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Abstract

Atomistic-continuum multiscale modelling is becoming an increasingly popular tool
for simulating the behaviour of materials due to its computational efficiency and reli-
able accuracy. In the case of ferromagnetic materials, the atomistic approach handles
the dynamics of spin magnetic moments of individual atoms, while the continuum
approximations operate with volume-averaged quantities, such as magnetisation. One
of the challenges for multiscale models in relation to physics of ferromagnets is
the existence of the long-range dipole-dipole interactions between spins. The aim of
the present paper is to demonstrate a way of including these interactions into exist-
ing atomistic-continuum coupling methods based on the partitioned-domain and the
upscaling strategies. This is achieved by modelling the demagnetising field exclu-
sively at the continuum level and coupling it to both scales. Such an approach relies
on the atomistic expression for the magnetisation field converging to the continuum
expression when the interatomic spacing approaches zero, which is demonstrated in
this paper.

Keywords Micromagnetism-Multiscale - Modelling-Ferromagnetic - Materials
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1 Introduction

There are multiple ways of describing the physics of magnetic materials. At the
smallest scale, the spin and orbital movements of electrons are modelled by elec-
tronic structure calculations. At a larger scale, the rapid subatomic variations are
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averaged out and the interaction of spin magnetic moments of individual atoms is
simulated, often by using parametrised interactions obtained from a smaller scale.
The interaction of atomic spins is described by a system of coupled non-linear ordi-
nary differential equations (ODEs). At the macroscopic scale,! non-linear partial
differential equations (PDEs) are used to describe the evolution of volume-averaged
quantities. The choice of a computational approach depends not only on the scale of
application, but also on the required computational efficiency. The atomistic models,
although relatively accurate, are prohibitively expensive to solve, whereas continuum
models are computationally efficient but may lack certain accuracy.

In contrast to targeting a single scale, multiscale modelling strategies potentially
offer the accuracy of atomistic models combined with the efficiency of the macro-
scopic models. All multiscale models can be categorised into sequential (one-way
coupling) and concurrent (two-way coupling) methods. The concurrent multiscale
models, in turn, can be separated into two groups—the partitioned-domain and the
hierarchical approaches [26]. The latter is referred to as the upscaling approach in
this paper.

In the partitioned-domain approach, the entire physical domain is split in regions
represented by the atomistic and the continuum models, separated by an explicit
interface. The information exchange takes place at the interface and the major chal-
lenges for these models are handling non-local atomistic interactions and averaging
fast atomistic variations at the interface. In the upscaling approach [1], atomistic
models are solved locally to find unknown macroscopic quantities in an initially
incomplete macroscopic model. The macromodel is then evolved over the entire com-
putational domain. The upscaling strategy, which is considered in this paper, follows
the general framework of the heterogeneous multiscale method (HMM) and uses
a two-way coupling between the atomistic and macromodels, where the atomistic
simulations use the macrodata as initial and boundary conditions, while the macro-
model uses the information coming from the local computations of the atomistic
model.

The domain partitioning approach is intended for studying the cases of an inter-
action of a magnetic structure, e.g. a domain wall or a skyrmion, with an isolated
heterogeneity, e.g. a crystallographic defect. In this case, the region of interest is mod-
elled using the atomistic approach, while in the rest of the computational region, the
continuum model is used. Such approach relies on the continuum model to be well-
defined, i.e. derivable from the atomistic model up to a small course-graining error,
which might be neglected far from the region of interest. This is the case for relatively
small temperatures and for homogeneous materials. The upscaling approach, on the
other hand, is intended for cases when the material microstructure is heterogeneous,
but representable using periodically stacked representative volume elements (RVEs).
In this case, the continuum model is not well-defined and must be obtained by upscal-
ing. The upscaling strategy is also applicable in other cases, when the continuum

Here, the terminologies ‘microscopic’ and ‘macroscopic’ are used to describe models at an atomistic and
a continuum (micromagnetics) regime, respectively. In the literature, the reader may see the use of term
mesoscopic for the micromagnetic regime.
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model is not well-defined, e.g. magnetic structures under a high temperature or sub-
jected to a high-frequency external fields. In the rest of the introduction, a short
overview of applications of the partitioned-domain and the upscaling approaches in
relation to multiscale problems for ferromagnetic materials is given.

Construction of multiscale models for magnetic materials is a rapidly developing
field and a number of partitioned-domain techniques have been proposed in the past
[3, 15, 19, 20, 24, 25]. For the overview and the comparison of various methods,
the reader is referred to exhaustive review articles [21, 22] discussing partitioned-
domain methods in general and [18] discussing an application of multiscale models
to magnetic materials in particular. As mentioned above, a major challenge for the
partitioned-domain approach is constructing an interface without introducing surplus
artefacts into simulations. In [24], the problem of high-frequency wave reflections
from the atomistic-continuum interface has been addressed by introducing additional
numerical damping, while in [25], a way of handling non-local interatomic interac-
tions at the interface, by introducing a transition zone with partially coarse-grained
interactions, has been suggested.

In terms of upscaling approaches, a way of constructing a macroscopic model of
ferromagnetic materials, which is fully coupled to an atomistic model, has recently
been reported in [7], where an analysis of the dynamics of a single particle and a chain
of particles subjected to a high-frequency external field has been given. The extension
of the method to problems at elevated temperatures has been addressed in [6]. In the
case of a non-zero temperature, the macroscopic magnetisation vector field, which is
the volume average of atomistic spin magnetic moments, has temperature-dependent
length. In [6], it has been shown that the upscaling method captures accurately the
reduced magnetisation length at the macroscopic scale.

In the case of modelling magnetic materials, there is an additional challenge
for multiscale models—the existence of the long-range dipole-dipole interactions
between the atomic spins [2]. These interactions cannot be handled in the same way
as the short-range interatomic interactions, since this would require unreasonably
large padding and/or transition zones in the partitioned-domain approach and unrea-
sonably large microscopic domains in the upscaling approach. Such treatment of
long-range interactions diminishes all advantages of multiscale approaches. There-
fore, these interactions should be handled in a conceptually different way—using
a continuum approach. To the best knowledge of the authors, this idea originates
from [15, 16], where it has been conceptually introduced for the partitioned-domain
approach in application to the magnetisation dynamics. The aim of this paper is
twofold: (a) to present a way of incorporating the long-range interactions into
the latest partitioned-domain approach based on [25], which has a number of dis-
tinctive features compared with the initial partitioned-domain approaches [15, 16],
and (b) to incorporate the long-range interactions into the upscaling formalism for
magnetisation dynamics, which has been recently proposed in [6, 7].

This paper is organised as follows. In Section 2, mathematical models govern-
ing the behaviour at the atomistic and the continuum scales are described and a
convergence study is carried out to quantify the approximation errors in relation to
modelling the long-range interactions. In Section 3, the multiscale models based on
the partitioned-domain and the HMM frameworks are presented. Finally, numerical
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results are provided in Section 4 to demonstrate the accuracy of the proposed
methods.

2 Mathematical models at different scales

2.1 Atomistic spin dynamics

At the atomistic scale, the mathematical model is the atomistic Landau-Lifshitz-
Gilbert equation [8, 13], which is given by

d

= —pum; x H; —aym; x (m; x H;), |m;| =1, (2.1)
Y YA
= —, = — 2.2
AL T2 “=1ie (2.2)
1 1
H; = m > Jijm; +;Ka-m,- +He+h +H,,, (2.3)
J

where y is the gyromagnetic ratio, X is the phenomenological damping constant, m;
is the direction of spin magnetic moment, x is the length of spin magnetic moment,
Jij are constants of Heisenberg exchange interaction between atoms i and j, K,
is the anisotropy tensor and H. is the external field. Thermal excitations are taken
into account by adding a stationary stochastic field with the following statistical
properties:

(hip () = 0, (hip (1) hjy (5)) = 2D8;j8pu8 (1 — 5), (2.4)
A
D = kgT —, 2.5
ny
where p and v are the Cartesian coordinates of h;, kg is the Boltzmann constant and
T is temperature. Finally, the term H,; is a demagnetising field, which originates

from long-range dipole-dipole interactions between spin magnetic moments, and is
given by [2]

m; 1 3mj “rijrij m;
H,; = pon ——+—Z <—5 - | =y
i1 70 Tij ij

. (2.6

where r;; is the vector connecting atoms i and j, and V; is the volume occupied by a
single atom.? Parameters A, M, Jij and K, can be computed from electronic structure
calculations [12] and are considered to be constant for a given material, and pg is the
permeability of free space.

