Skip to main content
Log in

Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Committee on National Aeronautics and Space Administration (NASA) Technology roadmaps.: 2015 NASA technology roadmaps: Technology area 12-materials, structures, mechanical systems, and manufacturing. pp. TA12-1-TA12-138. NASA, Washington, D.C (2015)

  2. González, C., Vilatela, J.J., Molina-Aldareguía, J.M., Lopes, C.S., LLorca, J.: Structural composites for multifunctional applications: current challenges and future trends. Prog. Mater. Sci. 89, 194–251 (2017)

    Article  Google Scholar 

  3. Gibson, R.F.: A review of recent research on mechancis of multifunctional composite materials and structures. Compos. Struct. 92, 2793–2810 (2010)

    Article  Google Scholar 

  4. Bhat, G. (ed.): Structure and Properties of High-Performance Fibers. Elsevier, Amsterdam (2017)

    Google Scholar 

  5. LLorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R., Canal, L.P.: Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23, 5130–5147 (2011)

    Article  CAS  Google Scholar 

  6. LLorca, J., González, C., Molina-Aldareguía, J.M., Lopes, C.S.: Multiscale modeling of composites. JOM. 65, 215–225 (2013)

    Article  Google Scholar 

  7. Espinosa, H.D., Juster, A.L., Latourte, F.J., Loh, O.Y., Gregoire, D., Zavattieri, P.D.: Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat. Commun. 2, 173 (2011) (9 pages)

    Article  Google Scholar 

  8. Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309–327 (2001)

    Article  CAS  Google Scholar 

  9. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. In: Clarke, D., Suresh, S., Ward, I. (eds.) Part of Cambridge Solid State Science Series, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  10. Xiong, J., Mines, R., Ghosh, R., Vaziri, A., Ma, L., Ohrndorf, A., Christ, H.-J., Wu, L.: Advanced micro-lattice materials. Adv. Eng. Mater. 17(9), 1253–1264 (2015)

    Article  CAS  Google Scholar 

  11. Xiong, J., Ma, L., Pan, S.D., Wu, L.Z., Papadopoulos, J., Vaziri, A.: Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores. Acta Mater. 60, 1455–1466 (2012)

    Article  CAS  Google Scholar 

  12. Xiong, J., Vaziri, A., Ma, L., Papadopoulos, J., Wu, L.Z.: Compression and impact testing of two-layer composite pyramidal-core sandwich panels. Compos. Struct. 94, 793–801 (2012)

    Article  Google Scholar 

  13. Cheung, K.C., Gershenfeld, N.: Reversibly assembled cellular composite materials. Science. 341, 1219–1221 (2013)

    Article  CAS  Google Scholar 

  14. Wei, K., Chen, X., Mo, F., Wen, W., Fang, D.: Design and analysis of integrated thermal protection system based on lightweight C-SiC pyramidal lattice core sandwich panel. Mater. Des. 111, 435–444 (2016)

    Article  CAS  Google Scholar 

  15. Barthelat, F.: Architectured materials in engineering and biology: fabrication, structure, mechanics and performance. Int. Mater. Rev. 60(8), 413–430 (2015)

    Article  CAS  Google Scholar 

  16. Sen, S., Schofield, E., O'Dell, J.S., Deka, L., Pillay, S.: The development of a multifunctional composite material for use in human space exploration beyond low-earth orbit. JOM. 61(1), 23–31 (2009)

    Article  CAS  Google Scholar 

  17. Nakajima, H.: Fabrication, properties and application of porous metals with directional pores. Prog. Mater. Sci. 52, 1091–1173 (2007)

    Article  CAS  Google Scholar 

  18. Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W., Arwade, S.R.: Steel foam for structures: a review of applications, manufacturing and material properties. J. Constr. Steel Res. 71, 1–10 (2012)

    Article  Google Scholar 

  19. Cadman, J.: The design of cellular materials inspired by nature-characterisation, fabrication and application. Ph.D. Dissertation, The University of Sydney, Sydney, Australia (2012)

    Google Scholar 

  20. Sun, X., Liang, W.: Cellular structure control and sound absorption of polyolefin microlayer sheets. Compos. Part B. 87, 21–26 (2016)

    Article  CAS  Google Scholar 

  21. Benyus, J.M.: Biomimicry: Innovation Inspired by Nature. Perennial, HarperCollins Publishers Inc., New York, NY (2002)

    Google Scholar 

  22. Hu, Z., Thiyagarajan, K., Bhusal, A., Letcher, T., Fan, Q.F., Liu, Q., Salem, D.: Design of ultra-lightweight and high-strength cellular structural composites inspired by biomimetics. Compos. Part B. 121, 108–121 (2017)

    Article  CAS  Google Scholar 

  23. Mittal, V., Saini, R., Sinha, S.: Natural fiber-mediated epoxy composites: a review. Compos. Part B. 99, 425–435 (2016)

    Article  CAS  Google Scholar 

  24. Mayer, G.: New classes of tough composite materials – lessons from natural rigid biological systems. Mater. Sci. Eng. C. 26(8), 1261–1268 (2006)

