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Abstract
The variance effective population size ( N

eV
 ) is frequently used to quantify the 

expected rate at which a population’s allele frequencies change over time. The 
purpose of this paper is to find expressions for the global N

eV
 of a spatially structured 

population that are of interest for conservation of species. Since N
eV

 depends on 
allele frequency change, we start by dividing the cause of allele frequency change 
into genetic drift within subpopulations (I) and a second component mainly due 
to migration between subpopulations (II). We investigate in detail how these two 
components depend on the way in which subpopulations are weighted as well as 
their dependence on parameters of the model such a migration rates, and local 
effective and census sizes. It is shown that under certain conditions the impact of II 
is eliminated, and N

eV
 of the metapopulation is maximized, when subpopulations are 

weighted proportionally to their long term reproductive contributions. This maximal 
N
eV

 is the sought for global effective size, since it approximates the gene diversity 
effective size N

eGD
 , a quantifier of the rate of loss of genetic diversity that is relevant 

for conservation of species and populations. We also propose two novel versions 
of N

eV
 , one of which (the backward version of N

eV
 ) is most stable, exists for most 

populations, and is closer to N
eGD

 than the classical notion of N
eV

 . Expressions for 
the optimal length of the time interval for measuring genetic change are developed, 
that make it possible to estimate any version of N

eV
 with maximal accuracy.
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1  Introduction

1.1 � Background on Effective Population Sizes

The effective population size Ne is a well known concept (Wright 1931, 1938) 
that quantifies the rate at which genetic variation of a population is lost over time. 
This is important in conservation biology, where retention of sufficient levels 
of genetic diversity to allow adaptation to changing environmental conditions 
is of major concern for the long term viability and conservation of species 
and populations (Frankham et  al. 2010; Traill et  al. 2010; Hoban et  al. 2021; 
Allendorf et al. 2022). Since many populations exhibit some type of geographic 
substructure, it is crucial to assess in which way and how much this impacts Ne . 
Typically, such a structure is modelled as a metapopulation that consists of a 
number of more or less connected subpopulations. For short term conservation 
of species it is mainly genetic drift within and migration between subpopulations 
that impact Ne , whereas mutation and natural selection are usually ignored.

Many versions of effective size have been proposed, as recently discussed by 
Gilbert and Whitlock (2015), Wang (2016), Waples (2016), Ryman et al. (2019), 
and Nadachowska-Brzyska et al. (2022). In this paper we focus on the variance 
effective size NeV (Crow 1954), where loss of genetic variation is quantified in 
terms of the variance of frequency change of genetic variants (alleles). If genetic 
data is available from at least two points in time, the temporal method (Kimbras 
and Tsakas 1971; Nei and Tajima 1981; Pollack 1983; Waples 1989; Jorde and 
Ryman 2007) can be employed to estimate NeV . For this reason NeV is one of the 
most frequently used notions of effective size that is recommended because it is 
multigenerational (Frankham et  al. 2019; Frankham 2021). On the other hand, 
NeV is typically not the best effective size for assessing the rate at which genetic 
diversity is lost in substructured populations. Since this rate is an important 
criterion for conservation of species, this is potentially a drawback of NeV (Ryman 
et al. 2019).

In order to find out whether versions of NeV for substructured populations exist 
that are more appropriate for estimating Ne for conservation purposes, a first step 
is to understand how various parameters of a population genetic model influence 
NeV . To this end, it is important to build a mathematical framework for how the 
genetic makeup of a population evolves over time, and then find expressions 
for the variance of allele frequency change. Using such an approach, Whitlock 
and Barton (1997) noted that NeV is a function of several parameters, such as 
the local effective sizes of subpopulations under isolation, the migration pattern 
between subpopulations and the way in which subpopulations are weighted 
in order for NeV to reflect, for instance, local or global aspects of the variance 
effective size. Hössjer et  al. (2014) added local census sizes to the model and 
considered subpopulation weights of general form. Hössjer et al. (2016) noticed 
that previous analyses of NeV had been overly simplistic and neglected the impact 
of subpopulation differentiation at the first time point at which genetic data is 
collected.
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1.2 � Objectives

The purpose of this paper is to find versions of NeV for the metapopulation that 
are of interest for conservation, by appropriately quantifying the rate of loss of 
genetic diversity. To this end, we will generalize work of Whitlock and Barton 
(1997), Ryman et al. (2014) and Hössjer et al. (2014, 2016) and study the variance 
effective size of structured populations by means of matrix analytic methods, 
where standardized covariances of allele frequency change and gene diversities 
(Nei 1973) are updated recursively over time. More specifically we consider three 
aspects of NeV : (i) A careful analysis of allele frequency change and subpopulation 
weights, which will lead us to a version of NeV that is of interest for conservation, 
(ii) Introduction of two novel and more stable ways of defining NeV , both of which 
have versions that are of relevance for conservation, (iii) Finding expressions for the 
length of the interval between the two time points at which genetic data is collected, 
which is optimal in terms of estimating NeV with maximal accuracy. In the rest of 
this section, we describe these three steps in more detail.

For the first contribution (i), following Hössjer et al. (2016) we divide expected 
squared allele frequency change between the two time points at which genetic data is 
collected into two components I and II, and study conditions under which the impact 
of II is negligible. In order to motivate more closely this first aspect of our article, 
we will start by explaining the meaning of these two terms I and II.

The first component I was analyzed by Whitlock and Barton (1997) and Hössjer 
et  al. (2014), and it quantifies how much standardized covariances of allele 
frequency change increase or how much the gene diversity decreases between the 
two time points at which genetic data is collected. We will refer to I as the drift 
term, since it is mainly genetic drift that causes loss of genetic variation, and for 
this reason I is usually the most important source of genetic change. Indeed, gene 
diversity decrease I is equivalent to gene identity increase, a haploid approximation 
of increased inbreeding that is of major concern for short term protection of species 
(Franklin 1980; Jamieson and Allendorf 2012). For this reason the gene diversity 
effective size NeGD is of interest for conservation since it only involves the genetic 
drift term I but not the other term II. NeGD is however of more relevance for long 
term than for short term conservation since it approximates the additive genetic 
variance effective size NeAV (Franklin 1980; Hössjer et al. 2016). This is important 
since the frequently used conservation guideline for long term survival, that 
stipulates that Ne should be larger than 500 (Franklin 1980; Jamieson and Allendorf 
2012) or larger than 1000 (Frankham et al. 2014; Pérez-Pereira et al. 2022), relates 
to NeAV (Ryman et al. 2019). However, since NeGD (and NeAV ) is difficult to estimate 
in practice, it is important to assess how well it is approximated by NeV.

The second term II was introduced in Hössjer et al. (2016) and it quantifies how 
much allele frequency change in the past, before the first time point when data is 
collected, is correlated with allele frequency change between the two time points of 
data collection, with a negative correlation corresponding to a positive value of II. 
We could therefore refer to −II as a correlation between allele frequency change of 
the past and the present. But since II vanishes when all subpopulations are isolated 
and additionally the same subpopulation weights are used at the two time points at 
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which genetic data is collected, it follows that II is mainly caused by migration. For 
this reason we will speak of II as a migration or gene flow term. It is also the case 
that II is present only when there is subpopulation differentiation at the first time 
point of data collection.

In order to shed further light on the relation between NeGD and NeV , we continue 
the analysis of Hössjer et  al. (2016) and express genetic drift I and gene flow II 
in terms of how subpopulations are weighted, and also in terms of parameters of 
the population genetic model such as the local census and effective sizes and the 
migration rates between subpopulations. In particular, we demonstrate that II is 
highly dependent on local census sizes, whereas I is virtually independent of them 
(although local census sizes were introduced in Hössjer et al. (2014), they had little 
impact on NeV since II was not included as a component of allele frequency change 
in that article).