ZFor crystallographic lattice with cubic stacking, V, = a°, where a is the distance between two
neighbouring atoms.
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2.2 Continuum models for magnetisation dynamics

In this section, two different continuum models are presented. In the first part, a well-
known continuum model from the classical micromagnetic theory is provided. It is
followed by an alternative continuum model based on the upscaling approach.

2.2.1 Continuum model from classical micromagnetism

At the continuum scale, the magnetisation dynamics is modelled by the following
non-linear partial differential equation [2, 9]:

d
5 M(x) = —fLM x H—oM x (M x H), |M|=1, 2.7)

1 1
H(t,x, M) = —Ac.: VVM + —K, - M+ He + H,, 2.8)
I I

where M is the normalised magnetisation field and B, and oy are the same coeffi-
cients as used in (2.1). At zero temperature, exchange tensorial® parameter A can be
obtained directly from the atomistic parameters:

Ae = %Zlijrijrij, (2.9)
J#
where r;; is the vector connecting atoms i and j. The sum is evaluated over all
atoms with which atom i interacts. In (2.9), tensor A, is assumed to be spatially
constant. Since the anisotropy term is local, the same anisotropy tensor K, is used in
the continuum and the atomistic equations.
The demagnetising field is denoted as a vector field H.(x) for all x € Qj,, where

Qin C R3 defines the interior region of a given magnetic material. The outer region
is defined as Qou = R3/Qiy. This field is given by

H. = —a.VU, o =2H (2.10)
Va
Uin (x) I X € Qinv
U(x) = 2.11
x) { Uout (%), x € Qout, ( )
where U is the solution of the following PDE [2]:
AUin (x) ZVM(X), in Qins
AUpy (x) =0, in Qoyt,
Uin = Uout, on 9%y, (2.12)
0, Uin — 0, Uoit =M -, on 9%y,

[rUsul = 0, |[r?VUou| — 0, atr — oo, where r = |x|.

3Here, the standard tensor notation is used, where the tensor product of two vectors is denoted as ab,
which results in a second-order tensor. The double inner product of two second-order tensors is denoted
asA:B=); Zj A;jBj;, which results in a scalar.
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Here, the coefficient ¢, is introduced to preserve the physical meaning of the mag-
netisation as the ‘density’ of spin magnetic moments, while the continuum equation
is based on the normalised magnetisation, i.e. |M| = 1.

The continuum magnetisation field M is equal to the normalised ensemble average
of the volume average of the atomic spin magnetic moments m;. The normalisa-
tion is introduced due to the nature of the LLG equation, as the unit-length vectors
are usually used in the formulations. In general, such atomistic-continuum transition
introduces an error to the solution, which is dependent on interatomic spacing and on
the magnetisation gradient [25].

It must be noted that at finite temperatures, the continuum model must be modi-
fied. These modifications differ depending on the approach and are discussed in [6].
However, it has been shown that even with the modifications, the continuum model
cannot approach the atomistic model with a predefined accuracy at finite temper-
atures, i.e. there is always a finite temperature-dependent error. This is one of the
reasons for introducing an alternative continuum model based on upscaling.

2.2.2 A continuum model based on upscaling

The basic idea behind upscaling approaches is to start by assuming a macromodel, in
which certain quantities are unknown and must be obtained from a given microscopic
model. The form of the macromodel usually requires some knowledge about the
physical laws that govern the evolution of macroscopic variables. A macromodel in
the form of

d
IM=—F@x.M)— M x F (. x. M) (2.13)
ot ,BL

has been proposed and analysed in [7]. In this macromodel, term F is an unknown
quantity, which is then upscaled using the local microscopic equation. On the other
hand, macroscopic variable M is obtained by using a suitable time discretisation.
While designing such upscaling strategies, one important issue is the synchronisation
of the microproblems using the coarse-scale variables, which is achieved by assigning
suitable initial and boundary conditions for the microproblems. Note that the long-
range field does not appear explicitly in the macromodel (2.13), but the macromodel
should capture the effect of the long-range interactions. Later, in Section 3.2, it is
shown that this can be achieved by including the long-range field in the microscopic
models without computing the computationally expensive atomistic dipole-dipole
interactions.

2.3 Quantification of the errors associated with approximations
of the demagnetising field

It is well-known that the atomistic demagnetisation field (2.6) is consistent with the
continuum demagnetisation field (2.10). This can be seen from the representation of
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the continuum PDE for U using the Green’s function [2], subsequent application of
the divergence theorem and substitution into expression for H ., which gives

H, () = :_;/S‘zin <3M(r’) (r=r)(r-r) B M (r') )dV’.

|r—r’|5 |r—r/|3

The atomistic expression (2.6) can be seen as a discretisation of the integral
expression for H..

Since construction of the multiscale models with the long-range interaction relies
on the consistency between the atomistic and the continuum expressions for the
demagnetisation field, the aim of this section is to demonstrate this consistency
numerically and to investigate the convergence rates of the errors related to (a) the
approximation error, quantifying the error between the continuum field H. and the
atomistic field H,;, and (b) the geometric error, which is due to neglecting the
far-field particles in the computation of H, ;. For the sake of comparison, a brief
derivation of a 1D solution for the magnetic potential is provided below.

2.3.1 Analytical solution for the magnetic potential in 1D

Consider domain 2, = [0, R] x IR{Z, which is bounded in x; direction and is infinite
in x» and x3 directions. Assume also a magnetisation vector field M = M (x), which
is a function of the first coordinate only. Then it follows that

AUin(x) = 0y, M1 (x1), AUou(x) = 0. (2.14)
This is a one-dimensional problem, i.e. Uy, and Ugyy depend only on xj, since mag-
netisation M depends only on xj. Hence, the Laplace operator A reduces to the
second derivative by x; and the following solution is obtained:
X1
Untxn) = [ “d1Gs1) dst i + co @.15)
0
Ugui(x1) = by + bix1. (2.16)

For Uy to be bounded as x1 — oo, it is necessary that dy, Uy (x1) = by = 0. This
implies that U, is a constant. Moreover, since there is a jump in the derivative of U
at interfaces x; = 0 and x; = R, one obtains

axl Uin(R) = axl Uout(R) + M, (R) = M, (R)a
9x, Uin(0) = 9y, Uout(0) + M1(0) = M;(0).

Substituting these equalities into equation (2.15) gives ¢; = 0. Hence, Uj, becomes
X1
Uin(x1) = / M (s1) ds1 + co.
0
This leads to

H:.(x) = —cLVUin(x) = —cLM1(x1)e1, Vx € Q. (2.17)

It must be noted that in the derivation above, Uy does not necessarily decay to
zero, but remains bounded for all x;. However, the derivative 9y, Uy, must decay
to zero at infinity for a well-defined solution. This is related to the one-dimensional
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nature of the problem. Namely, the Green’s function in 1D does not decay to zero. In
a three-dimensional problem, the solution itself also must to decay at infinity.

Analytical solutions are also available in a few specific three-dimensional domains
with a uniform magnetisation over the domain [2].

