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Abstract
The globalization in business and tourism becomes crucial more and more for the 
economical sustainability of local communities. In the presence of an epidemic 
outbreak, there must be such a decision on the policy by the host community as 
whether to accept visitors or not, the number of acceptable visitors, or the condition 
for acceptable visitors. Making use of an SIRI type of mathematical model, we con‑
sider the influence of visitors on the spread of a reinfectious disease in a community, 
especially assuming that a certain proportion of accepted visitors are immune. The 
reinfectivity of disease here means that the immunity gained by either vaccination 
or recovery is imperfect. With the mathematical results obtained by our analysis on 
the model for such an epidemic dynamics of resident and visitor populations, we 
find that the acceptance of visitors could have a significant influence on the disease’s 
endemicity in the community, either suppressive or supportive.

Keywords Epidemic dynamics · Mathematical model · Ordinary differential 
equations · Public health · Reinfection

Mathematics Subject Classification 92B99 · 92D30 · 92D25 · 91D99 · 00A71

1 Introduction

As the world becomes more of a global village with advances in technology and 
easier accessibility to different places, it is very crucial to consider side effects like 
the spread of diseases (Cossar 1994). The history of man is replete with stories of 
epidemics invading groups of people, sometimes resulting in mortality. In the long 
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run, such diseases can disappear and recur in the future or become less deadly due to 
people getting immune. Some notable epidemics in history include the “Spanish” flu 
(1918–1919), the Black Deaths (1346–1350) which invaded Europe from Asia and 
recurred for three decades afterwards before getting eliminated (Brauer 2017), the 
SARS beginning with some infection on an airplane in 2003 (Wang and Wu 2018), 
and today’s pandemic situation with the COVID‑19 since mid‑December 2019 after 
the outbreak in China (CDC 2022; ECDC 2022; NIID 2022; WHO 2022). The 
exponentially increasing number of cases and large‑scale spread of the emerging 
virus about the COVID‑19 are being initiated and promoted by the human mobil‑
ity in global and local scales (Walters et al. 2018; Du Toit 2020; Liu and Saif 2020; 
Munster et al. 2020; Phan et al. 2020; Ramaswamy et al. 2021; Zhang et al. 2022).

There have been many investigations concerning the effect of a people’s displace‑
ment due to social and political unrest as well as the natural migration of disease 
vectors to new areas on the epidemic outbreak, and especially conducted have been 
many theoretical/mathematical studies taking into account the possibility of indi‑
viduals becoming infective during transportation and contributing significantly to 
transport‑related infection (see Wilson (2010) and references therein; especially 
for the SARS virus transmission, see Wang (2014)). Not only the particular trans‑
portation with a long travel, but also the human quotidian mobility as a common 
phase of the human activity can be considered as one of relevant factors that could 
cause the  spread of a transmissible disease such as influenza (WHO 2018; Seno 
2020). So is the case of today’s pandemic of COVID‑19 in local regions of every 
country (CDC 2022; ECDC 2022; WHO 2022). In the work presented by Parikh 
et al. (2013), a synthetic population model of the Washington DC metro area was 
extended to include leisure and business travelers classified as transients. The final 
size of the epidemic among residents was found to be remarkably higher when tran‑
sients were included in the simulation of a flu‑like disease outbreak. In considering 
the emerging diseases of wildlife, Tompkins et al. (2015) show that the key drivers 
of such diseases are agents from domestic sources and human‑assisted exposure to 
infectious agents from wild populations. Talking about swine fever otherwise known 
as hog cholera, wild boar populations are known to serve as reservoir for the dis‑
ease, thereby constituting a great challenge for domestic pig farmers, veterinarians 
and other stakeholders (Mur et al. 2018; Postel et al. 2018).

In this paper, we shall focus on the influence of temporal visitors in a com‑
munity according to the endemicity of a transmissible disease spreading over the 
community. Since the globalization in business and tourism becomes crucial more 
and more for the economical sustainability of local communities, the condition 
about the acceptance of visitors would be an important part of the community’s 
policy for the public health about a spreading transmissible disease in and out of 
it. There must be such a decision on the policy by the host community as whether 
to accept visitors or not, the number of acceptable visitors, and the condition for 
acceptable visitors. Actually the importance of such a policy on the tourism regu‑
lation has been recognized more and more in the post‑COVID‑19 period (Ras‑
tegar et  al. 2021; Volgger et  al. 2021; Yan et  al. 2021; Jones 2022; Okafor and 
Yan 2022). Making use of a mathematical model modifying the basic SIR model 
incorporating the regulated acceptance of an amount of temporal visitors in the 
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community, which may be called an SIRI type of mathematical model, we shall 
try to consider the influence of visitors on the spread of a reinfectious disease in a 
community, especially assuming that a certain proportion of visitors are immune 
at the entry into the community.

The reinfectivity of disease in this paper means that the immunity gained by 
either vaccination or recovery is imperfect. For a spreading transmissible dis‑
ease accompanied with a reinfectivity, the acceptance of visitors must influence 
the endemicity of such a disease in the community. Then the community’s pol‑
icy must take account of the reinfection risk  for both of residents and visitors. 
Actually there are transmissible diseases with a reinfectivity, including influ‑
enza  (Davies et  al. 1984; Hay et  al. 2001; Earn et  al. 2002; Price et  al. 2022; 
Wang et al. 2022), pertussis (Hethcote 1999; van Boven et al. 2000), Lyme dis‑
ease  (Nadelman et al. 2012), hand, foot and mouth disease  (Zhang et al. 2019), 
malaria  (Arias et  al. 2022; Rehman et  al. 2022), tuberculosis  (Vynnycky and 
Fine 1997; Horsburgh et al. 2022; Qiu et al. 2022), Ebola virus disease (MacIn‑
tyre and Chughtai 2016; Agusto 2017), chronic lung diseases (Yum et al. 2014), 
invasive pneumococcal disease  (Lipsitch 1997), meningococcal disease  (Gupta 
and Maiden 2001), and COVID‑19 (Crawford 2022; Kumar et al. 2020; Le Page 
2022; Mensah et al. 2022; Nguyen et al. 2022; Ren et al. 2022; Saad‑Roy et al. 
2022; Salzer et al. 2022; Shaheen et al. 2022), although the reinfectivity has been 
still requiring scientific researches to understand its kinetics and other nature.

According to Chowell et  al. (2016), it is crucial to formulate reliable mod‑
els that embody the basic transmission characteristics of specific pathogens and 
social scenarios. They further stated that improved models are required to capture 
the variation in early growth dynamics of real epidemics in order to gain better 
understanding of the dynamics as they reviewed trends in modeling and classify‑
ing early epidemic progression. Recently the mathematical epidemic dynamics 
models are being used to estimate or evaluate some epidemiological parameters 
and to predict the temporal variation in the morbidity about a spreading disease, 
making use of epidemiological data (Siettos and Russo 2013). So are particularly 
those on the COVID‑19 spread (for example, Athayde and Alencar 2022; Kob‑
ayashi et al. 2020; Lin et al. 2022; Musa et al. 2022 ), however, this is not the case 
in our paper.

We are going to try to shed a light on the theoretical side about the influence 
of temporal visitors on the epidemic dynamics with a transmissible disease with 
a reinfectivity, since the acceptance of visitors under such an epidemic dynamics 
with the risk of reinfection could be a crucial factor to influence the endemicity in 
the community which must take a policy about the acceptance (Dansu and Seno 
2019; Crawford 2022; Salzer et al. 2022). We shall consider one of the simplest 
epidemic dynamics models for a transmissible disease with reinfectivity, which is 
an SIRI type of mathematical model, taking into account the influence of tempo‑
ral visitors accepted by a community. With the mathematical results obtained by 
our analysis on the model, it will be implied that the acceptance of visitors could 
have a significant influence on the disease’s endemicity in the community, either 
suppressive or supportive, depending on the risk of reinfection and the nature of 
accepted visitors.
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2  Assumptions

We consider the spread of a transmissible disease during a short‑term period, that is, 
a season after the community starts to accept visitors from the outside, satisfying the 
following assumptions on the epidemic dynamics: 

[H1] The demographic change in the resident population is negligible in the sea‑
son.

[H2] The fatality of disease on the resident and visitor populations is negligible 
in the season.

[H3] The community starts the acceptance of a number of temporal visitors from 
the outside in the season after a transmissible disease has already invaded in it.

[H4] The entry flow of visitors is constant, that is, the net entry rate is constant 
independently of time.

[H5] The exit of visitors from the community follows a constant per capita exit 
rate.

[H6] No infected visitor is accepted by the community (i.e., the perfect quaran‑
tine), so that every accepted visitor is susceptible or immune to the disease at the 
entry into the community.

[H7] A given proportion of visitors is immune at the entry into the community.
[H8] Only the susceptible residents can get the vaccination to become immune, 

and it is not available for any visitor staying in the community.
[H9] Immune visitor has a possibility to get reinfected (i.e., the imperfect or par-

tial immunity) during its stay in the community, the same as the immune resident 
does.

[H10] Infected visitor has the same exit rate as the susceptible visitor, that is, we 
neglect any influence of the infection on the visitor’s stay in the community.

Assumption H1 indicates a time‑independent constant size of resident population 
during the season in which the epidemic dynamics is going on. We then ignore the 
death due to the transmissible disease under consideration in the epidemic dynam‑
ics too, as indicated by the assumption H2. Assumption H3 indicates that the com‑
munity accepts the visitors, even undergoing the spread of a transmissible disease, 
since the fatality of the disease is negligible with the assumption H2. No disease 
invasion with the visitors is assumed, as indicated by the assumption H6. From the 
assumptions H4 and H6, the community carries out the perfect regulation for the 
visitors at the entry  concerning the entry number and the quarantine. Assumption 
H5 mathematically means that the exit of a visitor from the community follows the 
homogeneous Poisson process. In a model with ordinary differential equations, it 
can be introduced with a constant exit rate per visitor. Assumption H7 is to reflect 
the situation of public health out of the community, applying the mean‑field approx‑
imation for the proportion of immune visitors at the entry.

Since we assume that the community undergoes the disease spread, the assump‑
tion H8 gives the existence of a vaccination program for the residents, while it is not 
applied to the visitors. However, since the disease is reinfectious as assumed by the 
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assumption H9, the immunity obtained by the vaccination or the recovery from  the 
disease works only to reduce the risk of reinfection. Hence the state transition in 
terms of the disease follows the susceptible–infective–recovered/immunized–infec‑
tive (SIRI) structure in our modeling, as used for example in Gomes et al. (2004, 
2005), Gökaydin et al. (2007), Stollenwerk et al. (2007), Martins et al. (2009), Pinto 
et al. (2010), Song et al. (2011), Georgescu and Zhang (2013), Guo et al. (2014), 
Pagliara et al. (2018), Buonomo (2020), Ghosh et al. (2020), Wang (2021), Srivas‑
tava et al. (2022).