It is of particular interest to find conditions under which it is possible to estimate 
NeV in such a way that II is eliminated. It was shown in Hössjer et al. (2016) that the 
gene flow contribution II to the variance effective size vanishes when subpopulations 
are weighted proportionally to their long term reproductive contribution (Hill 1972; 
Nagylaki 1980; Whitlock and Barton 1997). This means that each subpopulation 
receives a weight that corresponds to the fraction of ancestors, many generations 
ago, that originated from this particular subpopulation. When subpopulations 
are weighted in this way, the overall frequency of an allele in the metapopulation 
changes over time in such a way that only genetic drift (term I) contributes, whereas 
the effects of migration into different subpopulations cancel out ( II = 0 ). These so 
called reproductive subpopulation weights give rise to a version of the variance 
effective size that we refer to as NeVMeta . It turns out that NeVMeta is of particular 
interest for long term conservation, since under migration–drift equilibrium 
NeVMeta not only equals NeGD and NeAV , but also the eigenvalue effective size NeE 
(Ewens 1982, 2004), which is known to reflect the long term genetic behavior of a 
population.

In spite of the relevance of NeVMeta for conservation, it is a challenge to use this 
effective size in practice since its subpopulation weights involve migration rates 
between subpopulations, which are difficult to estimate. It is possible, though, to 
find simplified expressions for I and II under migration–drift equilibrium, using 
perturbation theory and eigenvalue decomposition of matrices (Horn and Johnson 
1985; Friswell 1996; Van der Aa et  al. 2007). Although perturbation results for 
eigenvalues have previously been applied to population genetics (Maruyama 1970a; 
Nagylaki 1980, 1995; Hössjer 2015) it seems that our perturbation results for 
eigenvectors are new. Based on this analysis we demonstrate, for some particular 
models, that it is possible to eliminate the impact II of migration by maximizing 
the variance effective size with respect to subpopulation weights, so that the 
corresponding NeV approximates NeVMeta.

For the second contribution (ii) of this article, we demonstrate that when the 
impact II of gene flow is not eliminated, under certain conditions it elevates allele 
frequency change over long time intervals to such an extent that the traditional 
(forward) version of NeV is undefined. For this reason we define two novel notions 
of variance effective size, the intermediate and backward versions of NeV . The 
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intermediate version corresponds to a frequently used estimator of variance effective 
size due to Jorde and Ryman (2007), and although it is more stable than the forward 
version of NeV , it shares the drawback of sometimes being undefined for long time 
intervals of genetic change. The backward version of NeV , on the other hand, exists 
for most populations, and it is also the version of variance effective size that most 
closely relates to NeGD and NeE , since it lessens the impact of the gene flow term 
II more than the other two versions of variance effective size. We demonstrate, 
numerically and analytically, that the forward, intermediate and backward versions 
of the local variance effective size are very close for large subdivided populations, 
unless the time interval is very long. On the other hand, the three effective sizes 
differ substantially for a small and subdivided population, and moderate or large 
time intervals.

For the third contribution (iii) of this article, we give explicit expressions for the 
length of the time interval that maximizes the accuracy of estimates of NeGD and all 
three versions of NeV , for any type of subpopulation weights. This optimal length is 
proportional to the eigenvalue effective size NeE , with a constant of proportionality 
that depends on characteristics of the population as well as the type of effective size 
being used, including subpopulation weights. This reinforces that the three variance 
effective sizes behave differently for small subdivided populations (when NeE is 
small).

Our paper is organized as follows: We start by defining the population genetic 
model in Sect.  2, and the framework of genetic variation in terms of one single 
biallelic marker in Sect. 3. This makes it possible in Sect. 4 to introduce the matrix 
analytic framework for how covariances of allele frequency change, gene diversities 
and fixation indeces evolve over time. The various notions of effective size are 
introduced in Sect. 5, migration–drift equilibrium is the topic of Sect. 6, the impact 
of the length of the time interval on effective size is analyzed in Sect.  7, and the 
optimal time interval in terms of accurately estimating effective size is studied 
in Sect. 8. Then analysis of a real data set in Sect. 9 and a discussion in Sect. 10 
concludes. A summary of the most important notation is provided in Table  1, 
whereas some of the numerical results and all proofs are collected in the appendices.

2 � Population Genetic Model

We will study the genetic composition of a structured (or subdivided) population 
that evolves over time in terms of non-overlapping generations t = −T ,−T + 1,… , 
where −T ≤ 0 is a founder generation. The population has s subpopulations 
x = 1,… , s , whose local census sizes Ncx and local effective sizes Nex under 
isolation do not change over time. The subpopulations are not isolated, but rather 
connected though gene flow, as summarized by an irreducible backward migration 
matrix B = (Bxy) of order s, where Bxy is the expected fraction of gene copies in x 
that in the previous generation migrated from y.

The most well known type of subdivided population is the island model (Wright 
1943; Maruyama 1970b), for which Nex = Ne and Ncx = Nc are the same for all sub-
populations. The migration rates Bxy = m�∕(s − 1) = m∕s between all pairs x ≠ y 
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Table 1   A summary of the most important notation used in this article

Quantity Description

s Number of subpopulations
x, y Index of a subpopulation ( ∈ {1,… , s})
t Time index, in units of generations ( ∈ {−T ,−T + 1,…})
T Number of generations ago ( t = −T  ) when the founder population lived
� Length of time interval along which genic change is assessed
Bxy Backward migration rate from x to y or the fraction of parents of individuals in subpopulation 

x that originate from subpopulation y one generation ago
B Square matrix (Bxy)

s
x,y=1

 of order s with all backward migration rates
m′ Migration rate of island model ( Bxy = m�∕(s − 1) when x ≠ y)
m Fraction of parents in the island model that originate from the whole population one genera-

tion ago ( = sm�∕(s − 1))
wx Weight of subpopulation x at the start ( = t ) of the time interval along which genetic change is 

assessed
w Vector of subpopulation weights ( = (w1,… ,ws) ) at the start of the time interval along which 

genetic change is assessed
vx Weight of subpopulation x at the end ( = t + � ) of the time interval along which genetic change 

is assessed
v Vector of subpopulation weights ( = (v1,… , vs) ) at the end of the time interval along which 

genetic change is assessed
ex Vector of local subpopulation weights ( = (0,… , 0, 1, 0,… , 0) ) that only assigns a positive 

weight to subpopulation x (a 1 in position x)
� Vector of reproductive subpopulation weights ( = (�1,… , �s) ). �x is the fraction of ancestors 

originating from subpopulation x many generations ago
A One of the two alleles of a biallelic marker
p Frequency of A in all subpopulations in the founder generation
ptx Frequency of allele A in subpopulation x and generation t
pt Weighted frequency of allele A in the whole population in generation t, when subpopulations 

are weighted as w ( =
∑

x wxptx)
pt+� Weighted frequency of allele A in the whole population in generation t + � , when subpopula-

tions are weighted as v ( =
∑

x vxpt+�,x)
1n Column vector of length n with ones in all positions
htx 1 − htx is the standardized covariance of allele frequency change from the base generation to 

generation t, between subpopulations x and y
ht Column vector of length s2 with all the one minus standardized covariances at time t 

( = (htxy)
s
x,y=1

)
Htxy Gene diversity between subpopulations x and y in generation t
Ht Column vector of length s2 with all gene diversities at time t ( = (Htxy)

s
x,y=1

)
A Square matrix of order s2 describing a linear time recursion of ht and Ht

� Largest eigenvalue of A
r Right eigenvector of A with eigenvalue �
FST ,t Fixation index in generation t
F
eq

ST
Fixation index under migration–drift equilibrium

Ne Generic notation for effective population size
Ncx Local census size of subpopulation x ( = Nc if all Ncx are identical)
Nex Local effective size of an isolated subpopulation x ( = Ne if all Nex are identical)
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of subpopulations are the same as well, so that in each generation m� = 1 − Bxx is 
the fraction of offspring of subpopulation x whose parents migrated from any other 
subpopulation {y; y ≠ x} . On the other hand, m can be thought of as the fraction of 
offspring of x whose parents originate from a global gene pool, with equal contribu-
tion from all subpopulations (including x itself). The one- and two-dimensional step-
ping stone models (Kimura 1953; Kimura and Weiss 1964; Weiss and Kimura 1965; 
Durrett 2008) correspond to a subdivided population where migration from y to x 
( Bxy > 0 ) is possible only when these two subpopulations are neighbors.

