim
x→y

M(x, y) = −1

2
κ(y), x, y ∈ �n, (18)

where κ(y) is the curvature of �n at y ∈ �n, n = 0, 1, . . . , N� . The double layer den-
sity μ : � → R is not known a priori; it is found through the solution of a boundary
integral equation. Such an equation of the second kind for μ can be formulated as:

μ(x) − 1

π

∫

�

M (x, y) μ(y) dsy = − 2

α2
g̃(x), ∀x ∈ �. (19)

For a derivation, see e.g. [32]. For g̃ ≡ 0 only the trivial solution μ ≡ 0 along �

satisfies (19). Thus, by the Fredholm alternative, the solution μ exists and is unique
for any integrable g̃, for both simply and multiply connected domains [33]. This
property is inherited by the corresponding discretised systems as well, introduced in
Section 3.2.

Each contour �n is split into NP,n intervals, referred to as panels, where �n,k is
the kth panel on the nth contour and NP the total number of panels over �. A panel
�n,k is represented by a known parametrisation γ n,k , such that:

�n,k = {γ n,k(t) | t ∈ [−1, 1]}. (20)

By introducing a speed function sn,k(t) = |γ ′
n,k(t)| and μn,k(t) = μ(γ n,k(t)) the

layer potential (16) can be written as:

uH (x) = α2

2π

N�∑
n=0

NP,n∑
k=1

1∫

−1

M
(
x, γ n,k(t)

)
μn,k(t)sn,k(t) dt, ∀x ∈ � (21)

and analogously for the boundary integral equation (19):

μ(x)− 1

π

N�∑
n=0

NP,n∑
k=1

1∫

−1

M
(
x, γ n,k(t)

)
μn,k(t)sn,k(t) dt = − 2

α2
g̃(x), ∀x ∈ �. (22)

Adv Comput Math (2020) 46: 69 Page 7 of 36 69

3 Discretisation

This section covers the numerical treatment of the modified Helmholtz equation.
Note that two different methods are needed, one for the inhomogeneous problem and
one for the homogeneous problem. We assume some suitable IMEX scheme has been
chosen for temporal discretisation of the heat equation (1)–(3), e.g., the Runge-Kutta
methods presented in Appendix A.1.

Consider a box B = [−L, L]2 in R
2 that contains �̄. The complement of �̄

relative to B is denoted by E. Denote the grid by X, which is a set of N2
u elements

x, referred to as nodes or points. They are uniformly distributed with spacing δx

over B. Let subscripts indicate subsets of X, such as X� = {x ∈ X|x ∈ �} and
XE = {x ∈ X|x ∈ E}.

The solution to the modified Helmholtz equation is computed at all grid points
that fall inside �, i.e., the elements of X�. First, we present how to find this solution
for the free space problem (6)–(7). This involves extending the function f , based on
the data at X� = {x ∈ X | x ∈ �} to XE = {x ∈ X | x ∈ E} such that it satisfies
(8)–(9). Thereafter, we consider the homogeneous problem (10)–(11), formulated as
a boundary integral equation on �. The solution is computed at the locations X� =
{x ∈ X | x ∈ �} in a post-processing step.

3.1 The inhomogeneous problem and function extension

An approximate solution to the free-space problem (6)–(7) is computed by discretis-
ing the integral in (14) with the trapezoidal rule. It is evaluated efficiently with FFTs

Fig. 2 Left: Schematic figure of distribution of extension partitions along � for a complex domain. The
green markers correspond to RBF centres Z, generated by (39), and the distribution is repeated for every
partition. Right: Classification of points in X as inside or outside �. The larger markers denote points in
Xi,� and Xi,E

Adv Comput Math (2020) 46: 6969 Page 8 of 36

on the regular grid X in B, thus in X� as well, and on the boundary � with a non-
uniform inverse FFT. The latter is used to modify the given Dirichlet boundary data
(5) for the homogeneous modified Helmholtz equation.

If the compactly supported f e in (6) is smooth, then the coefficients in the Fourier
series expansion decay exponentially fast with the wave number, and this procedure
would be specially accurate. With limited regularity, the Fourier coefficients instead
decay algebraically, with one additional order for each continuous derivative. Numer-
ically, it is constructed with PUX, which is briefly reviewed in this subsection. The
basic concept is to blend local extensions by a partition of unity into a global exten-
sion with compact support, enforced by weight functions. The global regularity of
the extension is directly related to the construction of said partition of unity. This is
achieved by distributing overlapping partitions along the boundary � of �. In each
partition the local values of f are used to extend it to the points in the partition that
fall outside �. For a more extensive treatment, see the original work [9].

3.1.1 Partition of unity

Let {ψk
i }Nψ

i=1 be a collection of Nψ compactly supported radial functions such that

ψk
i (x) = ψk(x − pi) for some choice of centres {pi}Nψ

i=1. The superscript k indicates
the highest regularity subset Ck

0 of C0 that ψk is a member of. Define a partition
�i as the support of ψk

i , i.e. �i = supp(ψk
i), which is a disc with radius R. The

choice of ψk is discussed in Section 3.1.3. Note that all partitions have the same

radius. The number of partitions Nψ , the location of the partition centres {pi}Nψ

i=1 and
radius R are chosen such that the partitions cover � and that the partitions overlap
with approximately a radius. The following notation will be useful. Each partition
�i has a set of points on the uniform grid within R of pi , which we denote Xi ,
rather than X�i

. It can be split into two disjoint subsets: Xi,� = {x ∈ �i ∩ �} and
Xi,E = {x ∈ �i ∩ E}. Let Ni denote the number of elements in Xi . Analogously,
let Ni,� and Ni,E denote the number of elements in Xi,� and Xi,E , respectively.
See Fig. 2 for a graphical example. Given a function f : � → R, the function

Fig. 3 Plot of weight functions (23) and their sum

Adv Comput Math (2020) 46: 69 Page 9 of 36 69

values at the locations Xi,� are used to create a local extension f e
i . We will return

to the construction of the local extensions in Section 3.1.2, but for now assume their
existence.

For every partition �i and its associated basis function ψk
i , define the correspond-

ing weight function wi as:

wi(x) = ψk
i (x)

Nψ∑
j=1

ψk
j (x)

, (23)

which belongs to the space Ck
0 . By construction, the set of weights {wi}Nψ

i=1 forms a
partition of unity. That is:

Nψ∑
i=1

wi(x) = 1, ∀x ∈
Nψ⋃
i=1

�̄i, (24)

which is referred to in the literature as Shepard’s method [34]. See Fig. 3 for a visuali-

sation. This construction is used to combine the local extension {f e
i }Nψ

i=1 into a global one:

f e(x) =
Nψ∑
i=1

wi(x)f e
i (x). (25)

However, (25) is not used, as we want an extension that it is continuous or of higher
regularity as it is extended by zero outside its support. Refer to the set of partitions

{�i}Nψ

i=1 as extension partitions and now introduce also the zero partitions {�0
i }

N0
ψ

i=1.
They are included in the partition of unity definition (24) and distributed such that
they overlap the extension partitions, but do not intersect �̄. The associated local
extension f e

i is set to be identically equal to zero for i = 1, . . . , N0
ψ . Hence, as the

zero partitions are blended with the local extensions in the first layer of partitions

Fig. 4 Schematic image for function extension from a star-shaped domain � given by the black border.
Observe that in this figure the partitions are not centred at uniform grid points. The red overlapping circles
are the partitions. The yellow section corresponds to the uniform data points used for creating the local
extension f e

i , the blue section to points where f e = 0, and the green sector is a blend of the two

Adv Comput Math (2020) 46: 6969 Page 10 of 36

{�i}Nψ

i=1, the global extension will be forced to zero over the overlapping region.
Therefore, zero partitions should be placed such that f e has a controlled decay to zero
and the size of the overlap with extension partitions are about the same; see Fig. 4.
Thus, the global extension will in these parts have the same regularity as wp, as given
by the regularity of the compactly supported basis function ψk . The extension f e of
f is given by:

f e(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x), x ∈ X�,

Nψ+N0
ψ∑

i=1
wi(x)f e

i (x), x ∈
Nψ⋃
i=1

Xi,E,

0, otherwise.

(26)

As ψk , we use one of the compactly supported Wu-functions, which are tabulated
after their regularity k; see Table 1 or [35]. There are other options, but the Wu-
functions have compact support and are simple to implement. Note that they have
lower regularity at the origin, e.g., the Wu-function listed as C4 is only C2 at that
point. Moreover, the (k + 1)th derivative of ψk is of bounded variation. The partition

centres {pi}Nψ

i=1 are set to be nodes on the regular grid that are the closest to be bound-
ary, yet still in Xi,�. Thus, evaluation of weight functions at the origin is omitted and
higher regularity is maintained. With this, we have described how local extensions

are combined into a global one. It remains to construct the local extensions {f e
i }Nψ

i=1.