Remark that the assumed reinfection is not caused by the waning or loss of immu‑
nity, which must take a certain period after getting it by the infection or vaccination. 
As already mentioned in the introduction section, we assume instead the imperfect‑
ness of immunity obtained by the infection or vaccination. Hence we do not intro‑
duce any specific period or time scale to get reinfected after getting the immunity. 
Since the infection or vaccination must generate an immunity against the disease, 
the assumption H9 indicates that the immunity is imperfect or partial against the 
infection, for example, due to the multiplicity of pathogen types (e.g., mutated vari‑
ants) (Gökaydin et al. 2007; Wang et al. 2022). Because the cross‑immunity is well‑
known for such similar pathogens by the antigen for a type of pathogen, the reinfec‑
tion may be suppressed or fail to induce   an effective symptom to reproduce and 
discharge the pathogen to the environment.

For a simplification, the assumption H10 indicates that the exit of visitor is inde‑
pendent of whether the visitor is infected or not during the stay in the community. 
This assumption would be appropriate when the expected duration of the visitor is 
sufficiently shorter than the latent period, whereas it may be less appropriate when it 
is long. As assumed by the assumption H2, we consider a transmissible disease with 
little serious symptom, so that the assumption H10 would be applicable for visitors 
infected by such a disease.

3  Model

3.1  Generic model

With these assumptions given in the previous section, we shall consider the follow‑
ing model of ordinary differential equations (Fig. 1):

Fig. 1  Scheme of the model 
for the epidemic dynamics in a 
community accepting temporal 
visitors, given by the system of 
(1) and (2)
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where Sv , Iv , and Rv are the subpopulation sizes of susceptible, infective, and 
immune visitors respectively. Similarly Sr , Ir , and Rr are the corresponding subpopu‑
lation sizes about the residents. The population sizes of residents and visitors stay‑
ing in the community are denoted by N = Sr + Ir + Rr and m = Sv + Iv + Rv respec‑
tively. The resident population size N is constant independently of time t, as seen 
from d(Sr + Ir + Rr)∕dt = 0 for any t by the system (2). From the  assumption H3 
in Sect. 2, the community starts the acceptance of visitors from the outside in the 
considered season after a transmissible disease has already invaded in it. The visitor 
population size m could be reasonably assumed to be less than the population size 
of residents N: m < N , whereas we shall not specifically assume so but consider the 
mathematically general case of m in the subsequent sections without any constraint 
except for m ≥ 0 . On the other hand, as given in Sect. 3.2, we will take an assump‑
tion on the visitor population size m accompanying with a confinement for the net 
entry rate of visitors Λ.

All parameters are positive. Parameter � is the proportion of immune visitors at 
the entry ( 0 ≤ � ≤ 1 ). Proportion 1 − � of visitors is susceptible at the entry. Param‑
eter q is the per capita exit rate of visitor. Thus the expected duration of a visitor’s 
stay in the community is given by 1/q.

Parameter �� is the reinfection coefficient for immune resident and visitor, 
while � is the infection coefficient for susceptible ones. Then the infection forces 
for the susceptible individual and the immune individual are respectively given 
by �(Ir + Iv)∕(N + m) and by ��(Ir + Iv)∕(N + m) for both resident and visitor. 
Remark that, in the setup for our modeling, the visitors do not form any spe‑
cific subcommunity distinct from the resident population. From the  assump‑
tion H3, they are temporal visitors for tourism, business etc. For this setup, we 
could assume that most of visitors are independent of the others. Thus, for a 
mathematical simplification, the influence of their movement on the epidemic 

(1)

Dynamics for the visitor population:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

dSv

dt
= (1 − �)Λ − �

Ir + Iv

N + m
Sv − qSv;

dIv

dt
= �

Ir + Iv

N + m
Sv + ��

Ir + Iv

N + m
Rv − �Iv − qIv;

dRv

dt
= �Λ + �Iv − ��

Ir + Iv

N + m
Rv − qRv;

(2)

Dynamics for the resident population:

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

dSr

dt
= −�

Ir + Iv

N + m
Sr − �Sr;

dIr

dt
= �

Ir + Iv

N + m
Sr + ��

Ir + Iv

N + m
Rr − �Ir;

dRr

dt
= �Sr + �Ir − ��

Ir + Iv

N + m
Rr,



1 3

What Influence Could the Acceptance of Visitors Cause on the… Page 7 of 42 3

dynamics is introduced in the epidemic dynamics by the mean‑field approxima‑
tion. Further, although the visitors’ contribution to the infection forces would be 
different from the residents’ one because of the difference in the mobility/behe‑
vioral pattern, the infection forces have their same contributions in our modeling 
here. This modeling may be regarded as an oversimplification, though we think 
that our model would still worth being considered to get a cue for the discussion 
about the influence of visitors on the epidemic dynamics within a community.

From the assumption H9 in Sect. 2, our modeling assumes that the immunity 
is imperfect or partial against the infection. Because of the cross‑immunity by 
the obtained antigen, we reasonably assume that 0 ≤ � ≤ 1 in our model, so that 
the reinfection coefficient �� is not beyond the coefficient for susceptible � . That 
is, the infection after the vaccination or recovery from the disease generally has 
a smaller likelihood than that for the susceptible. For the extremal case of � = 1 , 
the vaccination or recovery does not work at all to reduce the risk of reinfection. 
For � = 0 , the recovery and vaccination give the perfect immunity so that there 
is no likelihood of reinfection. Thus the parameter � means an index for the like‑
lihood of reinfection after the recovery or vaccination, so that it can be regarded 
as an index for the risk of reinfection. Remark here again that the reinfection in 
our modeling is assumed to be not due to the waning of immunity (like for the 
SIRS models) but due to the imperfect immunity, and hence also the vaccinated 
individual has a risk to get infected, as introduced by the assumption H9.

Parameter � is the recovery rate of an infective individual, and the recovered 
individual gets immunity, which is however imperfect. Only the susceptible resi‑
dents can get the vaccination, with rate � , and it is not available for any visitor 
staying in the community. Since the vaccination is imperfect from the assump‑
tion H9, it works to reduce the risk of infection but is unable to protect the vac‑
cinated individual from the infection.

3.2  Assumption for the visitor population size in the community

According to the dynamics for the visitor population (1), we have

where m = m(t) ∶= Sv(t) + Iv(t) + Rv(t) is the visitor population size at time t, Λ the 
net entry rate of visitors, and q the per capita exit rate of visitor. Now let us con‑
sider the stationary situation with respect to the temporal change of visitor popula‑
tion size. This means that the number of visitors is assumed to be stationary, which 
may be regarded as a consequence of the regulation of their entry by the community, 
following the assumptions H4 and H6 given in Sect. 2. Therefore we mathematically 
assume the situation to satisfy that dm∕dt = 0 . Hence we put Λ = qm , and hereafter 
treat the visitor population size m as a positive constant.

dm

dt
= Λ − qm,
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3.3  The Initial Condition

Following the assumption of the stationary visitor population size with Λ = qm as 
given in Sect. 3.2, we have the following dynamics for the visitor population at the 
disease‑free state:

where Rv means the subpopulation size of immune visitors in the disease‑free com‑
munity. It can be easily found that this dynamics results in an eventual approach to 
the equilibrium state such that (Sv,Rv) → ((1 − �)m, �m) as t → ∞ for any non‑nega‑
tive initial condition with  Sv(0) ≥ 0 and Rv(0) = m − Sv(0) ≥ 0 . For this reason, let 
us assume the following initial condition for the epidemic dynamics with the model 
given by the system of (1) and (2):

where Sr0 + Ir0 + Rr0 = N (a positive constant) with Sr0 > 0 , Ir0 > 0 and Rr0 ≥ 0 . 
This initial condition defines the situation when the community starts the acceptance 
of visitors from the outside, even under the existence of disease in it. The setup of 
this initial condition as our modeling follows the assumption H3 in Sect. 2.

4  Basic Reproduction Number

In the biological/epidemiological context, the basic reproduction number is defined 
as the expected number of new cases of infection caused by an infective individ‑
ual within a population consisting of susceptible contacts only (for a useful  review 
about the definition, the translation, and the practical application, see Delamater 
et al. (2019)). Such a situation can never occur for the epidemic dynamics in reality 
or even by any mathematical model. This is because the secondary infection itself 
changes the situation of population where the disease spreads. Increase of infectives 
must reduce the likelihood of the contact between an infective and an susceptible 
since the likelihood to contact the other infectives becomes less negligible. For this 
reason, the basic reproduction number must be mathematically defined to match the 
above conceptual definition in the biological/epidemiological context. Briefly say‑
ing, it is mathematically defined as the supremum of the expected number of new 
cases of infection caused by an infected individual at the stage of disease invasion 
in the community (Seno 2022). Following this definition in a biological/epidemio‑
logical sense, a mathematical theory can be used to derive the basic reproduction 
number about the mathematical model of epidemic dynamics, for example, as the 
spectral radius of a specific matrix, called the “next generation matrix”, for a sys‑
tem of ordinary differential equations governing an epidemic dynamics (see Diek‑
mann et al. (2013) for a complete reference, or see Lewis et al. (2019) or van den 

⎧
⎪⎨⎪⎩

dSv

dt
= (1 − �)qm − qSv;

dRv

dt
= �qm − qRv,

(3)(Sv, Iv,Rv, Sr, Ir,Rr) =
(
(1 − �)m, 0, �m, Sr0, Ir0,Rr0

)
,
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Driessche (2017) for the  further review). The choice of the derivation way of R0 
may depend on the nature of the model. As well known on the nature of the basic 
reproduction number, the invasion of a transmissible disease in the community is 
successful if R0 > 1 , while it fails if R0 < 1 . In this context, the  invasion success 
means the increase of infectives in the early stage of the disease spread after a suffi‑
ciently small number of infectives appear in the community, and the invasion failure 
implies the decrease.

For our model given by the system of (1) and (2), we can derive the following 
formula of the basic reproduction number R0 (Appendix A):

where � ∶= m∕N , and for a convenience in the following arguments, we define 
R00 ∶= �∕� , which is the basic reproduction number for the community when no 
visitor comes in (i.e., m = 0 ). Note that this basic reproduction number is funda‑
mental for the epidemic dynamics in the community after it starts the acceptance of 
visitors.

From the formula (4), we can immediately find that the basic reproduction num‑
ber R0 is less than 1 independently of the nature of accepted visitors if R00 < 1 . 
Hence, if the disease fails its invasion in the community with R00 < 1 before starting 
the acceptance of visitors, the number of infectives in the community cannot turn to 
increase in the early period after the acceptance of visitors starts. As we will see in 
the later sections of the analysis on our model, this is valid only in the early period 
after the acceptance of visitors starts.

As for the dependence of R0 on the nature of accepted visitors, we note that R0 is 
monotonically decreasing in terms of � when the visitors contain some immune ones 
(i.e., 𝜌 > 0 ). Moreover, R0 becomes smaller as the proportion of immune visitors at 
the entry � gets larger. If any visitor is susceptible, that is, when � = 0 , there is no 
contribution of the visitors to the basic reproduction number R0 , that is, R0 = R00.