2.3.2 A qualitative comparison between H. and H,

In what follows, the aim is to demonstrate that terms H,; and H ., which are given
by (2.6) and (2.10), respectively, match qualitatively. Domain Q;, = [0, 1] x R2
is considered and magnetisation M = M (x;) is assumed to be dependent on the
first coordinate only. From (2.17), the continuum solution is given by H.(x) =
—cL. M1 (x1)e;. For the purpose of this example, ¢, = 1 is assumed. To compute the
atomistic field H,; via equation (2.6), first, a truncation of domain 2;, is required.
Therefore, the following hyper-rectangle is defined:

Qr =10, 11 x [-R/2, R/2]%.

Next, the atomistic lattice is defined as a uniform discretisation of 2, where the step
size of the discretisation is chosen to be equal to the interatomic distance a. Namely,

Qra = {(x;' —ia, xJ=-R/2+ja, xk= —R/2+ka>}, 2.18)

where
i=0,...,N;, Na=1, jk=0,...,N;, Nya=R.

The atomistic field is computed over the lattice (2.18), which contains (N +
1)(N2+1)% number of atoms. It is also assumed that the magnetic moments are given
by

m; = L <cos(2nxi)e + sin(ZJTxi)e +e ) Vi
i = \/i 1/¢€1 1/€2 3/, .

Figure 1 confirms a qualitative match between the atomistic expression (2.6) for
H,; and the continuum equation (2.10) for H. It is evident, from equation (2.6),
that the computed atomistic field H,; depends on the truncation length R, as well
as the choice of the atomic distance a. This dependency results in a small difference
between the atomistic and the continuum fields depicted in Fig. 1. The next subsec-
tion focuses on studying the convergence rates for the errors with respect to a (the
approximation error) and R (the geometric error). Note that the x, and x3 components
of the continuum field are equal to zero and hence are not included in the figure.

2.3.3 The approximation error

Given a magnetic body Q@ C R3 filled with a number of atoms, the continuum field
H.(x;), x; € Q is obtained as the limit of the atomistic field H,; whena — 0, i.e.

limH,,; = He(x;).
a—0

The aim here is to analyse the rate of convergence by considering the volume [0, 1]% x
[—1,1]in R3 and computing the atomistic field H, ; for decreasing values of a. The
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Fig.1 A comparison of the atomistic field H, and the continuum field H for a = 0.05 and R = 20. The
X1, x2, x3 components of the atomistic field are plotted against the x; component of the continuum field,
which is — M,

magnetic moments are assumed to be uniform everywhere and pointing in the x
direction,

m; = ej.
In particular, a sequence of atomic distances given by a; = 2%q. i, where k =
0,1,...,5and apj, = 0.00625 is used, and the following differences are recorded.

Ey = |H} — HY

a,i a,il|”’

k=0,1,...,4.

The convergence rate can then be obtained by computing {sk}i=1 , where

The values of Ej and sy are shown in Table 1, and a first-order convergence rate with
respect to the interatomic spacing for the approximation error is observed for this
specific example.

Table 1 The approximation error

k 4 3 2 1 0
Ey 0.1605 0.1019 0.0619 0.0324 0.0165
Sk 0.6555 0.7173 0.9344 0.9713

Decrease of k corresponds to the decrease of the interatomic spacing, i.e. for k = 4, a = 0.1, while for
k = 0, a = 0.00625. Here, sy is the numerical approximation of the convergence rate with respect to the
interatomic spacing
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2.3.4 The geometric error

When computing the atomistic field H, ;, one often has to deal with large compu-
tational geometries relative to the atomic distance a. When the size of the magnetic
body is large, computation of H,; via the summation formula (2.6) is unreasonably
expensive. One strategy can be ignoring the atoms, which are located far from atom
i, implying a truncation of the computational geometry. In this subsection, the goal is
to understand the decay of the error, which arises from truncating the computational
geometry. For this, the domain [0, 11> x [-R, R] is uniformly discretised using the
interatomic distance @ = 0.1. For the computations, it is assumed that

1 . .
m; = — (cos(an’l)el + sin(2x})ez + e3) , Vi

V2

The convergence is studied for Ry = 2k k=0,1,...,4,and the errors

Ep = ‘HRHI ~H™| k=01,2,3

a,i a,i

are recorded. To find the rate s of the geometric error, which is assumed to be
O (R™*), the following ratios are computed.

s = Lk

C Er
The results summarised in Table 2 show a second-order convergence rate for the
geometric error.
3 Multiscale modelling
3.1 Partitioned-domain approach
3.1.1 Energy-based and force-based coupling
In the multiscale partitioned-domain coupling approach considered in this paper, the
entire computational region is split into two subregions—the atomistic and the con-

tinuum domains. There is a ‘sharp’ atomistic-continuum interface separating these
two regions, as illustrated in Fig. 2.

Table2 The geometric error

k 0 1 2 3
Ey 0.5992 0.1963 0.0538 0.0138
Sk 1.6096 1.8663 1.9545

Increase of k corresponds to the increase of the truncation radius, i.e. for k = 0, R = 1, while for k = 3,
R = 8. Here, sy is the numerical approximation of the convergence rate with respect to the cutoff radius
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(a) FEM continuum and energy-based coupling (b) FDM continuum and force-based coupling
a/c system for magnetisation dynamics a/c system for magnetisation dynamics
O O 0O 0O 0O 0O o b0 O O O
O O O 0O O 0O 0O o O O O 0O O O 0O O
O O 0O 0O 0O 0O o O O 0O 0O 0O 0O o
O O O O 0O 0O OO0 O O O O O O 0O O
O O 0O 0O 0O 0O o Q-0 O O O
O O O O 0O 0O OO0 O O O O O O 0O O
O O 0O 0O 0O 0O o O O 0O 0O 0O 0O o
O O O 0O O 0O 0O o O O O 0O O O 0O O
O O 0O 0O 0O 0O o b0 O O O
transition atoms real atoms pad nodes
part of FE mesh for demag. potential part of FD mesh for demag. potential

Fig. 2 A schematic representation of different versions of partitioned-domain atomistic-continuum (a/c)
coupling. The a/c coupling is only used for solving the magnetisation dynamics, while the demagnetisa-
tion field is solved using exclusively the continuum approach, with the continuum mesh extended to the
entire computational domain, covering the atomistic region, i.e. upper a/c systems and lower meshes are
discretisations of the same physical domain. The demagnetisation field is used in the LLG equations, while
the magnetisation is used when solving for the magnetic potential

It is well-known that all partitioned-domain methods can be separated into two
conceptually distinct groups—the energy-based coupling and the force-based cou-
pling [26]. In the energy-based coupling, the total energy functional of the system
is written and forces or torques are derived from it, in the case of modelling defor-
mation or magnetism, respectively. The continuum and the atomistic equations are
discretised in time and are advanced together as a single unified system. Thus, in
the absence of damping and when an energy-conserving time-stepping method is
used, the total energy of the system is conserved. In the force-based coupling, the
continuum and the atomistic regions are advanced separately, while exchanging the
boundary conditions via the padding atoms and the interface. This ensures that the
correct solution is transferred between the regions; however, the total energy of the
system is not well-defined in this case.

The continuum region can be discretised using either the finite-element method
(FEM) or the finite-difference method (FDM). FEM has an advantage of creating
an interface that is conforming to the atomistic lattice, which allows constructing an
energy-conserving coupling method [25]; however, it has a more complex implemen-
tation than FDM. In the case of FDM, the coupling requires boundary conditions for
the continuum region, which can be obtained from additionally constructed ‘padding’
nodes, where the solution is obtained by volume-averaging of the atomistic solution.

