
Optimization of Sandwich Composites Fuselages
Under Flight Loads

Chongxin Yuan & Otto Bergsma & Sotiris Koussios &
Lei Zu & Adriaan Beukers

Received: 19 September 2010 /Accepted: 13 October 2010 /Published online: 24 November 2010
# The Author(s) 2010. This article is published with open access at Springerlink.com.

Abstract The sandwich composites fuselages appear to be a promising choice for the future
aircrafts because of their structural efficiency and functional integration advantages. However,
the design of sandwich composites is more complex than other structures because of many
involved variables. In this paper, the fuselage is designed as a sandwich composites cylinder,
and its structural optimization using the finite element method (FEM) is outlined to obtain the
minimumweight. The constraints include structural stability and the composites failure criteria.
In order to get a verification baseline for the FEManalysis, the stability of sandwich structures is
studied and the optimal design is performed based on the analytical formulae. Then, the
predicted buckling loads and the optimization results obtained from a FEMmodel are compared
with that from the analytical formulas, and a good agreement is achieved. A detailed parametric
optimal design for the sandwich composites cylinder is conducted. The optimization method
used here includes two steps: the minimization of the layer thickness followed by tailoring of
the fiber orientation. The factors comprise layer number, fiber orientation, core thickness, frame
dimension and spacing. Results show that the two-step optimization is an effective method for
the sandwich composites and the foam sandwich cylinder with core thickness of 5 mm and
frame pitch of 0.5 m exhibits the minimum weight.
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Nomenclature
tf The skin thickness
tc The core thickness
h Sandwich thickness h= tc+ tf
Ef Normal modulus of the faces
Ec Normal modulus of the core
Gf Shear modulus of the faces
Gc Shear modulus of the core
νf Poison ratio of the faces
νc Poison ratio of the core
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teq Equivalent thickness teq ¼ 3
ffiffiffiffiffiffiffiffi
6tf h

p
It Moment of inertia It=tf h

2/2
If Moment of inertia of the face If= tf

3/6
l l=1−υf2

1 Introduction

Due to their high structure efficiency, sandwich structures have been increasingly applied in
aerospace engineering. In 1924, Karman and Stock were granted a patent for a glider plane
having a sandwich fuselage. The Beech Starship used Nomex honeycomb throughout its
structures. The famous aircraft Voyager, which flew around the world in 9 days without
refueling, was basically made from honeycomb and carbon tape prepreg for each skin[1].
Moreover, the sandwich structures were also used as helicopter blades and fuselage.
Nevertheless, they were still not widely used in large civil airplane because of design and
manufacture uncertainties. However, sandwich construction combined with composite
materials will be a novel concept for the future fuselage structures. Van Tooren[2] proved
the feasibility of sandwich structures to be used as fuselages of large commercial airplanes.
The future airplane should be safer, quieter, greener and more cost, -effective, thus demands
for lightweight and functional structure would be stronger. The sandwich structure is a
better choice because of its higher stiffness-to-weight ratio, superior fatigue strength, larger
acoustic and thermal insulation[3]. In the Advanced Technology Composite Aircraft
Structures (ATCAS) program, the sandwich structure was adopted to produce the keel and
sides panels considering its weight and cost advantage toward the stringer-stiffened skin[4].

The mechanical analysis of sandwich structures can be divided into two major parts, one
is dealing with stability problems and the other is with the resulting stresses and strains in
the faces and core. NASA[5] issued a manual on the structural stability analysis of
sandwich structures under axial compression, pure bending, external pressure, torsion and
transverse shear, and published a report concerning the buckling of thin-walled circular
cylinders[6]. The buckling of thin-walled isotopic cylinders under combined torsion and
pressure were studied by ESDU[7]. The interactions between torsion and pressure were
analyzed and the results showed that increasing inner pressure of cylinder raised the torsion
buckling stress. Lennon[8] investigated the effect of axial compression and pressure on
torsion buckling behavior. The compression buckling for axisymmetric imperfect sandwich
cylinders was studied by Tennyson[9], the equilibrium and compatibility equations were
built as two governing equations in terms of w (displacement) and F (applied load).
Peterson and Anderson[10] carried out three buckling tests for the honeycomb sandwich
structures under bending. However, few studies have so far focused on the stability and
optimization of the sandwich cylinder with composites facings.