3.1.2 Local extensions

We now return to the construction of the local extensions f e
i for each extension par-

tition i = 1, . . . , Nψ . The local extension f e
i is created as a weighted sum of radial

basis functions that interpolates the values of f at x ∈ Xi,� and is evaluated at
x ∈ Xi,E . The radial basis functions (RBFs) are denoted φj (x) = φ(‖zj − x‖). The
elements of the set Z = {zj }Nφ

j=1 ⊂ supp(ψk
i) are the Nφ centres for the RBFs, whose

distribution for now is left unspecified. The standard form of an RBF interpolant at a
point x is:

f e
i (x) =

Nφ∑
j=1

λjφ(‖zj − x‖), (27)

Table 1 Wu-functions ψk ∈ Ck
0 , with compact support in r ∈ (0, 1) [35]

Regularity ψk(r)

ψ1 ∈ C1
0 (1 − r)2+(2 + r)

ψ2 ∈ C2
0 (1 − r)3+(8 + 9r + 3r2)

ψ3 ∈ C3
0 (1 − r)4+(4 + 16r + 12r2 + 3r3)

ψ4 ∈ C4
0 (1 − r)5+(8 + 40r + 48r2 + 25r3 + 5r4)

ψ5 ∈ C5
0 (1 − r)6+(6 + 36r + 82r2 + 72r3 + 30r4 + 5r5)

Here, (·)+ = max (0, ·). The listed regularity excludes evaluation at the origin

Adv Comput Math (2020) 46: 69 Page 11 of 36 69

where λj are unknown coefficients to be determined. We use:

φ(‖zj − x‖) = e−(ε‖zj −x‖)2, (28)

where ε is a shape parameter setting the width of the Gaussian. The smallest inter-
polation error is obtained when ε is small, yet nonzero, but no general value can be
given [36].

With some abuse of notation let Xi and Z refer to vectors with the members of
respective set as elements. Then, following the outline of [37], let �(Xi ,Z) denote
an Ni × Nφ-matrix with elements �(Xi ,Z)m,n = φ(‖xm − zn‖), for m = 1, . . . , Ni

and n = 1, . . . , Nφ . Furthermore, let � = (λ1 λ2 . . . λNφ)T . Consider a scenario
when f is known for all nodes in Xi , then the associated interpolation problem to
(27) can be written as:

�(Xi ,Z)� = fXi
, (29)

with fXi
= f (Xi). If Ni ≥ Nφ then � can be solved for in a least squares sense.

However, this is an unstable problem for several reasons. First, the conditioning of
the problem is heavily dependent on the shape parameter ε. For small ε, the interpo-
lation weights � oscillate between positive and negative numbers of large magnitude
[36]. Furthermore, it is not uncommon for the condition number for the interpolation
matrix to be of order 1018 or more. These characteristics are common for interpo-
lation with radial basis functions. Additionally, the data is represented on a uniform
grid; collocating at these locations is the worst possible setting for interpolation, as
with polynomials. These shortcomings can be circumvented by avoiding collocation
and considering a least squares problem instead. Note that all problems mentioned
above are purely numerical artifacts. The function space spanned by Gaussians is
indeed a good approximation space.

Decouple the centres Z of the radial basis functions from Xi and assume they are
distributed in a near optimal way with respect to minimising the interpolation error.
We wish to omit explicit use of the interpolation coefficients � in (29). It can be
achieved by formally solving for � by collocating at the centres Z:

�(Z,Z)� = fZ ⇔ � = �(Z,Z)−1fZ. (30)

Here, fZ are the values of f at the locations Z, which are unknown. Due to the
choice (28), the matrix �(Z,Z) is symmetric and positive definite, thus the inverse
�(Z,Z)−1 is well defined. We can now reformulate (29) as:

�(Xi ,Z)�(Z,Z)−1fZ = fXi
. (31)

Henceforth, we use the shorthand notation A(Xi ,Z) = �(Xi ,Z)�(Z,Z)−1. For the
purpose of function extension, sort the data points in �i such that:

Xi =
[
Xi,�

Xi,E

]
, (32)

where the components are of length Ni,� and Ni,E , respectively. Consequently, A

can also be rearranged and split into two block matrices:

A =
[
Ai,�

Ai,E

]
, (33)

Adv Comput Math (2020) 46: 6969 Page 12 of 36

with Ai,� = �(Xi,�,Z)�(Z,Z)−1 of size Ni,� × Nφ and Ai,E =
�(Xi,E,Z)�(Z,Z)−1 of size Ni,E ×Nφ . Since f is known atXi,�, it can replace the
corresponding entries in fXi

(31) with fi,� = f (Xi,�). For each partition, we obtain
the system: [

Ai,�

Ai,E

]
fZ =

[
fi,�

fi,E

]
, (34)

with fi,E = f (Xi,E) unknown. The values fi,� are mapped to the nodes Z to obtain
fZ. Thereafter, we obtain fi,E , which is the local extension. That is:

1. Solve the least squares problem Ai,�fZ = fi,� for fZ.
2. Obtain the local extension f e

i (Xi,E) = fi,E = Ai,EfZ.

This approach allows us to use a non-uniform distribution of RBF centres which
significantly improves the stability, but still lets the data be represented on the uni-
form grid. We also avoid explicit use of the interpolation weights �. It remains to
address the notorious ill-conditioning of �, associated with the shape parameter ε set
small. This is achieved by applying the algorithm RBF-QR. It is intended for a for-
mulation as (34), since it computes A, rather than �−1, which acts as a mapping of
data from non-uniformly to uniformly distributed locations. Said algorithm performs
a change of basis for A, and in the process the condition number is reduced; see [38].
By the use of RBF-QR, the restrictions of choosing ε are lifted.

3.1.3 Properties of PUX

Three parameters need to be set for the PUX algorithm: the shape parameter ε for
the width of Gaussians (28) used as interpolation basis, the partition radius R, and
Nu, where N2

u is the number of uniformly distributed nodes over B. The remaining
parameters can be set based on these values. For a complete discussion, see [9].

Due to the stabilising effect of RBF-QR, the shape parameter can be set small
without risk of suffering from ill-conditioning. A good value is ε = 2, but the error
in solving the modified Helmholtz equation is relatively insensitive. The parameter
L is set by the partition radius R, as the box [−L, L]2 only needs to be large enough
to contain the support of f e.

Let P be the number of uniform grid points per partition radius, denoted as:

P = Nu

2L
R. (35)

This measure is used to choose ψk from Table 1, and the number Nφ of basis func-
tions (28) per partition. To see how P relates to ψk , consider the convergence of the
error in solving the modified Helmholtz equation (4)–(5), assuming that only resolv-
ing uP limits the accuracy. If f e is smooth, then the error has asymptotically spectral
convergence. However, the extension inherits the regularity of the weight function
w. Recall that by construction w ∈ Ck

0 for a fixed ψk (23). Consequently, the error
has an asymptotic convergence of 4+ k: 2 orders for solving the modified Helmholtz
equation and k + 2 orders since the (k + 1)th derivative of f e is of bounded variation
[39]. A Wu-function of high regularity is harder to resolve than one of lower regu-

Adv Comput Math (2020) 46: 69 Page 13 of 36 69

larity. This implies that given a resolution P , the error in resolving the Wu-function
may hamper the convergence. As in [9], we use the heuristic relation:

k = min
(⌊√

P − 0.9
⌋

, 5
)

(36)

for choosing ψk . In Section 4, we confirm that (36) yields a satisfactory choice for
ψk given P .

Creating a local extension involves solving the least squares problem Ai,�fZ =
fi,� for fZ for some i. It should be sufficiently overdetermined in order to be a
well-posed problem, but too much is potentially numerically unstable. Given a P ,
the number of unknowns Nφ should be set accordingly to obtain a certain ratio of
knowns and unknowns. We use:

Nφ = �3P � (37)

to set the number of radial basis functions per partition. The data available for the
least squares problem is downsampled with the sampling parameter c, defined as:

c = max

(⌊√
P

8

⌋
, 1

)
. (38)

If c = 1, then all points are used, c = 2 means that every other point is removed, etc.
For each local extension, we will solve a least squares problem of size (βNφ) × Nφ .
The factor β depends also on how large portion of the partition that belongs to the
interior. In most instances, 2 ≤ β ≤ 5.