Most energy-based methods have a disadvantage of having numerical artefacts at
the atomistic-continuum interface, which are referred to as ‘ghost-forces’ in the case
of modelling deformation or ‘ghost-torques’ in the case of magnetism, which emerge
due to a non-local interatomic interaction. These artefacts can only be removed
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by employing complex methods of constructing transition zones at the atomistic-
continuum interface [23, 25]. Thus, the energy-based coupling requires modification
of atoms close to the interface (into transition atoms) to remove ghost-forces/torques.
The force-based coupling, on the other hand, requires construction of pad atoms to
provide the boundary conditions for the atomistic region, which is simpler both com-
putationally and in terms of implementation. The disadvantage of the force-based
methods is the absence of the well-defined total energy of the system. Thus, the
energy-based and the force-based methods have a somewhat different scope. For the
discussion of the energy-based vs the force-based methods, the reader is referred
to [26].

3.1.2 Including the long-range interactions

In the case of magnetic materials, the long-range dipole-dipole interactions are by
definition non-local. However, they cannot be handled in the same way as, for exam-
ple, the exchange interactions, which can be truncated at a relatively short range. In
the energy-based approach, the transition zone that removes the ghost-torques must
be of the same width as the interaction distance [25], which makes it impractical to
create such a zone. In the force-based approach, the width of the region with padding
atoms must also be larger than the interaction distance, which also renders it imprac-
tical. Therefore, the only solution is to use a conceptually different handling of these
interactions.

The idea of handling the long-range dipole-dipole interactions in multiscale
models of magnetic materials is to model these interactions using an exclusively
continuum approach. Since the atomistic and the continuum domains occupy differ-
ent spatial domains, an auxiliary computational mesh that covers the entire physical
region must be introduced, as illustrated in Fig. 2. The continuum equation for the
magnetic potential (2.12) is then solved on this auxiliary mesh. Within the region
of this auxiliary mesh that covers the atomistic region, the atomistic demagnetising
field H, ; is equated to the continuum demagnetising field H ., while the magnetisa-
tion M in (2.12) is, in turn, equated to the atomistic solution m;, which might require
interpolation and/or volume-averaging that is discussed below. This idea relies on
the convergence of the atomistic expression for the demagnetising field (2.6) to the
continuum expression (2.10) asa — 0.

There are differences, however, depending on whether the approach is energy-
based or force-based and whether FEM or FDM is used for the continuum region.
In the energy-based approach and the FEM-discretised continuum with the finite-
element mesh refined down to the atomistic lattice, Fig. 2a, an auxiliary mesh can be
constructed, which contains nodes that exactly coincide with the continuum nodes
within the continuum region and that exactly coincide with the atomistic positions
within the atomistic region. This ensures that interpolation of the solution and the
demagnetising field is avoided. Thus, when an energy-conserving time-stepping
method is used, such discretisation is energy-conserving.

In the force-based approach and the FDM-discretised continuum with the struc-
tured mesh, Fig. 2b, the auxiliary mesh should also be structured and should be an
extension of the continuum mesh to the entire computational domain. In this case,
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within the region of the auxiliary mesh that covers the atomistic region, the magneti-
sation M in (2.12) is obtained by volume-averaging of the atomistic spin magnetic
moments, while the atomistic demagnetising field H, ; is obtained by interpolation
of the continuum demagnetising field H.

It is also possible to have the force-based approach and the FEM-discretised con-
tinuum. In this case, since the conservation of the total energy becomes irrelevant,
the interpolation can be used, which means that the mesh used for the solution of the
equation for the demagnetising field can be arbitrary. The final combination of the
energy-based approach and the FDM-discretised continuum is somewhat strange and
probably does not have a practical purpose, as the construction of error-free interface
coupling is not straightforward, i.e. the specific interaction between each interface
node and surrounding atoms the minimises the ghost-forces/torques must be derived
in this case.

3.1.3 The scheme used in the numerical examples

In the numerical examples of this paper, the continuum region is discretised using
FDM. The regions are coupled using a variant of the force-based coupling, modified
to be used together with the implicit time-stepping.

To provide the boundary conditions for the atomistic region, the padding atoms
are constructed, see Fig. 2. The solution at the padding atoms is obtained by bilin-
ear interpolation of the continuum solution with subsequent normalisation. The
normalisation is introduced to preserve the length of the spin magnetic moments.

To evolve the continuum solution using an implicit time-stepping method, the
continuum mesh is extended to the entire computational domain. The solution at
the continuum nodes, which overlap with the atomistic region, is obtained by a nor-
malised weighted average of the atomistic solution inside the box with side Ax
centred at the node, where Ax is the continuum mesh size. For all atoms inside the
box, the weight is assigned as the area of the intersection of the box with side a cen-
tred at the atom and the box with side Ax centred at the node. The normalisation is
introduced to preserve the nodal length of the vector field solution.

Furthermore, the auxiliary mesh for solving (2.12) is introduced. It coincides with
the extended continuum mesh, which is discussed above. Since the nodes of the
meshes coincide, magnetisation M in (2.12) is taken to be equal to the continuum
magnetisation.

To reduce the high-frequency wave-reflection from the atomistic-continuum
interface, additional numerical damping is added to atoms close to the atomistic-
continuum interface [24, 25]. This damping acts as a low-pass filter for the waves
travelling from the atomistic region to the continuum region, as the solution is ‘atten-
uated’ to an average solution within a certain window. Due to a dispersive nature of
the spin waves, the damping is non-linear and depends on time derivative of the solu-
tion. The analysis of the dynamics of the damping layer and the exact form of the
modification can be found in [24].

Following the force-based coupling methodology, the time stepping is performed
separately for the atomistic and the continuum regions. The implicit mid-point
method [10] is used to solve the equations in time. Within a particular time step, the
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continuum region (extended to the entire computational domain) is solved first to
obtain the current time-step values, which includes the solution of the equation for
the demagnetisation field. This gives the solution at the padding atoms at the cur-
rent time step. The atomistic region is subsequently solved using the padding atoms
as the boundary conditions and the demagnetisation field at the current time step.
Finally, the solution at the continuum nodes, which overlap with the atomistic region,
is overwritten by volume-averaging of the atomistic solution.

3.2 Heterogeneous multiscale methods

Recently, an HMM approach has been formulated in application to multiscale prob-
lems arising in micromagnetism. First, in [7], a multiscale method has been proposed
to simulate the coarse-scale dynamics of a chain of atomistic spins. The atomistic
spins were subjected to a high-frequency external field and a mathematical investiga-
tion of the convergence rates in relation to the coupling/upscaling errors, originating
from a micro-macro coupling, was given for a simplified setting of a single spin.

At finite temperatures, the atomistic LLG (2.1) also includes a white noise term.
The noise term results in fluctuations of the magnetic moment vectors m;. The
macroscopic quantities of interests, in this case, are the expected values of the local
averages (in space and time) of the magnetic moments. By taking the inner prod-
uct of the (2.1) with m;, it is easy to see that the length of each individual moment
m;(t) is equal to |m;(¢)| = 1, V¢. However, due to the thermal fluctuations, the
statistical averages acquire reduced lengths, i.e. |E[m;](¢)| < 1. This has been the
major reason for the development of the finite-temperature HMM-based model [6]. In
both HMM-based algorithms, for zero and for non-zero temperature, the modelling
of the long-range interactions has not been considered, as the main ambition has
been to model the local terms and the temperature effects accurately, in [7] and [6],
respectively. In Sections 3.2.2 and 3.2.3 of this paper, an extension of the algorithms
from [6, 7] is presented, after introducing the mathematical tools and notations in
Section 3.2.1. In particular, it is demonstrated that the microproblems associated with
both multiscale methods must be modified in a suitable way to capture the correct
macroscopic dynamics in the presence of the long-range interactions.