In this paper, the mathematical formulae are built to predict the stability of sandwich
cylinder under pure bending, torsion, and transverse shear, respectively. Based on the
typical dimensions and load cases of A320, the sandwich cylinders are optimized with
iterative design procedure. Next, results for stability predicted by a FEM model are
compared to that by the mathematical formulae. Based on the FEM model, a two-step
optimization for the sandwich composites cylinders is conducted. The results show that too
many layers of the composites are needed to satisfy the buckling constraints. The frames are
thus added to the cylinder shell to investigate whether they can improve the structural
efficiency. Subsequently, by the comparison among different core materials the Rohacell
200WF foam is chosen for the sandwich core. Finally an analysis of variance (ANOVA)
design between frame spacing and core thickness is presented.
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2 Analytical Formulae and Optimization

2.1 Theoretical Formulation

In this study, the sandwich composites structure is assumed to exhibit a linear stress–strain
relationship. Once the applied load is removed, the structure will return to its original position.
However, if the loads exceed their threshold, the structure may become unstable. In this case,
the structure continues to deflect without increasing of the magnitude of the applied loads,
because the structure has actually buckled. Hence, the term “instability” is also called
“buckling”. In the following section, the theoretical buckling prediction of the sandwich
cylinders under different loading cases and the interaction for combined loads will be discussed.

2.2 Facesheet Wrinkling

Facesheet wrinkling is usually viewed as a local, short wavelength buckling phenomenon. The
facesheet can deform symmetrically or anti-symmetrically. Most of theoretical analyses for the
facesheet wrinkling are based on the mathematical model of uniaxially loaded flat sandwich
strut. For sandwich structures under combined loads, the procedure of the prediction for the
onset of wrinkling is to calculate the maximum principle compressive stress of the facesheet.
Lopatin and Morozov[11] present the solution of symmetrical face sheet wrinkling for
sandwich panels with composite facings and an orthotropic core. The common expression of
theoretical wrinkling stresses for sandwich struts with thick cores is given by:

swr ¼ kðEf EcGcÞ1=3 ð1Þ
where k varies from 0 to 1 according to different theories and boundary conditions. Ley[12]
gave a comprehensive summary for different mathematical models. Here the k is 0.5.

2.3 Bending

Bending buckling is triggered by the compressive component of bending moment. For the
cylinder, the interaction between shear crimping and compressive buckling has been taken
into account. Stein and Mayers[13] developed the following equations for the critical
buckling stress under compression:

Flexural stiffness:

DS ¼ Ef tf h2

2ð1� vf 2Þ ð2Þ

Transverse shear stiffness:

DQ ¼ Gch2

h� tf
ð3Þ

Curvature parameters:

za ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2tf L4ð1� vf 2Þ

R2Is

s
ð4Þ

ra ¼ DSp2

DQL2
ð5Þ
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Compressive load coefficients:

kxa ¼
1

1þra
þ za2

p4
za
p2 � 1

1þra
za
p2 ð2� zara

p2 Þ 1
1þra

< za
p2 <

1
ra

1
ra

za
p2 � 1

ra

8><
>: ð6Þ

Knockdown factor:

hb ¼ 1� 0:731ð1� e
�1

16
ffiffiffiffiffiffi
R=teq

p Þ ð7Þ
Critical compressive stress resultant:

Nx ¼ kxa
DSp2

L2
hb ð8Þ

Bending moment:

M ¼ 2pR2Nx ð9Þ
where ηb is the knockdown factor for initial imperfections.

2.4 Torsion

March and Kuenzi[14] developed an energy method to determine the shear buckling stress
under torsion. The small-deflection theory is used to find the solution of the energy
equilibrium equation. For a sandwich cylinder with significantly thin skins, the critical
shear stress can be evaluated by the following formula:

tcr ¼ Kf hEf
h

R
ð10Þ

For isotropic facings and cores, Kf can be given by

Kf ¼ y1 þ y2 ð11Þ
in which

y1 ¼
Jr2

4p2x
ðx� rÞ4

1þ ðx� rÞ2
h i2 þ ðxþ rÞ4

1þ ðxþ rÞ2
h i2

2
64

3
75 ð12Þ

y2 ¼
p2

ð1� tc
hÞ4Jr2x

It
h3 ½A1 þ 2A2 þ A3 þ ðA1A3 � A2

2Þ p2l
Jr2 ð S

A4
þ SÞ�

1þ p2l
Jr2 ðS A1

A4
þ SA3Þ þ ðp2lJr2Þ

2
S2 A1A3�A2

2

A4

þ If
h3

ðA1 þ 2A2 þ A3Þ
2
4

3
5

ð13Þ

J ¼ L2

hR
ð14Þ

f ¼ tctf
2

ð15Þ

r ¼ pR
nL

ð16Þ
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S ¼ fEf

lGcRh
ð17Þ

A1 ¼ 2

l
ðx4 þ 6x2r2 þ r4Þ þ 2

Gf

Ef
ðx2 þ r2Þ ð18Þ

A2 ¼ 2ðvf
l
þ Gf

Ef
Þðx2 þ r2Þ ð19Þ

A3 ¼ 2

l
þ 2

Gf

Ef
ðx2 þ r2Þ ð20Þ

A4 ¼ x2 þ r2 ð21Þ
here values of x can be established for the minimization of Kf. If the cylinder is very long,
the value of ρ approaches to zero, and the above equation can be simplified. And the torsion
moment can be given by:

Tcr ¼ 2pR2ðtf þ tf Þtcr ð22Þ

2.5 Shear

In the case of isotropic cylinders, the lower-bound value for transverse shear load τcrs is
1.25 times of the critical torsion stress. Thereby, for a cylinder loaded with a transverse
shear force the critical value can be computed by the following formula:

Qcr ¼ pRðtf þ tf Þtcrs ð23Þ

tcrs ¼ 1:25gsKf hEf
h

R
ð24Þ

where, Kf is the same as that for torsion.

2.6 Buckling Interaction

The interaction criterion among bending, torsion and transverse shear can be expressed by

Rc ¼ M

Mcr
þ T

Tcr
þ Q

Qcr
ð25Þ

The buckling will occur when Rc >=1

2.7 Dimensioning Procedure of Sandwich Composites

A program for dimensioning sandwich composites is carried out by the software Matlab. In
the program, the core and skin thickness are varied to obtain the minimum total weight of
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the sandwich composites. The sizing procedures of sandwich cylinders are shown as in
Fig. 1.

3 FEM Analysis

A cylinder model with length of 10 m and radius of 2 m is built to model the fuselage. The
QUAD4 and HEX8 element are chosen to model the skin and core, respectively. Both the
inner and outer skins consist of 500 QUAD4 elements and the core consists of 500 HEX8
elements. Since this study is not aimed at investigating the bonding strength between core
and skins, it is assumed that the adhesive agent is sufficiently strong to prevent the
delamination between core and skins. The core shares nodes with the two skins. The
multipoint connector RBE3 is used to equally distribute the bending and torsion moments
to the nodes around the circular end.

3.1 FEM Approach for Linear Buckling

In the finite element analysis, the overall structural stiffness is represented by:

½K� ¼ ½Ka� þ ½Kd � ð26Þ

½Ka� ¼
XN
i¼1

½ka�i ð27Þ

½Kd � ¼
XN
i¼1

½kd �i ð28Þ

increase tf

increase tf increase tf increase tf

determine the

on inner pressure
materials failure

shear buckling
buckling

find the
optimum set of

tc and tf

interaction
torsion

buckling
bending
buckling

face wrinklingminimum tf depend
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nono
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no
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tc = [5:30:5]

Fig. 1 Flow diagram of the sizing procedure for sandwich cylinders
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where [Ka] is the system linear stiffness matrix; [Kd] is the differential stiffness which
denotes the higher-order terms of strain–displacement relationship; ½ka�i is the linear
stiffness of the i-th element; ½kd �i is the differential stiffness of the i-th element and it is a
function of geometry, element type, and applied loads.

The total potential energy is given by:

½U � ¼ 0:5fugT ½Ka�fug þ 0:5fugT ½Kd �fug ð29Þ
where {u} is the displacement vector. In order to achieve the static equilibrium of the
structure, the potential energy has a stationary value. Therefore, the relationship can be
formulated by:

@½U �
@ui

¼ ½Ka�fug þ ½Kd�fug ¼ 0 ð30Þ

where Ui is the displacement of the i-th degree of freedom. The equation can then be
rewritten as (detailed derivation can be referred to[15])

½Ka� þ li½Kd �j j ¼ ½0� ð31Þ
where || stands for the determination of the matrix, and the number of eigenvalue li is equal
to the number of degree of freedom of the FEM model. The buckling load can be obtained
by the equation:

Pcri ¼ liPa ð32Þ
where Pa is the applied loads. In general, the lowest eigenvalue gains most interests, because
it leads to the critical load and the structure fails before reaching higher buckling loads.