We should remark that the benefits of increased resolution in resolving the Wu
functions, as discussed above, still remain even if not all the data is used for the least
squares problem.

The distribution of RBF centres Z can be chosen freely, and we use the quasi-
uniform Vogel node distribution defined as:

zj =
√

j

Nφ

(
cos

(
jπ

(
3 − √

5
))

, sin
(
jπ

(
3 − √

5
)))

, j = 1, . . . , Nφ, (39)

in a unit disc. See Fig. 2 for a visualisation. The distribution (39) is near optimal and
RBF-QR performs well up to about 400 nodes. The locality of the weight functions
guarantees that the least squares systems are of moderate size, which can be solved
in parallel.

Constructing A (33) with RBF-QR is a computationally expensive operation, so
employing it for every partition is undesirable. However, the matrix is the same for
all partitions since pi is centred at a grid point from the uniform distribution. Thus,
the pairwise distances for the elements in Xi are independent of i. Therefore, a single
matrix A can be precomputed with RBF-QR and reused for all extension partitions.
The only difference between them in terms of A is the decomposition of Xi into Xi,�

and Xi,E , as it depends on how the boundary � intersects the partition. Note that the
zero partitions may individually have a radius different from R in order to conform
to the geometry of � and to overlap the extension partitions properly. All weights

Adv Comput Math (2020) 46: 6969 Page 14 of 36

{wi}Nψ+N0
ψ

i=1 are computed once in a precomputation step and are reused. After pre-
computations, the PUX procedure only involves solving a least squares problem
and a matrix vector multiplication for each partition, followed by a blending of the
extended data.

3.2 The homogeneous problem

For simplicity, assume the number of contours to be one and write �n,k = �k , yn,k =
yk , and sn,k = sk . We apply anNQ-point, panel-based Nyström discretisation scheme
based on the composite Gauss-Legendre quadrature rule, with nodes tGm and weights
WG

m , with m = 1, . . . , NQ. Let yk,m = γ k(t
G
m), sk,m = sk(t

G
m), and μk,m = μk(t

G
m).

An approximation of the solution μ to (22) is the solution of:

μi,j − 1

π

NP∑
k=1

NQ∑
m=1

M
(
xi,j , yk,m

)
μk,msk,mWG

m = −2g̃i,j

α2
, i = 1, . . . , NP , j = 1, . . . , NQ, (40)

and correspondingly for (21) we have:

uH (x) = α2

2π

NP∑
k=1

NQ∑
m=1

M
(
x, yk,m

)
μk,msk,mWG

k,m, x ∈ �. (41)

An important observation is that the kernel M (17) is not smooth and can contain sin-
gularities, depending on how x approaches y. Here, the Gauss-Legendre quadrature
rule is insufficient, as the resulting loss of accuracy can be critical enough to render
the result useless. We elaborate on this topic in Section 3.2.1.

In matrix notation, (40) can be written as (I + M)μ = g̃, where I is the identity
matrix and M a compact operator. The density μ can be efficiently obtained with
GMRES, in terms of numbers of iterations. The condition number for I + M is
typically small or moderate and uniformly bounded. A fast multipole method (FMM)
can be used for efficient computation of the involved potentials in (40) and (41) [40].
We use the point to point FMM for the two-dimensional Yukawa kernel presented
in [4]. It is based on the volume equivalent in [41]. For the corresponding three-
dimensional version, see [42].

Finally, a note on the restriction of the boundaries being smooth. For non-smooth
boundaries, the integrand of (22) is not compact and the Fredholm alternative fails.
While there are theoretical results on the solvability with Lipschitz continuous bound-
aries [43], they require sophisticated quadrature techniques, such as [44], which
we have not implemented. These methods also allow cusps, i.e., non-Lipschitz
boundaries, and mixed boundary conditions.

3.2.1 Special purpose quadrature

When solving for μ in (40) or evaluating the layer potential (41), several orders of
accuracy may be lost, since the kernel M (17) is not smooth. Moreover, M can be
singular, depending on if x approaches some y ∈ � along � or from �. One of
the most efficient methods to circumvent this loss of accuracy is explicit kernel-split

Adv Comput Math (2020) 46: 69 Page 15 of 36 69

quadrature with product integration by Helsing (see [19]). However, for the modi-
fied Helmholtz equation with large α, i.e., for high temporal resolution, it can fail
completely. Below we sketch the problem, its relation to α, and how to circumvent it.

We start by explaining product integration, which requires the involved integrals
to be expressed in complex notation. To keep these paragraphs brief and simple, the
reformulations are omitted. Consider a single panel �k ∈ C with endpoints at −1 and
1, but the panel does not have to follow the real axis. Let ϕ : �k → R be a smooth
function and S : �k × C → R a non-smooth kernel that may be singular or nearly
singular. The goal is to compute:∫

�k

ϕ(τ)S(τ0, τ) dτ (42)

accurately for some fixed τ0 ∈ C arbitrarily close to or on �k . To do this, approximate
ϕ with a polynomial of degree NQ − 1 in τ ∈ �k , such that:

ϕ(τ0) ≈
NQ∑
n=1

cnτ
n−1, (43)

with unknown coefficients {cn}. Inserting this into (42) gives:
∫

�k

ϕ(τ)S(τ0, τ) dτ ≈
NQ∑
n=1

cn

∫
�k

τn−1S(τ0, τ) dτ . (44)

In our setting, the integrals on the right-hand side can be computed analytically
through recursive formulas. The unknown coefficients {cn} are obtained by solving
a Vandermonde system. If ϕ can be accurately represented as a NQ − 1 degree poly-
nomial over �k , then product integration allows evaluation of integrals such as (44)
without loss of accuracy as τ0 and τ approach each other.

Kernel-split means that a kernel is decomposed into smooth and singular terms.
Leaving complex notation, by [45, Section 10] the first-order modified Bessel
function of the second kind K1, appearing in (17), can be decomposed as:

K1 (x) = 1

x
+ I1 (x) log (x) + KS

1 (x) , x ∈ R
+. (45)

This form is attractive since the singular terms are separated and can be studied indi-
vidually. Here, I1 is the modified Bessel function of the first kind of order one and
KS

1 is a power series in x. For the kernel M (see (17)), the situation is slightly more
involved, as the singularity structure depends on how x approaches y ∈ �. To distin-
guish between the two cases, for any y ∈ � denote M(x, y) as M�(x, y) for x ∈ �

and M�(x, y) for x ∈ �. We first study M� . The decomposition (45) motivates the
formulation:

M�(x, y) = M�,0(x, y) + log(‖y − x‖)M�,L(x, y), x, y ∈ �, (46)

with M�,L identified as:

M�,L(x, y) = αI1 (α‖y − x‖) y − x
‖y − x‖ · νy, x, y ∈ �. (47)

Adv Comput Math (2020) 46: 6969 Page 16 of 36

The term M�,0 is smooth and by (18) we have:

M�,0(y, y) = −1

2
κ(y), y ∈ �, (48)

since the term log(‖x−y‖)M�,L(x, y) goes to zero in the limit x → y. But in this limit
the derivative of log(‖y − x‖)M�,L(x, y) has a log-type singularity. Thus, standard
quadrature rules that rely on smoothness fail to be accurate. To maintain accuracy,
product integration is needed, even though the limit is well-defined. In terms of (44)
φ and S correspond to μM�,L and log. This approach is used to compute the involved
integrals in (22).

In the case x ∈ �, corresponding to computing (21), the kernel M(x, y) is singular
in the limit x → y and product integration is required. We have:

M�(x, y) = M�,0(x, y)+log(‖y−x‖)M�,L(x, y)+ (y − x) · νy
‖y − x‖2 M�,C(x, y), x ∈ �, y ∈ �, (49)

where M�,0 is a smooth function, M�,L = M�,L and M�,C = −1. Again, we
identify ϕ from (44) as μ multiplied with M�,L or M�,C and the singular function S

corresponds to either log(‖y− x‖) or (y− x) · νy/‖y− x‖2. In complex notation, the
latter is reduced to a Cauchy-type singularity.