3.2.1 Averaging kernels

In this subsection, the basic mathematical tools and notations for the HMM algo-
rithms in Sections 3.2.2 and 3.2.3 are introduced. The HMM algorithms developed
in [7] and [6] are based on the notion of upscaling, where a local average of small
scale features in the atomistic solution (2.1) is computed and used in a macroscale
model. The local averaging takes place in small domains in space and time. In prac-
tice, the spatial size of the averaging is comparable with the size of a few interatomic
distances, i.e. n = ma, m € Z*. The temporal averaging, however, takes place on a
domain of size T = O(¢), where ¢ is a time scale, at which the microscopic dynam-
ics undergoes some variations. For averaging, the space K”+9 of averaging kernels
(weight functions) is introduced. The space K”-¢ consists of functions K, which have
compact support in [—1/2, 1/2], and

@ Springer



Adv Comput Math (2020) 46:2 Page150f31 2

K is symmetric, i.e., K(t) = K(—t)
K4@tD() e BV(R), where BV is the space of functions with bounded
variations in R

® K has p vanishing moments, i.e.

I, r=0
r _ ’ 9
/RK(t)t dt_{O, 0<r<p.
Applying a kernel K € K?9 to an e-periodic function fé(t) = f(t/¢), where f

is I-periodic, with an average defined as f := fol f(s) ds results in the following
arbitrarily high convergence rates, see e.g. [4, 5],

_ e\Ng+2

(Kex )@ -Fl=c(2). t>e 3.1)
T

where K. (+) := %K (-/7) is a scaled kernel, g is the smoothness parameter associated

with K, and

t+1/2
(Kr*fe) () :=/ K:(s — 1) f%(s) ds.
t—t/2
Note that a constant kernel belongs to the space KL-1 e, g = —1, and, therefore,

the corresponding error becomes O(g/t), in view of the estimate (3.1). In general,
smoother the kernel K (higher g), higher the convergence rates become. Moreover,
if 7 is an exact integer multiple of €, then the constant C in the above estimate is zero
and the averaging is exact. For a numerical verification of the convergence rate in the
above estimate and more general results for non-periodic integrands, see [4, 5, 11].

These local averaging kernels will be used in the description of the HMM
algorithms below.

3.2.2 HMM at zero temperature

To present the numerical method, a 1D case is considered. The extension of the
algorithm to higher dimensions is self-evident, and skipped in the exposition. First,
it is assumed that the full atomistic system consists of N = (r + ¢)L 4+ 1 num-
ber of magnetic moments that are located on a set of discrete points in 1D, i.e.
{x; =i a}ﬁr:'BE)L, where a represents the interatomic distance and r € Z* and £ € N
are two non-negative integers. Moreover, the magnetic moments are supplied with

periodic boundary conditions (BCs) and are the solutions of the atomistic LLG model
(2.1) with H; = (Z] Jijm; + H;i(t) + Ha,i>, where Hg,l.(t) is a high-frequency
external field oscillating with the wavelength & in time. The index i in HY; is

to allow for spatially non-uniform external fields. For the exchange coefficient, a
nearest-neighbour interaction is assumed, i.e.

7= J,i=],
Y710, otherwise.

The macroscopic variable is defined as the local average of (2r + 1) microscopic
magnetic moments. To define the macrovariable, assume that the coarse grid is given
by {X; = I(r + E)a}fzo with L <« N, implying much fewer degrees of freedom
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in comparison with a full atomistic model. The macroscopic magnetisation M, at a
point X/ is defined as

,
M) = a )y Ky@igrorj = X1640) (Ke s migyo45) ()

j==r

=: (Kgpxm) (Xp, 1), (3.2)

where n = (2r + 1)a is the size of the local spatial averaging domain and t > ¢
is that of a temporal averaging. From formula (3.2), it is evident that between two
consecutive macroscopic points, a total number of £ magnetic moments is skipped
while averaging.

Macromodel The macromodel takes the form
d oL
—M;(t)=—F;(¢t,M;)— —M; x F;(t, M;), t€(0,T]
dr AL

M;(0) = (Krpxm)(X1,0), (3.3)

where [ = {I — 1,1, 1 + 1}.

Micromodel To close the macroproblem, F;(t*, M 1~) must be computed. To do this,
a set of coupled non-linear ODEs for m, ; j(t), where r' =r + £, 1 € I;t, Ir =
t*+10,t/2, 27 = t*+[-7/2,0],witht/2 > ¢g,and j = —r +1,...,r — lis
solved, i.e.

d

3 (1) = Bump X (ZJM jemi + HE o (0 + Ho(M, x4 p) :
k

mp (") = M(xlr/+j)

mpp_p(6) = M(xpp—p), M) = M(xp0y,), (34)

where M = moM /lm2M| is obtained by a normalised second-order polynomial
interpolation of the macroscopic solutions Mjfor I =1 — 1,1, 1 + 1.

Upscaling The last step is to upscale the quantity F;(t*, M) in (3.3) by

Fi(t*,M;) = (/C,,,7 * %m) (X7, 1%). (3.5)

Note that instead of a full atomistic simulation over the entire computational
domain, a fewer number of atoms (2r + 1 atoms) are coupled together in the micro-
problem (3.4). Moreover, the boundary atoms and the initial data of the microproblem
are forced to be equal to the coarse-scale variables, to synchronise the microscopic
model with macrovariables. In (3.4), the quantity H. is computed by solving the
equation (2.12) on the macroscopic grid. Moreover, in the computation of H, the
macrosolutions M are used in the right hand side of (2.12). It is worth mentioning
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that the damping term is not included in the micromodel, since it is modelled at the
macroscopic level, see equation (3.3). This is similar to the HMM algorithm from
[7], where the convergence of the macroscopic solutions to the exact coarse-scale
solutions has been proved in the absence of the long-range field. The main novelty
of the current algorithm is the replacement of the microscopic long-range interaction
field with the continuum long-range field H ., which can be efficiently approximated
using a standard finite difference/element method on the macroscopic domain. This
approach leads to a tremendous gain in computational cost due to the fact that the
atomistic computation of the long-range field is avoided, which would otherwise
require the atoms in a given microscopic domain to communicate with the atoms
located in neighbouring microscopic domains over a large macroscopic geometry.

Remark 1 In principle, the macro, (3.3), and the micro, (3.4), problems can be dis-
cretised by any convergent time-stepping method. But if certain discrete conservation
properties are required, a special care must be given to the choice of the method. The
particular choice of the numerical methods, used for the simulations in this paper,
can be found in the numerical results section; see also [14] and the references therein
for a review about time stepping methods in micromagnetism.

Remark 2 In general, the macroscopic quantities are much smoother in time and
space, as they do not ‘see’ the variations at atomic scales. Hence, in computations,
the macroscopic model (3.3) is discretised using a time step Az, which is much larger
than a time step 6¢ used for a discretisation of the micromodel (3.4).

3.2.3 HMM at non-zero temperature
An extension of the zero temperature algorithm from [7] to non-zero temperature was

introduced in [6]. Modelling the long-range interactions requires yet another set of
modifications to the algorithm from [6]. To describe these modifications, let

Hgei = ZJijmj + Ko -m; + H (1), (3.6)
J

Hsto,i(ty t*)

Zfijmj + Kom; + (Ko HQ ;) (F) + hi(t) - (3.7)
J

be adopted. Note the differences between Hj, ; and H o ;. The term Hj_, ; is deter-

ministic but oscillatory, while H g ; is stochastic and includes the filtered external
field (K S i) (t*). The superscript ¢ in the term H{ is to denote that the external

field has high-frequency variations.

The model at non-zero temperature requires a modification of the zero tempera-
ture model. In particular, an additional step is needed to capture the reduction in the
length, which arises from taking statistical averages of atomic moments. The precise
algorithm (in the presence of the long-range interactions) is given below.