It is assumed that the population reproduces in such a way that migration precedes 
fertilization. More specifically, reproduction between generations t and t + 1 involves 
the following three steps: 

1.	 (Gamete formation) Within each subpopulation x of generation t an infinitely 
large pre-migration gene pool is constructed as follows: 2Nex gene copies 
(corresponding to Nex diploid breeders) are drawn without replacement from all 

Table 1   (continued)

Quantity Description

Q Quantity used for defining type of effective population size
NeQ Generic notation for effective population size of type Q
N

eq

eQ
Generic notation for effective size of type Q at migration–drift equilibrium

NeQwv Effective population size when subpopulations are weighted as w and v at the two end points of 
the interval along which genetic change is assessed

NeQw Effective population size when subpopulations are weighted as w at both end points of the 
interval along which genetic change is assessed ( = NeQww)

NeQMeta Effective size of type Q for the metapopulation ( = NeQ� = NeQ��)
NeQRx Realized local effective size of type Q for subpopulation x ( = NeQex

= NeQexex
 ). It equals Nex 

when x is isolated from the other subpopulations
NeQRxy Realized local effective size of type Q when subpopulations x and y ( x ≠ y ) receive full weight 

at the two end points of the time interval ( = NeQexey
)

NeGD Generic notation for gene diversity effective size
NeAV Generic notation for additive genetic variance effective size
NeV Generic notation for forward version of variance effective size
N int
eV

Generic notation for intermediate version of variance effective size

Nback
eV

Generic notation for backward version of variance effective size
NeE Eigenvalue effective size (it has only one version that describes long term change at 

migration–drift equilibrium and it does not involve subpopulation weights)
IT+t(�) Contribution to expected squared allele frequency change between generations t and t + � from 

decreased gene diversity between these two generations. IT+t(�) is referred to as a genetic 
drift term (generic notation I, equals I∞(�) at migration–drift equilibrium)

IIT+t(�) −IIT+t(�) is the contribution, to expected squared allele frequency change between generations 
t and t + � , from correlation between allele frequency change between these two generations 
and allele frequency of the past, before time t. IIT+t(�) is mainly caused by migration and 
it is therefore often referred to as a migration or gene flow term (generic notation II, equals 
II∞(�) at migration–drift equilibrium)
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2Ncx gene copies (corresponding to Ncx diploid individuals) of this subpopulation x 
at time t. All 2Nex drawn gene copies multiply and contribute in equal proportions 
1∕(2Nex) to the infinite pre-migration pool of x. These s pre-migration gene pools 
( x = 1,… , s ) are constructed independently for all subpopulations, without any 
exchange of genetic material.

2.	 (Migration) The s pre-migration gene pools of step 1 mix, so that s post-migration 
pools are formed. In particular, the post-migration pool of subpopulation x is 
a mixture of the pre-migration pools of subpopulations 1,… , s in proportions 
Bx1,… ,Bxs.

3.	 (Fertilization) The 2Ncx gene copies (corresponding to Ncx diploid individuals) 
of subpopulation x and generation t + 1 are formed by sampling 2Ncx genes 
from the post-migration gene pool of x. This is done independently between all 
subpopulations x = 1,… , s.

We refer to this reproduction scenario as MF/FF, an acronym for migration preceding 
fertilization, with fixed migrant proportions and fixed migrant allele frequencies. It 
was used in Hössjer et al. (2013) for the island model and in Hössjer et al. (2014) and 
Olsson et al. (2017) for subdivided populations of general form. A number of other, 
closely related reproduction schemes were studied in the context of the island model by 
Hössjer et al. (2013) and more generally by Hössjer and Ryman (2014).

3 � Genetic Variation at a Biallelic Marker

Our main focus is to study how the genetic composition of the population of Sect. 2 
changes between two time points t and t + � , where � is a positive integer. Typically 
genetic data from many biallelic markers are used to represent the genetic composition 
at time t and t + � . For our theoretical investigations in Sects. 3–8, it will be sufficient 
though to study one single biallelic marker, as a representative of any of the markers 
that are part of the data set. For this reason we consider a marker with alleles A and 
a and let pt be the frequency of allele A in generation t. For a subdivided population 
we need to keep track of the frequency ptx of A in all subpopulations x at each time 
point t. In order to obtain one single allele frequency at time t and t + � , we will weight 
subpopulations as w = (w1,… ,ws) and v = (v1,… , vs) at these two time points, where 
wx and vx are non-negative numbers satisfying 

∑

x wx =
∑

x vx = 1 . The accompanying 
subpopulation weighted frequencies of A, at time t and t + � , are

The subpopulation weights in (1) play a crucial role in this paper. They may for 
instance reflect the sampling scheme of time points t and t + � , although this is 
not necessary. Local subpopulation weights at time t correspond to giving some 
subpopulation x full weight ( wx = 1 ), whereas none of the other subpopulation 
contribute to pt ( wy = 0 for any y ≠ x ). With vector notation this is phrased as 
w = ex , where ex = (0,… , 0, 1, 0,… , 0) has a one in position x and zeros elsewhere. 

(1)
pt =

∑

x wxptx,

pt+� =
∑

x vxpt+�,x.
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Similarly, vx = 1 if subpopulation weight x receives full weight at time t + � , or 
equivalently v = ex . Global subpopulation weights at time t and t + � assign positive 
values wx > 0 and vx > 0 respectively, to all subpopulations x. When the long 
term evolution of the population is of interest, it is appropriate to use reproductive 
subpopulation weights w = v = � = (�1,… , �s) at both time points, since a 
fraction �x of all gene copies originated from subpopulation x many generations 
ago (Nagylaki 1980, 2000; Hössjer and Ryman 2014). This weight vector � is the 
equilibrium distribution of a Markov chain with state space {1,… , s} and transition 
matrix B , and it corresponds to a probability distribution for the subpopulation 
ancestry of a gene copy. Assuming that B is irreducible, � is the unique probability 
vector satisfying � = �B , with � = (1,… , 1)∕s for the island model. Consequently, 
�x quantifies the long term contribution of x to the metapopulation, or as mentioned 
above, �x is the fraction of ancestors that originated from x, many generations back 
in time.

4 � Standardized Covariances, Gene Diversities, and Fixation Indeces

In this section we define a number of concepts needed in Sect.  5 when various 
types of effective size are introduced. Following Hössjer et al. (2016), assume that 
all subpopulations have the same frequency p−T ,x = p of allele A at the founder 
generation at t = −T  . This is no essential restriction, since we will mainly consider 
equilibrium conditions when T → ∞.

4.1 � Standardized Covariances

The standardized covariance between a pair x,  y of subpopulations at time point 
t ∈ {−T ,−T + 1,…} , is defined as

Equivalently, ftxy is the correlation coefficient between the alleles of two gene copies 
drawn independently from subpopulations x and y at time t (with replacement if 
x = y ), see for instance Cockerham (1969). It was shown in Hössjer et al. (2014) that 
the column vector ht = (htxy) of length s2 satisfies a recursive relation

where A = (Axy,zu) is a square matrix of order s2 with elements

(2)ftxy =
Cov (ptx − p, pty − p)

p(1 − p)
= 1 − htxy.

