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Abstract
We study worst-case optimal approximation of positive linear functionals in repro-
ducing kernel Hilbert spaces induced by increasingly flat Gaussian kernels. This
provides a new perspective and some generalisations to the problem of interpolation
with increasingly flat radial basis functions. When the evaluation points are fixed and
unisolvent, we show that the worst-case optimal method converges to a polynomial
method. In an additional one-dimensional extension, we allow also the points to be
selected optimally and show that in this case convergence is to the unique Gaussian
quadrature–type method that achieves the maximal polynomial degree of exactness.
The proofs are based on an explicit characterisation of the reproducing kernel Hilbert
space of the Gaussian kernel in terms of exponentially damped polynomials.

Keywords Worst-case analysis · Reproducing kernel Hilbert spaces ·
Gaussian kernel · Gaussian quadrature

Mathematics Subject Classification (2010) 41A05 · 41A30 · 46E22 · 65D05 · 65D32

1 Introduction

Most popular kernels used in scattered data approximation [11, 37] and Gaussian
process regression [27] are isotropic (i.e., radial basis functions), depending only on
the Euclidean distance ‖·‖2 between the points:

K�(x, x′) = Φ

(‖x − x′‖2

�

)
(1.1)
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for a continuous positive–definite function Φ : [0, ∞) → R and a length-scale
parameter � > 0. Given any function f : Rd → R evaluated at distinct points
X = {x1, . . . , xN } ⊂ R

d , such a kernel can be used to construct a unique ker-
nel interpolant based on the translates {K�(·, xn)}Nn=1. The kernel interpolant is as
follows:

s�,f,X(x) =
N∑

n=1

f (xn)u�,n(x), (1.2)

where un are the Lagrange cardinal functions that solve:⎡
⎢⎣

K�(x1, x1) · · · K�(x1, xN)
...

. . .
...

K�(xN, x1) · · · K�(xN, xN)

⎤
⎥⎦
⎡
⎢⎣

u�,1(x)
...
u�,N (x)

⎤
⎥⎦ =

⎡
⎢⎣

K�(x, x1)
...
K�(x, xN)

⎤
⎥⎦ (1.3)

and satisfy u�,n(xm) = δnm. Uniqueness of the solution for each x ∈ R
d is guaranteed

by positive–definiteness of the matrix on the left-hand side of this system.
When � → ∞, the kernel K� becomes increasingly flat and the linear system (1.3)

increasingly ill-conditioned.1 Nevertheless, the corresponding kernel interpolant is
typically well-behaved at this limit. Starting with the work of Driscoll and Fornberg
[10], it has been shown that a certain unisolvency assumption on X implies that the
kernel interpolant converges to (i) a polynomial interpolant if the kernel is infinitely
smooth [10, 13, 19, 20, 31, 32] or (ii) a polyharmonic spline interpolant if the kernel
is finitely smooth [21, 33]. Further generalisations appear in [22]. The former case
covers kernels such as, Gaussians, multiquadrics, and inverse multiquadrics while
the latter applies to, for example, Matérn kernels and Wendland’s functions. Among
the most interesting of these results is the one by Schaback [31] who proved that the
interpolant at the increasingly flat limit of the Gaussian kernel

K�(x, x′) = exp

(
−‖x − x′‖2

2

2�2

)
(1.4)

exists regardless of the geometry of X and coincides with the de Boor and Ron
polynomial interpolant [6, 7]. Furthermore, numerical ill-conditioning for large �,
mentioned above, has necessitated the development of techniques for stable evalua-
tion of the kernel interpolant [5, 12, 14, 38]. Increasingly flat kernels have been also
discussed independently in the literature on the use of Gaussian processes for numer-
ical integration [24, 26, 34], albeit accompanied only with non-rigourous arguments.
Even though the intuition that the lowest degree terms in the Taylor expansion of
the kernel dominate construction of the interpolant as � → ∞ and that this ought
to imply convergence to a polynomial interpolant is quite clear, this is not always
translated into transparent proofs.

The purpose of this article is to generalise the aforementioned results on flat limits
of kernel interpolants for worst-case optimal approximation of general positive linear
functionals in the reproducing kernel Hilbert space (RKHS) of the Gaussian kernel

1Note that most of the literature we cite parametrises the kernel in terms of the inverse length-scale ε = 1/�

and accordingly considers the case ε → 0.
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(1.4). That such generalisations are possible is not perhaps surprising; it is rather the
simple proof technique made possible by the worst-case framework and an explicit
characterisation [23] of the Gaussian RKHS that we find the most interesting aspect
of the present work.

1.1 Worst-case optimal approximation

Let Ω be a subset of Rd with a non-empty interior and L : C(Ω) → R a positive lin-
ear functional acting on continuous real-valued functions defined on Ω and satisfying
L[|p|] < ∞ for every polynomial p on Ω . The functionals most often discussed in
this article are the point evaluation and the integration functionals

Lx[f ] = f (x) and Lμ[f ] =
∫

Ω

f dμ for a Borel measure μ on Ω, (1.5)

respectively. Derivative evaluation functionals L
(n)
x [f ] = f (n)(x) are also often con-

sidered. A cubature rule (quadrature if d = 1) QX(w) : C(Ω) → R with the distinct
points X = {x1, . . . , xN } ⊂ Ω and weights w = (w(1), . . . , w(N)) ∈ R

N is a
weighted approximation to L of the form

QX(w)[f ] =
N∑

n=1

w(n)f (xn) ≈ L[f ]. (1.6)

When restricted on Ω × Ω , the positive–definite kernel K� in (1.1) induces a unique
reproducing kernel Hilbert space H(K�) ⊂ C(Ω) where the reproducing property
〈f, K�(·, x)〉H(K�)

= f (x) holds for every x ∈ Ω and f ∈ H(K�). With minor
modifications everything in this section holds also when the kernel is not isotropic.
Because the kernel is isotropic, L[K�(x, x)] ≤ L[Φ(0)] < ∞ by the assumption that
L[p] is finite if p is a polynomial. This guarantees that L[K�(·, x)] ∈ H(K�) for any
x ∈ Ω and consequently that L[f ] < ∞ for any f ∈ H(K�).