As an extremal case, if the immunity gained by the vaccination or recovery from 
the disease does not work at all to reduce the risk of reinfection, that is, if � = 1 , the 
basic reproduction number R0 is independent of the acceptance of visitors. This is 
easily understandable, since the reinfection is regarded as the same as the infection 
for the susceptible so that the immune individual is regarded as equivalent to the 
susceptible according to the epidemic dynamics when � = 1 . Such an extreme case 
may be regarded as corresponding to an SIS type of the epidemic dynamics, where 
the state transition in terms of the disease follows the susceptible–infective–suscep‑
tible structure.

(4)

R0 =
1

�
⏟⏟⏟

the expected

duration of

infectivity.

×
[

�
N

N + m
⏟⏞⏟⏞⏟

the supremum

of the expected

new cases per

unit time for the

resident.

+
{
�
(1 − �)m

N + m
+ ��

�m

N + m

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

the supremum of the expected new

cases per unit time for the visitor,

given by the sum of secondary

infections for susceptible

and immune visitors.

]

= R00

{
1 − (1 − �)�

�

1 + �

}
,
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As the other extremal case, if the immunity is perfectly effective to make the 
immune individual unable to be reinfected, that is, if � = 0 , the entry of immune visi‑
tors works to reduce the value of R0 for the community. This extremal case may be 
regarded as corresponding to an SIR type of the epidemic dynamics, where the state 
transition in terms of the disease follows the susceptible–infective–removed structure.

From these arguments with the basic reproduction number R0 given by (4), we 
can get the following result on the influence of the acceptance of visitors in the early 
period after the community starts the acceptance of visitors (Fig. 2):

Theorem 4.1 The acceptance of visitors influences the basic reproduction number 
R0 given by (4) for the epidemic dynamics with the system of (1) and (2) as follows: 

 (i) The acceptance of visitors makes R0 smaller than R00 if and only if the visi-
tors contain some immune, and its decline becomes greater as the number of 
accepted visitors gets larger;

 (ii) When R00 > 1 , if 

 then R0 > 1 independently of the number of accepted visitors;
 (iii) When R00 > 1 , if and only if 𝜌 > 𝜌0

∞
 , the acceptance of visitors so many as 

 makes R0 < 1.

The result (i) in Theorem 4.1 means that the acceptance of visitors does not help the 
spread of a transmissible disease as long as R00 ≤ 1 , and instead it could work to sup‑
press the spread if the community accepts a sufficiently large number of visitors with a 
sufficiently large proportion of immune, as indicated by the results (ii) and (iii).

� ≤ �0
∞
∶=

1

1 − �

(
1 −

1

R00

)
,

𝜇 >
1 − 1∕R00

(1 − 𝜖)𝜌 − (1 − 1∕R00)

Fig. 2  The dependence of the 
basic reproduction number R0 
given by (4) on parameters 
(1 − �)� and � ∶= m∕N . Numer‑
ically drawn with R00 = 1.4
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Note that these arguments and result are about the effect of the acceptance of visitors 
on the temporal change of the number of infectives only in the early period after the 
community starts the acceptance of visitors. They cannot be necessarily applied for its 
later temporal change. It may be possible that the number of infectives turns to increase 
in a later period, independently of what final state the epidemic dynamics approaches, 
as we will actually see in the later sections of the analysis on our model.

5  Non‑Dimensional Transformation of the System

Since the population sizes of visitors and residents are assumed constant independently 
of time, the above six dimensional system of (1) and (2) can be mathematically reduced 
to the following closed four dimensional one, making use of Sv + Iv + Rv = m and 
Sr + Ir + Rr = N:

Now we apply the following transformation of variables and parameters for this four 
dimensional system:

and then we can derive the following non‑dimensinalized system:

where R00 ∶= �∕� as before. Remark that the symbol R00 is formally introduced 
now as a dimensionless parameter for the non‑dimensionalized system given by (5), 

dSv

dt
= (1 − �)qm − �

Ir + Iv

N + m
Sv − qSv;

dIv

dt
= �

Ir + Iv

N + m
Sv + ��

Ir + Iv

N + m
(m − Sv − Iv) − �Iv − qIv;

dSr

dt
= −�

Ir + Iv

N + m
Sr − �Sr;

dIr

dt
= �

Ir + Iv

N + m
Sr + ��

Ir + Iv

N + m
(N − Sr − Ir) − �Ir.

� ∶= �t; xv(t) ∶=
Sv(t)

m
; yv(t) ∶=

Iv(t)

m
; xr(t) ∶=

Sr(t)

N
; yr(t) ∶=

Ir(t)

N
;

� ∶=
m

N
; c ∶=

q

�
; � ∶=

�

�
,

(5)

dxv

d�
= (1 − �)c −R00

yr + �yv
1 + �

xv − cxv;

dyv

d�
= R00

yr + �yv
1 + �

xv + �R00

yr + �yv
1 + �

(1 − xv − yv) − (1 + c)yv;

dxr

d�
= −R00

yr + �yv
1 + �

xr − �xr;

dyr

d�
= R00

yr + �yv
1 + �

xr + �R00

yr + �yv
1 + �

(1 − xr − yr) − yr,
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while its meaning is given in Sect. 4 as the basic reproduction number for the com‑
munity when no visitor comes in. The initial condition (3) now becomes

with xr0 ∶= Sr0∕N = 1 − Ir0∕N = 1 − yr0 , where we set Rr0 = 0 for a simplicity that 
there is no immune resident at the initial, which will not affect any mathematical 
result obtained in our analysis on the model. In the following sections, we shall ana‑
lyze the non‑dimensionalized system (5) to investigate the nature of the epidemic 
dynamics by our model with the system of (1) and (2).

6  Dynamics Without Reinfection

In this section, we consider the system without reinfection, that is, with � = 0 , 
while we will consider our model only with 𝜖 > 0 in the subsequent sections. For 
the system (5) with � = 0 , we can easily find that xr → 0 and yr → 0 as � → ∞ . In 
other words, since the epidemic dynamics for the resident population is governed 
by an SIR model with the continuous vaccination measure  for the susceptibles, 
the disease eventually disappears in the resident population, and the residents 
come to make no contribution to the epidemic dynamics. This means that, for 
our model of (1) and (2) without reinfection, no endemic state can be established 
as long as the community does not accept any visitor from the outside. Thus we 
consider the case of 𝜇 > 0 hereafter in this section, when the community accepts 
the visitors.

By the local stability analysis with the eigenvalues of Jacobi matrix at the 
equilibrium, we can easily find that the endemic equilibrium E+0(̃x

∗
v
, ỹ∗

v
, 0, 0) with

is locally asymptotically stable when it exists. Then we can get the following theo‑
rem on the epidemic dynamics given by (5) with � = 0 (Appendix B):

Theorem 6.1 For the system (5) with � = 0 , if and only if the condition

is satisfied, the endemic equilibrium E+0(̃x
∗
v
, ỹ∗

v
, 0, 0) with (6) uniquely exists, and 

it is globally asymptotically stable. Otherwise, the disease‑eliminated equilibrium 
E00(1 − �, 0, 0, 0) is globally asymptotically stable.

See Fig. 3(a, b) for numerical examples.

(xv(0), yv(0), xr(0), yr(0)) = (1 − �, 0, xr0, yr0)

(6)x̃∗
v
=

(1 + c)(1 + �)

R00�
; ỹ∗

v
= c

(1 − �

1 + c
−

1 + �

R00�

)

(7)R00 >
1

1 − 𝜌

(
1 +

1

𝜇

)
(1 + c)
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From the basic reproduction number R0 given by (4) with � = 0 , we can easily 
find that R0 > 1 if the condition (7) is satisfied, while the inverse does not neces‑
sarily hold. Hence we can get the following result:

Corollary 6.1.1 Even when the disease successfully invades in the community with 
R0 > 1 , the disease without reinfection eventually gets eliminated unless the condi-
tion (7) is satisfied.

When the condition (7) is unsatisfied with R0 > 1 , the number of infectives 
increases at the initial stage of disease spread in the community, and then it eventu‑
ally turns to decrease toward zero, as numerically exemplified in Fig. 3(a).

For � = 1 , the condition (7) cannot be satisfied:

Corollary 6.1.2 If the community accepts only immune visitors, the epidemic dynam-
ics without reinfection necessarily approaches the disease‑eliminated equilibrium.

Therefore, when the reinfection is impossible/negligible, the acceptance of visi‑
tors with a high immune proportion at the entry does not cause the endemicity of 
disease.

(a) (b)

(c) (d)

Fig. 3  Temporal variations by the system (5). Numerically drawn with a  (�,�, �) = (0.0, 0.2, 0.1) 
( R0 = 7.87 ); b  (�,�, �) = (0.0, 0.5, 0.1) ( R0 = 7.73 ); c  (�,�, �) = (0.1, 0.2, 0.1) ( R0 = 7.88 ); 
d  (�,�, �) = (0.1, 0.5, 0.8) ( R0 = 6.08 ); and commonly R00 = 8.0 ; c = 1.0 ; � = 1.0 ; 
(xv(0), yv(0), xr(0), yr(0)) = (1 − �, 0.0, 0.99, 0.01) . In a, d, the system approaches the disease‑eliminated 
equilibrium, and in b, c, it approaches the endemic equilibrium
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We must remark that the endemic equilibrium E+0 is sustained only by the visitor 
subpopulation, while no resident contributes to the epidemic dynamics at the equi‑
librium because all residents have eventually become immune by the past infection 
or vaccination [Fig. 3(a, b)]. From Theorem 6.1, for the disease with a sufficiently 
high infectivity, the acceptance of many visitors with a sufficiently small immune 
proportion at the entry can induce  such an apparent endemicity in the community. 
Therefore, as seen in Fig.  3(a, b), when the community successfully controls and 
reduces the number of visitors to make � sufficiently small, or if the community 
suspends accepting the visitors, the endemic state can be disrupted, and then the 
disease gets eliminated in the community. However, as we will see in the subsequent 
sections, if the disease is accompanied by a reinfectivity, this could not be the case 
[Fig. 3(c, d)].

7  Dynamics with no Visitor

Next we consider the model of (1) and (2) with reinfection, that is, with 𝜀 > 0 , when 
the community does not accept any visitor from the outside. Thus we analyze the 
following system derived from (5) with xv = yv ≡ 0 and � = 0:

As already mentioned in Sect. 4, the basic reproduction number for this epidemic 
dynamics is defined as R0 = R00 = �∕� . It is easy to find that there are two feasible 
equilibria for this system of (xr, yr) : the disease‑eliminated equilibtium E0(0, 0) and 
the endemic equilibrium E+

(
0, 1 − 1∕(�R00)

)
 . The endemic equilibrium E+ exists 

when and only when 𝜖R00 > 1.
Making use of the local stability analysis for the equilibrium of the system (8), we 

can easily find that the equilibrium E0 is locally asymptotically stable if 𝜖R00 < 1 , 
and unstable if 𝜖R00 > 1 . The endemic equilibrium E+ is locally asymptotically 

(8)

dxr

d�
= −R00yrxr − �xr;

dyr

d�
= (1 − �)R00yrxr − �R00y

2
r
−
(
1 − �R00

)
yr.