(3)ht+1 = Aht,

(4)Axy,zu =

�

1 −
1

2Ncx

�1(x=y)

BxzByu

⎛

⎜

⎜

⎝

1 −
1

2Nez

1 −
1

2Ncz

⎞

⎟

⎟

⎠

1(z=u)

.
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Similar types of recursions were originally developed by Malécot (1951), see also 
Whitlock and Barton (1997). Since all standardized covariances vanish at the 
founder generation, it follows that

is a vector of s2 ones. Notice that the initial condition (5) and the linear recursion (3) 
determine the value of htxy for all t, x, y.

4.2 � Gene Diversities

The gene identity (gene diversity) Ftxy ( Htxy ) between a pair of subpopulations at 
time t is the probability that two randomly chosen gene copies of subpopulations 
x and y, drawn with replacement if x = y , have the same (different) alleles. It turns 
out that the time recursive behavior of gene diversities is very similar to that of 
standardized covariances. In order to motivate this we notice that allele frequencies 
at time t > −T  are unknown from the perspective of the base generation −T  , and 
therefore

This implies that the gene diversities at time t and t + � are given by

By this we mean that Ht is the probability that two gene copies, drawn randomly with 
replacement from the population at time t, have different alleles, given that wx is the 
probability of drawing each gene from x. Likewise, Ht+� is the probability that two 
randomly drawn gene copies at time t + � have different alleles, if subpopulations are 
chosen with probabilities vx . It was shown in Hössjer et al. (2014) that the column 
vector Ht = (Htxy) of length s2 satisfies the same recursion as in (3), i.e.

for t = −T ,−T + 1,… . Since p−T ,x = p by assumption, we have that 
H−Txy = 2p(1 − p) for all x, y, and consequently

Comparing (3) and (5) with (7) and (8), we find that the numbers htxy obtained from 
the standardized covariances are equivalent to the gene diversities Htxy , up to a 
multiplicative constant, i.e.

for all t, x, y.
A concept closely related to (6) is the collection of gene diversities without 

replacement. They are defined as

(5)h−T = 1s2 = (1,… , 1)T

Htxy = E
[

ptx(1 − pty) + (1 − ptx)pty
]

.

(6)
Ht = E

�

2pt(1 − pt)
�

=
∑

x,y wxwyHtxy,

Ht+� = E
�

2pt+�(1 − pt+�)
�

=
∑

x,y vxvyHt+�,xy.

(7)Ht+1 = AHt,

(8)H−T = 2p(1 − p)1s2 .

(9)Htxy = 2p(1 − p)htxy
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the probabilities that two gene copies, drawn randomly without replacement at the 
same time point t and t + � respectively, have different alleles. Likewise, H̃txy is the 
probability that two gene copies, drawn at randomly without replacement from x 
and y at time t, have different alleles. It was shown in Hössjer et  al. (2014) that 
the column vector H̃t = (H̃txy) of gene diversities without replacement satisfies a 
recursion

for t = −T ,−T + 1,… , where D = (Dxy,zu) is a square matrix of order s2 with 
elements

Note that the definitions of H̃txy and Htxy are the same when x ≠ y . Moreover, since 
(2Ncx − 1)∕(2Ncx) is the probability that two gene copies, drawn randomly with 
replacement from x, are different copies, it follows that

for all x,  y. In particular, a comparison between (8) and (13) reveals that H̃−T is 
virtually independent of the census sizes Ncx when these are large. Since the 
elements (12) of the linear recursion matrix D do not involve any census sizes, it 
follows that H̃txy are virtually independent of census sizes as well, for any t,  x, y. 
Making use of (13) again, we conclude that the gene diversities Htxy are virtually 
independent of the local census sizes as well.

4.3 � Fixation Index

The most well known measure of genetic differences between subpopulations is 
the fixation index FST (Malécot 1948, Wright 1949; Weir and Cockerham 1984; 
Bhatia et al. 2013). Here we will use a version of the fixation index referred to as 
the coefficient of gene differentiation by Nei (1973) and subsequently generalized to 
multiallelic loci in Nei (1977). The fixation index is conveniently defined in terms 
of allele frequency differences between subpopulations, and we will study FST in 
each generation t from the perspective of the base generation −T  , so that allele 
frequencies at t > −T  are unknown. Following the argument in Hössjer et al. (2016), 
the fixation index at time t is then predicted by

(10)
H̃t =

∑

x,y wxwyH̃txy,

H̃t+𝜏 =
∑

x,y vxvyH̃t+𝜏,xy,

(11)H̃t+1 = DH̃t

(12)Dxy,zu = BxzByu

(

1 −
1

2Nez

)1(z=u)

.

(13)H̃txy = Htxy

(

2Ncx

2Ncx − 1

)I(x=y)
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where in the last step of (14) we first divided the numerator and denominator by 
p(1 − p) , and then invoked the definition of htxy = 1 − ftxy in (2). In order for the 
fixation index to be nonzero, it is required that at least two subpopulation weights 
wx are nonzero. We will mainly use (14) in the context of reproductive population 
weights w = �.

5 � Effective Sizes

The idea of effective size is to find a simple population that serves as a yardstick and 
shares some properties with the structured population of interest. The Wright–Fisher 
population (WF) is usually used for this purpose. It is a special case of the model of 
Sect. 2 that corresponds to a homogeneous population ( s = 1 ) with equal census and 
effective size ( Nc1 = Ne1 = N ). An effective size of type Q (notated as NeQ ) is the 
size of a WF population that exhibits the same value of a certain quantity Q as the 
given structured population. Typically Q quantifies how fast the genetic composition 
of the population changes between time points t and t + � , and we will assume that it 
takes the value (1 − 1∕(2N))� for a WF population of size N, so that

Solving for the effective size in (15) we find that

Equation (16) is very close to a formula for the effective size that appears at the 
bottom of Page 525 of Luikart et al. (1999). Since they have 2NeQ + 1 rather than 
2NeQ in the denominator of (15), they end up with an additional term −0.5 in the 
expression for NeQ , and they also include extra terms that correct for estimation bias 
of Q(�) due to having finite samples of genetic data at time points t and t + �.

When NeQ ≫ 𝜏 , the right hand side of (15) is well approximated by a first order 
Taylor expansion of g(x) = 1 − (1 − x)� ≈ �x around x = 0 . This gives rise to the 
simpler and approximate definition

Sometimes (17) is referred to as the additive approach (Waples 1989; Luikart et al. 
1999), as opposed to the exact multiplicative approach (15). Although the additive 
approximation often works well, it can sometimes be inaccurate when � gets large, 
in particular for populations that experience bottlenecks (Richards and Leberg 1996; 

(14)FST ,t =

∑s

x=1
wxE

�

(ptx − pt)
2
�

E[pt(1 − pt)]
=

∑

x,y wxwyhtxy −
∑

x wxhtxx
∑

x,y wxwyhtxy
,

(15)Q = Q(�) = 1 −

(

1 −
1

2NeQ

)�

.

(16)NeQ =
1

2{1 − [1 − Q(�)]1∕�}
.

(17)NeQ,add =
�

2Q(�)
.
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Luikart et  al. 1999). Another important difference between the multiplicative and 
additive approaches is that NeQ,add always exists, as long as Q is positive, whereas 
in order for NeQ to have a finite positive value we must require 0 < Q < 1 . Although 
Q < 1 is guaranteed for a Wright–Fisher population, for a subdivided population in 
general Q may sometimes exceed in 1.