The worst-case error e�(QX(w)) of the cubature rule (1.6) in H(K�) is as follows:

e� (QX(w)) = sup
‖f ‖H(K�)≤1

∣∣∣∣∣L[f ] −
N∑

n=1

w(n)f (xn)

∣∣∣∣∣ . (1.7)

Given a fixed set of distinct points, we are interested in the kernel cubature rule
QX(w∗

� ) whose weights are chosen so as to minimise the worst-case error:

w∗
� = arg min

w∈RN

e� (QX(w)) and e�

(
QX(w∗

� )
) = inf

w∈RN
e� (QX(w)) .

These weights are unique and available as the solution to the linear sys-
tem [25, Section 3.2]⎡

⎢⎣
K�(x1, x1) · · · K�(x1, xN)
...

. . .
...

K�(xN, x1) · · · K�(xN, xN)

⎤
⎥⎦
⎡
⎢⎣

w∗
� (1)

...
w∗

� (N)

⎤
⎥⎦ =

⎡
⎢⎣

L[K�(·, x1)]
...
L[K�(·, xN)]

⎤
⎥⎦ . (1.8)

Although our notation does not make this explicit, the weights obviously depend on
the linear functional L and the evaluation points X. For each x ∈ R

d , the kernel
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interpolant s�,f,X(x) now arises as the kernel cubature rule for approximation of the
point evaluation functional Lx in (1.5) and the Lagrange functions are u�,n(x) =
w∗

� (n). In this case, the worst-case error coincides with the power function [30]. For
an arbitrary L, the kernel cubature rule can be obtained by applying L to the kernel
interpolant as follows:

QX(w∗
� ) = L[s�,f,X] =

N∑
n=1

f (xn)L[u�,n].

That is, the weights are w∗
� (n) = L[u�,n].

1.2 Contributions

Recall that we only consider the Gaussian kernel (1.4). This article contains two
theoretical main contributions:

– In Section 2, we prove that if X is unisolvent with respect to a full polynomial
space Πm and N = dim Πm, then QX(w∗

� ) converges (as � → ∞) to the unique
cubature rule QX(wpol) that satisfies QX(wpol)[p] = L[p] for every polynomial
p of degree at most m. This result, contained in Theorem 2.2 and Corollary 2.1,
is a generalisation for arbitrary positive linear functionals of the interpolation
results cited earlier. If Ω is bounded, the results hold for any positive linear func-
tional satisfying the mild assumptions imposed earlier. However, boundedness
of Ω is not necessary: at the end of Section 2, we supply an example involving
integration over Rd with respect to the Gaussian measure.

– In Section 3, we present a generalisation, based on a theorem of Barrow [2], for
optimal kernel quadrature rules [25, Chapter 5] that have both their points and
weights selected so as to minimise the worst-case error. The result, Theorem 3.2,
states that such rules, if unique, converge to the N-point Gaussian quadrature
rule for the functional L, which is the unique quadrature rule QXG(wG) such that
QXG(wG)[p] = L[p] for every polynomial p of degree at most 2N − 1. This
partially settles a conjecture posed by O’Hagan [26, Section 3.3], and further dis-
cussed in [24, 34], on convergence of optimal kernel quadrature rules to Gaussian
quadrature rules.

Some generalisations for other kernels and cubature rules of more general form than
(1.6) are briefly discussed in Section 4.

2 Fixed points

The following theorem, which provides a characterisation of the RKHS of the Gaus-
sian kernel (1.4), is the central tool of this article. This results is due to Steinwart
[36] and Minh [23]; see also [35, Section 4.4] and [8, Example 3]. In this theorem
(and the remainder of the article), Nd

0 stands for the collection of d-dimensional non-
negative multi-indices: Nd

0 = {(α1, . . . , αd) ∈ R
d : α1, . . . , αd ∈ N0}. The absolute

value and factorial of α ∈ N
d
0 are |α| = α1 + · · · + αd and α! = α1! × · · · × αd !.
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Theorem 2.1 (Steinwart 2006; Minh 2010) Let Ω be a subset of Rd with a non-
empty interior. Then, the RKHS H(K�) induced by the Gaussian kernel (1.4) with
length-scale � > 0 consists of the functions

f (x) = e−‖x‖2
2/(2�2)

∑
α∈Nd

0

fαxα such that ‖f ‖2
H(K�)

=
∑
α∈Nd

0

�2|α|α!f 2
α < ∞,

(2.1)
where convergence is absolute. Its inner product is 〈f, g〉H(K�)

=∑
α∈Nd

0
�2|α|α!fαgα . Furthermore, the collection

{
1

�|α|√α! e−‖x‖2
2/(2�2) xα

}
α∈Nd

0

(2.2)

of functions forms an orthonormal basis ofH(K�).

Two crucial implications of this theorem are that H(K�) consists of functions
expressible as series of exponentially damped polynomials, the damping effect van-
ishing as � → ∞, and that, due to the terms �2|α| appearing in the RKHS norm,
the high-degree terms contribute the most to the norm. Consequently, the worst-case
error (1.7), taking into account only functions of at most unit norm, is dominated by
low-degree terms when � is large. The rest of this section formalises this intuition.