There are two sources of error that may render the results of special pur-
pose quadrature useless: interpolation error and cancellation error. Both M�,L

and M�,L contain the factor I1(α‖x − y‖), which grows asymptotically like
eα‖x−y‖/

√
α‖x − y‖. The scaling with α can make I1 grow too fast over a single

panel to be accurately approximated by e.g. a 15th degree polynomial or even a 31st
degree polynomial. The product integration relies on φ being well approximated by
such a polynomial (43); otherwise, the result may be very inaccurate. Another com-
plicating factor is that M�,0 and M�,0 grow with signs opposing M�,L and M�,L.
They have to cancel so that the total sum decreases, since K1 is a decreasing function.
For large α, this may lead to cancellation and a significant loss of precision. Recall
that α ∼ δt−1/2 as set by an adaptive time stepper.

This problem is not unique to the modified Helmholtz equation, but appears for
the modified biharmonic equation and modified Stokes equations as well. One solu-
tion is an algorithm presented in a separate paper (see [18]). By local refinement of
panels through adaptive recursive bisection, a kernel-split quadrature with product
integration can be used successfully for a wide range of α. Based on error estimates,
it is ensured that the new panels are of adequate size to accurately approximate φ

with polynomial interpolation and that the cancellation is less than a set tolerance.
Given a target point x on the boundary, a new panel is created centered around it
(see Fig. 5). The length is such that errors are below a set tolerance. Consequently,
new neighbouring panels are created, whose layout depends on how the panel cen-
tred at x cuts the original panel configuration. These panels are bisected recursively
until a resulting panel does not need special purpose quadrature or can perform if
successfully and avoid cancellation errors. If the target point is in the domain, then
its projection onto the boundary is the centre on a new panel of appropriate length.
Then, the procedure is analogous with on boundary evaluation.

The method is effective in terms of computations, as the increased cost scales as
log(α). Moreover, K1(α‖x − y‖) ∼ √

π/(α‖x − y‖) e−α‖x−y‖ for large arguments,

Adv Comput Math (2020) 46: 69 Page 17 of 36 69

Fig. 5 Illustration of recursive bisection used when α is large. The black dot represents a target point on
or near the boundary, represented by the black line. The blue lines are the boundaries of the original panel.
The boundaries of the subpanels are indicated by the red lines. They are the result of recursive bisection

i.e. K1 is very localised for large α and only a small portion of the boundary � needs
to be upsampled.

Note that the algorithmmerely refines the panels, as part of the quadrature method.
No extra unkowns are introduced in the solution procedure.

3.3 Computational complexity

Here, we give account for the computationally costly steps. To solve the heat equation
a sequence of modified Helmholtz equations is solved per time step and the number
of such problems is set by that specific time stepping scheme. Thus, we focus on
the complexity of solving the modified Helmholtz equation. The most demanding
computational steps, numbered 1–5 in Fig. 16 in Appendix B, are:

1. Construct extension f e of f with PUX.
2. Solve α2uP − �uP = f e in � with FFTs.
3. Compute uP on � by NUFFT.
4. Solve α2uH − �uH = 0 by finding the double layer density μ on �.
5. Evaluate uH in �.

We begin by discussing steps 2–5. Here, we will use the FFT, the NUFFT, and the
FMM. For the FFT, it is solely the grid size that will determine the cost (for a spe-
cific implementation). The FMM for N sources and targets is reducing the cost of a
O(N2) matrix vector product to O(N), while introducing an approximation. Hence,
the computational cost can be bounded by CFMMN , but the constant will depend on
the required accuracy. There is an approximation introduced also for the NUFFT; and
hence, the constant will also here depend on the required accuracy. Keeping that in
mind, we now go through the different steps. Step 2 is solving the free-space problem
(6)–(7) and computing the particular solution uP on the uniform grid. It involves two
applications of an FFT, which is of costO(N2

u logN2
u). If N�,Q is the total number of

discretisation points over all boundary segments, then computing the particular solu-
tion on these points by NUFFT, step 3, is of complexityO(N2

u log(N2
u))+O(N�,Q).

Solving for the double layer density (40) in step 4 is done with GMRES, where an
FMM is used for the matrix vector multiplications. The number of GMRES itera-
tions is independent of the resolution at a fixed tolerance, and so the total cost is
O(N�,Q). Evaluating the homogeneous solution uH (41) on the uniform grid, step 5,

Adv Comput Math (2020) 46: 6969 Page 18 of 36

with an FMM is O(N2
u). The special quadrature, that is applied both for solving and

evaluating the solution, is a local correction and scales as O(N�,Q).
Finally, we now cover step 1. The number of partitions scale as Nψ ∼ |�|/R,

where R is the partition radius. We will have Nψ least squares problems of size
(βNφ) × Nφ to solve, where Nφ is the number of basis functions in one partition
and β is the ratio of available data to unknowns. In most instances 2 ≤ β ≤ 5, as
discussed below (38). The total cost is hence O(NψN3

φ).
The number of basis functions Nφ is proportional to P (see (37)), and hence pro-

portional to NuR (see (35)). Assume that we have a fixed geometry (|�| is constant)
and are increasing the resolution of the uniform grid. With R ∼ 1/

√
Nu, we have

both Nψ and Nφ proportional to
√

Nu which yields a total cost of O(N2
u), i.e. linear

in the number of gridpoints. Linear complexity can hence be achieved if we reduce
the partition radius R as the grid resolution is increased. If we keep R constant, then
the number of partitions Nψ will stay fixed, but Nφ will grow proportional to Nu.
This yields an asymptotic computational cost ofO(N3

u) = O((N2
u)3/2), which grows

faster than linear. However, since the partitions are small compared with the full
domain, the system sizes are moderate, typically only up to a few hundred unknowns
for the finest grid resolutions. At this point, the expected asymptotic scaling is not
visible yet as discussed in [9, Section 7.4], where timings of the PUX procedure are
presented. In practice, the increase in computational time is at most approximately
linear. In this paper, we have therefore chosen to keep R constant when we consider
convergence with respect to Nu.

4 Numerical results

In this section, we present the numerical results, starting with a study of the modified
Helmholtz equation to confirm that the parameters for PUX can be set as in [9] for the
Poisson equation. It forms the basis for the second numerical experiment, where the
modified Helmholtz equation is solved on a more complex domain. The heat equation
is solved on the same domain, for a range of set tolerances with an adaptive time
stepper for different grid resolutions. Finally, the Allen-Cahn equation, a reaction-
diffusion problem, is solved with randomised initial data.

To compute the errors, we consider an evaluation grid. It consists of N2
eval

uniformly distributed nodes over the computational domain B. We evaluate the
numerical solution and an analytical or computed reference solution on the nodes
that fall inside �. The cardinality of this set of nodes as Neval,�. Two different errors
are computed: the relative �2-error and the relative discrete �∞-error, defined as
‖usolution − unumerical‖�p/‖usolution‖�p where:

‖u‖�2 = 1

Neval,�

√√√√Neval,�∑
i=1

|ui |2 (50)

and
‖u‖�∞ = max |ui |, i = 1, . . . , Neval,�, (51)

for a vector u of length Neval,�. When referring to the errors, we mean both of them.

Adv Comput Math (2020) 46: 69 Page 19 of 36 69

The following parameters are user specified in the numerical experiments: the
length L for the computation domain B = [−L, L]2, the resolution Nu, the number
NP,n of Gauss-Legendre panels for each component curve �n and partition radius R.
We set the shape parameter ε = 2 for all numerical experiments and set the number
of Gauss-Legendre nodes NQ = 16.

4.1 Example 1: Study of weight functions

We now solve the modified Helmholtz equation (4)–(5) for:

u(x, y) = sin(2πx) sin(2πy) exp(−(x2 + y2)), (52)

to confirm that the parameters Nφ and c and the function ψk can be set by (35), (37),
and (38), as in [9] for the Poisson equation. To reduce the complexity of the problem,
assume the corresponding right-hand side to be known in all of R2, not just �. To
isolate the influence of the choice of weight function ψ (see Table 1), the actual
values of f are used as values for the local extensions fi,E , instead of the extrapolated
ones Ai,EfXi

. Compact support is still enforced via PUX, where the blending with
the zero partitions reduces the regularity of f e to k.

The computational domain is the unit circle centred at (17/701, 5/439), contained
in the box B = [−L, L]2, with L = 1.5. The resolution Nu attains values between
40 and 500 and for the evaluation grid use Ne = 1000. The partition radius and
the number of panels are set such that only the resolution of the uniform grid X
limits the accuracy. In this case, the partition radius is R = 0.4 and the number of
panels NP = 32. This means that the rate of convergence is only dependent on the
regularity of the extension and we can study the influence of choice of Wu-function.
Furthermore, we set α2 = 10.