For certain load cases, the absolute value of the lowest eigenvalue should be larger than
1 to prevent buckling.

3.2 Material Failure Criteria Applied in the Nastran

In Nastran, the layer thickness, fiber orientation and stack sequence can be defined in the
PCOMP entry. The stress, strain, failure index (including a bonding failure index) can be
obtained. The Tsai-Wu failure criterion is here used to evaluate the composites failure.

ð 1
Xt

� 1

Xc
Þs1 þ ð 1

Yt
� 1

Yc
Þs2 þ s2

1

XtXc
þ s2

1

XtXc
þ 2F12s1s2 þ s2

12

S2
¼ 1 ð33Þ

where, X and Y is the tensile/compressive strength in 1- and 2- directions, respectively. S is
the shear strength. Subscripts t and c stand for the tension and compression respectively.
F12 should be determined experimentally unless it is provided. σ is the actual stress.

In order to avoid the composites failure, the absolute value of left-hand side of Eq. 33
should be less than 1.

4 Verification of FEM Model

In this section, the buckling loads obtained by analytical formulation and the FEM are
compared to each other under the loading cases including axial compression, bending, shear
and torsion. Subsequently, the optimization results of the FEM are compared to the results
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obtained by procedure in Section 2.6. In the FEM analysis, the material properties are
exactly the same as in the analytical method and the face materials are quasi-isotropic. The
material properties and load cases can be found in Appendix A.

4.1 Comparison of Buckling Loads

The length and radius of the cylinder are supposed to be 10 m and 2 m respectively, and the
face and core thickness are 1 mm and 30 mm, respectively. In the FEM, the mesh density is
25 by 20 and the boundary condition is simply supported. The results are shown in Table 1.
It can be seen that for the bending and torsion loads, the buckling loads determined by the
FEM show a reasonable agreement with those obtained from the analytical models.
However, for the transverse shear force, a large difference can be observed.

4.2 Comparison of Sizing Results for the Sandwich Cylinder

The optimization of sandwich composites cylinders with FEM can be expressed as:
Minimize:

MðxÞ ð34Þ
Subject to:

Abs lð Þ > 1 ð35Þ

s xð Þ=S < 1 ð36Þ

xl < x < xu ð37Þ
The objective function is the mass of the cylinder, and the constraints are the materials

strength, local and global buckling. The variables are the skin thickness tf. The core
thickness tc increases from 5 mm to 30 mm by 5 mm interval.

In Fig. 2, the resulting tf and weight are both displayed as tc increases. It is revealed that
the total sandwich structural weight is minimum when tc=15 mm. As tc increases, tf
decreases with a nearly linear trend. The optimization results obtained by FEM and by
analytical method show a good agreement. However, the current analytical and FEM
optimization have such limitations:

1, the laminates are here assumed to be isotropic and thus the composite layup should be
limited to obtain the quasi-isotropic property.

2, the buckling stability under internal pressure is not considered due to lack of proofing
equations.

3, the criterion for the stability of the sandwich structure does not take the cylinder length
into account.

Bending(Nm) Shear(N) Torsion(Nm)

analytical 2.6E7 1.9E6 6.3E6

FEM 2.2E7 1.4E6 6.1E6

Deviation 16% 26% 3.2%

Table 1 Buckling load computed
by analytical and FEM
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Therefore, the FE model need to be further developed to obtain a more accurate
optimization model. In the following section, a more advanced model is built.

4.3 Parametric Optimization of Sandwich Cylinder

In this FEM analysis, both the fiber orientation and layer number will be taken as variables.
Meanwhile, the internal pressure loads will be added. There are two steps: First, the fiber
orientation is frozen and the layer thickness is optimized. The objective is the minimum
total structural weight. The minimum laminates thickness (the layers number) can be
determined by the first step. Secondly, the laminates thickness is frozen and the fiber
orientation is optimized to attain a maximum buckling load. The FE model is shown in
Fig. 3. In this model, the Tsai-Wu criterion is used to predict the composites failure.
Because the materials in Appendix A do not supply the bonding shear stress limit F12,
another carbon/epoxy materials is here applied and its property is shown in Appendix B.