@ Springer



2 Page 18 of 31 Adv Comput Math (2020) 46:2

Macromodel With a slight deviation to the algorithm at zero temperature, the
macromodel at nonzero temperatures is given by

d d
SI(I)EM](I) = _M](t)d_tsl(t)—F](t75iMi) - Z_I]:SI(I‘)MIU) x Fy(t,siMy),

M (0) = (K., %m)(X;,0), (3.8)

where I := {I —1,1,1+4 1}, Fy is the missing data in the model and s; (#)M;(¢) is
the ultimate macrosolution, which models the coarse-scale dynamics. In particular,
M (¢) has unit length, up to an upscaling error, and represents the direction and
s7(t) < 1, which is computed below, accounts for the reduction in the magnetisation
length.

Micromodel To compute F;(t*, s M j), first the microproblem

d
—myyj(t) = Bimpyyj(t) X (Hae 1745 8) + He(sfM 7, x104))

dr
mpgj(t*) = M(xpp4)),
My (t) = M(xpp—), My (t) = M(xp04,), 3.9)
needs to be solved. Here ¢ € I,i, IF == 1*+10,7t/2], I :=t* +[—7/2,0], and
r’ = r + £. The index j is in the range j = —r + 1,...,r — 1. Moreover, the

final microscopic time 7/2 satisfies 7/2 > ¢ and M(x) =ma(s;My) /|2 (spM j)|(x)
denotes the normalised second-order polynomial interpolation of the macroscopic
solutions. Finally, the term H. is computed similarly as in the zero temperature
HMM algorithm in the previous subsection.

Upscaling The quantity F;(t*, s;M j) is computed by

d
F](t*,SiMi)z (’Ct’”*am> (X],t*) (3.10)

where n = 2r + 1)a.

Computation of s;(t) In the final step, the quantity s; (+*) is computed by solving the
following stochastic LLG equation for j = —r +1,...,r — l and ¢t € [t*, t* + ]

d
amn’ﬂ'(t) = —prmypy;(t) X (Hgo, 14 (13 1) + Ho(sfM 7, X104 )
—orm g X (Mg} (Ho 14 (85 1%) + Ho(siM 7, X104 5))
mpg (1Y) = M(xlrurj),

mp () = M()C[r/,r), myp (1) = M(xlr/+r)v 3.11)
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where 7y > T, and 1, is the time it takes to reach the thermal equilibrium, and M is
defined similarly as in the microproblem. Then, with n = (2r 4 1)a, the following is
computed

/qm,ﬂﬂ ) dt) . (3.12)

Tr

,
si(t) =|a Y Ky(xpps —xm<

; T — T
j=-r

Note that in the zero and the non-zero temperature algorithms, the long-range
continuum field appears in the microproblem. Moreover, for the non-zero tempera-
ture HMM, it is necessary to include the long-range continuum field in the length
scaling procedure, equation (3.11), as well. This is due to the fact that the magnetisa-
tion length is also influenced by the long-range field, see e.g. [2] for a mathematical
motivation.

4 Computational examples
4.1 Partitioned-domain example: domain wall kinetics in a 2D structure

The advantages of the partitioned-domain mutiscale technique are revealed in cases
when the atomistic resolution is required locally, while the rest of the computational
domain is homogeneous and can be approximated with sufficient accuracy by the
continuum model. One such example is the domain wall kinetics in a material with
local defects. In [25], such a problem was considered and the performance and the
advantages of the partitioned-domain multiscale technique were demonstrated. How-
ever, in [25], the domain wall was created using only the exchange and the anisotropy
terms in the LLG equation. In this paper, a similar example is considered, however,
in which the domain wall is created by the exchange and the demagnetisation terms.
The field-induced movement of the domain wall in the presence of a void in the
magnetic structure is investigated. From the physical point of view, the void in the
material can correspond to a microcrack of the sample or to impurity atoms.

The domain wall in a material with the 2D (111) fcc stacking of atoms is con-
sidered. The material contains a hexagonal void with the side of na, where a is the
lattice spacing and n is ranging from 3 to 6. The major effect that is observed in the
simulations, is the blocking of the domain wall by the void of size 6a, while for the
size of the void up to and including 5a, the domain wall is only slowed down by the
void.

4.1.1 Computational setup and model parameters

Since all quantities are considered to be dimensionless, S, = 1 was used. The damp-
ing was selected to be o, = 0.1. Atoms were selected to be arranged according to
2D (111) fcc stacking in the xy-plane. Lattice spacing was taken to be a = 1/64.
The exchange coefficients were taken to be J;; /= (2/ 3)a~2, which gives the con-
tinuum exchange tensor A = A.I with A./u = 1, where I is the identity tensor.
The anisotropy term was not taken into account either, K, = 0. The coefficient that
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defines the magnitude of the demagnetisation field was taken to be ¢;, = 272, which
gives the approximate width of the domain wall wp = 1. The external field was
applied in the x-direction, H. = H,e,, where H, = 5 was assumed.

The width and the height of the computational region were taken to be xp, = 4 and
yL = 1, respectively. Neumann boundary conditions were used at x = 0, x = xg,,
y = 0and y = yp. for both LLG and magnetostatic equations. The computational
region was partitioned into the atomistic and the continuum subregions. The con-
tinuum discretisation step was taken to be Ax = 4a. The atomistic subregion was
located in the centre of the computational region. The width and the height of the
atomistic subregion were taken to be xo = ya = 48a = 0.75. The atomistic subre-
gion contained a hexagonal void with a side of na, where n € {3, 4, 5, 6}, the centre
of which was located at x = 2 and y = 0.5. Time step Az = 1072 was used.

Within the atomistic region, the behaviour of atoms close to the interface was
modified with the additional numerical damping. Parameters of the damping region,
the optimal values of which depend on the width of the damping region and the
difference between discretisations, were taken from [25], where the same difference
between the discretisations of the regions was used. The damping strength and the
width of the averaging window was taken to be gp = 625, so = 3Ax. The width
of the damping band was selected to be 164, as the large width of the damping band
ensures that the atomistic solution is not contaminated by wave reflections.

The following initial conditions for the domain wall were used:

M = eysin6 + e, cos0,

6 = arcsin (tanh (nx/i (x — xo)>> + %,

where xq is the position of the centre of the domain wall. The initial position of the
centre of the domain wall was taken to be xo = 1. To the left of the domain wall, the
magnetisation is oriented primarily in +z-direction, while to the right, it is oriented in
—z-direction. Within the domain wall, the magnetisation changes from +z-direction
to —z-direction and has a non-zero component in +y-direction.

Since the domain wall moves during the simulation, to analyse the results, it is
important to obtain from the simulations the exact position of the centre of the domain
wall as a function of time. The domain wall centre is defined as the curve, along
which M, = 0. Since the computational solution, M, is defined at the grid points, an
auxiliary quantity ¢ = arccos (M) — /2 is calculated at each grid point and linearly
interpolated between the grid points. Thus, for each y = yy, the domain wall centre
along x-axis, x, is found by solving ¢ = 0.

4.1.2 Results

In Fig. 3, the field plot of the z-component of magnetisation for the case of n = 5
is illustrated. It can be seen that when the domain wall approaches the void, the
thickness of the domain wall decreases locally. The region of the domain wall that is
located in the upper half of the 2D plate slows down, while the the lower part of the
domain wall moves past the void (+ = 0.8 and t+ = 1.0). Afterwards, the upper part
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Fig. 3 The distribution of M, component of magnetisation in the computational domain at different
simulation times

of the domain wall accelerates and overtakes the lower part (r = 1.4 and t = 1.6).
Finally, an equilibration process is observed (+ = 1.8 and r = 2.0). Thus, the void
causes oscillations in the structure of the domain wall. Moreover, in the field plots, it
can be seen that the void acts as a ‘gradient concentrator’, i.e. the region around the
void creates higher gradient in comparison with the regions further from the void.