In this paper we will mainly focus on loss of gene diversity ( Q = GD ) and 
variance of allele frequency change ( Q = V  ). But we will also consider the 
eigenvalue effective size, for which Q = E corresponds to the largest eigenvalue of a 
certain matrix. This effective size does not follow the general pattern (15) and (16) 
of genetic change between two time points t and t + � , but rather it quantifies the 
long term loss of genetic diversity at migration–drift equilibrium.

5.1 � Notation for Local and Global Effective Sizes

We will assume that subpopulations are weighted as w and v at time t and t + � , and 
in order to highlight the impact of these subpopulation weights we sometimes write 
NeQ = NeQwv , and in particular NeQ = NeQw when the same weight vector w = v is 
used at both time points. For an effective size of type Q ∈ {GD,V} we also adopt 
the notation of Laikre et  al. (2016) and write NeQMeta = NeQ� for the effective 
population size of the metapopulation. This corresponds to using reproductive 
weights at both time points ( w = v = � ). The quantity NeQRx = NeQex

 refers to the 
realized local effective size of subpopulation x, and it corresponds to using the same 
local weight vector at both time points ( w = v = ex ). The term realized was 
introduced in Laikre et al. (2016) and Ryman et al. (2019) to emphasize the fact that 
due to migration NeQRx typically differs from Nex , although the two quantities are 
identical when x is isolated from the other subpopulations. When two different 
subpopulations x and y receive full weight at time points t and t + � , i.e. w = ex , 
v = ey , and x ≠ y , we write NeQRxy = NeQexey

 for the corresponding realized effective 
size.

The eigenvalue effective size NeE , on the other hand, is a property of the 
metapopulation, and therefore it does not involve subpopulation weights.

5.2 � Gene Diversity Effective Size

The gene diversity effective size NeGD between the two time points t and t + � is 
defined as the size of an ideal Wright–Fisher population that exhibits the same 
relative gene diversity decline (locally or globally for the metapopulation), during 
this time interval, as for the studied structured population. In mathematical terms, 
this corresponds to the quantity

where I = IT+t(�) , the relative decline of gene diversity, quantifies how much genetic 
drift there has been between generations t and t + �.

(18)Q(�) = 1 −

(

1 −
1

2NeGD

)�

=
Ht − Ht+�

Ht

=∶ I,
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The effective size in (18) was referred as a haploid inbreeding effective size with 
replacement in Hössjer et al. (2014), since gene diversity decrease is equivalent to 
gene identity increase, a haploid analogue of increased inbreeding. It was shown 
in Hössjer et al. (2016) that NeGD is a good approximation of the additive genetic 
variance effective size NeAV , which is of interest for long term conservation of 
species. Recall from the discussion at the end of Sect. 4.2 that all Htxy and Ht+�,xy 
are essentially independent of the local census sizes of all subpopulations. From this 
it follows that Ht , Ht+� , I, and NeGD are functions of the migration rates in B and 
the local effective sizes Nex , whereas they are essentially independent of the local 
census sizes Ncx . Since I is nonzero even when all subpopulations are isolated, the 
contribution of all Nex is most fundamental to I, and for this reason we will refer to it 
as a genetic drift term.

Since the gene diversities Ht and Ht+� are non-negative, it follows that the term 
I does not exceed unity ( I ≤ 1 ). It may happen though that I is negative when local 
subpopulations weights of x are used at both time points ( w = v = ex ) and migration 
into x causes the gene diversity to increase ( Ht+𝜏 > Ht ). Then formally NeGD = ∞.

5.3 � Variance Effective Size

5.3.1 � Forward Approach

The variance effective size NeV is the size of an ideal and spatially homogeneous 
population whose standardized variance of allele frequency change between time 
points t and t + � is the same as in the studied structured population, see for instance 
Sect. 7.6.3 of Crow and Kimura (1970). It is instructive to first introduce NeV for a 
population that is either spatially homogeneous ( s = 1 ) or has a substructure that is 
ignored. The traditional definition

quantifies variance of allele frequency change conditionally on allele frequencies of 
generation t. If mutations and selection of a homogeneous population is ignored, 
then typically allele frequency change of the past (before time t) is uncorrelated 
with allele frequency change of the present (between time points t and t + � ). This 
implies that E(pt+� |pt) = pt , so that the variance in (19) equals E[(pt+� − pt)

2
|pt] . It 

turns out that the latter quantity is preferable to use in more general settings (such 
as a subdivided population) when possibly E(pt+� |pt) ≠ pt , due to the fact that allele 
frequency change of the past might be correlated with allele frequency change 
between time points t and t + � . We therefore define the variance effective size of a 
subdivided population (with subpopulation weights w and v ) as

(19)1 −

(

1 −
1

2N trad
eV

)�

=
Var (pt+� − pt|pt)

pt(1 − pt)
= Ftrad

(20)Q(�) = 1 −

(

1 −
1

2NeV

)�

=
E[(pt+� − pt)

2]

E[pt(1 − pt)]
= F.
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Equation (20) differs from (19) in that the numerator and denominator of the 
genetic drift term F are averaged with respect to pt . Indeed, it is well known 
(Ewens 1982; Hössjer and Ryman 2014; Hössjer et  al. 2014, 2016) that typically 
E[(pt+� − pt)

2
|pt]∕[pt(1 − pt)] is not a fixed number for a structured population, but 

rather a function of pt . This makes the more general definition of genetic drift in 
(20) preferable for a metapopulation with subpopulations, since the impact of pt is 
averaged out. We will refer to (20) as the forward definition of NeV , since allele fre-
quency change is normalized, in the denominator, as a function of allele frequencies 
at time t, the left end point of the interval [t, t + �] , and from the perspective of this 
time point the allele frequency change in the numerator of (20) takes place forwards 
in time. Note that the traditional definition (19) of variance effective size is based 
on the forward approach as well, and it can be seen that (20) is a generalization of 
(19). In particular, when � = 1 and the population is homogeneous, both of (19) and 
(20) reduce to the well know formula NeV = pt(1 − pt)∕[2 Var (pt+1 − pt|pt)] , see for 
instance Crow and Kimura (1970, Eq. 7.6.3.25).

Following Hössjer et  al. (2016), where the special case w = v was treated, we 
rewrite the right hand side of (20) as

The first term I on the right hand side of (21) is identical to the genetic drift term 
I that appears in the definition (18) of the gene diversity effective size. Indeed, it 
follows from (2) and (21) that

can be expressed in terms of htxy and ht+�,xy for all pairs x, y of subpopulations, which 
in view of (9) are proportional to the corresponding gene diversities that appear in 
the genetic drift term I of (18).

The second term II of (21) is only present in a subdivided population, 
and therefore it follows from (18) and (21) that NGD = NeV for homogeneous 
populations. For a subdivided population, −II accounts for the correlation between 
allele frequency change up to time t, and the allele frequency change that takes place 
between time points t and t + � . We could therefore refer to −II as a correlation 
between past and present allele frequency change. Extending the argument in 
Hössjer et al. (2016), where the case w = v was treated, one finds that

(21)

1 −
(

1 −
1

2NeV

)�

=
E[(pt+�−pt)

2]

E[pt(1−pt)]

=
E[(pt+�−p)

2]−E[(pt−p)
2]

E[pt(1−pt)]
+

−2Cov(pt+�−pt ,pt−p)

E[pt(1−pt)]

=
E[(pt+�−p)

2]∕[p(1−p)]−E[(pt−p)
2]∕[p(1−p)]

E[pt(1−pt)]∕[p(1−p)]

+
−2Cov(pt+�−pt ,pt−p)∕[p(1−p)]

E[pt(1−pt)]∕[p(1−p)]

= I + II.