4.3.1 Step 1: Determine the Minimum Layers Number

At the beginning, the sandwich structure with tc 20 mm is set as a baseline, and the initial
layup is [0/30/45/60/90]s. As mentioned earlier, the laminate orientation is not changed but
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Fig. 3 The load cases and boundary condition of the FEM model
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the layer thickness is varied to satisfy the constraints of structural buckling and composites
materials failure.

In the initial design, the maximum failure index is 2.03 (Fig. 4) and the buckling eigenvalue
is −0.22. To prevent the buckling of the structure, the absolute value of the buckling
eigenvalue should be larger than 1 and the failure index is less than 1. Therefore the
maximum failure index decreases to be 0.506 (Fig. 5) and the buckling eigenvalue is −1.02.
After optimization for layer thickness, the initial layer number per skin is 10 and the final
layer number is 34.

Meanwhile, by comparison of the failure index of the Figs. 4 and 5, It is found find that
the failure fringe is skew at the fixed end of the cylinder in Fig. 4, and the fringe is
straighter in Fig. 5. This maybe is caused by the effect of the torsion moment as the material
strain reduces when the thickness increase. It can also be found that the stress is not evenly
distributed around the cylinder cross-section. The crown section undergoes the largest
tension strain and its failure index is the largest. The side panel mainly endures the shear
strain and its failure index is the lowest.

4.3.2 Step 2: Determination of the Optimum Fiber Orientation

As known from the first step, each skin consists of at least 34 layers in order to satisfy the
buckling and composites failure criteria. In this section, the 34 layered laminate is built in the
Patran. The layer orientations are chosen as the variables. The possible values of the orientations
are [0, ±30, ±45, ±60, 90]. Because the laminate is symmetric, only 17 variables are studied.

From Fig. 6, it can be shown that 0° layup is the most effective for improving the
buckling load, because bending moment is the preceding load compared with torsion
moment. Under the bending moment, the sandwich cylinder mainly endures axial
compression. And the elastic modulus of the 0° layup is the largest in axial direction.
However, it should be noted that as the number of the 0° layup increases, the failure index
rises. The increase of layup in the longitudinal direction enhances the stability of sandwich
composites cylinder (Fig. 7).

Fig. 4 The deformation and maximum failure indices at the initial design
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4.4 Optimization for Sandwich Composites Cylinder with C Frame

In Section 4.3, it can be found that too many plies are needed to achieve the requirement of
the stability and the materials safety. It seems not a weight-efficient choice (the weight is
2294 Kg). In order to reduce the laminates thickness, C frames are added to the sandwich
cylinder shell, and whether the addition of frames decreases the weight will be discussed in
this section.

The initial composites layup for both skins is here [0/30/45/60/90]s. The optimization
variables and their ranges are:

Frame height H and width W <20 mm, 100 mm>
Frame thickness t and t1 <0.5 mm, 10 mm>
Fiber orientation< −90, 90>

Fig. 5 The deformation and maximum failure indices after optimization

Fig. 6 The variable history of
the second step of the
optimization
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Figure 8 shows the buckling eigenvalue and the total weight history. It can be seen that
the eigenvalue decreases from approximately −0.35 to −1.0, and the total weight increases
from about 1150 to 1350. Because only the frame sizes affect the total weight, the frame
size history will be analyzed together with Fig. 9. From the initial design to the first design
cycle, the weight decreases because the frame thickness t and t1 become lower. And the
buckling eigenvalue decreases because of the frame width W increases.

Figure 10 shows the deformation and the fringe of maximum failure index for
composites. Because the frame spacing is 2 m and the cylinder length is 10 m, there are five
cyclic fringe areas along the axial direction. At the frame location, the maximum index is
lower. In addition, the maximum failure index is largest at the top part of the cylinder. At
this area, the maximum tensile stress exhibits. It is the same as the phenomenon in Fig. 4.

As shown in Fig. 11, the fiber orientation history is different with the trend in Fig. 6, the
0° in not dominant at the final design any more. After the addition of the frame, the global
buckling is probably not the critical constraint for the fiber orientation. The fiber orientation
needs to be optimized to guarantee the safety of the composites. From Figs. 8 and 10, it is
also found that the absolute value of the bucking eigenvalue is 1 and the maximum failure
index is 0.94 (also close to 1) at the final design.