(a) (b) (c)

Fig. 4  Application of the isocline method for the system with no visitor (8) when a  𝜖R00 < 1 ; 
b �R00 = 1 ; (c) 𝜖R00 > 1
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stable whenever it exists. Taking account of the result on the local stability of equi‑
libria, the isocline method for the two dimensional system (8) can further give the 
following result (see Fig. 4):

Theorem 7.1 For the system (8) with no visitor, 

 (i) if and only if �R00 ≤ 1 , the disease‑eliminated equilibrium E0 is globally 
asymptotically stable;

 (ii) if and only if 𝜖R00 > 1 , the endemic equilibrium E+ exists and is globally 
asymptotically stable, while E0 is unstable.

This result was shown for a mathematically equivalent SIRI model in Gomes 
et al. (2005).

From this result, we find that, even with the basic reproduction number 
R00 > 1 , the community approaches the disease‑eliminated equilibrium E0 if 
R00 ≤ 1∕� with 0 < 𝜖 < 1 . In such a case, the number of infectives increases at 
the initial stage of disease spread in the community, and then it eventually turns 
to decrease toward zero. If and only if the basic reproduction number is suffi‑
ciently large as R00 > 1∕𝜖 , the disease becomes endemic in the community.

As shown in the previous section, no endemicity arises in the community with 
a non‑reinfectious disease when no visitor is accepted. Now the result obtained in 
this section indicates that the endemicity of a disease can arise in the community 
even with no visitor if the disease has both sufficiently high infectivity ( R00 > 1 ) 
and sufficiently high reinfectivity ( 𝜖 > 1∕R00).

8  Dynamics with Visitors

8.1  Disease‑Eliminated Equilibrium

For the system (5) with visitors, we can get the following result on the local sta‑
bility of the disease‑eliminated equilibrium E00(1 − �, 0, 0, 0) (Appendix C):

Theorem 8.1 The disease‑eliminated equilibrium E00 is unstable if

while it is locally asymptotically stable if the inverse inequality of (9) is satisfied.

It can be easily seen that the condition (9) becomes equivalent to (7) as � → 0 . 
This shows a mathematical consistency of Theorem 8.1 to Theorem  6.1.

Moreover we can prove the following result about the relation of the basic 
reproduction number R0 defined by (4) to the condition (9) (Appendix D):

(9)𝜖R00 > G(𝜇, 𝜌) ∶=

[{
1

𝜖
(1 − 𝜌) + 𝜌

}
1

1 + c

𝜇

1 + 𝜇
+

1

1 + 𝜇

]−1
,
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Corollary 8.1.1 When R0 ≤ 1 , the disease‑eliminated equilibrium E00 is locally 
asymptotically stable.

This result is consistent with the biological/epidemiological meaning of the 
basic reproduction number with respect to the invasion success of a disease in 
a population, which was described in Sect.  4 and references therein. Under the 
condition that R0 < 1 at the initial stage of a disease invasion in a population, 
the number of infectives is expected to decrease toward the disease elimination. 
In a sense of epidemic dynamics, such a decline of the infective subpopulation 
toward the elimination must follow the locally asymptotic stability of the dis‑
ease‑free equilibrium (as referred in most literatures), which corresponds here to 
the disease‑eliminated equilibrium E00 . The result of Corollary 8.1.1 shows this 
consistency.

8.2  Endemic Equilibrium

From the equations of (5), if the endemic equilibrium E++(x
∗
v
, y∗

v
, x∗

r
, y∗

r
) with y∗

v
> 0 

and y∗
r
> 0 exists for 𝜌 < 1 , then it must satisfy that

and x∗
r
= 0 . In contrast, at the endemic equilibrium E++ for � = 1 , we have

and x∗
v
= 0 , x∗

r
= 0 , instead of (10). We can obtain the following result on the exist‑

ence of E++ (Appendix E):

Theorem 8.2 The endemic equilibrium E++ uniquely exists if and only if the condi-
tion (9) is satisfied.

Hence, when the disease‑eliminated equilibrium E00 is locally asymptotically 
stable, the endemic equilibrium E++ does not exist, and when E00 is unstable, E++ 
uniquely exists.

For the local stability of the endemic equilibrium E++ for (5), we can get the fol‑
lowing result:

(10)

R00

y∗
r
+ �y∗

v

1 + �
= c

1 − � − x∗
v

x∗
v

,

y∗
v
=

1 − � − x∗
v

x∗
v

(1 − �)x∗
v
+ �

1 + 1∕c + �(1 − � − x∗
v
)∕x∗

v

,

y∗
r
=

1 − � − x∗
v

x∗
v

�

1∕c + �(1 − � − x∗
v
)∕x∗

v

,

(11)
�R00

y∗
r
+ �y∗

v

1 + �
(1 − y∗

v
) − (1 + c)y∗

v
= 0,

�R00

y∗
r
+ �y∗

v

1 + �
(1 − y∗

r
) − y∗

r
= 0,
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Theorem 8.3 When the endemic equilibrium E++ exists, it is locally asymptotically 
stable.

This theorem can be proved by the eigenvalue analysis on the Jacobi matrix 
for (5) at the endemic equilibrium E++ , applying the Routh‑Hurwitz criterion 
(Appendix F). Although we could not get any analytical result on the global sta‑
bility of the endemic equilibrium E++ , our numerical calculations imply that it 
is globally asymptotically stable when it exists. We then have the mathematical 
consistency of Theorems 8.1, 8.2, and 8.3 to Theorem  6.1 as for the case with no 
reinfection, � = 0.

9  Influence of the Acceptance of Visitors

9.1  Shift in Endemicity

As the important preliminary for our analysis on the model, we can easily find the 
following features of G(�, �) defined in (9):

• G(0, �) = 1.
• G(�, �) is monotonically increasing in terms of � for any 𝜇 > 0.
• G(�, �) is 

⎧⎪⎨⎪⎩

monotonically increasing in terms of 𝜇 if 𝜌 > 𝜌s ∶= 1 −
c

1∕𝜖 − 1
;

constant (≡ 1) independently of 𝜇 if 𝜌 = 𝜌s;

monotonically decreasing in terms of 𝜇 if 𝜌 < 𝜌s.
• G(𝜇, 𝜌) < 1 for any positive � and 𝜌 < 𝜌s if and only if 𝜖 < 1∕(1 + c).
• G(�, 0) is 

⎧⎪⎪⎨⎪⎪⎩

monotonically increasing in terms of 𝜇 if 𝜌s < 0, that is , 𝜖 >
1

1 + c
;

constant (≡ 1) independently of 𝜇 if 𝜌s = 0, that is , 𝜖 =
1

1 + c
;

monotonically decreasing in terms of 𝜇 if 𝜌s > 0, that is , 𝜖 <
1

1 + c
.

• G(𝜇, 0)

⎧
⎪⎨⎪⎩

> 1 for any 𝜇 > 0 and 𝜖 >
1

1 + c
;

> 1 for any 𝜇 > 0 and 𝜖 <
1

1 + c
.

• inf
𝜇∈(0,∞)

G(𝜇, 𝜌) =

⎧
⎪⎨⎪⎩

G(0, 𝜌) = 1 for 𝜖 ≥ 1

1 + c
;

lim
𝜇→∞

G(𝜇, 𝜌) = G∞(𝜌) ∶=
1 + c

(1 − 𝜌)∕𝜖 + 𝜌
< 1 for 𝜖 <

1

1 + c
.

• sup
𝜇∈(0,∞)

G(𝜇, 𝜌) =

{
G∞(𝜌) ≥ 1 for 𝜌 ≥ 𝜌s;
G(0, 𝜌) = 1 for 𝜌 < 𝜌s.
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• inf
(0,∞)×(0,1)

G(𝜇, 𝜌) =

⎧
⎪⎨⎪⎩

G(0, 0) = 1 for 𝜖 ≥ 1

1 + c
;

lim
𝜇→∞

G(𝜇, 0) = 𝜖(1 + c) < 1 for 𝜖 <
1

1 + c
.

• sup
(0,∞)×(0,1)

G(�, �) = lim
�→∞

G(�, 1) = 1 + c.

Then from these mathematical features of G(�,�) , and Theorems 8.1, 8.2, and 
8.3, we can get the following result on the disease endemicity in the community 
accepting the visitors (see Figs. 5 and 6):

Theorem 9.1 Independently of whether the community accepts the visitors or not, it 
approaches an endemic equilibrium if �R00 ≥ max

[
1, G∞(�)

]
, while it approaches 

the disease‑eliminated equilibrium if �R00 ≤ min
[
G∞(�), 1

]
 , where

Fig. 5  Parameter region and boundary indicated by the condition (9). The boundary curve is given 
by G(�, �) . a  𝜖 < 1∕(1 + c) ; b  � = 1∕(1 + c) ; c  𝜖 > 1∕(1 + c) . Numerically drawn with a  � = 0.10 ; 
b � = 0.25 ; c � = 0.40 , commonly for c = 3.0 . Solid curves are for � = 0.25, 0.5, 0.75, 1.0 in each fig‑
ure. Dotted curve indicates G∞(�)

Fig. 6  (�,R00)‑dependence of the endemicity, derived from the condition (12) in Theorem 9.1. Numeri‑
cally drawn for a � = 0.0 ; b � = 0.6 ; c � = 1.0 , commonly with c = 1.0 . For the region Ω+ , the accept‑
ance of visitors may change the endemic situation of the community for the disease‑eliminated equilib‑
rium as described in Theorem 9.2, while, for the region Ω− , it may drive the situation of the community 
approaching the disease‑eliminated equilibrium toward the endemic equilibrium as described in Theo‑
rem  9.3. For the region out of Ω− and Ω+ , the endemicity is independent of whether the community 
accepts visitors or not
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Only when

the endemicity could significantly depend on the acceptance of visitors.

The inequality (12) gives a necessary condition for which the acceptance of 
visitors could change the epidemic situation in the community from the endemic 
equilibrium to the disease‑eliminated equilibrium or vice versa. The corresponding 
parameter regions are shown as Ω− and Ω+ in Fig. 6. Numerical examples of such a 
change of endemicity by the acceptance of visitors are given in Fig. 7(a, c).

Further from the monotonicity of G(�, �) in terms of � and � as described in the 
above, we find the following result on the condition with respect to the influence of 
the acceptance of visitors on the endemicity in the community:

Corollary 9.1.1 Independently of whether the community accepts the visitors or not, 
it approaches an endemic equilibrium if

while it approaches the disease‑eliminated equilibrium if

Only when

the endemicity could significantly depend on the acceptance of visitors.

G∞(�) ∶= lim
�→∞

G(�, �) =
1 + c

(1 − �)∕� + �
.

(12)min
[
G∞(𝜌), 1

]
< 𝜖R00 < max

[
1, G∞(𝜌)

]
,

�R00 ≥ sup
(0,∞)×(0,1)

G(�, �) = 1 + c,

�R00 ≤ inf
(0,∞)×(0,1)

G(�, �) = min
[
1, �(1 + c)

]
.