Fig. 6 Error in numerical solution for the modified Helmholtz equation with (52) and α2 = 10, but with
local extensions given by analytic expression. Errors are plotted as a function of Nu in loglog-scale for
ψk , where k = 1, 2, 3, 4, 5. See Table 1. Left: Relative �2-error. Right: Relative �∞-error

Adv Comput Math (2020) 46: 6969 Page 20 of 36

Fig. 7 Error in numerical solution for the modified Helmholtz equation with (52) and α2 = 10, but with
local extensions given by analytic expression. The errors are plotted as functions of Nu in loglog-scale
with ψk chosen according to (36) for each different value of Nu

In Fig. 6, the errors for solving the modified Helmholtz equation are plotted as
functions of the number of grid points for different Wu-functions. The behaviour of
the errors is as for the Poisson equation in [9]: ψk with few continuous derivatives
requiring fewer points to be represented then ψk with a larger k. Consequently, high
regularity can increase the error, since ψk is not sufficiently resolved. Compare the
errors for using ψ1 and ψ5 in Fig. 6 for Nu ∼ 40. As the grid is refined, the decay
is spectral until the error is limited by an algebraic tail. The algebraic tail has a slope
of 4 + k, as expected. The �∞-error is about one to two digits less accurate than the
�2-error, which is consistent for all numerical experiments in this paper. The reason
is that there is almost always some target points close to the boundary for which the
special quadrature does not give optimal results, e.g. at the intersection of two panels.

We now solve the modified Helmholtz equation in the same numerical setting, but
let ψk be set automatically by (36). The result is presented in Fig. 7 and the lines
follow the corresponding lowest errors in Fig. 6. Thus, (36) indeed chooses ψk cor-
rectly for a given Nu and we can set the PUX parameters for the modified Helmholtz
equation as for the Poisson equation. This holds for α2 from 10 to 105 as well, as is
shown in the following numerical experiment. Moreover, the error decreases as that
of a tenth-order method.

For the subsequent numerical experiments ψk , Nφ and c are set by (36), (37), and
(38).

4.2 Example 2: ThemodifiedHelmholtz equation on amultiply connected domain

We now study the modified Helmholtz equation with a more complex setup for α2 =
10n, n = 1, 2, 3, 4, 5. We take the solution to be:

u(x, y) = cos

(
20

√
x2 + y2

)
, (53)

on the multiply connected domain shown in Fig. 8 and evaluate the right-hand side
in (4) accordingly. The corresponding extension by PUX is shown in Fig. 9, where

Adv Comput Math (2020) 46: 69 Page 21 of 36 69

Fig. 8 For Nu = 1000 and α2 = 10: the left image shows the pointwise relative �2-error for solving the
modified Helmholtz equation for (53). The right image shows the solution (53)

Nu = 1000 and k = 5. The outer boundary is discretised into 80 panels, and the
boundaries of the cavities are discretised with 20 panels each. Again, all parameters
are set such that only Nu sets the bound for the error. We set R = 0.23 and L = 1.2.
The parameters ψk , Nφ , and c are set by (36), (37), and (38). The evaluation grid has
a resolution of Neval = 1000.

The results in Fig. 10 suggest that (36) is a good estimate for setting ψk for more
complex problems as well. We obtain 10th-order convergence with grid refinement.
Note that slightly better results can be achieved; the same parameters are used for the
entire range of α and are therefore potentially not optimal. As in the previous exam-
ple, the relative �∞-error is about two orders of magnitude larger than the relative
�2-error. In Fig. 8, the largest error is by the rightmost point in �, at the intersection
of two panels. The special purpose quadrature is know to struggle with maintaining
full accuracy in such situations.

The modified Helmholtz equation becomes significantly harder to solve for
increasing α2. This is due to the rapid decay of the kernel (17), which requires a
very fine resolution of the boundary to be resolved. We also suffer from cancellation

Fig. 9 Left: The right-hand side of the modified Helmholtz equation for (53), extended with PUX. Right:
Magnification of the left image. For both Nu = 1000 and α2 = 10

Adv Comput Math (2020) 46: 6969 Page 22 of 36

Fig. 10 The errors for example 2 for various resolutions of the uniform grid, over a range of values for α

errors due to the scaling of terms with α or α−1. Still, this is not alarming, as a rela-
tive �∞-error of about 10−10 can still be obtained for α2 = 105. In terms of the heat
equation, this corresponds to a time step of about 10−5.

4.3 Example 3: Adaptive time stepper

We now test the solver for the heat equation (1)–(3) by setting a tolerance for the
time stepping error and investigate if it can be maintained for different resolutions
Nu. For this purpose, we use the IMEXRK34 scheme with an adaptive time stepper;
see Appendix A.1.2 and Appendix A.1.3. The smaller the time step, the harder the
modified Helmholtz equation is to solve, as concluded above. Thus, a high-order time
stepping scheme, such as IMEXRK34 of fourth order, is a suitable choice since larger
time steps can be used. However, other time marching methods can be used as well.

The domain and all parameters are set as for the previous example. The heat equa-
tion (1)–(3) is solved with the right-hand side F , initial condition, and Dirichlet
boundary data prescribed by the analytical solution:

U(t, x, y) = exp(−t) sin((x cos(π/4) + y sin(π/4))) + cos

(
20

√
x2 + y2

)
, (54)

Fig. 11 The errors for example 3 for different resolutions of the uniform grid, at terminal time t = 1. The
red lines are the set tolerances for the relative �2-error, used by adaptive time stepper

Adv Comput Math (2020) 46: 69 Page 23 of 36 69

Fig. 12 Left: The initial data U0 (56). Right: The right-hand side of (55) at t0, extended with PUX. Black
corresponds to zero partitions and red to interpolation partitions. Note that to increase visibility of the field
a different scaling is used than for 13a – f

where the time ranges from 0 to 1. For the evaluation grid, we set Neval = Nu and
measure the error at terminal time t = 1.

In Fig. 11, the red lines correspond to set tolerances. It is clear that the adaptive
time stepper works as intended, even for tolerances down to 10−10. The relative �∞-
error is more sensitive to the resolution and exceeds the set tolerance earlier in terms
of spatial resolution, roughly with one order in magnitude.

4.4 Example 4: The Allen-Cahn equation, a reaction diffusion problem

The Allen-Cahn equation is stated as:

∂U(t, x)
∂t

− C�U(t, x) = U(t, x)(1 − U(t, x)2), t0 < t, x ∈ � ⊂ R
2, (55)

U(t0, x) = U0(x), x ∈ �, (56)

U(t, x) = e−t/2U0(x), x ∈ �, (57)

with C = 10−3. The right-hand side of (55) is nonlinear and has three stationary
points: U = −1, 0, 1. For randomised initial data, the solution creates over time
patterns with zones attaining these values. The initial data we use is not entirely
randomised, since we need smoothness to discuss convergence and accuracy. Instead,
we create smooth data by uniformly distributing 50 Gaussians (28) with ε = 10 over
the computational domain with L = 1.2. Each Gaussian is assigned a coefficient
drawn randomly from a uniform distribution over −0.5 to 0.5. The partition size R is
set to 0.1; the domain, the extended right hand, and the distribution of partitions are
shown in Fig. 12. Each boundary component is discretised with 80 panels.

We create a reference solution by solving the Allen-Cahn equation with tolerance
10−6 and Nu = 800, from time 0 to 6. The errors are measured on grids with Neval =
200, 400 at terminal time t = 6. Snapshots of this solution are shown in Fig. 13a
to f. Indeed, the solution forms a pattern of patches with the values −1, 0, and 1.
The results are shown in Table 2. For Nu = 400, the relative �2-error stays under

Adv Comput Math (2020) 46: 6969 Page 24 of 36

Fig. 13 Numerical solution to (55) with Nu = 800 and tolerance 10−6 at t ∼ 0.005, 0.5, 1.3, 2.5, 4.2
and terminal time t = 6

the set tolerance. However, unlike example 3, the relative �∞-error is always slightly
larger than the set tolerance. For Nu = 200, only the tolerance 10−3 can be obtained.
Clearly, this resolution is insufficient to resolve the spatial problem more accurately
than that. The error at the terminal time t = 6 for Nu = 400 with tolerance 10−5

is shown in Fig. 14. In this figure, the evolution of the time step is also shown; as
the solution advances in time the time step becomes larger. Initially it grows faster,
compared with later, as the initial time step was intentionally set small (Fig. 15).