Fig. 7 Frame stiffened model and the frame sketch
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4.5 The Core Materials

For the sandwich structure applied in aerospace, the core materials mainly include the foam
and honeycomb. They both have a relatively high transverse bending stiffness. Therefore,
four kinds of honeycomb and two kinds of foam are studied for the optimum design of the
sandwich composites cylinder. Their mechanical properties are listed in Appendix C. The
honeycomb core is also modeled as the HEX8 element and the materials are 3D orthotropic.

After the optimization for core materials, the results are shown in Table 2. Here the
maximum value of constraint denotes the extent to satisfy the constraint, when it becomes
smaller the constraint requirement is better fitted. It can be seen that the sandwich structure
with Rohacell 200 WF foam results in the lowest weight. And the one with Glassfiber
Honeycomb core exhibits the largest weight. In addition, the fiber orientations of 30°, 45°
and 60°are not efficient to improve the structural stability compared with 0° and 90°under
the load cases. Meanwhile, the frame thickness t is less efficient compared to the thickness
t1 (the denotation of t and t1 can be referred to Fig. 7).

0 1 2 3 4 5
0.0

2.0x10-2

4.0x10-2

6.0x10-2

8.0x10-2

1.0x10-1

Fr
am

e 
S

iz
e/

m

Design cycle

 t
 W
 H
 t1
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Fig. 10 The maximum failure index and deformation at the final design
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By comparison between Figs. 12 and 13, It can be found that the honeycomb core
mainly endures the compressive stress under bending deformation, while the foam core
mainly undergoes compressive stress at the top and bottom and tensile stress at the side
part. Moreover, the stress of the honeycomb cylinder in the radial direction is even
distributed while the foam core behaves largest tensile stress at the center of the frame
spacing.

4.6 ANOVA Optimization Design Towards Frame Pitch and Core

Because the core and the frame are modeled as solid and beam elements, respectively, it is
difficulty to set the frame pitch (fr) and core thickness as variables in this model. The two
variables are optimized by an orthogonal design. Each of them has three levels and the L9
orthogonal array is chosen for the analyses of the parameters on the final weight. As the
Rohacell 200 WF is most efficient, it is adopted as the core materials in this section. The
optimization results are shown in Table 3.

An ANOVA (Analysis Of Variance) analysis is conducted for better understanding of the
influence of the two factors on the final weight. The following conclusions can be obtained
based on the results of the ANOVA analysis (Table 4).
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Table 2 Results of optimization for different core materials

Core Materials Weight(Kg) Max_ constraint [0/30/45/60/90]s W/H/t/t1(mm)

HONEYCOMB Al 1/4-ACG-.003 1876 0.006 [9/1/1/1/3]s 17/65/0.7/2

Aramid
HRH-10-1/8

1988 0.006 [8/1/1/1/3]s 41/81/0.9/2

Glassfiber
HRP-3/16

2093 0.01 [9/1/1/1/2]s 31/72/0.6/2

Al 5/32-5052-0.002 1827 0.003 [7/1/1/1/3]s 100/100/0.5/0.9

FOAM 200 WF 1450 0.02 [1/1/1/1/2]s 100/100/0.5/4.8

110 WF 1833 0.02 [8/1/1/1/3]s 61/100/0.5/1.2

Note: the term “max_constraint” denotes the extent in which a particular constraint is satisfied. A value of 0
corresponds to a reserve factor of 1
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a, The core thickness gives a larger influence on the final weight than the frame pitch.
b, The final optimum weight increases with increasing the core thickness.
c, The sample with tc=5 mm and fr=0.5 has the minimum weight.

5 Conclusion

In this paper, firstly an analytical criterion for face wrinkling and structural buckling under
different loading cases and their combination is introduced. An optimization for sandwich
cylinders is conducted based on the analytical formulae. Second, the FEM is used to

Fig. 12 The distribution of stress in radial direction at the honeycomb core

Fig. 13 The distribution of stress in radial direction at the foam core
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optimize the same sandwich cylinder. The FEM-based optimization results are compared
with the analytical results and show a good agreement. Third, the FEM model is used to
study the influence of the layer number and fiber orientation on the structural efficiency.
The optimization is divided into two steps: the fiber orientation is fixed, while the
optimum layer number is determined to achieve the minimum weight; then the thickness
is fixed and the fiber orientations are optimized to obtain the maximum buckling load.
Fourth, C frames are added to the sandwich cylinder to improve the structural efficiency.
Lastly, different core materials are studied and an ANOVA design is introduced to
determine the optimum frame space and core thickness. The following conclusions are
made:

For sandwich cylinder without any stiffeners, the buckling constraint is critical. The
addition of frames can efficiently improve the structural stability.
The 200FW foam is more efficient than honeycomb materials for the fuselage. In
addition, the normal stress in the radial direction is different between the two kinds of
core materials.