(13)min
[
1, 𝜖(1 + c)

]
< 𝜖R00 < 1 + c,

Fig. 7  Temporal variations of infective subpopulations yr and yv by the systems (5) and (8). Numeri‑
cally drawn for model (8) until � = 40 and model (5) for 𝜏 > 40 , with a  (�,�, �) = (0.2, 0.9, 0.3) 
( R0 = 3.55 ; �R00 = 0.8 ); b (�,�, �) = (0.3, 0.9, 0.3) ( R0 = 3.60 ; �R00 = 1.2 ); c (�,�, �) = (0.3, 0.9, 0.9) 
( R0 = 2.81 ; �R00 = 1.2 ); and commonly R00 = 4.0 ; c = 1.0 ; � = 1.0 ; (xr(0), yr(0)) = (0.99, 0.01) ; 
(xv(40), yv(40)) = (1 − �, 0.0) . In a and c, the endemicity is changed before and after starting the accept‑
ance of visitors, while in b the system remains at an endemic state before and after it
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As seen in Figs.  5 and 6, such an influence to cause a change of endemicity 
depends on the nature of accepted visitors (i.e., the number, the immune proportion, 
and the duration of stay).

Moreover, from the features of G(�, �) described in the above, we find that, if 
�R00 ≥ G∞(�) ≥ 1 , the disease is endemic independently of how many visitors the 
community accepts even under the condition (13), as seen in Fig. 5. Thus, in compari‑
son to the result for the community with no visitor (i.e., � = 0 ) given by Theorem 7.1, 
we can get the following result (see Fig. 6):

Theorem  9.2 Suppose that the disease was endemic under the condition that 
1 < 𝜖R00 < 1 + c before the community accepts visitors. If the community accepts 
visitors with an immune proportion

the disease remains endemic independently of how many visitors are accepted. If the 
community accepts visitors with an immune proportion 𝜌 > 𝜌∞ , then the acceptance 
of visitors so many as

makes the community approach the disease‑eliminated equilibrium. Even if 𝜌 > 𝜌∞ , 
the acceptance of visitors with � ≤ �c does not sufficiently shift the endemicity, and 
the disease remains endemic.

The critical value �∞ satisfies the equation �R00 = G∞(�∞) . The latter case of 
𝜌 > 𝜌∞ in Theorem 9.2 corresponds to the parameter region Ω+ in Fig. 6. Figure 8(b) 
shows a numerical example of the (�,�)‑dependence in such a case when 𝜖R00 > 1.

(14)� ≤ �∞ ∶=
1

1 − �

(
1 −

1 + c

R00

)
,

(15)𝜇 > 𝜇c ∶=
1 − 1∕(𝜖R00)

1∕(𝜖R00) − {(1 − 𝜌)∕𝜖 + 𝜌}∕(1 + c)

Fig. 8  (�,�)‑dependence of the endemicity, derived from the condition (9) with the results 
given by Theorems  8.1, 8.2, and 8.3: a, b  𝜖 < 1∕(1 + c) ; c  𝜖 > 1∕(1 + c) . Numerically drawn 
for a  (R00, �, c) = (4.0, 0.2, 1.0) ( �R00 = 0.8 ); b  (R00, �, c) = (4.0, 0.3, 1.0) ( �R00 = 1.2 ); 
c (R00, �, c) = (1.8, 0.8, 1.0) ( �R00 = 1.44 ), each of which satisfies the condition (13) in Corollary 9.1.1
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Since �c defined by (15) is monotonically decreasing in terms of � when 𝜖R00 > 1 , 
we note that

where 𝜇c1 > 0 for 1 < 𝜖R00 < 1 + c . Then we get the following corollary:

Corollary 9.2.1 When 1 < 𝜖R00 < 1 + c , if the community accepts visitors few 
enough to have 𝜇 < 𝜇c1 , the disease remains endemic independently of how much 
proportion of visitors is immune at the entry.

This result is numerically pointed out in Fig. 8(b, c).
Moreover we note that, when R00 < 1 + c so that �∞ defined by (14) is nega‑

tive, the first case in Theorem  9.2 does not occur. Then the (�,�)‑dependence 
becomes as shown by Fig. 8(c), where there is a finite value of � beyond which 
the community approaches the disease‑eliminated equilibrium, independently of 
the immune proportion in the visitors at the entry:

Corollary 9.2.2 When 1 < 𝜖R00 < 𝜖(1 + c) , if the community accepts visitors so 
many as 𝜇 > 𝜇c0 , the disease tends to get eliminated independently of how much 
proportion of visitors is immune at the entry. When 𝜖(1 + c) ≤ 𝜖R00 < 1 + c , only 
the acceptance of visitors with 𝜌 > 𝜌∞ and 𝜇 > 𝜇c can change the endemicity and 
lead the community to the disease‑eliminated equilibrium.

Hence the value �c0 gives a sufficient number of accepted visitors 
which is effective to suppress the disease spread in the community when 
1 < 𝜖R00 < 𝜖(1 + c) . See the numerical examples in Fig. 7(b, c).

In contrast, when the risk of reinfection is so weak as 𝜖 < 1∕(1 + c) , the 
acceptance of visitors may cause the opposite influence on the epidemic dynam‑
ics, as numerically indicated by Fig. 8(a):

Theorem 9.3 Suppose that the disease was getting eliminated under the condition 
that 𝜖(1 + c) < 𝜖R00 < 1 before the community accepts visitors. If the community 
accepts visitors with an immune proportion � ≥ �∞ , the disease keeps getting elimi-
nated independently of how many visitors are accepted. If the community accepts 
visitors with an immune proportion 𝜌 < 𝜌∞ , then the acceptance of visitors so many 
as 𝜇 > 𝜇c induces the endemicity, and the disease becomes endemic. Even if 𝜌 < 𝜌∞ , 
the acceptance of visitors so few as � ≤ �c does not induce the endemicity, and the 
disease keeps getting eliminated.

(16)�c ≥ �c
||�=1 = �c1 ∶=

1 − 1∕(�R00)

1∕(�R00) − 1∕(1 + c)
,

(17)�c0 ∶= �c
||�=0 =

1 − 1∕(�R00)

1∕(�R00) − 1∕{�(1 + c)}
.
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The situation considered in this theorem corresponds to the parameter region 
Ω− in Fig. 6, and is numerically exemplified by Fig. 7(a). Theorem 9.3 indicates 
that, if the proportion of immune visitors is so low as 𝜌 < 𝜌∞ , there exists the 
upper threshold �c for the number of accepted visitors to suppress the revival 
of the disease spread after starting the acceptance of visitors in the community 
where the disease was getting eliminated.

9.2  Acceptance of Only Immune Visitors

When the community accepts only immune visitors, that is, when 𝜇 > 0 with � = 1 , 
G(�, 1) is necessarily greater than 1 and monotonically increasing in terms of � . 
Then, from Theorem 9.2, we can find that only the acceptance of visitors so many as 
𝜇 > 𝜇c1 can induce the disease‑eliminated equilibrium in the community where the 
disease was endemic before starting the acceptance of visitors. As defined by (16), 
the critical value �c1 depends on the risk of reinfection, and then, from Theorems 9.1 
and 9.2, we can obtain the following result (see Figs. 8 and 9):

Corollary 9.2.3 Suppose that the disease was endemic under the condition that 
𝜖R00 > 1 before the community accepts only immune visitors. If �R00 ≥ 1 + c , the 

Fig. 9  Parameter region and boundary indicated by the condition (9) with the results given by Theo‑
rems 8.1, 8.2, and 8.3 when the community accepts only immune visitors with � = 1 . Numerically drawn 
with R00 = 4.0 and c = 1.0 . Refer to Sect. 9.2
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endemicity remains independently of how many visitors the community accepts. If 
1 < 𝜖R00 < 1 + c , the acceptance of visitors so many as 𝜇 > 𝜇c1 is effective to make 
the disease eliminated.

Therefore the community under an endemic situation could have a preferable 
influence to suppress the endemicity by accepting only immune visitors only when 
the reinfectivity is sufficiently low as indicated by Fig. 9.

If the community was approaching the disease‑eliminated equilibrium with the 
risk of reinfection so low as �R00 ≤ 1 , the community keeps approaching the dis‑
ease‑eliminated equilibrium even after starting the acceptance of only immune visi‑
tors, independently of how many visitors the community accepts.

9.3  Acceptance of Only Susceptible Visitors

Now let us consider the case where all visitors accepted by the community are sus‑
ceptible, that is, when 𝜇 > 0 with � = 0 . Then, from Theorem  9.3, we find three 
different cases according to the influence of the acceptance of visitors as shown in 
Fig. 10, taking account of the features of G(�, 0) given in Sect. 9.1. We can get the 
following result:

Corollary 9.3.1 When the disease was getting eliminated under the condition that 
�R00 ≤ 1 , the acceptance of only susceptible visitors induces

In contrast, when the disease was endemic under the condition that 𝜖R00 > 1 , the 
acceptance of only susceptible visitors induces

⎧⎪⎨⎪⎩

no endemicity if 𝜖R00 ≤ 𝜖(1 + c);

no endemicity if 𝜖R00 > 𝜖(1 + c) and 𝜇 ≤ 𝜇c0;

the endemicity if 𝜖R00 > 𝜖(1 + c) and 𝜇 > 𝜇c0.

Fig. 10  Parameter region and boundary indicated by the condition the condition (9) with the results 
given by Theorems  8.1, 8.2, and 8.3 when all visitors accepted by the community is susceptible with 
� = 0 : a  R00 > 1 + c ; b  R00 = 1 + c ; c  R00 < 1 + c . Numerically drawn with a  c = 1.0 ; b  c = 3.0 ; 
c c = 5.0 , and commonly R00 = 4.0 . Refer to Sect. 9.3



 Y. Xie et al.

1 3

3 Page 24 of 42

The critical value �c0 is defined by (17).
Therefore the acceptance of only susceptible visitors could have the counter 

effect according to the endemicity, depending on the infectivity of disease. Only 
for a moderately high infectious disease such that 1∕𝜖 < R00 < 1 + c , the accept‑
ance of only susceptible visitors so many as 𝜇 > 𝜇c0 can lead the community to the 
disease‑eliminated equilibrium. For the disease with a low reinfectivity such that 
1 + c < R00 ≤ 1∕𝜖 , the acceptance of only susceptible visitors so many as 𝜇 > 𝜇c0 
can lead the community to the endemic equilibrium.

Further, as indicated by Fig. 10, we find that there is a sufficient value of � which 
determines the epidemic situation in the community:

Corollary 9.3.2 If R00 > 1 + c , the acceptance of only susceptible visitors so many 
as

necessarily makes the disease endemic. In contrast, if R00 < 1 + c , the acceptance 
of only susceptible visitors so many as

necessarily makes the disease eliminated.

The former case means an unpreferable influence of the sufficiently large number 
of visitors for the community with the spread of a highly infectious disease, while 
the latter does a preferable influence for the community with the spread of a moder‑
ately infectious disease.