Table 2 Errors at terminal time t = 6 for solving (55)–(57) for resolutions Nu = 200, 400 and set
tolerances for the adaptive time stepper

Relative �∞ error Relative �2 error

Tolerance Nu = 200 Nu = 400 Nu = 200 Nu = 400

10−3 3.7314 × 10−3 3.6123 × 10−3 7.2035 × 10−4 7.0625 × 10−4

10−4 2.6619 × 10−2 3.6519 × 10−4 6.6734 × 10−3 6.8990 × 10−5

10−5 2.1136 × 10−3 3.9993 × 10−5 3.1405 × 10−4 9.3987 × 10−6

The reference solution is computed with a tolerance of 10−6 with Nu = 800. The resolution Nu = 200 is
insufficient to reach errors below 10−3, while the relative �2-error for Nu = 400 satisfies tolerances 10−3,
10−4, and 10−5

Adv Comput Math (2020) 46: 69 Page 25 of 36 69

Fig. 14 Left: Pointwise relative error for Nu = 400, tolerance 10−5. Right: Evolution of time step δt over
time

5 Conclusions

We present a framework built around a panel-based Nyström boundary integral
method for solving the forced isotropic heat equation in two dimensions, on multi-
ply connected complex domains. We have addressed several of the issues listed in
[1], thereby increasing the class of solvable problems as well as the accuracy in the
solutions.

We show how any IMEX method can be applied as a time stepping scheme, and
employ an adaptive fourth-order Runge-Kutta scheme in our examples, to accurately
solve the heat equation as well as the Allen-Cahn equation, a reaction-diffusion prob-
lem with a nonlinear forcing term. Regardless of the specific details of the chosen
method, a time step in solving the heat equation is reduced to solving one or a
sequence, for a multi-stage method, of modified Helmholtz equations.

As in [4], we formulate the modified Helmholtz equation as a boundary integral
problem. Utilising the linearity of the differential operator, the solution is split into a
particular and homogeneous problem. Solving the former to high accuracy relies on
extending the given right-hand side from the domain it is given on to the entire plane.
It is achieved with a partition of unity extension (PUX) that only requires known data
at uniform point locations inside the domain. The extension that is computed on a
uniform grid in a rectangular domain has compact support and a specified global reg-
ularity, making spectral methods very efficient and simple to use. We confirm that
the various parameters for PUX, in the context of the modified Helmholtz equation,
indeed can be set as for the Poisson equation in [9]. This yields an automated selec-
tion for the global regularity to balance different errors, leading to a method which
converges with an order 10 in the grid size.

A panel-based Nyström boundary integral method is used to solve the homoge-
neous problem with modified Dirichlet data, such that the total solution is the sum
of the particular and homogeneous solution. Extending to problems with Neumann
boundary data is straightforward. The boundary values of the particular solution
are computed using a non-uniform FFT. For evaluation of singular and nearly

Adv Comput Math (2020) 46: 6969 Page 26 of 36

singular integrals, we have introduced a methodology based on product integration
and an explicit kernel split that has given highly accurate results for the Helmholtz
[15] and Stokes equations [17]. For large α (small time steps), the method in its orig-
inal form would however fail completely if an unfeasibly high upsampling of the
boundary was not applied. We however realised that this upsampling is only needed
very locally, and developed an adaptive approach [18] to achieve a computationally
efficient method with high accuracy.

In total, these developments yield a method for very accurately solving the heat
equation on complex domains. The highest attainable accuracy in the solution of
the modified Helmholtz equation does show a weak dependence on α, but even for
the largest values, solutions can typically be attained with at least ten correct digits,
meaning that strict time stepping tolerances for the heat equation can be satisfied.

In terms of future developments, it would be useful for some problems to replace
the uniform grids and FFT-based method for the particular solution with a vol-
ume potential evaluation based on an adaptive FMM. This would however need an
integration of the PUX method into the adaptive procedure. In its current form, a
uniform grid is required for the precomputation of the interpolation matrix and for
the overall efficiency of the PUX algorithm. Another development is to consider the
solution of the heat equation and the closely related advection-diffusion equation in
time-dependent domains. We have yet to investigate what the limitations are with
elliptic marching in this context and will do so in a forthcoming project. Promising
results can be found in e.g. [46]. The advection-diffusion equation in time-dependent
domains can be used to model the concentration of surfactants in the oil-phase of
a micro-system with water drops in oil. These surfactants, or surface active agents,
have an exchange with surfactants on the drop surfaces, that alters the surface tension
of the drop. Numerical methods for simulating surfactant advection and diffusion on
the boundary of drops have been understood and implemented successfully (see [47,
48]). An important extension would be to allow also for surfactants in the oil-phase.
One strength of these methods is the accurate treatment of interface conditions, some-
thing that is absolutely essential at these small scales where the interface dynamics
is of key importance.

Acknowledgements We are grateful for the support from the Natural Science and Engineering Research
Council of Canada.

Funding information Open access funding provided by Royal Institute of Technology. We recevied
support of the Swedish Research Council under Grant No. 2015-04998 and funding from the Göran
Gustafsson Foundation for Research in Natural Sciences and Medicine.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

Adv Comput Math (2020) 46: 69 Page 27 of 36 69

http://creativecommonshorg/licenses/by/4.0/

Appendix A. Adaptive time steppingwith IMEX Runge-Kuttamethods

A.1 Adaptive discretisation in time

This appendix shows how applying implicit-explicit Runge-Kutta (IMEXRK)
schemes from [5] to the heat equation reduces it to a sequence of modified Helmhotlz
equations to solve at each time step. Formulate the heat equation (1)–(3) as:

∂U(t, x)
∂t

= FI (t, x, U) + FE(t, x, U), x ∈ �, (A.1)

FI (t, x, U) = �U(t, x), FE(t, x, U) = F(t, x), (A.2)

where the superscripts denote implicit and explicit, referring to the term being
classified as stiff or nonstiff, respectively.

Let tN denote an instance in time that is the sum of previous discrete time steps
{δti}N−1

i=1 that may be of different size:

tN =
N−1∑
i=1

δti + t0, N ≥ 1, (A.3)

for some initial time t0. Let UN be the approximation of U(tN), then at time tN+1 it
is:

UN+1 = UN + δtN
∑

σ∈{I,E}

NS∑
j=1

bσ
j kσ

j , (A.4)

where NS is the number of stages for kσ , σ ∈ {I, E}, computed as

kσ
j = Fσ

(
tN + δtNcσ

j , Ūj

)
, j = 1, . . . , NS . (A.5)

The second argument of Fσ in (A.5) is defined as:

Ūi = UN +δtN
∑

σ∈{I, E}

i∑
j=1

aσ
i,j k

σ
j = UN +δtN

∑
σ∈{I, E}

i−1∑
j=1

aσ
i,j k

σ
j +δtNaI

i,ik
I
i , i > 1,

(A.6)

Table 3 Coefficients for an IMEXRK scheme, where σ ∈ {I, E}, denoting implicit or explicit, applied to
the stiff and nonstiff terms, respectively

0 0

cσ
2 aσ

21 aσ
22

...
...

. . .

cσ
NS

aσ
NS1

· · · · · · aσ
NSNS

bσ
1 · · · · · · bσ

NS

In general aE
ij = 0 for i ≤ j and aI

ij 	= 0 for i = j , excluding i = 1

Adv Comput Math (2020) 46: 6969 Page 28 of 36

and Ū1 = UN . The coefficients {aσ
i,j }NS

i,j=1, {bσ
j }NS

j=1 and {cσ
j }NS

j=1 are tabulated in the
two associated Butcher tableaus for σ = I and σ = E; see Table 3 for a general
IMEXRK scheme. The principal difference between the coefficients for implicit and
explicit methods is that aE

i,j = 0 for i ≤ j while aI
i,j 	= 0 for i = j , excluding

i = 1. The quantity Ūi is unknown for every i = 2, . . . , NS , since the corresponding
implicit stage kI

i is unknown.
The implicit stage at i is kI

i = �Ūi by definition (A.2). To avoid approximating
the differential operator, replace kI

i in (A.6) with �Ūi and reformulate as:

1

δtNaI
i,i

Ūi − �Ūi = 1

δtNaI
i,i

UN +
∑

σ∈{I, E}

i−1∑
j=1

aσ
i,j

aI
i,i

kσ
j . (A.7)

The (A.7) has the form of the modified Helmholtz equation (4)–(5): f (x) cor-
responds to the right-hand side, u(x) = Ūi(x) and α2 = (δtNaI

i,i)
−1. We stress

that the larger α2 is the harder (4)–(5) is to solve accurately in terms of numerics
(see Section 3.2.1). The associated boundary condition g is (3) evaluated at time
tN + δtNcI

i .
To obtain the next stage kI

i , equation (A.7) must be solved for Ūi in �. Once Ūi is
known, reformulate (A.7) and compute:

kI
i = FI (tN + δtNcσ

i , Ūi) = �Ūi = 1

δtNaI
i,i

Ūi − 1

δtNaI
i,i

UN +
∑

σ∈{I, E}

i−1∑
j=1

aσ
i,j

aI
i,i

kσ
j .