(22)I = IT+t(�) =

∑

x,y wxwyhtxy −
∑

x,y vxvyht+�,xy
∑

x,y wxwyhtxy

(23)II = IIT+t(�) =
2
∑

x,y((vB
�)x − wx)wyhtxy

∑

x,y wxwyhtxy
.
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It follows from (23) that II = 0 when all subpopulations are isolated ( vB = v ) and 
the subpopulation weights are the same at time points t and t + � ( w = v ). We will 
therefore often refer to II as a migration or gene flow term, since it is impacted by 
migration in an essential way.

Equation (20) implies that the standardized amount of allele frequency 
change is non-negative, i.e. F = I + II ≥ 0 . It turns out that the gene flow 
term II is typically non-negative as well, since migration tends to induce 
a negative correlation between past and present allele frequency change 
when subpopulations with large allele frequencies receive inflow from other 
subpopulations with lower frequencies of the same allele. The consequence 
of such a negative correlation, or positive II, is to inflate the expected squared 
allele frequency change F. Since past and present allele frequency changes of a 
homogeneous population ( s = 1 ) are uncorrelated, such a population must have 
II = 0 and NeV = NeGD . The same is true when subpopulations are weighted 
according to their long term reproductive ability ( w = v = � ), since positive and 
negative allele frequency changes in different subpopulations will then cancel out 
in such a way that allele frequency change before time t is uncorrelated to the 
one that takes place over the interval [t, t + �] . On the other hand, II is typically 
positive when one subpopulation x receives full weight ( w = v = ex ), and this will 
lower NeVRx below NeGD . The magnitude of II for local subpopulation weights 
depends on the amount of subpopulation differentiation at time t (as quantified 
by FST ,t ) and the amount of gene flow between the subpopulations. It follows 
from (14) that this amount of subpopulation differentiation is reflected in terms 
of how much larger htxy for pairs of different subpopulations x ≠ y are compared 
to all htxx . In the extreme case when all elements of ht are the same it follows that 
FST ,t = II = 0 and consequently NeV = NeGD . This happens for instance when the 
first time point t of [t, t + �] is the founder generation ( t = −T  ). On the other hand, 
when II > 0 it may happen that F = 1 ⇔ II = 1 − I or F > 1 ⇔ II > 1 − I , which 
we formally write as NeV = 0 and NeV = −∞ respectively.

5.3.2 � Intermediate Approach

The forward definition (20) of the variance effective size relies on a standardized 
measure F = I + II of expected squared allele frequency change, which 
sometimes exceeds 1. This is due to the fact that the denominator of F in (20) is 
inflated when the allele frequency at the first time point t of the interval [t, t + �] is 
close to 0 or 1. For this reason, when NeV is estimated from data by the temporal 
method, allele frequency change is usually standardized in such a way that allele 
frequencies at both time points t and t + � are used. In particular, the approach of 
Pollack (1983) and Jorde and Ryman (2007) corresponds to a definition

(24)Fint =
E[(pt+� − pt)

2]

E[(pt + pt+�)∕2 ⋅ (1 − (pt + pt+�)∕2)]
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of standardized expected squared allele frequency change, whose denominator 
involves allele frequencies pt and pt+� at both time points t and t + � . We refer to 
(24) as the intermediate version of the standardized expected squared allele fre-
quency change, since the allele frequency change of the numerator is forward or 
backward in time, from the perspective of time point t and t + � respectively. Let N int

eV
 

refer to the corresponding intermediate version of variance effective size that makes 
use of Fint rather than F. It is not possible to define N int

eV
 by simply replacing F with 

Fint in (20), since for a Wright–Fisher population, such a procedure would not retain 
the population size. Instead, following Jorde and Ryman (2007) we put

It can be seen that the intermediate approach is somewhat more stable than the 
forward approach. Indeed, the right hand side of (25) is less than 1 whenever 
Fint < 4∕3 , so that N int

eV
 exists whenever 0 < Fint < 4∕3.

In order to analyze N int
eV

 more closely, we need an expression for the genetic drift 
term Fint in (24). To this end, we have to replace the denominator E[pt(1 − pt)] of F 
in (20) by E[(pt + pt+�)∕2 ⋅ (1 − (pt + pt+�)∕2)] . The ratio of these two denominators 
is

Inserting (21) and (26) into (24) we find that

When the last equation is plugged into (25), an expression

(25)Q(�) = 1 −

(

1 −
1

2N int
eV

)�

=
Fint

1 +
1

4
Fint

.

(26)

E
[

pt+pt+�

2

(

1 −
pt+pt+�

2

)]

E[pt(1 − pt)]
=

p(1 − p)

E[pt(1 − pt)]
−

E
(

pt+pt+�

2
− p

)2

E[pt(1 − pt)]

=
p(1 − p)

E[pt(1 − pt)]
−

3

4

E[(pt − p)2]

E[pt(1 − pt)]

−
1

4

E[(pt+� − p)2]

E[pt(1 − pt)]
−

1

2

Cov(pt+� − pt, pt − p)

E[pt(1 − pt)]

= 1 +
1

4

E[(pt − p)2]

E[pt(1 − pt)]
−

1

4

E[(pt+� − p)2]

E[pt(1 − pt)]

−
1

2

Cov(pt+� − pt, pt − p)

E[pt(1 − pt)]

= 1 −
1

4
I +

1

4
II.

(27)Fint =
I + II

1 −
1

4
I +

1

4
II
.
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is obtained for the intermediate definition of the variance effective size. From this it 
follows that the threshold for the intermediate version of the variance effective size 
not to exist ( N int

eV
= −∞ ) is twice as high ( II > 2(1 − I) ) as compared to the forward 

version of this effective size.

5.3.3 � Backward Approach

In analogy with (24) and (25), we also introduce a novel backward definition of NeV . 
In the first step expected squared allele frequency change

is normalized using allele frequencies from the right end point t + � of the time 
interval along which genetic change is monitored. From the horizon of an observer 
at this time point (29) describes what happened in the past, since the expected 
squared allele frequency change of the numerator is applied to a time period of the 
past. Let Nback

eV
 denote the variance effective size that makes use of Fback rather than 

F. In order for Nback
eV

 to retain the size of a Wright–Fisher population, we need to 
define it as

It follows that Nback
eV

 exists for all scenarios such that the standardized expected 
squared allele frequency change between generations t and t + � satisfies 
0 < Fback < ∞ , since this implies 0 < Q(𝜏) < 1 . For this reason the backward 
approach (30) gives a more stable definition of variance effective size than the 
forward and intermediate definitions in (20) and (25).

In order to study Nback
eV

 more closely, we start by deriving an expression for Fback 
in (29). To this end, we have to replace the denominator E[pt(1 − pt)] of F in (20) by 
E[pt+�(1 − pt+�)] . By similar calculations as in (26), we find that the ratio of these 
two denominators is

In a two-step procedure, we first insert (21) and (31) into (29) and find that

When the last equation is plugged into (30), a formula

(28)1 −

(

1 −
1

2N int
eV

)�

=
I + II

1 +
1

2
II

(29)Fback =
E[(pt+� − pt)

2]

E[pt+�(1 − pt+�)]

(30)Q(�) = 1 −

(

1 −
1

2Nback
eV

)�

=
Fback

1 + Fback
.

(31)
E[pt+�(1 − pt+�)]

E[pt(1 − pt)]
= 1 − I.

(32)Fback =
I + II

1 − I
.
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for the backward definition of the variance effective size is derived. It follows that 
Nback
eV

 exists under the very mild requirements I + II > 0 and I < 1 , since this implies 
0 < Q(𝜏) < 1.