Let Πm ⊂ C(Ω) stand for the space of d-variate polynomials of degree at most
m ∈ N0:

Πm = span
{
xα : α ∈ N

d
0 , |α| ≤ m

}
.

In this section, we assume that the point set X ⊂ Ω ⊂ R
d is Πm-unisolvent. That is,

N = #X = dim Πm =
(

m + d

d

)
= (m + d)!

d! m!
and the zero function is the only element of Πm that vanishes on X. This is equivalent
to non-singularity of the (generalised) Vandermonde matrix

PΠ =
⎡
⎢⎣

x
α1
1 · · · x

αN

1
...

. . .
...

x
α1
N · · · x

αN

N

⎤
⎥⎦ , (2.3)

where {α1, . . . , αN } = {
α ∈ N

d
0 : |α| ≤ m

} ⊂ N
d
0 . It follows that there is a unique

polynomial cubature rule QX(wpol) such that QX(wpol)[p] = L[p] < ∞ for every
p ∈ Πm. Its weights solve the linear system P T

Πwpol = LΠ of N equations, where
the N-vector LΠ has the elements [LΠ ]n = L[xαn]. In this section, we prove that
the worst-case optimal weights w∗

� for the Gaussian kernel (1.4) converge to wpol

as � → ∞.
Define then

φ�
α(x) = e−‖x‖2

2/(2�2) xα, (2.4)
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so that functions in the Gaussian RKHS, characterised by Theorem 2.1, are of the
form f (x) = ∑

α∈Nd
0
fαφ�

α(x) for coefficients fα decaying sufficiently fast. Since
the exponential function has no real roots, the determinant of the matrix

Pφ,� =
⎡
⎢⎣

φ�
α1

(x1) · · · φ�
αN

(x1)
...

. . .
...

φ�
α1

(xN) · · · φ�
αN

(xN)

⎤
⎥⎦ (2.5)

satisfies |Pφ,�| = |PΠ | exp
(
−∑N

n=1 ‖xn‖2
2/(2�2)

)
�= 0 and Pφ,� is hence non-

singular. From non-singularity, it follows that there are unique weights wφ,� such that
QX(wφ,�)[φ�

α] = L[φ�
α] for every α ∈ N

d
0 satisfying |α| ≤ m. The weights solve

P T
φ,�wφ,� = Lφ,�, where the N-vector LΦ,� has the elements [Lφ,�]n = L[φ�

αn
].2

This auxiliary cubature rule plays an important role in our argument. To summarise,
the following three weights (or sequences of weights) appear in the proofs below:

1. The weights w∗
� , solved from (1.8), are the worst-case optimal weights for the

Gaussian kernel (1.4). The results concern the behaviour of these weights as
� → ∞.

2. The weights wpol are constructed such that the cubature rule defined by them
is exact for all polynomials up to degree m: QX(wpol)[p] = L[p] whenever
p ∈ Πm.

3. The auxiliary weights wφ,� satisfy QX(wφ,�)[φ�
α] = L[φ�

α] for every � > 0 and
|α| ≤ m.

Lemma 2.1 Suppose that X is Πm-unisolvent and lim�→∞ L[φ�
α(x)] = L[xα]

for every |α| ≤ m. Then, there is a constant C�0 ≥ 0 such that
sup�≥�0

∑N
n=1 |wφ,�(n)| ≤ C�0 for any �0 > 0.

Proof The assumption lim�→∞ L[φ�
α(x)] = L[xα] and unisolvency of X imply that

lim�→∞ wφ,� = wpol. Because L[|p|] < ∞ for any polynomial p, both the weights
wpol and wφ,� are finite, which implies the claim.

Lemma 2.2 Suppose that X is Πm-unisolvent and lim�→∞ L[φ�
α(x)] = L[xα] for

every |α| ≤ m. If (w�)�>0 is any sequence of weights such that

lim�→∞
∣∣∣L[φ�

α] − QX(w�)[φ�
α]
∣∣∣ = 0 for every |α| ≤ m,

then, lim�→∞ w� = wpol.

2See [12] for an interpolation method based on a closely related basis derived from a Mercer eigendecom-
position of the Gaussian kernel and [17] for an explicit construction of weights similar to wφ,� in the case
L is the Gaussian integral.
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Proof We have P T
ΠwΠ = LΠ and

‖LΠ − P T
Πw�‖2 ≤ ‖LΠ − Lφ,�‖2 + ‖Lφ,� − P T

φ,�w�‖2 + ‖P T
φ,�w� − P T

Πw�‖2,

where each of the terms on the right-hand side vanishes as � → ∞. Because
‖LΠ − P T

Πw�‖2 = ‖P T
Π(wpol − w�)‖2 and PΠ is non-singular, we conclude that

lim�→∞ w� = wpol.

We are ready to prove the main result of the article for a fixed Πm-unisolvent point
set X ⊂ Ω consisting of N distinct points. First, by considering one of the basis func-
tions (2.2), we show that |L[φ�

α] − QX(w∗
� )[φ�

α]| ≤ √
α!�|α|e�(QX(w∗

� )) for every
α ∈ N

d
0 . Second, the sub-optimal cubature rule QX(wφ,�) defined above can be used,

in combination with (2.1), to establish the upper bound e�(QX(w∗
� )) ≤ C�−(m+1).

These two bounds imply that |L[φ�
α] − QX(w∗

� )[φ�
α]| → 0 for every |α| ≤ m. If

lim�→∞ L[φ�
α(x)] = L[xα], Lemma 2.2 then implies that w∗

� → wpol.