    Article  CAS  Google Scholar 

  25. Cheung, H.-A., Lau, K.-T., Lu, T.-P., Hui, D.: A critical review on polymer-based bio-engineered materials for scaffold development. Compos. Part B. 38(3), 291–300 (2007)

    Article  Google Scholar 

  26. Huda, S., Reddy, N., Yang, Y.: Ultra-light-weight composites from bamboo strips and polypropylene web with exceptional flexural properties. Compos. Part B. 43(3), 1658–1664 (2012)

    Article  CAS  Google Scholar 

  27. Koronis, G., Silva, A., Fontul, M.: Green composites: a review of adequate materials for automotive applications. Compos. Part B. 44(1), 120–127 (2013)

    Article  CAS  Google Scholar 

  28. Okereke, M.I., Akpoyomare, A.I., Bingley, M.S.: Virtual testing of advanced composites, cellular materials and biomaterials: a review. Compos. Part B. 60, 637–662 (2014)

    Article  CAS  Google Scholar 

  29. Affatato, S., Ruggiero, A., Merola, M.: Advanced biomaterials in hip joint arthroplasty: a review on polymer and ceramics composites as alternative bearings. Compos. Part B. 83, 276–283 (2015)

    Article  CAS  Google Scholar 

  30. Burns, L., Mouritz, A.P., Pook, D., Feih, S.: Bio-inspired hierarchical design of composite T-joints with improved structural properties. Compos. Part B. 69, 222–231 (2015)

    Article  CAS  Google Scholar 

  31. Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Ferreira, J.M.F.: Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. J. Mater. Chem. 15, 5007–5011 (2005)

    Article  CAS  Google Scholar 

  32. Cadman, J., Zhou, S., Chen, Y., Li, Q.: Cuttlebone: characterisation, application and development of biomimetic materials. J. Bionic Eng. 09, 367–376 (2012)

    Article  Google Scholar 

  33. Checa, A.G., Cartwright, J.H.E., Sánchez-Almazo, I., Andrade, J.P., Ruiz-Raya, F.: The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor. Sci. Rep. 5, 11513 (2015) (13 pages)

    Article  CAS  Google Scholar 

  34. Sherrard, K.M.: Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol. Bull. 198(3), 404–414 (2000)

    Article  CAS  Google Scholar 

  35. Bendsøe, M.P., Sigmund, O.: Topology Optimization, Theory, Methods and Applications. Springer, Berlin Heidelberg New York (2003)

    Google Scholar 

  36. Zhang, W., Wang, F., Dai, G., Sun, S.: Topology optimal design of material microstructures using strain energy-based method. Chin. J. Aeronaut. 20, 320–326 (2007)

    Article  CAS  Google Scholar 

  37. Setoodeh, S., Abdalla, M.M., Gürdal, Z.: Combined topology and fiber path design of composite layers using cellular automata. Struc. Multidiscip. Optim. 30, 413–421 (2005)

    Article  Google Scholar 

  38. Rodrigues, H. C.: Chapter: Topology optimization of structures: applications in the simulation and design of cellular materials. In the book of Computational Methods in Engineering and Science. Proceedings of Enhancement and promotion of computational methods in engineering and science X (EPMESC X), August 21–23, 2006, Sanya, China. pp. 101–112, Springer, Berlin (2007)

    Chapter  Google Scholar 

  39. Otomori, M., Andkjær, J., Sigmund, O., Yamada, T., Izui, K., Nishiwaki, S.: Topology optimization for the microstructure design of plasmonic composites. 10th World Congress on Structural and Multidisciplinary Optimization, May 19–24, 2013, Orlando, Florida, USA

  40. Bendsøe, M.P.: Optimization of Structural Topology, Shape and Material. Springer-Verlag, Berlin Heidelberg (1995)

    Book  Google Scholar 

  41. Rozvany, G.I.N.: Aims, scope, methods, history and unified terminology of computer aided topology optimization in structural mechanics. Struct. Multidiscip. Optim. 21(2), 90–108 (2001)

    Article  Google Scholar 

  42. ANSYS Inc.: Theory reference – ANSYS 17.0, Cabibsburg, PA, USA (2016)

  43. X. Li, L.Zhao, Z. Liu, Topology optimization of continuum structure based on ANSYS, MATEC Web of Conferences, 95(2017)07020. (4 pages)

    Article  Google Scholar 

  44. Hu, Z., Hossan, M.R.: Strength evaluation and failure prediction of short carbon fiber reinforced nylon spur gears by finite element modeling. Appl. Compos. Mater. 20(3), 315–330 (2013)

    Article  CAS  Google Scholar 

  45. American Society for Testing and Materials.: ASTM D 3039: Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA.

Download references

Acknowledgements

The authors gratefully acknowledge generous support from the Composite and Nanocomposite Advanced Manufacturing Center (CNAM) (Grant number SA1800366), a South Dakota governor’s center, and from the Department of Mechanical Engineering at South Dakota State University. The computational facility and technical support provided by the University High Performance Computing at South Dakota State University are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Gadipudi, V.K. & Salem, D.R. Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone. Appl Compos Mater 26, 15–27 (2019). https://doi.org/10.1007/s10443-018-9680-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9680-6

Keywords

Navigation