5.4 � Eigenvalue Effective Size

The eigenvalue effective size NeE corresponds to the long term rate at which genetic 
variability is lost. The formal definition of the eigenvalue effective size is

where � = �3(P) is the largest non-unit eigenvalue and the third largest eigenvalue 
overall of the transition matrix P of {pt = (pt1,… , pts); t = −T ,−T + 1,…} , the 
vector-valued Markov chain of allele frequencies in all subpopulations. This Markov 
chain is defined on a huge state space of size 

∏s

x=1
(2Ncx + 1) . Tufto et  al. (1996) 

and Tufto and Hindar (2003) used a slightly different definition of � in (34), as the 
largest eigenvalue

of the much smaller matrix A that appears in the linear recursion for one minus 
standardized covariances as well as for gene diversities (cf. (3) and (7)). Indeed, by 
the Perron–Frobenius Theorem A has a unique, real-valued, and positive eigenvalue 
of multiplicity 1, which is strictly larger than the modulus of all other eigenvalues 
of A . It follows from work of Whitlock and Barton (1997) and Hössjer (2015) that 
�3(P) = �max(A).

5.5 � Relations Between Effective Sizes

It is clear from the definition (18) of the gene diversity effective size and the three 
versions (21), (28), and (33) of the variance effective size that whenever the gene 
flow term II is non-negative ( II ≥ 0 ) the values of Q(�) for these four effective sizes 
satisfy

making use of the fact that I ≤ 1 because of (18), and that I + II ≥ 0 must hold as a 
consequence of (21). But since NeQ is a strictly decreasing function of Q(�) in (16), 
it follows that

(33)1 −

(

1 −
1

2Nback
eV

)�

=
I + II

1 + II

(34)Q = � = 1 −
1

2NeE

,

(35)� = �max(A)

I ≤
I + II

1 + II
≤

I + II

I +
1

2
II

≤ I + II,
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These inequalities involve the possibility that some effective sizes have values −∞ , 
0, or ∞ , whenever Q(𝜏) > 1 , Q(�) = 1 and Q(�) ≤ 0 , as discussed above. There is 
no general relation between NeE and the four effective sizes in (36). We will find 
however that under migration–drift equilibrium NeE equals NeGD as well as NeV with 
reproductive subpopulation weights.

6 � Migration–Drift Equilibrium

Migration–drift equilibrium occurs when many generations have elapsed between 
the founder generation and the first generation t of the interval over which genetic 
change is assessed, so that a balance between genetic drift within and migration 
between subpopulation is obtained. Mathematically, this corresponds to keeping 
t fixed while T → ∞ . Recall from (35) that A has a unique, real-valued, and 
largest eigenvalue � . Let r = (rxy) be the corresponding right eigenvector of A 
with eigenvalue � , whose elements, by the Perron–Frobenius Theorem, are real-
valued and positive. In view of (5), it follows that h−T = 1s2 = Cr + r� for some 
constant C > 0 , where r′ is a linear combination of the other right eigenvectors of 
A . Consequently, it follows from the linear recursion (3) that

is an increasingly accurate approximation as T gets large. For this reason the 
migration–drift properties of the metapopulation will only involve � and r.

Example 1  (Symmetric migration and equally large subpopulations) In order to 
find more explicit expressions for r , we will consider a class of structured popu-
lations that includes the island and stepping stone models as special cases. These 
populations have subpopulations with equally large local census sizes ( Ncx = Nc ) 
and equally large local effective sizes under isolation ( Nex = Ne ). The backward 
migration rates Bxy may depend on the pair x, y of subpopulations, but it is assumed 
that they are the same in both directions between any such pair. Consequently, the 
backward migration matrix B is symmetric ( Bxy = Byx for all x ≠ y ). Since we also 
assume that B is irreducible, this implies that an asymptotic distribution � = 1

T

s
∕s 

exists for the Markov chain with transition matrix B , where 1s = (1,… , 1)T is a col-
umn vector of s ones. Moreover, B has real-valued eigenvalues �i , with

Let l1 =
√

s� = 1
T

s
∕
√

s, l2,… , ls be the corresponding orthonormal system of left 
eigenvectors li of B , expressed as li = (lix; x = 1,… , s) . It is shown in Appendix 
B.1 that the column vectors lT

ij
= (lixljy; 1 ≤ x, y ≤ s)T of length s2 form a convenient 

orthonormal system of basis functions to use in order to analyze the right eigenvector 
r of A , for a system with symmetric migration.

The island model is an instance of symmetric migration, with

(36)NeV ≤ N int
eV

≤ Nback
eV

≤ NeGD.

(37)ht ≈ C�t+Tr

1 = 𝜂1 > 𝜂2 ≥ … ≥ 𝜂s > −1.
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and Is the identity matrix of order s. The non-unit eigenvalues of this migration 
matrix are

The circular stepping stone model is a second example of symmetric migration, 
where any subpopulation x receives a fraction m/2 of genes from each of its two 
neighboring subpopulations x − 1 and x + 1 modulo s. This corresponds to a 
backward migration matrix

The matrix in (40) is a circular matrix, and Fourier analysis of such matrices has 
frequently been used in population genetics (Malécot 1951; Maruyama 1970a; 
Rousset 2004; Hössjer 2014). For instance, it is shown in Hössjer (2014) that

with [(i + 1)∕2] the integer part of (i + 1)∕2 . Expressions for �i for the two-
dimensional (torus) stepping stone model can be found in Hössjer (2014). 	�  ◻

6.1 � Subpopulation Differentiation

In order to find an expression for the fixation index FST ,t under migration–drift 
equilibrium, we insert (37) into (14) and let T → ∞ . This yields

where superscript eq is an acronym for equilibrium. It is shown in Appendix B.2 
that for reproductive weights w = � and the symmetric model of Example 1, the 
approximation

is accurate for large local population sizes when subpopulations are connected by 
strong migration. For the island model (43) we insert (39) into (43) and obtain

(38)B = (1 − m)Is + m1s1
T
s
,

(39)�2 = … = �s = 1 − m.

(40)B =

⎛

⎜

⎜

⎜

⎝

1 − m m∕2 0 … m∕2

m∕2 1 − m m∕2 … 0

⋮ ⋱ ⋮

m∕2 0 … m∕2 1 − m

⎞

⎟

⎟

⎟

⎠

.

(41)�i = 1 − m + m cos

(

2�[(i + 1)∕2]

s

)

, i = 1,… , s,

(42)FST ,t

T→∞
−−−−→F

eq

ST
=

∑

x,y wxwyrxy −
∑

x wxrxx
∑

x,y wxwyrxy
,

(43)F
eq

ST
≈

s − 1

2s

(

1

Nc

+
1

Ne

⋅
1

s − 1

s
∑

i=2

�2
i

1 − �2
i

)
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where

is a harmonic average of the local census and effective sizes. Formula (44) is 
accurate when m is not too small. For improved island model approximations of Feq

ST
 , 

see Hössjer et al. (2013).