Table 3 Results of optimization for different frame pitch and core thickness

Core thickness(mm) Frame space(m) Weight(Kg) Max_constraint [0/30/45/60/90]s W/H/t/t1(mm)

5 2 1419 0.07 [4/1/1/1/2]s 100/100/1.9/4.9

1 1130 0.003 [1/1/1/1/2]s 100/100/0.5/3.5

0.5 1129 0.002 [1/1/1/1/2]s 87/100/0.5/2.1

10 2 1310 0.04 [1/1/1/1/3]s 100/100/1.5/4.9

1 1249 0.003 [1/1/1/1/2]s 63/100/0.6/5.6

0.5 1245 0.003 [1/1/1/1/2]s 70/100/0.5/2.4

20 2 1450 0.02 [1/1/1/1/2]s 100/100/0.5/4.8

1 1454 0.0008 [1/1/1/1/2]s 100/100/1.7/2.4

0.5 1461 0.003 [1/1/1/1/2]s 44/100/0.5/1.4

Core thickness Frame pitch Result

Experiment 1 1 1 1129

Experiment 2 1 2 1130

Experiment 3 1 3 1419

Experiment 4 2 1 1245

Experiment 5 2 2 1249

Experiment 6 2 3 1310

Experiment 7 3 1 1461

Experiment 8 3 2 1454

Experiment 9 3 3 1450

Average of level 1 1226.0 1278.3

Average of level 1 1267.7 1277.3

Average of level 1 1455.0 1393.0

Extreme Level difference 229.0 115.7

Table 4 The ANOVA analysis
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For the frame stiffened sandwich cylinder, the core thickness has a larger influence on
the final weight than the frame spacing.
Increase of the fiber orientation in the axial direction is the most effective to increase
the buckling load when the bending moment is dominant.
It is not much precise to set the layer number and orientation at the same time for the
optimization using the classical algorithm. The two-step optimization is a good choice
to determine the thickness and the fiber orientation.
The sandwich cylinder with core thickness of 5 mm and frame space of 0.5 m exhibit
the minimum weight.
Finally, one should note that the interface between the skin and the core is not
modeled in this paper. If debonding between skins and the core is one of main
issues of failure modes, a bonding layer should be added into the model.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

Appendix

A. Materials and load case for cylinder sizing

skin laminate properties[0/45/90/-45]s(t=1 mm);ρf=1072 Kg/m3; HTA/977-2

stiffness[16] strength[16]

E1=49024 Xt=420

E1=49024 Yt=420

Gxy=18696 Xc= −407
vf=0.31 Yc= −407

S=130

Core properties(ρc=205 Kg/m3); Rohacell 200WF foam

stiffness[16] strength[16]

Ec=350 σt,c=5.8

Gc=150 σc,c= −9.0
vc=0.31 τx=5.0

Flight Loadings (KNm)

T=900 KNm My=9500 KNm Mx=2600 KNm P=0.13 Mpa

B. Unidirectional Carbon ud_t300_n5208[17] for the FEM analysis in Section 4

E1 E2 G12 G23 G13 υ12 ρ

181000 10300 7170 5000 7170 0.28 1600

Xt Yt Xc Yc S F12

1500 40 1500 246 68 50
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C. Properties of core materials

Honeycomb:

Materials name E3 Compression G12 G23 ρ[kg/m3]

Al 1/4-ACG-.003 1000 440 220 83.3

Aramid HRH-10-1/8 621 120.69 75.86 144

Glassfiber HRP-3/16 1793 303 193 192

Al 5/32-5052-0.002 2411 930 372 129.6

Foam:

Materials name E1,2,3 G12,23,13 ρ[kg/m3]

ROHACELL® 200 WF 350 150 205

ROHACELL® 110 WF 180 70 110

Notes: the unit of the modulus and strength of all materials here is Mpa
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