Theorem 2.2 Let N = dim Πm for some m ∈ N0 and X be Πm-unisolvent. Suppose
that lim�→∞ L[φ�

α(x)] = L[xα] for every α ∈ N
d
0 such that |α| ≤ m and that

L

⎡
⎣ ∑

|α|≥m+1

|aα|
�
|α|−(m+1)
0

√
α!

|xα|
⎤
⎦ ≤ CL < ∞ (2.6)

for some �0 > 1 and any sequence (aα)α∈Nd
0
such that

∑
α∈Nd

0
a2
α ≤ 1. Then,

lim
�→∞ w∗

� = wpol and e�

(
QX(w∗

� )
) = O

(
�−(m+1)

)
,

where wpol are the weights of the unique polynomial cubature rule such that
QX(wpol)[p] = L[p] for every p ∈ Πm.

Proof For every α ∈ N
d
0 , select the function

gα(x) = 1

�|α|√α! e−‖x‖2
2/(2�2) xα = 1

�|α|√α!φ
�
α(x).

From Theorem 2.1, it follows that ‖gα‖2
H(K�)

= 1 since gα is one of the basis
functions (2.2). Thus, by definition of the worst-case error,

1

�|α|√α! |L[φ�
α] − QX(w∗

� )[φ�
α]| = |L[gα] − QX(w∗

� )[gα]| ≤ e�

(
QX(w∗

� )
)

. (2.7)

Next, we derive an appropriate upper bound on e�(QX(w∗
� )) by considering the

unique sub-optimal cubature rule QX(wφ,�) that is exact for every φ�
α with |α| ≤ m.
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In the expansion (2.1) of a function in H(K�), we have L[φ�
α] = QX(wφ,�)[φ�

α] for
every term with |α| ≤ m. Consequently, the worst-case error is bounded as follows:

e�

(
QX(wφ,�)

)

= sup
‖f ‖H(K�)≤1

∣∣∣∣∣∣L
⎡
⎣ ∑

|α|≥m+1

fαφ�
α

⎤
⎦ − QX(wφ,�)

⎡
⎣ ∑

|α|≥m+1

fαφ�
α

⎤
⎦
∣∣∣∣∣∣

≤ sup
‖f ‖H(K�)≤1

L

⎡
⎣ ∑

|α|≥m+1

|fα||φ�
α|
⎤
⎦ + sup

‖f ‖H(K�)≤1

∣∣∣∣∣∣QX(wφ,�)

⎡
⎣ ∑

|α|≥m+1

fαφ�
α

⎤
⎦
∣∣∣∣∣∣ ,

where fα are the coefficients that define f ∈ H(K�) in Theorem 2.1. A consequence
of (2.1) is that ‖f ‖H(K�) ≤ 1 implies |fα| ≤ aα/(�|α|√α) for some real numbers
|aα| ≤ 1 such that

∑
α∈Nd

0
a2
α ≤ 1. Therefore, for � ≥ �0 > 1,

sup
‖f ‖H(K�)≤1

L

⎡
⎣ ∑

|α|≥m+1

|fα||φ�
α|
⎤
⎦ ≤ L

⎡
⎣ ∑

|α|≥m+1

|aα|
�|α|√α! |φ

�
α|
⎤
⎦

≤ �−(m+1)L

⎡
⎣ ∑

|α|≥m+1

|aα|
�
|α|−(m+1)
0

√
α!

|φ�
α|
⎤
⎦

≤ �−(m+1)L

⎡
⎣ ∑

|α|≥m+1

|aα|
�
|α|−(m+1)
0

√
α!

|xα|
⎤
⎦

≤ CL�−(m+1)

by assumption (2.6). Moreover, because

max
n=1,...,N

|φ�
α(xn)| ≤ max

n=1,...,N
|xα

n | ≤ CX

for some CX > 0 and every �, we have the following:

sup
‖f ‖H(K�)≤1

∣∣∣∣∣∣QX(wφ,�)

⎡
⎣ ∑

|α|≥m+1

fαφ�
α

⎤
⎦
∣∣∣∣∣∣

≤ sup
‖f ‖H(K�)≤1

N∑
n=1

|wφ,�(n)|
∑

|α|≥m+1

|fα||φ�
α(xn)|

≤ �−(m+1)
N∑

n=1

|wφ,�(n)|
∑

|α|≥m+1

|aα|
�|α|−(m+1)

√
α! |φ

�
α(xn)|
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≤ �−(m+1)
N∑

n=1

|wφ,�(n)|
∑

|α|≥m+1

CX

�
|α|−(m+1)
0

√
α!

≤ �−(m+1)

(
sup
�≥�0

N∑
n=1

|wφ,�(n)|
) ∑

|α|≥m+1

CX

�
|α|−(m+1)
0

√
α!

=: CQ�−(m+1)

where CQ < ∞ follows from convergence of the last term and Lemma 2.1. Thus,

e�

(
QX(wφ,�)

) ≤ (CL + CQ)�−(m+1) =: C�−(m+1) (2.8)

when � ≥ �0. Since QX(w∗
� ) is worst-case optimal, we have thus established with

(2.7) and (2.8) that, for sufficiently large �,

1

�|α|√α! |L[φ�
α] − QX(w∗

� )[φ�
α]| ≤ e�(QX(w∗

� )) ≤ e�

(
QX(wφ,�)

) ≤ C�−(m+1)

for every α ∈ N
d
0 such that |α| ≤ m and a constant C independent of �. That is,

|L[φ�
α] − QX(w∗

� )[φ�
α]| ≤ C

√
α! �−(m+1)+|α| ≤ C

√
m! �−1 → 0 as � → ∞.

(2.9)
The claim then follows by setting w� = w∗

� in Lemma 2.2.

Assumptions of Theorem 2.2 hold, for instance, if the domain Ω is bounded.