From the physical point of view, the energetically preferred states of spin mag-
netic moments are approximate alignments of spins either along e, or opposite to e;.
The intermediate states of spins, which correspond to the domain wall, have higher
energy. When the domain wall passes through the void, a region of the wall is absent
(due to the void) and, thus, a number of ‘high-energy’ spins are absent. Therefore,
to minimise the total energy, the preferred states of the spin system are such that the
void covers spins with the highest energy locally. This explains why the domain wall
and the gradient lines in Fig. 3 tend to stick to the void.

The states of spin magnetic moments around the void when the domain wall passes
the void are shown in Fig. 4. Although the initial structure of the domain wall is
of the Bloch-type, i.e. the spins have zero M, component, it is clearly seen that as
the domain wall interacts with the void, spins acquire a non-zero M, component.
This is the mechanism by which the domain wall is slowed down by the void in this
example. Since the external field is aligned with e, the torque that acts on the spins
with significant M, component is small, which decreases the angular velocity of the
spins in the centre of the domain wall and the thereby leads to the decrease of the
speed of the domain wall propagation. Moreover, at ¢ = (.7, it is seen that the upper
part of the domain wall is inclined, as opposed to the lower part of the domain wall,
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Fig.4 The magnetic moments of the individual atoms in the region around the void at different simulation
times. The magnetic moments are shown using the vector field and are projected onto xy-plane, i.e. spins
that are parallel to e, are dots, while spins that are lying in xy-plane have the length of a/2

which is vertical. This corresponds to the moment when the upper part of the domain
wall moves faster than the lower part.

To understand the dependence of the kinetics of the domain wall on the size of
the void, the position of the domain wall centre was calculated for each time step.
The dependencies of the positions of the domain wall centre at y = 0.25 and at
y = 0.75 on time are shown in Fig. 5. The void is located at x = 2 and it is clearly
seen that when the domain wall passes the void, the velocity drops. The decrease of
the velocity non-linearly depends on the size of the void. For the void of size 3a, the
decrease of the velocity is relatively small, while for 5a, it is already significant. For
the void of the size of 6a, the position of the domain wall stays below 2.5, i.e. the
domain wall does not move past the void and stays at x =~ 2.

In Fig. 5, it is also seen that there is a difference between the positions at y = 0.25
and at y = 0.75. Increases and subsequent decreases of the positions, where the lower
part of the domain wall overtakes and then falls behind the upper part of the domain
wall, are the oscillations created by the void. The magnitude of these oscillations also
depends on the size of the void and increases with the increase of the size (in the
considered example, the highest oscillations in the domain wall position are observed
for the void of size 6a).

Fig.5 The dependencies of the 4+ )

positions of the domain wall 3a ) Y

centre at y = 0.25 (solid lines) da A

and at y = 0.75 (dash lines) on 3] 6a e P

time for different sizes of the 2 o

void, which are indicated in the NS IO

legend 5] Wit \”\‘*\\\\\ji
1 T T T T 1

0 1 2 3 4 5
t
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4.2 Partitioned-domain example: multiscale modelling error, 1D example

The proposed multiscale technique obviously has a modelling error, which is the error
due to the representation of the demagnetisation field using the discretised continuum
model. This error is proportional to cr, which can be understood as the parameter
defining the magnitude of the demagnetisation field. This is demonstrated in this
section using an example of a 1D domain wall moving form the continuum region
into the atomistic region.

As was shown above, in the 1D case, H. = —cp M, e, . This means that the demag-
netisation field acts similar to the anisotropy, but with the negative sign. Moreover,
due to the structure of the LLG equation (2.7), CM can be added to effective field
H, where C is an arbitrary constant, without influencing the solution of the LLG
equation. This is used in the example below.

4.2.1 Computational setup and model parameters

The same B, and «, as in the example above were used. Atoms were selected to be
arranged in a 1D chain. Lattice spacing was taken to be a = 1/64. The exchange
coefficients were taken to be J;j/u = a~2, which gives the continuum exchange
parameter A,/ = 1. Biaxial anisotropy was used,

K, = <2n2 — CL) neyey — (1 +cL) ueze;.

The introduction of parameter cr, into the anisotropy is explained below. The coeffi-
cient that defines the magnitude of the demagnetisation field, ¢, was varied from 0.4
to 12.8. These parameters give the approximate width of the domain wall wp = 1.
The external field was applied in z-direction, H. = H,e,, where H, = 1 was taken.

It can be seen that in the above presented setup, the exact continuum solution of
the moving domain wall should not be affected by parameter ¢y, because

1
—K,-M+H. =21*Myey — cLMye, — Moe; — cLM e, — cLM,e,
" )

= 2712Myey — Me, — M

and addition of ¢ M to H does not affect the solution of the LLG equation. How-
ever, in the computational solution, there will be a numerical error due to different
treatments of the demagnetisation field and the other interactions. Also, it should be
noted that negative anisotropy in e,-direction was chosen. Although this is not a real-
istic scenario, selection of a negative coefficient is mathematically allowed. It allows
creating a setup, for which the exact continuum solution is independent of cf._.

The length of the computational region was taken to be x;, = 6. Neumann bound-
ary conditions were used at x = 0, x = xr, for the LLG equation. The 1D analytical
solution of the magnetostatic equation, H. = —cp, M e,, was used at the continuum
scale to isolate the modelling error, i.e. not to introduce an error due to numerical
solution of (2.10) and (2.12). The computational region was partitioned into the atom-
istic and the continuum subregions. The continuum discretisation step was taken to
be Ax = 4a. The atomistic subregion was located in the centre of the computational
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region. The length of the atomistic subregion was taken to be xpo = 128a. Time step
At = 1072 was used. Same gD, sa and the width of the damping band as in example
above are used.

The following initial conditions for the domain wall were used:

M = e, sin6 cos + ey cos 6 cos ¢ + e, sin g,

6 = arcsin <tanh (:NE (x — xo))) + %,

= arcsin ————,
¢ 272+ 1

where xq is the position of the centre of the domain wall. The initial position of the
centre of the domain wall was taken to be xo = 1.5.

The simulations were run until #.,g = 4 and compared at that point. This roughly
corresponded to the domain wall being in the centre of the atomistic region. The
reference solution with ¢, = 0 was used. The solution in the atomistic region was
used for the error calculation. The error was defined as the L!-norm of the difference
between solutions, divided by 3N, where N is the number of atoms of the atomistic
region.

4.2.2 Results

In Fig. 6, the dependence of the multiscale modelling error on cr, is shown. This is the
error due to numerical multiscale treatment of the demagnetisation field, compared
with the reference case, where the analytical expression for the demagnetisation field
is used. The error is proportional to cr..

4.3 HMM examples

4.3.1 A chain of magnetic particles

Here, the HMM algorithm at zero temperature is applied to a chain of magnetic parti-
cles. It is assumed that N = 101 magnetic moments are located on a one-dimensional

Fig.6 The dependence of the 2~
multiscale modelling error on cp,
for the 1D domain wall
propagation example

O

o -3

e}

-4 , , , .
-0.5 0 0.5 1 1.5

log(c)
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lattice consisting of points {i a}}g%, where a = 0.01 is the atomic distance and the

initial configuration is given by
m;(t)|;=0 = cos(2mwia)e, + sin(2wia)e,, i=0,1,...,100.
Moreover, the high-frequency external field
H@) = f*(De:,

with f2(t) = 1 4 cos(0.43¢) + cos>(2nt/¢) and & = 0.01 is used in the simulations.
Note that all the atomic particles are under the influence of the same external field
and hence the spatial dependency is omitted. The continuum demagnetisation field
H . in the microscopic model (3.4), is given exactly by

H.=—M,e,

in this one-dimensional setting, cf. the derivations in Section 2.3.1. The parameters
BL = o, = n = 1, and the nearest neighbour exchange interactions with J = 1, see
Section 3.2.2, are chosen for the simulations. Moreover, the anisotropy is assumed
to be zero. The problem is discretised by a midpoint rule on the macroscopic and
microscopic scales with the temporal step sizes At = 0.01 on the macroscale and
8t = ¢/10 on the microscales. Moreover, the temporal microscopic box is T = 5¢. On
the spatial dimension, 10 macroscopic points are used to describe the magnetisation
dynamics whereas the atomistic chain consists of a total of 101 particles. Figure 7
demonstrates the evolution of the macroscopic dynamics and compares it with the
solution of the full atomistic model. In the atomistic simulation, it is assumed that
H,; = —mye,, which is justified by the convergence of the atomistic long-range
field to the continuum counterpart as a — 0, see Section 2.3.3. As time increases, the
magnetisation vectors are pointing to the e, direction, i.e. the direction of the given
external field, and it is shown in the picture that the correct macroscopic dynamics
are captured even though the macroscopic discretisation parameters under-resolves
the scales of atomistic variations both in time and space. Note that the presence of
the long-range field has a clear effect on the dynamics of the magnetisation, cf. the
numerical results in [7] in the absence of the long-range field.