9.4  Change in Endemic Size

Figure 11 shows the numerically drawn �‑dependence of endemic sizes y∗
r
 and y∗

v
 at 

the endemic equilibrium determined by (10). As the figure implies, the endemic size 
necessarily has a monotonic dependence on the number of accepted visitors, repre‑
sented now by � , about which we can get the following analytical result (Appendix 
G):

Theorem 9.4 The endemic sizes y∗
r
 , y∗

v
 , and the total endemic size

⎧
⎪⎨⎪⎩

no change in the endemicity if 𝜖R00 ≥ 𝜖(1 + c);

no change in the endemicity if 𝜖R00 < 𝜖(1 + c) and 𝜇 ≤ 𝜇c0;

the elimination of disease if 𝜖R00 < 𝜖(1 + c) and 𝜇 > 𝜇c0.

� ≥ 1 + c

R00 − (1 + c)

� ≥ (R00 − 1)(1 + c)

(1 + c) −R00
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are monotonically increasing in terms of � if and only if �R00 ≤ 1 or

(18)z∗ ∶=
y∗
r
+ �y∗

v

1 + �
=

I∗
r
+ I∗

v

N + m

Fig. 11  �‑dependence of endemic sizes. Numerically drawn by (10) with a  (�, �) = (0.2, 0.4) 
( �R00 = 0.8 , �

c
= 0.56 ); b  (�, �) = (0.25, 0.4) ( �R00 = 1.0 , �

c
= 0.0 , �

c
= 0.67 ), c  (�, �) = (0.3, 0.1) 

( �R00 = 1.2 , 𝜇
c
< 0 , �

c
= 0.40 ), d (�, �) = (0.3, 0.8) ( �R00 = 1.2 , �

c
= 1.67 , �

c
= 0.40 ), and commonly 

R00 = 4.0 ; c = 1.0

Fig. 12  (�,�)‑dependence of the endemic size y∗
r
 . Numerically drawn contour maps for three cases cor‑

respond to those in Fig. 8: a �R00 = 0.8 ; b �R00 = 1.2 and �
c
= 0.40 ; c �R00 = 1.44 and �

c
= −3.31 , 

where the parameter values are respectively the same as in Fig. 8
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It can be easily found that 𝜌c < 1 when 𝜖R00 > 1 . See the numerically drawn 
(�,�)‑dependence of the endemic size y∗

r
 in Fig. 12.

We remark that, as shown in Sect. 9.2, the endemic equilibrium for � = 1 exists 
only when 𝜖R00 > 1 . Then we can find the following result too (Appendix H):

Corollary 9.4.1 When the community accepts only immune visitors (i.e., � = 1 ), the 
endemic size is monotonically decreasing in terms of �.

This result may be regarded as included in Theorem 9.4 because the condition 
given in Theorem 9.4 can never hold when � = 1 . We can see the numerical exam‑
ples in Fig. 12(b, c).

When �c defined by (19) is non‑positive with 𝜖R00 > 1 , any � cannot be smaller 
than �c , so that the endemic size is necessarily monotonically decreasing in terms of 
�:

Corollary 9.4.2 If 𝜖R00 > max
[
1, 1∕𝜖 − c

]
 , the endemic size is necessarily mono-

tonically decreasing in terms of �.

The numerical example of Fig. 12(c) illustrates the case.
For the critical case of 𝜌 = 𝜌c > 0 with 𝜖R00 > 1 , we can derive the explicit val‑

ues at the endemic equilibrium E00 from (10) (Appendix G):

Hence the endemic sizes are independent of the number of accepted visitors in this 
case:

Corollary 9.4.3 For 𝜌 = 𝜌c > 0 with 𝜖R00 > 1 , the endemic sizes y∗
r
 , y∗

v
 , and the total 

endemic size z∗ are determined independently of �.

A numerical example is given in Fig.  12(b). We note it necessary for 𝜌c > 0 
with 𝜖R00 > 1 that 1∕𝜖 − c > 1 , that is, 𝜖(1 + c) < 1 . Moreover, the case of Corol‑
lary 9.4.3 can appear only when 1 < 𝜖R00 < 1∕𝜖 − c.

Additionally we can find the following relations among the specific values �s , �∞ , 
and �c for the immune proportion of accepted visitors at the entry:

Corollary 9.4.4 It holds that 𝜌c < 𝜌∞ and 𝜌c < 𝜌s.

The proof is easy by calculating the differences �∞ − �c and �s − �c to show them 
positive. Numerical calculation of Fig. 12(b) demonstrates this result.

(19)

⎧
⎪⎨⎪⎩

𝜖R00 > 1;

𝜌 < 𝜌c ∶=
1 − 𝜖2R00 − 𝜖c

(1 − 𝜖)𝜖R00

.

(20)x∗
v
=

c

(1 − �)R00

; y∗
v
= y∗

r
= z∗ = 1 −

1

�R00

.
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Consequently as indicated by Fig.  13, the larger number of accepted visitors 
makes the endemic size bigger only when the immune proportion of accepted visi‑
tors at the entry is sufficiently small under the epidemic situation with a sufficiently 
low risk of infection.

10  Concluding Remarks

The results of our model imply that the acceptance of temporal visitors from the 
outside may induce a significant change of the epidemic state in the community. 
Contrary to an intuitive expectation, the acceptance of visitors does not necessarily 
make the epidemic situation worse in the community. Only when the reinfectivity of 
the disease is sufficiently weak, the acceptance of visitors may induce the endemic‑
ity if the community accepts the visitors with a sufficiently low immune proportion. 
Furthermore, when the reinfectivity is high, the acceptance of a sufficiently large 
number of visitors may induce the elimination of the disease if the community can 
regulate to accept the visitors with a sufficiently high immune proportion.

The visitors certainly play a role of recruitment of hosts for the infectious disease 
spread in the community. The visitors with a higher susceptible proportion could be 
regarded as a larger supply of susceptible individuals in the community, and they 
subsequently provide a fast recruitment of infectives. In contrast, the visitors with a 
high immune proportion cause only a slow recruitment of infectives with the rein‑
fection. For these reasons, the influence of the visitor acceptance on the epidemic 
dynamics with a reinfectious disease must depend on the immune proportion in 
the visitors at the entry. On the other hand, the entry of many visitors could induce 
a dilution of the infective density in the community at the same time, which is 
regarded as an advantageous influence of the visitor acceptance against the disease 
spread. In the epidemic dynamics with our model, a balance of these counteractive 

Fig. 13  Classification of the 
parameter region of (�, �) 
according to the �‑dependence 
of the change in the endemic 
size. Numerically drawn with 
R00 = 4.0 and c = 1.0 . Regions 
Ω± correspond to those in Fig. 6
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factors of the visitor acceptance with respect to the disease spread could signifi‑
cantly affect the consequence of epidemic dynamics in the community.

As a result, a preferable acceptance of visitors must be regulated to have a suffi‑
ciently large immune proportion according to the public health in the community. In 
this sense, the best policy for the visitor acceptance would be to allow the entry only 
for the immune visitors. From the results on our model, such an acceptance of only 
immune visitors may lower the endemic size, and further suppress the endemicity to 
induce the elimination of the disease spread in the community.

In contrast, when the community was on the way to the disease‑eliminated equi‑
librium before starting the acceptance of visitors, the acceptance of visitors with‑
out any epidemiological regulation may cause the revival of the disease spread in 
the community. Such a case would occur by reduced cautiousness of the disease 
before starting the acceptance of visitors, which could be caused by the reason that 
the number of infective residents became rather small in comparison to that at the 
outbreak.

Our model could be regarded as a consideration on the epidemic dynamics in a 
season. In this sense, the number of visitors may be beyond the number of residents in 
the community (i.e., 𝜇 > 1 ), as some popular touristic local places like Venice in the 
vacation season, or a certain place attracting visitors like a newly found gold mine. As 
another example, we could consider a community accepting many evacuees from a 
certain calamity. Even though the number of visitors would be smaller than the num‑
ber of residents in most cases (i.e., 𝜇 < 1 ), our results imply that the influence of the 
visitor acceptance could depend on the infectivity and reinfectivity in the epidemic 
dynamics, and the regulation on the epidemiological nature of accepted visitors.

Since the infectivity and reinfectivity are not only determined by the nature of 
disease itself but also by social custom, sanitary condition, and people’s behavior 
(Ferguson et al. 2005; Heymann 2005; Funk et al. 2009; Perisic and Bauch 2009; 
Manfredi and D’Onofrio 2013; Bavel et  al. 2020; Kapitány‑Fövény and Sulyok 
2020; Thu et  al. 2020), the influence of the visitor acceptance could depend also 
on social factors in the community which accepts the visitors under the epidemic 
dynamics. Such social factors could be affected by the situation of disease spread 
during the epidemic dynamics in the community. For example, some strategic/non‑
strategic transmission of information about the disease spread or a public health 
campaign to prevent the further disease spread could alter people’s social behavior, 
and subsequently the risk of infection/reinfection. Hence if the infectivity and rein‑
fectivity would be changeable in the epidemic dynamics, the influence of the visitor 
acceptance must be qualitatively changed.

The results from our model imply such a possibility that a shift of the infectivity and/
or reinfectivity to the weaker would induce an epidemic situation in which the accept‑
ance of visitors causes the increase in the epidemic size or the revival of disease spread 
even with the endemicity. If so, there would be repetitive revivals of disease spread in 
the community, driven by a temporal shift of the infectivity and/or reinfectivity which 
could bring a feedback influence on the policy to control the disease spread in the com‑
munity. Such theoretical/mathematical researches on the relation between the disease 
spread and the nature of hosts are interesting and require further development.
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Appendix A Derivation of R
0

In our model, the new cases consist of residents and visitors. Therefore, from the 
conceptual definition and the mathematical feature of the basic reproduction num‑
ber, we shall derive it here from the following conditions:

for the initial condition (3) with 0 < Iv(0) + Ir(0) = 0 + Ir0 ≪ 1 . This is because the 
basic reproduction number is defined as the expected number of new infectives pro‑
duced by one infective individual in an environment consisting of only susceptibles. 
Following the assumption H3 in Sect. 2, we shall adopt the initial condition (3) in 
order to define the basic reproduction number. Then, in place of the above condi‑
tions, we can use the followings:

for the initial condition (3) with 0 < Iv(0) + Ir(0) = 0 + Ir0 ≪ 1 . Remark that, in this 
context about the situation to define the basic reproduction number of our model, 
the initial infective must be a resident, which matches the assumption H3 in Sect. 2. 
Then, making use of (3), we have

Thus we find that

Consequently we can define the basic reproduction number R0 as follows:

This formula can be rewritten as given by (4) to clarify the meaning.

d(Iv + Ir)

dt

||||0<Iv+Ir≪1

> 0 for R0 > 1;
d(Iv + Ir)

dt

||||0<Iv+Ir≪1

< 0 for R0 < 1,

d(Iv + Ir)

dt

||||t=0 > 0 for R0 > 1;
d(Iv + Ir)

dt

||||t=0 < 0 for R0 < 1

d(Iv + Ir)

dt

||||t=0 =
{
�
(1 − �)m + Sr0

N + m
+ ��

�m + Rr0

N + m
− �

}
Ir0.

d(Iv + Ir)

dt

||||t=0 > 0 if and only if
𝛽

𝛾

(1 − 𝜌)m + Sr0

N + m
+

𝜖𝛽

𝛾

𝜌m + Rr0

N + m
> 1.