Corollary 2.1 Let N = dim Πm for some m ∈ N0 and X be Πm-unisolvent. Suppose
that Ω is bounded. Then,

lim
�→∞ w∗

� = wpol and e�

(
QX(w∗

� )
) = O

(
�−(m+1)

)
,

where wpol are the weights of the unique polynomial cubature rule such that
QX(wpol)[p] = L[p] for every p ∈ Πm.

Proof On a bounded domain, the convergence φ�
α(x) → xα as � → ∞ is uniform.

Thus,

|L[xα] − L[φ�
α]| ≤ L[1] sup

x∈Ω

|xα − φ�
α(x)| → 0

as � → ∞ for every α ∈ N
d
0 . Assumption (2.6) is also satisfied as follows:

L

⎡
⎣ ∑

|α|≥m+1

|aα|
�
|α|−(m+1)
0

√
α!

|xα|
⎤
⎦ ≤ L

⎡
⎣ ∑

|α|≥m+1

βα

�
|α|−(m+1)
0

√
α!

⎤
⎦ < ∞,

where β = (b, . . . , b) ∈ R
d for b = supz∈Ω ‖z‖2 and finiteness follows from the

assumption L[1] < ∞.
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However, boundedness of Ω is not necessary. Consider Gaussian integration as
follows:

L[f ] = 1

(2π)d/2

∫
Rd

f (x) e−‖x‖2
2/2 dx =

d∏
i=1

[
1√
2π

∫
R

f (x) e−x2
i /2 dxi

]
.

If α ∈ N
d
0 has an odd element, L[φ�

α] = L[xα] = 0 for every � > 0 by symmetry. If
α = 2β for some β ∈ N

d
0 , the convergence L[φ�

α(x)] → L[xα] as � → ∞ follows
from the monotone convergence theorem. To verify (2.6), recall that the absolute
moments of the standard Gaussian distribution are as follow:

L[|xα|] = π−d/2
d∏

i=1

2αi/2Γ

(
αi + 1

2

)

=
⎡
⎣ ∏

αi odd

π−1/22αi/2
(

αi − 1

2

)
!
⎤
⎦ ×

[ ∏
αi even

(αi − 1)!!
]

,

where Γ (·) is the Gamma function. Because (n − 1)!! ≤ √
n! for any n ∈ N and

π−1/2 2n/2

√
n!

(
n − 1

2

)
! = π−1/2 2n/2

√
n! × (n − 1)!!

2(n−1)/2
=

√
2

π

(n − 1)!!√
n! ≤

√
2

π
≤ 1

if n is odd, we have the following:

L[|xα|]√
α! =

⎡
⎣ ∏

αi odd

π−1/2 2αi/2

√
αi !

(
αi − 1

2

)
!
⎤
⎦ ×

[ ∏
αi even

(αi − 1)!!√
αi !

]
≤ 1.

Thus,

L

⎡
⎣ ∑

|α|≥m+1

|aα|
�
|α|−(m+1)
0

√
α!

|xα|
⎤
⎦ ≤

∑
|α|≥m+1

1

�
|α|−(m+1)
0

< ∞

if �0 > 1.

3 Optimal points in one dimension

Let d = 1 and Ω = [a, b] for a < b. In this section, we consider quadrature
rules whose points are also selected so as to minimise the worst-case error. A kernel
quadrature rule is optimal if its points and weights satisfy the following:

e�

(
QX∗

�
(w∗

� )
)

= inf
w∈RN ,X∈ΩN

e� (QX(w)) .

In order to eliminate degrees of freedom in ordering the points, we require that the
points are in ascending order (i.e., xn ≤ xn+1). Even though optimal kernel quadra-
ture rules have been studied since the 1970s [1, 3, 18, 28, 29] for the integration
functional L[f ] = ∫ b

a
f (x)ω(x)dx, ω(x) > 0, their theory is still not complete (the
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main results have been recently collated by Oettershagen [25, Section 5.1]). Although
uniqueness results have been proved only for totally positive isotropic kernels of the
form (1.1) and integration when ω ≡ 1 [4], there exists numerical evidence suggest-
ing that the optimal rule is unique in more general settings [25, p. 97]. Note that the
Gaussian kernel (1.4) we consider is totally positive.

In Theorem 3.2, we show that uniqueness of an optimal kernel quadrature rule for
each � > 0 implies that its increasingly flat limit is QG = QXG(wG), the N-point
Gaussian quadrature rule for the linear functional L. This is the unique quadrature
rule that is exact for every polynomial of degree at most 2N − 1: QG[xn] = L[xn]
whenever n ≤ 2N − 1. This degree of exactness is maximal; there are no N-
point quadrature rules exact for all polynomials up to degree 2N . The most familiar
methods of this type are of course the classical Gaussian quadrature rules for numer-
ical integration [15, Section 1.4]. For example, the Gauss–Legendre quadrature rule
satisfies the following:

QG[p] =
∫ 1

−1
p(x)dx

for every polynomial p of degree at most 2N−1 and its points are the roots of the N th
degree Legendre polynomial. Theorem 3.2 was conjectured by O’Hagan [26, Section
3.3] in 1991 in the form that the optimal kernel quadrature rule has the classical
Gauss–Hermite quadrature rule as its increasingly flat limit if the kernel is Gaussian
and L is the Gaussian integral. More discussion of this conjecture—but no rigorous
proofs—can be found in [24, Section 4].