(A.8)
With kI

i known the stage kE
i , that is FE , can be computed explicitly. Note that for

(1)–(3) FE = F(t, x), so the explicit stage kE
i is independent of the implicit stages;

thus, it is computed directly.
To summarise, the approximate solutionUN+1 at time tN+1 is given by (A.4). The

stages kI
i , for i = 1, . . . , NS are obtained by solving (4)–(5), corresponding to (A.7),

and explicit computation of (A.8). Once Ūi is known, kE
i = FE

(
tN + δtNcE

i , Ūi

)
is

computed explicitly. See the flowchart in Appendix B for a graphical overview.

A.1.1 IMEXRK2

This scheme is never used in this paper, but serves as a simple example of applying an
IMEX Runge-Kutta scheme. The stencil for IMEXRK2, with coefficients tabulated
in Table 5, involves taking a half time step δtN/2 and solving for Ū2 satisfying:

2

δtN
Ū2(x) − �Ū2(x) = 2

δtN
UN(x) + FE(tN , x, Ū2), x ∈ �. (A.9)

Adv Comput Math (2020) 46: 69 Page 29 of 36 69

By (A.4) the solution at the next time step, tN+1 = δtN + tN for every x ∈ � is:

UN+1 = UN + δtN

(
kI
2 + kE

2

)
= UN + δtN

(
�Ū2 + FE

(
tN + δtN

2
, x, Ū2

))
(A.10)

= UN + δtN

(
2

δtN
Ū2 − 2

δtN+1
UN − FE(tN , x, Ū1) + FE

(
tN + δtN

2
, x, Ū2

))
(A.11)

= 2UI
2 − UN + δtN

(
FE

(
tN + δtN

2
, x, Ū2

)
− FE(tN , x, UN)

)
. (A.12)

An important aspect of IMEXRK2 is that we obtain a second-order method by
only solving (4)–(5) once, i.e. only one intermediate stage is required.

An adaptive time stepper can be constructed by coupling IMEXRK2 with a
method of lower order. A simple IMEX scheme of first order is the Forward-
Backward Euler scheme, with coefficients given in Table 4. Applied to the heat
equation (1), we have:

UN+1(x)
δtN

− �UN+1(x) = G(tN , x) + UN(x)
δtN

. (A.13)

A.1.2 IMEXRK34

The IMEKRK34 scheme is a coupled third- and fourth-order scheme; see Tables 6
and 7 for the associated Butcher tableaus. It has two sets of six stages {kσ

i }i= for
σ = I, E, but only five implicit stages need to be solved for every iterate in time
[5]. This is due to kI

6 at tN is equal to kI
1 at tN+1 for N > 1, a property sometimes

referred to as first same as last, or FSAL. Note that the explicit stages do not have
this property.

For N = 0, the first stage must be given by supplementary initial data �U0.
Otherwise, the procedure is exactly as described in Appendix A.1: for a given
i solve (A.7) for Ūi . Once known extract kI

i = �Ūi from (A.7) and compute
kE
i = FE

(
tN + δtNcE

i , Ūi

)
explicitly and start over for i + 1 until all six stages are

known. An approximate solution UN+1 at tN+1 is given by (A.4), which is a fourth-
order approximation. The third-order approximation ŨN+1 is given by (A.4) as well,
but with the coefficients {b̃σ

j }NS

j=1 instead of {bσ
j }NS

j=1 (Table 6).

A.1.3 Adaptivity

Denote the solution given by Forward-Backward Euler or the third-order method in
IMEXRK34 as Ũ (x). At each discrete time instance tN+1 = δtN + tN for some δtN ,
we compute UN+1(x) and ŨN+1(x). The relative temporal error is approximated by:

r = ‖UN+1 − ŨN+1‖
‖UN+1‖ , (A.14)

where ‖·‖ is the standard discrete �2-norm (50). If r is less than some tolerance TOL,
then UN+1(x) is accepted as solution at time tN+1. The quantity r is used to produce
a new time step δtN,NEW by:

δtN,NEW = δtN,OLD ∗ (0.9 ∗ T OL/r)
1

p+1 , (A.15)

Adv Comput Math (2020) 46: 6969 Page 30 of 36

Table 4 Coefficients for the IMEX scheme Forward-Backward Euler

0 0 0 0 0 0

1 0 1 1 1 0

0 1 1 0

The left and right tables correspond to σ = I and to σ = E, respectively

Table 5 Coefficients for the IMEXRK2 scheme

0 0 0 0 0 0
1
2 0 1

2
1
2

1
2 0

0 1 0 1

The left and right tables correspond to σ = I and to σ = E, respectively

Adv Comput Math (2020) 46: 69 Page 31 of 36 69

Table 6 The coefficients {aE
i,j }6i,j=1, {bE

j }6j=1, {b̃E
j }6j=1 and {cE

i }6i=1 for IMEXRK34

0 0 0 0 0 0 0
1
2

1
2 0 0 0 0 0

83
250

13861
62500

6889
62500 0 0 0 0

31
50

−116923316275
2393684061468

−2731218467317
15368042101831

9408046702089
11113171139209 0 0 0

17
20

−451086348788
2902428689909

−2682348792572
7519795681897

12662868775082
11960479115383

3355817975965
11060851509271 0 0

1 647845179188
3216320057751

73281519250
8382639484533

552539513391
3454668386233

3354512671639
8306763924573

4040
17871 0

bE
i

82889
524892 0 15625

83664
69875
102672

−2260
8211

1
4

b̃E
i

4586570599
29645900160 0 178811875

945068544
814220225
1159782912

−3700637
11593932

61727
225920

where p = 2 from the order of the IMEXRK2 scheme and p = 4 for IMEXRK34.
The value 0.9 is a safety factor. If the solution is accepted, then δtN+1 = δtN,NEW;
otherwise, the computations start over at tN with δtN = δtN,NEW. Thus, even if the
solution is accepted, the step size is updated by the scheme (A.15), meaning growth
is possible if appropriate. See the flowchart in Appendix B for a graphical overview.

Table 7 The coefficients {aI
i,j }6i,j=1, {bI

j }6j=1, {b̃I
j }6j=1 and {cI

j }6j=1 for IMEXRK34

0 0 0 0 0 0 0
1
2

1
4

1
4 0 0 0 0

83
250

8611
62500

−1743
31250

1
4 0 0 0

31
50

5012029
34652500

−654441
2922500

174375
388108

1
4 0 0

17
20

15267082809
155376265600

−71443401
120774400

730878875
902184768

2285395
8070912

1
4 0

1 82889
524892 0 15625

83664
69875
102672

−2260
8211

1
4

bI
j

82889
524892 0 15625

83664
69875
102672

−2260
8211

1
4

b̃I
j

4586570599
29645900160 0 178811875

945068544
814220225
1159782912

−3700637
11593932

61727
225920

Adv Comput Math (2020) 46: 6969 Page 32 of 36

Appendix B. Flowchart over solution procedure

Fig. 15 Flowchart over the procedure for updating the approximate solution UN at tN for the heat equation
(1)–(3). Note that the grey block corresponds to the flowchart in Fig. 16

Adv Comput Math (2020) 46: 69 Page 33 of 36 69

Fig. 16 Flowchart over the procedure for solving the modified Helmholtz equation (4)–(5). The numbers
associated with the yellow boxes denote the major computational steps; see Section 3.3

References

1. Kropinski, M.C., Quaife, B.D.: Fast integral equation methods for Rothe’s method applied to the
isotropic heat equation. Comput. Math. Appl. 61(9), 2436–2446 (2011)

2. Chapko, R., Kress, R.: Rothe’s method for the heat equation and boundary integral equations. J.
Integral. Equ. Appl. 9(1), 47–69 (1997)

3. Chapko, R.: On the combination of Rothe’s method and boundary integral equations for the
nonstationary Stokes equation. J. Integral. Equ. Appl. 13(2), 99–116 (2001)

4. Kropinski, M.C., Quaife, B.D.: Fast integral equation methods for the modified Helmholtz equation.
J. Comput. Phys. 230(2), 425–434 (2011)

5. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffusion–reaction
equations. Appl. Numer. Math. 44(1), 139–181 (2003). pg. 176

6. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential
equations. BIT 40(2), 241–266 (2000)

7. Jia, J., Huang, J.: Krylov deferred correction accelerated method of lines transpose for parabolic
problems. J. Comput. Phys. 227(3), 1739–1753 (2008)

8. Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations.
Commun. Math. Sci. 1(3), 471–500 (2003)

9. Fryklund, F., Lehto, E., Tornberg, A.-K.: Partition of unity extension of functions on complex
domains. J. Comput. Phys. 375, 57–79 (2018)

10. Askham, T., Cerfon, A.J.: An adaptive fast multipole accelerated Poisson solver for complex
geometries. J. Comput. Phys. 344, 1–22 (2017)

Adv Comput Math (2020) 46: 6969 Page 34 of 36

11. Bruno, O.P., Lyon, M.: High-order unconditionally stable FC-AD solvers for general smooth domains
I. Basic elements. J. Comput. Phys. 229(6), 2009–2033 (2010)

12. Stein, D.B., Guy, R.D., Thomases, B.: Immersed boundary smooth extension (IBSE): A high-order
method for solving incompressible flows in arbitrary smooth domains. J. Comput. Phys. 335, 155–
178 (2017)

13. Shirokoff, D., Nave, J.-C.: A sharp–interface active penalty method for the incompressible Navier–
Stokes equations. J. Sci. Comput. 62(1), 53–77 (2015)

14. Hao, S., Barnett, A.H., Martinsson, P.G., Young, P.: High-order accurate methods for Nyström dis-
cretization of integral equations on smooth curves in the plane. Adv. Comput. Math. 40(1), 245–272
(2014)

15. Helsing, J., Holst, A.: Variants of an explicit kernel–split panel–based Nyström discretization scheme
for Helmholtz boundary value problems. Adv. Comput. Math. 41(3), 691–708 (2015)

16. Helsing, J., Ojala, R.: On the evaluation of layer potentials close to their sources. J. Comput. Phys.
227(5), 2899–2921 (2008)

17. Ojala, R., Tornberg, A.-K.: An accurate integral equation method for simulating multi-phase stokes
flow. J. Comput. Phys. 298, 145–160 (2015)

18. Klinteberg, L., Fryklund, F., Tornberg, A.-K.: An adaptive kernel-split quadrature method for
parameter-dependent layer potentials. arXiv:1906.07713 (2019)

19. Helsing, J.: Integral equation methods for elliptic problems with boundary conditions of mixed type.
J. Comput. Phys. 228(23), 8892–8907 (2009)

20. af Klinteberg, L., Askham, T., Kropinski, M.C.: A fast integral equation method for the two-
dimensional navier-stokes equations. J. Comput. Phys. 409, 109353 (2020)

21. Li, J., Greengard, L.: High order accurate methods for the evaluation of layer heat potentials. SIAM
J. Sci. Comput. 31(5), 3847–3860 (2009)

22. Wang, S., Jiang, S., Wang, J.: Fast high-order integral equation methods for solving boundary value
problems of two dimensional heat equation in complex geometry. J. Sci. Comput. 79(2), 787–808
(2019)

23. Zhou, H.-X., Pang, X.: Electrostatic interactions in protein structure, folding, binding, and condensa-
tion. Chem. Rev. 118(4), 1691–1741 (2018). PMID: 29319301

24. Juffer, A.H., Botta, E.F.F., van Keulen, B.A.M., van der Ploeg, A., Berendsen, H.J.C.: The electric
potential of a macromolecule in a solvent: A fundamental approach. J. Comput. Phys. 97(1), 144–171
(1991)

25. Chen, K.H., Chen, J.T.: Adaptive dual boundary element method for solving oblique incident wave
passing a submerged breakwater. Comput. Method. Appl. M. 196(1), 551–565 (2006)

26. Vorobjev, Y.N.: Modeling of electrostatic effects in macromolecules, pp. 163–202. Springer Interna-
tional Publishing, Cham (2019)

27. Liang, J., Subramaniam, S.: Computation of molecular electrostatics with boundary element methods.
Biophys. J. 73(4), 1830–1841 (1997)

28. Kouibia, A., Pasadas, M., Reyah, L., Akhrif, R.: Approximation of surfaces by modified helmholtz
splines. J. Comput. Appl. Math. 350, 262–273 (2019)

29. Chen, C.S., Jiang, X., Chen, W., Yao, G.: Fast solution for solving the modified Helmholtz equation
with the method of fundamental solutions. Commun. Comput. Phys. 17(3), 867–886 (2015)

30. Li, X.: On solving boundary value problems of modified Helmholtz equations by plane wave func-
tions. J. Comput. Appl. Math. 195(1), 66–82 (2006). Special Issue: The International Symposium on
Computing and Information (ISCI2004)

31. Ascher, U., Ruuth, S., Wetton, B.: Implicit-explicit methods for time-dependent partial differential
equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

32. Quaife, B.: Fast integral equation methods for the modified helmholtz equation, Ph.D. Thesis, Simon
Fraser University (2011)

33. Atkinson, K.E.: The numerical solution of integral equations of the second kind. Cambridge
Monographs on Applied and Computational Mathematics (Book 4). Cambridge University Press,
Cambridge (1997)

34. Shepard, D.: A two–dimensional interpolation function for irregularly–spaced data, vol 23 (1968)
35. Fasshauer, G.F.: Meshfree Approximation Methods with MATLAB, World Scientific Publishing Co.,

Inc. River Edge, NJ, USA (2007)
36. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with

increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)

Adv Comput Math (2020) 46: 69 Page 35 of 36 69

http://arxiv.org/abs/1906.07713

37. Larsson, E., Shcherbakov, V., Heryudono, A.: A least squares radial basis function partition of unity
method for solving PDEs. SIAM J. Sci. Comput. (2017)

38. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM
J. Sci. Comput. 33(2), 869–892 (2011)

39. Trefethen, L.: Spectral methods in MATLAB, Society for Industrial and Applied Mathematics (2000)
40. Carrier, J., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm for particle simulations.

SIAM J. Sci. Stat. Comp. 9(4), 669–686 (1988)
41. Cheng, H., Huang, J., Leiterman, T.J.: An adaptive fast solver for the modified helmholtz equation in

two dimensions. J. Comput. Phys. 211(2), 616–637 (2006)
42. Greengard, L.F., Huang, J.: A new version of the fast multipole method for screened Coulomb

interactions in three dimensions. J. Comput. Phys. 180(2), 642–658 (2002)
43. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in

Lipschitz domains. J. Funct. Anal. 59(3), 572–611 (1984)
44. Helsing, J.: Solving integral equations on piecewise smooth boundaries using the RCIP method: a

tutorial, ArXiv e-prints (2012)
45. NIST: Digital Library of Mathematical Functions, Release 1.0.16 of 2017-09-18 http://dlmf.nist.gov/
46. Khatri, S., Tornberg, A.-K.: An embedded boundary method for soluble surfactants with interface

tracking for two-phase flows. J. Comput. Physics 256, 768–790 (2014)
47. lsson, S.P., Siegel, M., Tornberg, A.-K.: Simulation and validation of surfactant-laden drops in two-

dimensional Stokes flow. J. Comput. Phys. 386, 218–247 (2019)
48. Kropinski, M.CA., Lushi, E.: Efficient numerical methods for multiple surfactant-coated bubbles in a

two-dimensional Stokes flow. J. Comput. Phys. 230(12), 4466–4487 (2011)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Adv Comput Math (2020) 46: 6969 Page 36 of 36

http://dlmf.nist.gov/

	An integral equation based numerical method...
	Abstract
	Introduction
	Overview of the paper

	Formulation
	Discretising in time and the modified Helmholtz equation
	The inhomogeneous modified Helmholtz equation
	The homogeneous modified Helmholtz equation

	Discretisation
	The inhomogeneous problem and function extension
	Partition of unity
	Local extensions
	Properties of PUX

	The homogeneous problem
	Special purpose quadrature

	Computational complexity

	Numerical results
	Example 1: Study of weight functions
	Example 2: The modified Helmholtz equation on a multiply connected domain
	Example 3: Adaptive time stepper
	Example 4: The Allen-Cahn equation, a reaction diffusion problem

	Conclusions
	Appendix: A. Adaptive time stepping with IMEX Runge-Kutta methods
	A.1 Adaptive discretisation in time
	 A.1.1 IMEXRK2
	 A.1.2 IMEXRK34
	 A.1.3 Adaptivity
	Appendix B. Flowchart over solution procedure
	Appendix: B. Flowchart over solution procedure
	References