R0 = sup
(Sr0,Rr0)

{ �

�

(1 − �)m + Sr0

N + m
+

��

�

�m + Rr0

N + m

}

= sup
Sr0

{ �

�

(1 − �)m + Sr0

N + m
+

��

�

�m + N − Sr0

N + m

}

= sup
Sr0

{ �

�

(1 − �)m

N + m
+

��

�

�m + N

N + m
+

(1 − �)�

�

Sr0

N + m

}

=
�

�

(1 − �)m + N

N + m
+

��

�

�m

N + m
.
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Appendix B Proof for Theorem 6.1

From the arguments in the first paragraph of Sect. 6, we find that the dynamics given 
by (5) with � = 0 necessarily approaches the dynamics with the following limiting sys‑
tem in terms of the visitor population:

The feasible equilibria are Ẽ0(1 − �, 0) and Ẽ+(̃x
∗
v
, ỹ∗

v
) with (6). The former Ẽ0 cor‑

responds to the disease‑eliminated equilibrium for the system (5), E00(1 − �, 0, 0, 0) , 
and so does the latter Ẽ+ to the endemic equilibrium E+0(̃x

∗
v
, ỹ∗

v
, 0, 0) . The endemic 

equilibrium E+0 can exist when and only when the condition (7) is satisfied. By the 
local stability analysis with the eigenvalues of the Jacobi matrix at the equilibrium, 
we can easily find that the endemic equilibrium E+0 is locally asymptotically stable 
when it exists. In the following part, we shall consider its global stability.

First we set the following mathematical result on the boundedness for the solution 
of the system (B1):

Lemma B.1 For any initial condition 
(
x̃v(0), ỹv(0)

)
 in the domain

the solution 
(
x̃v(�), ỹv(�)

)
 of (B1) stays in D for any 𝜏 > 0.

Proof We can obtain the following features from (B1) for the initial condition (
x̃v(0), ỹv(0)

)
∈ D:

The first inequality indicates that x̃v cannot reach 0 from the initial value �xv(0) > 0 . 
The second equation indicates that ỹv is necessarily positive for any 𝜏 > 0 and 
�yv(0) > 0 . Then, from

(B1)

dx̃v

d�
= (1 − �)c −R00

�

1 + �
ỹvx̃v − cx̃v;

dỹv

d�
= R00

�

1 + �
ỹvx̃v − (1 + c)̃yv.

(B2)D ∶=
{(

�xv,�yv
)
∣ �xv > 0, �yv > 0, �xv +�yv < 1 − 𝜌

}
,

d�xv
d𝜏

|||||xv=0
= 1 − 𝜌 > 0; �yv(𝜏) = �yv(0) exp

[
∫

𝜏

0

{
R00

𝜇

1 + 𝜇
�xv(s) − (1 + c)

}
ds

]
> 0.

d
(
�xv +�yv

)
d𝜏

|||||�xv+�yv=1−𝜌
= −�yv < 0
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for �yv > 0 , we can find that x̃v + ỹv cannot become x̃v + ỹv = 1 − � for any 𝜏 > 0 and 
initial condition in D.   ◻

Lemma B.1 means that the domain D is invariant for the dynamics given by (B1). 
Further, when the endemic equilibrium Ẽ+ exists, satisfying the condition (7), we 
find from (6) that

Hence we have the following result:

Lemma B.2 When Ẽ+(̃x
∗
v
, ỹ∗

v
) exists, it must belong to the domain D defined by (B2).

When the condition (7) is not satisfied, that is, when the endemic equilib‑
rium does not exist, we can easily find that the disease‑eliminated equilibrium 
is globally asymptotically stable, making use of the isocline method shown by 
Fig. 14(a). In contrast, as seen from Fig. 14(b), when the condition (7) is satisfied 
and the endemic equilibrium Ẽ+ exists, the stability cannot be determined only by 
the isocline method.

When the endemic equilibrium Ẽ+ exists, let us consider the following function 
of (̃xv, ỹv) in the domain D defined by Lemma B.1:

�x∗
v
+�y∗

v
= (1 − 𝜌)

c

c + 1
+

1 + 𝜇

𝜇

1

R00

< (1 − 𝜌)
c

c + 1
+

1 + 𝜇

𝜇

1

c + 1
(1 − 𝜌)

𝜇

1 + 𝜇
= 1 − 𝜌.

(B3)
V
(
x̃v, ỹv

)
∶=

1

2

{
(̃x∗

v
− x̃v) + (̃y∗

v
− ỹv)

}2

+
(
x̃∗
v
+ c

1 + �

R00�

)(
ỹv − ỹ∗

v
− ỹ∗

v
ln

ỹv

ỹ∗
v

)
.

Fig. 14  Application of the isocline method for the system (B1) when the condition (7) is (a) not satisfied; 
(b) satisfied
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It can be easily found that V
(
x̃∗
v
, ỹ∗

v

)
= 0 and V

(
�xv, �yv

)
> 0 for any (

x̃v, ỹv
) ≠ (

x̃∗
v
, ỹ∗

v

)
 in D. Further, making use of (B1), we can derive

which becomes zero only for 
(
x̃v, ỹv

)
=
(
x̃∗
v
, ỹ∗

v

)
 , and negative for any (

x̃v, ỹv
) ≠ (

x̃∗
v
, ỹ∗

v

)
 in D. These features of V indicates that it is a Lyapunov function 

according to the endemic equilibrium Ẽ+ for the system (B1). Therefore, when the 
endemic equilibrium Ẽ+ exists for the system (B1), it is globally asymptotically sta‑
ble with respect to the dynamics given by (B1) with the initial condition in D. Since 
the dynamics of (5) with � = 0 must eventually approach that of (B1), this result 
shows the global stability of the endemic equilibrium for (5).

Appendix C Proof for Theorem 8.1

The characteristic equation det(J00 − �E) = 0 with the Jacobi matrix J00 accord‑
ing to the disease‑eliminated equilibrium E00(1 − �, 0, 0, 0) for the system (5) 
becomes

Hence we have two negative eigenvalues −1 and −� with the other two given by the 
roots of the equation that the above 2 × 2 determinant is equal to zero. Both of them 
have negative real parts if and only if

that is,

Therefore we find that the second inequality gives the necessary and sufficient 
condition that every eigenvalue has a negative real part. It can be expressed as the 
inverse inequality of (9). At the same time, we can find that, if the inverse of the 

dV

d�
= −

(
x̃∗
v
− x̃v

)2
−

�

1 + �
x̃∗
v

(
ỹ∗
v
− ỹv

)2
,

(−1 − �)(−� − �)

|||||||

{
1 − (1 − �)�

}
R00

�

1 + �
− (1 + c) − �

{
1 − (1 − �)�

}
R00

�

1 + �

�R00

�

1 + �
�R00

1

1 + �
− 1 − �

|||||||
= 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
1 − (1 − 𝜖)𝜌

�
R00

𝜇

1 + 𝜇
− (1 + c) + 𝜖R00

1

1 + 𝜇
− 1 < 0;

��
1 − (1 − 𝜖)𝜌

�
R00

𝜇

1 + 𝜇
− (1 + c)

��
𝜖R00

1

1 + 𝜇
− 1

�

−
�
1 − (1 − 𝜖)𝜌

�
R00

𝜇

1 + 𝜇
⋅ 𝜖R00

𝜇

1 + 𝜇
> 0,

⎧⎪⎨⎪⎩

�
1 − (1 − 𝜖)𝜌

�
R00

𝜇

1 + 𝜇
− (1 + c) + 𝜖R00

1

1 + 𝜇
− 1 < 0;

�
1 − (1 − 𝜖)𝜌

�
R00

𝜇

1 + 𝜇
− (1 + c) + (1 + c)𝜖R00

1

1 + 𝜇
< 0.
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above second inequality is satisfied, there exists an eigenvalue with a positive real 
part. Then the disease‑eliminated equilibrium E00 is unstable.

Appendix D Proof for Corollary 8.1.1

It is sufficient to show that {G(𝜇, 𝜌)}−1 < 1∕(𝜖R00) when R0 ≤ 1 . From the defini‑
tion of R0 defined by (4), we have R0 ≤ 1 if and only if

Then we can derive

Therefore, we find that {G(𝜇, 𝜌)}−1 < 1∕(𝜖R00) when R0 ≤ 1 , and then the inverse 
equality of (9) is satisfied.

Appendix E Proof for Theorem 8.2

First we consider the case of � = 1 . From (11), we can derive the following equations 
about y∗

v
 and y∗

r
:

The function �(y) is monotonically decreasing in terms of y > 0 , and 
𝜑(1) = −(1 + c) < 0 . Hence, if and only if 𝜑(0) > 0 , the equation �(y) = 0 has 
a unique positive root y = y∗

v
< 1 . We remark from the first equation of (E4) that 

y∗
r
∈ (0, 1) is uniquely determined for each positive y∗

v
< 1 . Therefore, if and only if 

𝜑(0) > 0 , the endemic equilibrium E++ exists when � = 1 . It is easy to show that the 
condition that 𝜑(0) > 0 is necessary and sufficient to make (9) hold with � = 1.

Next, from (10) in the case of 𝜇 > 0 and 𝜌 < 1 , we can derive the equation 
�(�∗) = 0 in terms of �∗ ∶= (1 − � − x∗

v
)∕x∗

v
 with

Since x∗
v
∈ (0, 1 − �) for the endemic equilibrium, we have �∗ ∈ (0,∞) . We 

can easily find that �(�) is monotonically increasing in terms of 𝜁 > 0 . Further 

1

�R00

≥ 1

�

{
1 − (1 − �)�

�

1 + �

}
.

1

𝜖

{
1 − (1 − 𝜖)𝜌

𝜇

1 + 𝜇

}
− {G(𝜇, 𝜌)}−1

=
1 − 𝜖

𝜖
+

𝜇

1 + 𝜇

{
1 −

1

𝜖

1

1 + c
− 𝜌

1 − 𝜖

𝜖

(
1 −

1

1 + c

)}

>
1 − 𝜖

𝜖
+

𝜇

1 + 𝜇

(
1 −

1

𝜖
− 𝜌

1 − 𝜖

𝜖

)
=

1 − 𝜖

𝜖

{
1 − (1 − 𝜌)

𝜇

1 + 𝜇

} ≥ 0.

(E4)y∗
r
=

(1 + c)y∗
v

1 + cy∗
v

; �(y∗
v
) ∶=

�R00

1 + �

(
1 + c

1 + cy∗
v

+ �
)
(1 − y∗

v
) − (1 + c) = 0.