The proof of Theorem 3.2 is based on a general result by Barrow [2] on existence
and uniqueness of generalised Gaussian quadrature rules. This result replaces the
polynomials in a Gaussian quadrature rule with generalised polynomials formed out
of functions that constitute an extended Chebyshev system [16, Chapter 1]. A col-
lection {un}m−1

n=0 ⊂ Cm−1([a, b]) of functions is an extended Chebyshev system if
any non-trivial linear combination of the functions has at most m − 1 zeroes, count-
ing multiplicities. That is, if u ∈ span{un}m−1

n=0 and u(qp)(xp) = 0 for xp ∈ [a, b],
p = 1, . . . , P , and qp = 0, . . . , Qp − 1, then

∑P
p=1 Qp ≤ m − 1. Any basis

of the space of polynomials of degree at most m − 1 is an extended Chebyshev
system. Importantly, the functions {φ�

n}m−1
n=0 in (2.4) are an extended Chebyshev sys-

tem for any m ∈ N. To verify this, note that any φ ∈ span{φ�
n}m−1

n=0 can be written

as φ(x) = e−x2/(2�2) p(x) for some polynomial p of degree at most m − 1 and
consequently

φ(l)(x) = e−x2/(2�2)

(
l−1∑
r=0

sr (x)p(r)(x) + p(l)(x)

)

for some polynomials sr . From this expression, we see that φ(l)(x) = 0 for every
l = 0, . . . , q if and only if p(l)(x) = 0 for every l = 0, . . . , q. Since p can have at
most m − 1 zeroes, counting multiplicities, it follows that the same is true of φ.
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Theorem 3.1 (Barrow 1978) Let {un}2N−1
n=0 ⊂ C2N−1([a, b]) be an extended Cheby-

shev system and L a positive linear functional on span{un}2N−1
n=0 . Then, there exist

unique points a < x1 < · · · < xN < b and positive weights w ∈ R
N such that

QX(w)[un] = L[un] for every n = 0, . . . , 2N − 1.

Lemma 3.1 LetΩ ⊂ R
d and suppose that a cubature ruleQX(w)with non-negative

weights satisfies QX(w)[u] = L[u] for some positive function u : Ω → (0, ∞) such
that 0 < cl ≤ u(x) ≤ cu for all x ∈ Ω . Then,

max
n=1,...,N

w(n) ≤
N∑

n=1

w(n) ≤ L[1]cu

cl

.

Proof The claim follows immediately from the inequalities

cl

N∑
n=1

w(n) ≤ inf
x∈Ω

u(x)

N∑
n=1

w(n) ≤
N∑

n=1

w(n)u(xn) = L[u] ≤ L[1]cu.

Lemma 3.2 Let A be a metric space, �0 > 0 a constant, and
g : [�0, ∞) × A → [0, ∞) a function. If there is a continuous function
g∞ : A → [0, ∞) such that g(�, ·) → g∞ uniformly as � → ∞ and a unique min-
imiser x∗∞ for which g∞(x∗∞) = 0, then any function z : [�0, ∞) → A such that
lim�→∞ g(�, z(�)) = 0 has lim�→∞ z(�) = x∗∞.

Proof The inequality g∞(z(�)) ≤ g(�, z(�)) + |g∞(z(�)) − g(�, z(�))| shows that
g∞(z(�)) → 0 since g(�, z(�)) → 0 by assumption and |g∞(z(�)) − g(�, z(�))| →
0 by uniformity of the convergence g(�, ·) → g∞. Because g∞ is continuous, non-
negative, and has a unique minimiser x∗∞, this implies that z(�) → x∗∞.

Theorem 3.2 Suppose that Ω = [a, b] for a < b. If for every � > 0, there exists a
unique optimal kernel quadrature rule Q∗

� = QX∗
�
(w∗

� ), then its points and weights
converge to those of the N-point Gaussian quadrature rule for L:

lim
�→∞ X∗

� = XG and lim
�→∞ w∗

� = wG,

where XG and wG are the unique points and weights such that QXG(wG)[xn] = L[xn]
for every 0 ≤ n ≤ 2N − 1. Moreover, e�(Q

∗
�) = O(�−2N).

Proof In a manner identical to the proof of Theorem 2.2, we establish the lower
bound

1

�n
√

n! |L[φ�
n] − Q∗

�[φ�
n]| ≤ e�(Q

∗
�)

that holds for every n ≥ 0. Because {φ�
n}2N−1

n=0 is an extended Chebyshev sys-
tem, Theorem 3.1 guarantees the existence of a unique N-point quadrature rule

Adv Comput Math (2020)  46: 2121 Page 12 of 17



Q�
G = QX�

G
(w�

G) such that Q�
G[φ�

n] = L[φ�
n] for every n ≤ 2N − 1. The points

X�
G =

{
x

G,�
1 , . . . x

G,�
N

}
of this rule are distinct and lie inside Ω and the weights w�

G are

positive. We can then replicate the rest of the proof of Theorem 2.2 in one dimen-
sion but with m = 2N − 1 and Lemma 2.1 replaced with Lemma 3.1 (applied to the
function u = φ�

0) to show that, for sufficiently large � and a constant C independent
of �,

1

�n
√

n! |L[φ�
n] − Q∗

�[φ�
n]| ≤ e�(Q

∗
�) ≤ e�(Q

�
G) ≤ C�−2N

for every n ≤ 2N − 1. Consequently,

|L[φ�
n] − Q∗

�[φ�
n]| ≤ C

√
n! �n−2N ≤ C

√
(2N − 1)! �−1 → 0 as � → ∞

(3.1)
for every n ≤ 2N − 1. We then fix �0 > 0 and invoke Lemma 3.2 with the function

g (�, (X, w)) =
2N−1∑
n=0

|L[φ�
n] − QX(w)[φ�

n]|,

domain A = (ΩN ×[0, ∞)N), and z(�) = (X∗
� , w

∗
� ). Because the domain Ω = [a, b]

is bounded, lim�→∞ L[φ�
n] → L[xn] for every n ∈ N0. Thus,

g (�, (X, w)) → g∞((X, w)) :=
2N−1∑
n=0

|L[xn] − QX(w)[xn]| as � → ∞

uniformly on A. Since the unique minimiser of g∞ is (XG, wG), the claim follows
from (3.1) and Lemma 3.2.