4.3.2 Modelling error

The error, which arises from having the long-range field in the modelling, is studied.
The error between the HMM solution and the atomistic solution is recorded with
varying values for the coefficient cp. The very same numerical parameters as in the
previous example are chosen in the simulation. It is observed that the decay rate of
the error is O (cL), see Fig. 8.

4.3.3 A chain of magnetic particles at nonzero temperature
In this section, the aim is to show an example, where the existence of the long-

range interaction has an effect over the macroscopic magnetisation length at elevated
temperatures. For a numerical study, N = 101 atomistic particles located on a
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Fig.7 The HMM solution, using 10 macroscopic points, is compared with an atomistic simulation using
100 magnetic moments. A good match between the two solutions is observed
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Fig.8 The error between the HMM solution and the full atomistic simulation is depicted for an increasing
values for the long-range field. A first-order convergence, in terms of ¢, is observed in the simulation
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one-dimensional lattice consisting of points {ia} }g%, where a = 0.01 is the atomic
distance, are considered. The initial configuration is uniform and given by

1
m;(t)];—o = 7 (ex+ey+e), i=0,1,...,100,

equipped with periodic boundary conditions. The anisotropy is assumed to be zero,
and the external field is pointing in the x direction, i.e.

H; = (1 ~+ c0s(0.43¢) + sin(0.73¢) + COS2(27TI‘/£)) €.

The atomistic particles are subjected to a thermal noise with a standard deviation of
D = 0.01, and the parameters fi, = u = 1, o = 10, with the nearest neighbour
interactions for the exchange coefficient, similar to previous examples, are chosen
for the simulation. In Fig. 9, a fully atomistic simulation (with 100 realisations) with
and without the long-range field is compared against the HMM solution up to a final
time T = 5. It is shown that the long-range field has an effect on the length of
the magnetisation and that the HMM accurately captures this long-range effect. In
Fig. 10, the behaviour of the classical mean-field approach is shown. The mean-field
approach is a well-known approach to predict the length of the ensemble averages,
|(m)|, based on the closure argument E[m; -m ;] = E[m;]- E[m ], and the restrictive
assumption that E[m;] = E[m ] forall i, j. The mean-field formula, for this specific
setup, reads as

1
[(m)| = [(my)| = coth (ﬁ( H; , +2J[(my)| — M|<mx>|))
B
kgT

WHE ¢ + 20 [(my)| — pl{my)|

see e.g. [2, 6] for the derivations of the mean-field formulas, which can be adapted to
the present setting in an obvious way. It is observed that unlike HMM, the mean-field
approach deviates from the true atomistic simulation in the presence of the long-
range interaction. This is due to the fact that the mean-field approach suffers from
the mentioned restrictive closure arguments, which do not hold in general since the

Fig.9 The x component, 1 ‘
M, (t, X1), of the HMM q SRR
solution, at the point X; = 0.5 0.8 \
is compared with the full —— E100[MiLong,2) (t) o
atomistic solution. Here mpong x 0.6 | FEio0 [mz](t) ]
stands for the full atomistic M, (t,0.5)
solution, where the long-range is 0.4 r A
included in the modelling, 0.95 W%
whereas m, is the atomistic 0.2 ¥
solution without the presence of
; i ons or 0.9
the long-range interactions
-0.2 1 1.5
0 1 2 3 4 5
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Fig. 10 The atomistic solution 1 ‘ ‘ ‘
with and without the long-range A S
interaction is plotted against the 0.8 B
solution of the mean-field 100[MLong 2} ()
approach. The classical mean- 0.6 | Eo0[ma](?)
field approach breaks down MeanField
when the effect of the exchange 0.4 |
coefficient becomes dominant

0.2 r 0.9

or 0.8
-0.2
0 1 2 3 4 5

atomic moments are correlated through the short-range exchange and the long-range
dipole-dipole interactions.

5 Conclusions

This paper demonstrates a way of incorporating the long-range dipole-dipole inter-
actions between the atomistic spin magnetic moments into the existing atomistic-
continuum coupling methods based on the partitioned-domain and the upscaling
strategies. This is achieved by modelling the demagnetising field exclusively at the
continuum level and coupling the continuum demagnetising field to the atomistic
solution. This approximation relies on the atomistic expression for the magnetisa-
tion field converging to the continuum expression when the interatomic spacing
approaches zero. It has been demonstrated that for both multiscale strategies, the
modelling error is O(cL), where c|, is the coefficient defining the magnitude of
the demagnetising field. Moreover, the present article includes numerical results
addressing the convergence of the atomistic long-range field to the continuum
long-range field and geometric errors involved in the atomistic simulations of the
demagnetisation field.

Within the framework of partitioned-domain methods, it has been discussed how
to account for the long-range interactions within the energy-based methods and the
force-based methods. In both approaches, an auxiliary continuum mesh is constructed
that covers the entire computational domain, overlapping with the atomistic region
and coinciding with the continuum mesh of the continuum region. The equations
for the demagnetising field are then solved on this auxiliary mesh. Within the atom-
istic region, the atomistic demagnetising field is taken to be equal to the continuum
demagnetising field.

The computational examples of this paper attempted to highlight cases when the
proposed multiscale approaches excel in terms of efficiency. The effect of the void-
affected kinetics of the domain wall has been modelled using the partitioned-domain
approach. Only a small region around the void has been modelled at the atomistic
scale, while the rest of the 2D structure has been modelled using the continuum
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model with a coarser resolution. The domain wall structure itself has been the result
of the demagnetising field. The partitioned-domain methodology allows resolving
fine-scale details of the interaction of the domain wall and the void, while replac-
ing the solution far from the void with a close continuum approximation to increase
computational efficiency.

The main novelty and the advantage of the proposed algorithm for the upscal-
ing strategy are the avoidance of the long-range atomistic communication between
the magnetic moments that are located in different microscopic boxes. Neverthe-
less, the macroscopic effect of the long-range interactions is captured accurately in
the multiscale formalism. This leads to a significant computational gain not only in
comparison with a naive computation of the dipole-dipole interactions (which scales
quadratically with respect to the number of particles) but also when compared with
more efficient multiscale methods such as the fast multipole method [17, 19], which
is a linear scaling algorithm. The fact that the long-range field is included in the
microscopic model using the continuum field H . allows obtaining sub-linear scaling
computational costs with respect to the atomistic degrees of freedom. The accuracy
of the method is also demonstrated using an example of a chain of magnetic particles
as well as examples at elevated temperatures.

The multiscale methods presented in this article can also be applied to problems
with moving atomistic regions. One possibility to tackle this problem is to include
an adaptive algorithm at the macroscopic scale, which handles the movement of
atomistic regions on the fly. One can then resort to the microscopic model, once
the atomistic locations are dynamically determined. Creating dynamically chang-
ing boundaries of the atomistic regions is challenging only from the programming
point of view, as mathematically no additional modifications of the methods are
required.
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