(E5)

�(�) ∶=
c(1 + �)

R00

−
�

1∕c + ��
−

�

1∕c + 1 − �

{
�
1∕c + �(1 − �)

1∕c + 1 + ��
+

(1 − �)(1 − �)

1 + �

}
.
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�(�) → c(1 + �)∕R00 as � → ∞ . Hence the equation �(�) = 0 necessarily has a 
unique positive root �∗ if and only if 𝜓(0) < 0 , which can be easily proved to be 
equivalent to the condition (9). With 𝜁∗ > 0 , the equilibrium value x∗

v
∈ (0, 1 − �) is 

uniquely determined by x∗
v
= (1 − �)∕(1 + �∗).

On the other hand, with the second equation of (10), we can derive

Then we can easily find that g(x) is concave with g(0) = 1 and g(1 − 𝜌) = 1 − 𝜌 < 1 , 
so that g(x) < 1 for x ∈ (0, 1 − �) . This result indicates that, if the equation �(x) = 0 
has a unique positive root x∗

v
∈ (0, 1 − �) , the value y∗

v
 is reasonably determined by 

the second equation of (10) such that x∗
v
+ y∗

v
< 1 . Moreover, by the third equation 

of (10), the value y∗
r
 is reasonably determined at the same time such that 0 < y∗

r
< 1 . 

Finally, from these arguments, if and only if 𝜓(0) < 0 , which is equivalent to the 
condition (9), the endemic equilibrium E++ uniquely exists when 𝜌 < 1.

Appendix F Proof for Theorem 8.3

The Jacobi matrix about the endemic equilibrium E++ becomes

where

Then the characteristic polynomial for the eigenvalue � about E++ can be obtained as ||J(E++) − �E || = (B + � + �)h(�) with

where

x∗
v
+ y∗

v
= g(x∗

v
) ∶=

1∕c

1 + 1∕c − �
x∗
v
+

1 − �

1 + 1∕c − �

{ (1 − �)(1 + 1∕c)

1 + 1∕c − �
−

�

1 − �

}

+
�(1 − �)(1 + 1∕c)

(1 + 1∕c − �)2
1∕c + (1 − �)�

(1 + 1∕c − �)x∗
v
+ �(1 − �)

.

J(E++) ∶=

⎛
⎜⎜⎜⎜⎝

−(B + c) −
�

1 + �
R00x

∗
v

0 −
1

1 + �
R00x

∗
v

(1 − �)B �Ξ − (�B + 1 + c) 0 Ξ

0 0 − (B + �) 0

0 �Φ (1 − �)B Φ − �B − 1

⎞
⎟⎟⎟⎟⎠
,

B ∶= R00

y∗
r
+ �y∗

v

1 + �
; Φ ∶=

y∗
r

y∗
r
+ �y∗

v

;

Ξ ∶=
1 + c

�

�y∗
v

y∗
r
+ �y∗

v

=
1 + c

�

(
1 −

y∗
r

y∗
r
+ �y∗

v

)
=

1 + c

�
(1 − Φ).

(F6)
h(�) ∶= −

||||||||

−(B + c + �) 0 −
1

1 + �
R00x

∗
v

(1 − �)B −(�B + 1 + c + �) Ξ

0 �(�B + 1 + �) Φ − �B − 1 − �

||||||||
= �3 + a2�

2 + a1� + a0,
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Thus we have a negative eigenvalue � = −(B + �) and the cubic equation h(�) = 0 
given by (F6) to determine the other three eigenvalues for E++.

Every coefficient of h(�) is positive: a2 > 0 , a1 > 0 , and a0 > 0 . Since 
0 < Φ < 1 , we have

and subsequently find that

Consequently from the Routh‑Hurwitz criterion, we can find that all roots of 
h(�) = 0 have negative real parts. Therefore it has been proved that every eigenvalue 
for E++ has negative real part. This result shows Theorem 8.3 about the local stabil‑
ity of E++ when it exists.

Appendix G Proof for Theorem 9.4 and Corollary 9.4.3

As shown in the proof for Theorem 8.2 (Appendix E), the endemic size can be 
determined by the unique positive root � = �∗ of the equation �(�) = 0 with (E5) 
for 𝜌 < 1 under the condition (9). From the equation �(�∗) = 0 , we can derive

with

a2 = cΦ + 1 + c + B + 2�B;

a1 = (c + B + �B)cΦ + (B + c)(2�B + 1) + �B(�B + 1) +
(1 − �)�

1 + �
R00x

∗
v
B;

a0 = �B(B + c)(�B + 1 + cΦ) +
(1 − �)�

1 + �
R00x

∗
v
B(�B + 1).

a2 > a�
2
∶= 1 + c + B + 2𝜖B > 0;

a1 > a�
1
∶= (B + c)(2𝜖B + 1) + 𝜖B(𝜖B + 1) +

(1 − 𝜖)𝜇

1 + 𝜇
R00x

∗
v
B > 0;

a0 < a�
0
∶= 𝜖B(B + c)(𝜖B + 1 + c) +

(1 − 𝜖)𝜇

1 + 𝜇
R00x

∗
v
B(𝜖B + c),

(F7)

a2a1 − a0 > a�
2
a�
1
− a�

0
= (𝜖B + 1 + c)(𝜖B + 1)(c + B + 𝜖B)

+ (1 + 𝜖)B
{
(B + c)(2𝜖B + 1) + 𝜖B(𝜖B + 1)

}

+
(1 − 𝜖)𝜇

1 + 𝜇

{
1 + (1 + 𝜖)B

}
R00x

∗
v
B > 0.

(G8)
��∗

��
=

1 + �c�∗ − �R00

K�R00(1∕c + ��∗)

K ∶=
𝜖2

(1∕c + 𝜖𝜁∗)2
+

𝜇

1∕c + 1 − 𝜖

{
𝜖2

1∕c + (1 − 𝜖)𝜌

(1∕c + 1 + 𝜖𝜁∗)2
+

(1 − 𝜖)(1 − 𝜌)

(1 + 𝜁∗)2

}
> 0.
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First for �R00 ≤ 1 , we find from (G8) that 𝜕𝜁∗∕𝜕𝜇 > 0 for any 𝜁∗ > 0 and 𝜇 > 0 . 
Since x∗

v
= (1 − �)∕(1 + �∗) , we then have 𝜕x∗

v
∕𝜕𝜇 < 0 . Lastly we can get the fol‑

lowing result:

Lemma G.1 x∗
v
 is monotonically decreasing in terms of 𝜇 > 0 when 𝜌 < 1 and 

�R00 ≤ 1.

Next for 𝜖R00 > 1 , the partial derivative (G8) indicates that 𝜕𝜁∗∕𝜕𝜇 > 0 if and 
only if 𝜁∗ > 𝜁c ∶= (𝜖R00 − 1)∕(𝜖c) , while 𝜕𝜁∗∕𝜕𝜇 < 0 if and only if 𝜁∗ < 𝜁c . Since 
�(�) is monotonically increasing in terms of 𝜁 > 0 , such that 𝜓(𝜁) < 0 for 𝜁 < 𝜁∗ 
and 𝜓(𝜁) > 0 for 𝜁 > 𝜁∗ under the condition (9), we find that 𝜕𝜁∗∕𝜕𝜇 > 0 if and 
only if 𝜓(𝜁c) < 0 , while 𝜕𝜁∗∕𝜕𝜇 < 0 if and only if 𝜓(𝜁c) > 0 . Since �c is independ‑
ent of � , this result indicates that the sign of ��∗∕�� is determined independently 
of � . Hence we obtain the following lemma:

Lemma G.2 x∗
v
> 0 is monotonic in terms of 𝜇 > 0 when 𝜌 < 1.

Now we can derive

Thus we can result that 𝜓(𝜁c) < 0 if and only if 𝜌 < 𝜌c where �c is defined by (19). 
That is, 𝜕𝜁∗∕𝜕𝜇 > 0 if and only if 𝜌 < 𝜌c . Lastly we have

Lemma G.3 x∗
v
> 0 is monotonically decreasing in terms of 𝜇 > 0 if and only if 

𝜌 < 𝜌c when 𝜌 < 1 and 𝜖R00 > 1.

It can be easily found that 𝜌c < 1 when 𝜖R00 > 1.
In the critical case of 𝜌 = 𝜌c > 0 with 𝜖R00 > 1 , we have �(�c) = 0 in (G9), 

which means that �∗ = �c and subsequently ��∗∕�� = 0 . Actually, from �∗ = �c , 
we find that x∗

v
= (1 − �)∕(1 + �c) , the endemic sizes y∗

r
 , y∗

v
 , and z∗ defined by (18) 

are independent of � , as given by (20) which are derived by (10). This result gives 
Corollary 9.4.3.

On the other hand, from (10), we can easily find that the endemic sizes y∗
r
 , y∗

v
 , and 

z∗ are monotonically decreasing in terms of x∗
v
> 0 . Therefore, from Lemma G.2, we 

can get the following lemma:

Lemma G.4 The endemic sizes y∗
r
 , y∗

v
 , and z∗ are monotonic in terms of � when 𝜌 < 1.

Consequently, from Lemmas G.1, G.2, G.3, and G.4, we can obtain the result of 
Theorem 9.4 for 𝜌 < 1.

(G9)�(�c) =
�{�c − 1 + �2R00 + �(1 − �)R00�}

�R00(1 + �R00∕c){1 + (�R00 − 1)∕(�c)}
.
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Appendix H Proof for Corollary 9.4.1

In case of � = 1 , the unique positive root of �(y) = 0 with (E4) gives the endemic 
size y∗

v
 under the condition (9) with � = 1 (Appendix E). Then, from the equation 

�(y∗
v
) = 0 , we can derive

When �R00 ≤ 1 + c , we have 𝜕y∗
v
∕𝜕𝜇 < 0 for any 𝜇 > 0 . Therefore we obtain the 

following result:

Lemma H.1 The endemic sizes y∗
r
 and y∗

v
 are monotonically decreasing in terms of � 

when � = 1 and �R00 ≤ 1 + c.

From the first equation in (E4), we note that the endemic size y∗
r
 is monotonically 

increasing in terms of y∗
v
.

When 𝜖R00 > 1 + c , 𝜕y∗
v
∕𝜕𝜇 > 0 if and only if y∗

v
< yc

v
∶= 1 − (1 + c)∕(𝜖R00) , 

while 𝜕y∗
v
∕𝜕𝜇 < 0 if and only if y∗

v
> yc

v
 . Since �(y) is monotonically decreasing 

in terms of y > 0 , such that 𝜑(y) > 0 for y < y∗
v
 and 𝜑(y) < 0 for y > y∗

v
 . Hence, 

𝜕y∗
v
∕𝜕𝜇 > 0 if and only if 𝜑(yc

v
) < 0 , while 𝜕y∗

v
∕𝜕𝜇 < 0 if and only if 𝜑(yc

v
) > 0 . Now 

we can derive

for 𝜖R00 > 1 + c . Therefore we have the following result:

Lemma H.2 The endemic sizes y∗
r
 and y∗

v
 are monotonically decreasing in terms of � 

when � = 1 and 𝜖R00 > 1 + c.

Consequently, from Lemmas H.1 and H.2, the endemic sizes y∗
r
 and y∗

v
 are mono‑

tonically decreasing in terms of � when � = 1.
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