4 Generalisations

This section discusses some straightforward generalisations of the results in
Sections 2 and 3.

4.1 Damped power series kernels

Theorem 2.1 for the Gaussian kernel (1.4) is a consequence of the identity

K�(x, x′) = e−‖x‖2/(2�2) e−‖x′‖2/(2�2)
∑
α∈Nd

0

1

α!�2|α| x
α(x′)α

=: e−‖x‖2/(2�2) e−‖x′‖2/(2�2) K
pow

� (x, x′),

where K
pow

� (x, x′) is a power series kernel [39]. Accordingly, the results in Sections 2
and 3 can be generalised for a class of kernels that we call damped power series
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kernels. Let G : Rd → R\{0} be a non-zero function and define G�(x) = G(‖x‖/�).
Then, a damped power series kernel is defined as follows:

K�(x, x′) = G�(x)G�(x
′)

∑
α∈Nd

0

ωα

(α!)2�q|α| x
α(x′)α (4.1)

for q > 0 and weight parameters ωα > 0 such that the series converges for any � > 0
and x, x′ ∈ Ω . Arguments identical to those used in [23, 39] establish that K� defined
in (4.1) is a positive–definite kernel and that its RKHS H(K�) consists of functions

f (x) = G�(x)
∑
α∈Nd

0

fαxα such that ‖f ‖2
H(K�)

=
∑
α∈Nd

0

(α!)2�q|α|

ωα

f 2
α < ∞.

The Gaussian kernel is recovered by setting G(x) = e−‖x‖2
2/2, q = 2, and ωα = α!.

Note that the Gaussian kernel is an exception; damped power series kernels are rarely
stationary.

Denote ψ�
α(x) = G�(x)xα . If we assume that (i) G is bounded, (ii)

lim�→∞ L[ψ�
α(x)] = L[xα] for every α ∈ N

d
0 , and (iii) a summability condition anal-

ogous to (2.6) holds, then a generalisation of Theorem 2.2 for damped power series
kernels is readily obtained. To generalise Theorem 3.2, we also need to assume that
{ψn}2N−1

n=0 constitutes an extended Chebyshev system.

4.2 Taylor space kernels

Let d = 1. Taylor space kernels [9, 40] are obtained by selecting G ≡ 1 in (4.1).
As � → ∞, the corresponding kernel quadrature rules then converge to polynomial
rules. Perhaps the two most interesting special cases are the exponential kernel are

K�(x, x′) = exp

(
xx′

�

)
=

∞∑
n=0

(xx′)n

�nn!

and the Szegő kernel

K�(x, x′) = �2

�2 − xx′ = 1

1 − �−2xx′ =
∞∑

n=0

�−2n(xx′)n.

The Szegő kernel induces a Hardy space on a disk of radius �. Interestingly, it has
been pointed out already in the 1970s that approximation with the Szegő kernel
yields polynomial methods as � → ∞ [18, Section 3]. See also [24, Section 4].
An extensive numerical investigation has been recently published by Oettershagen
[25, Section 6.2].
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4.3 General information functionals

It would also be easy to replace the cubature rule (1.6) with a generalised version as
follows:

Q[f ] =
N∑

n=1

w(n)Ln[f ],

where Ln are any bounded linear functionals. If Ln are such that the matrices⎡
⎢⎣

L1[xα1] · · · L1[xαN ]
...

. . .
...

LN [xα1] · · · LN [xαN ]

⎤
⎥⎦ and

⎡
⎢⎣

L1[φ�
α1

(x)] · · · L1[φ�
αN

(x)]
...

. . .
...

LN [φ�
α1

(x)] · · · LN [φ�
αN

(x)]

⎤
⎥⎦ ,

which are generalisations of (2.3) and (2.5), are non-singular, then Theorem 2.2 and
Corollary 2.1 can be generalised.

4.4 Non-unisolvent point sets

If the kernel is Gaussian but point set X ⊂ Ω is not unisolvent, Schaback [31] has
proved that the kernel interpolant (1.2) converges the de Boor and Ron polynomial
interpolant [6, 7], which is the unique interpolant to f at X in a point-dependent
polynomial space ΠX having in a certain sense minimal degree. We expect that
extensions for non-unisolvent points of the results in Section 2 are possible. The ker-
nel cubature weights would presumably convergence to the weights w′

pol such that
QX(w′

pol)[p] = L[p] for every p ∈ ΠX.

Acknowledgements We thank the reviewers for numerous comments that helped in improving the
presentation.

Funding information Open access funding provided by Aalto University. This work was supported by
the Aalto ELEC Doctoral School and the Academy of Finland.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

1. Barrar, R.B., Loeb, H.L., Werner, H.: On the existence of optimal integration formulas for analytic
functions. Numer. Math. 23(2), 105–117 (1974)

2. Barrow, D.L.: On multiple node Gaussian quadrature formulae. Math. Comput. 32(142), 431–439
(1978)

Adv Comput Math (2020)  46: 21 Page 15 of 17 21

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


3. Bojanov, B.D.: On the existence of optimal quadrature formulae for smooth functions. Calcolo 16(1),
61–70 (1979)

4. Braess, D., Dyn, N.: On the uniqueness of monosplines and perfect splines of least L1- and L2-norm.
J. d’Analyse Math. 41(1), 217–233 (1982)

5. Cavoretto, R., Fasshauer, G.E., McCourt, M.: An introduction to the Hilbert-Schmidt SVD using
iterated Brownian bridge kernels. Num. Algorithms 68(2), 393–422 (2015)

6. de Boor, C.: Polynomial interpolation in several variables. In: Rice, J., DeMillo, R.A. (eds.) Studies
in Computer Science, pp. 87–109 (1994)

7. de Boor, C., Ron, A.: The least solution for the polynomial interpolation problem. Math. Z. 210(1),
347–378 (1992)

8. De Marchi, S., Schaback, R.: Nonstandard kernels and their applications. Dolomites Research Notes
on Approximation 2(1), 16–43 (2009)

9. Dick, J.: A Taylor space for multivariate integration. Monte Carlo Methods Appl. 12(2), 99–112
(2006)

10. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions.
Comput. Math. Appl. 43(3–5), 413–422 (2002)

11. Fasshauer, G., McCourt, M.: Kernel-based Approximation Methods Using MATLAB. Number 19 in
Interdisciplinary Mathematical Sciences. World Scientific Publishing (2015)

12. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants.
SIAM J. Sci. Comput. 34(2), A737–A762 (2012)

13. Fornberg, B., Wright, G., Larsson, E.: Some observations regarding interpolants in the limit of flat
radial basis functions. Comput. Math. Appl. 47(1), 37–55 (Jan 2004)

14. Fornberg, B., Lehto, E., Powell, C.: Stable calculation of Gaussian-based RBF-FD stencils. Comput.
Math. Appl. 65(4), 627–637 (2013)

15. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical mathematics
and scientific computation. Oxford University Press, Oxford (2004)

16. Karlin, S.: Tchebycheff Systems: With Applications in Analysis and Statistics. Interscience Publish-
ers, New York (1966)

17. Karvonen, T., Särkkä, S.: Gaussian kernel quadrature at scaled Gauss–Hermite nodes. BIT Numer.
Math. 59(4), 877–902 (2019)

18. Larkin, F.M.: Optimal approximation in Hilbert spaces with reproducing kernel functions. Math.
Comput. 24(112), 911–921 (1970)

19. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with
increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)

20. Lee, Y.J., Yoon, G.J., Yoon, J.: Convergence of increasingly flat radial basis interpolants to polynomial
interpolants. SIAM J. Math. Anal. 39(2), 537–553 (2007)

21. Lee, Y.J., Micchelli, C.A., Yoon, J.: On convergence of flat multivariate interpolation by translation
kernels with finite smoothness. Constr. Approx. 40(1), 37–60 (2014)

22. Lee, Y.J., Micchelli, C.A., Yoon, J.: A study on multivariate interpolation by increasingly flat kernel
functions. J. Math. Anal. Appl. 427(1), 74–87 (2015)

23. Minh, H.Q.: Some properties of Gaussian reproducing kernel Hilbert spaces and their implications for
function approximation and learning theory. Constr. Approx. 32(2), 307–338 (2010)

24. Minka, T.: Deriving quadrature rules from Gaussian processes. Technical report, Statistics Depart-
ment, Carnegie Mellon University (2000)

25. Oettershagen, J.: Construction of Optimal Cubature Algorithms with Applications to Econometrics
and Uncertainty Quantification. PhD thesis. Institut für Numerische Simulation, Universität Bonn
(2017)

26. O’Hagan, A.: Bayes–Hermite quadrature. J. Stat. Plan. Inference 29(3), 245–260 (1991)
27. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning Adaptive Computation

and machine learning. MIT Press, Cambridge (2006)
28. Richter, N.: Properties of minimal integration rules. SIAM J. Numer. Anal. 7(1), 67–79 (1970)
29. Richter-Dyn, N.: Properties of minimal integration rules. II. SIAM J. Numer. Anal. 8(3), 497–508

(1971)
30. Schaback, R.: Comparison of radial basis function interpolants. In: Multivariate approximation: From

CAGD to wavelets, pp. 293–305. World Scientific (1993)
31. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx.

21(3), 293–317 (2005)

Adv Comput Math (2020)  46: 2121 Page 16 of 17



32. Schaback, R.: Limit problems for interpolation by analytical radial basis functions. J. Comput. Appl.
Math. 212(2), 127–149 (2008)

33. Song, G., Riddle, J., Fasshauer, G.E., Hickernell, F.J.: Multivariate interpolation with increasingly flat
radial basis functions of finite smoothness. Adv. Comput. Math. 36(3), 485–501 (2012)

34. Särkkä, S., Hartikainen, J., Svensson, L., Sandblom, F.: On the relation between Gaussian process
quadratures and sigma-point methods. J. Adv. Inform. Fus. 11(1), 31–46 (2016)

35. Steinwart, I., Christmann, A.: Support Vector Machines. Information science and statistics. Springer,
Berlin (2008)

36. Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing kernel Hilbert spaces of
Gaussian RBF kernels. IEEE Trans. Inf. Theory 52(10), 4635–4643 (2006)

37. Wendland, H.: Scattered Data Dpproximation. Number 17 in Cambridge monographs on applied and
computational mathematics. Cambridge University Press, Cambridge (2005)

38. Wright, G.B., Fornberg, B.: Stable computations with flat radial basis functions using vector-valued
rational approximations. J. Comput. Phys. 331, 137–156 (2017)

39. Zwicknagl, B.: Power series kernels. Constr. Approx. 29(1), 61–84 (2009)
40. Zwicknagl, B., Schaback, R.: Interpolation and approximation in Taylor spaces. J. Approx. Theory

171, 65–83 (2013)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Adv Comput Math (2020)  46: 21 Page 17 of 17 21


	Worst-case optimal approximation with increasingly flat Gaussian kernels
	Abstract
	Introduction
	Worst-case optimal approximation
	Contributions

	Fixed points
	Optimal points in one dimension
	Generalisations
	Damped power series kernels
	Taylor space kernels
	General information functionals
	Non-unisolvent point sets

	References