6.2 � Genetic Drift and Migration

Next we will analyze how the genetic drift term I = IT+t(�) and the gene flow term 
II = IIT+t(�) behave as T → ∞ . From (3), (22), and (37) we deduce that

and

when t and t + � are kept fixed while T → ∞.
It is shown in Appendix B.3 that the equilibrium gene flow term (47) simplifies to

for symmetric migration (cf. Example 1), with �i = wlT
i
 and �i = vlT

i
 the 

coefficients of li for w and v , when these two weight vectors are expanded as 
a linear combination of the left eigenvectors li of B . Formula (48) is accurate 
when the subpopulations are connected by strong migration. For the island 
model (38) and (39) we have that 

∑s

i=2
�2
i
=
∑s

x=1
w2
x
− �2

1
= �w�2 − 1∕s and 

∑s

i=2
�i�i =

∑

x wxvx − �1�1 = wvT − 1∕s . Then (48) simplifies to

with Ñ as in (45). This formula is accurate as long as m is not too small. In particular, 
if 1 ≤ k ≤ s subpopulations receive equal weight 1/k at time points t and t + � , and 
max(2k − s, 0) ≤ l ≤ k of these overlap, it follows that |w|2 = 1∕k and wvT = l∕k2 . 
Insertion into (49) gives

(44)F
eq

ST
≈

s − 1

2sÑ[1 − (1 − m)2]
,

(45)
1

Ñ
=

1 − (1 − m)2

Nc

+
(1 − m)2

Ne

(46)I
T→∞
−−−−→I∞(�) = 1 −

(

1 −
1

2NeE

)�

(47)II
T→∞
−−−−→II∞(�) =

2
∑

x,y((vB
�)x − wx)wyrxy

∑

x,y wxwyrxy

(48)II∞(�) ≈

s
∑

i=2

�i(�i − ��
i
�i)

1 − �2
i

(

1 − �2
i

Nc

+
�2
i

Ne

)

(49)II∞(𝜏) ≈
|w|2 − 1∕s − (1 − m)𝜏(wvT − 1∕s)

Ñ[1 − (1 − m)2]
,
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Notice in particular that the right hand side of (50) vanishes when k = l = s . This 
corresponds to using equal weights wx = vx = 1∕s of all subpopulations at both time 
points t and t + � , which are the reproductive weights for the island model.

In Sects. 6.3 and 6.4 we will use (46)–(50) in order to derive explicit expressions 
for the gene diversity and variance effective sizes under migration–drift equilibrium.

6.3 � Gene Diversity Effective Size

It follows from (18) and (46) that the gene diversity effective size equals the 
eigenvalue effective size under migration–drift equilibrium, since

Notice in particular that since the equilibrium limit I∞(�) of the drift term in (46) 
does not involve the subpopulation weighting scheme w , (51) holds regardless which 
w we use to define NeGD.

6.4 � Variance Effective Size

6.4.1 � Forward Approach

The two equations (46) and (47) have interesting implications for the asymptotic limit 
of the forward version of the variance effective size NeV at migration–drift equilibrium. 
It follows from (20), (21), (46), and (47) that

for all � such that 0 < I∞(𝜏) + II∞(𝜏) < 1 , or equivalently that

holds. We may apply (52) to any kind of weighting scheme. Since NeVMeta is based on 
reproductive weights w = v = � , and � = �B , it follows from (23) that IIT+t(�) = 0 
for any T ≥ 0 , and hence II∞(�) = 0 . Insertion into (52) gives

For local subpopulation weights we insert v = w = ex into the definition of II∞(�) in 
(47). In conjunction with (52) this gives the equilibrium value Neq

eVRx
 of the realized 

variance effective size of subpopulation x, for all � such that (53) holds.

(50)II∞(𝜏) ≈
1∕k − 1∕s − (1 − m)𝜏(l∕k2 − 1∕s)

Ñ[1 − (1 − m)2]
.

(51)NeGD

T→∞
−−−−→N

eq

eGD
= NeE.

(52)NeV

T→∞
−−−−→N

eq

eV
=

1

2{1 − [(1 − 1∕(2NeE))
� − II∞(�)]

1∕�}

(53)
(

1 −
1

2NeE

)𝜏

> II∞(𝜏)

(54)NeVMeta

T→∞
−−−−→N

eq

eVMeta
= NeE.
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It is proved in Appendix B.4 that the variance effective size at migration–drift equi-
librium satisfies

for the island model, and subpopulations weights w and v at time points t and t + � 
such that wvT ≤ |w|2 , with equality in (55) if and only if wvT = |w|2 . The intuition 
behind (55) is that II∞(�) is elevated when different subpopulation weights are used 
in generations t and t + � , since the negative correlation II between allele frequency 
change of the past and present then increases, so that the variance effective size gets 
smaller. We also verify in Appendix B.4 that

for the symmetric migration models of Example 1, with equality if and only if 
reproductive weights ( w = v = � ) are used at time points t and t + � . The intuition 
behind (56) is that the gene flow term II∞(�) is positive as soon as non-reproductive 
weights w = v ≠ � are used, so that NeVw gets smaller. We also conjecture that 
results similar to (55) and (56) hold more generally than for island and symmetric 
migration models respectively.

It is instructive to illustrate (55) and (56) for an island model where 1 ≤ k ≤ s 
subpopulations are assigned equal weight 1/k at both time points t and t + � , and that 
l of these subpopulations overlap. Insertion of the equilibrium migration term II∞(�) 
in (50) into (52) yields

This formula shows very explicitly how much Neq

eV
 differs from NeE , as a function of 

k and l. For fixed k, Neq

eV
 is maximized in (57) when the same subpopulation weights 

are used at both time points ( l = k ), in agreement with (55). When k = l , we notice 
that Neq

eV
 attains its maximum NeE when reproductive weights are used at both time 

points, which corresponds to k = s and w = � = 1
T

s
∕s , in agreement with (56).

6.4.2 � Intermediate Approach

For the intermediate approach, we have, analogously to (52), that the variance 
effective size at equilibrium is

for all � such that

(55)N
eq

eVwv
≤ N

eq

eVw

(56)N
eq

eVw
≤ N

eq

eV�
= N

eq

eVMeta
= NeE

(57)
N

eq

eV
≈

1

2

{

1 −
[

(1 − 1∕(2NeE))
𝜏 −

1∕k−1∕s−(1−m)𝜏 (l∕k2−1∕s)

Ñ[1−(1−m)2]

]1∕𝜏
} .

(58)
N int
eV

T→∞
−−−−→N

int,eq

eV
=

1

2

{

1 −

[

(1−1∕(2NeE))
�−

1

2
II∞(�)

1+
1

2
II∞(�)

]1∕�
} ,
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which is a less stringent condition than (53) for the variance effective size to exist. 
Since II∞(�) = 0 for reproductive weights, it follows that N int,eq

eVMeta
 converges to NeE 

as migration–drift equilibrium is approached, as in (54). The local realized variance 
effective size N int,eq

eVRx
 at equilibrium is obtained by inserting w = v = ex into the 

definition of II∞(�) in (58). Formulas (55) and (56) hold for the intermediate version 
of the variance effective size as well, and explicit expressions of N int,eq

eV
 for the island 

model are obtained by inserting (50) into (58).

6.4.3 � Backward Approach

For the backward approach, we find that the variance effective size at equilibrium 
exists for time intervals of any length � . This equilibrium value

is derived in the same way as (52) and (58). For local subpopulation weights we 
insert w = v = ex into the definition of II∞(�) in Eq. (60) in order to obtain Nback,eq

eV ,Rx
 . 

Formulas (55) and (56) hold for the backward version of the variance effective size 
as well, and explicit expressions of Nback,eq

eV
 for the island model are obtained by 

inserting (50) into (60).

7 � The Length of the Time Interval

In this section we analyze how the length � of the time interval impacts the gene 
diversity and variance effective sizes. We will focus on the two extreme scenarios of 
consecutive generations ( � = 1 ) and long time intervals ( � → ∞).

7.1 � Consecutive Generations

For ease of notation, we will sometimes write IT+t(�) = I(�) and IIT+t(�) = II(�) 
for the genetic drift and gene flow terms that appear in the definitions of the gene 
diversity and variance effective sizes. When these effective sizes reflect changes 
between two consecutive generations ( � = 1 ), formulas (18), (21), (28), and (33) 
simplify to

(59)
(

1 −
1

2NeE

)𝜏

>
1

2
II∞(𝜏),

(60)Nback
eV

T→∞
−−−−→N

back,eq

eV
=

1

2
{

1 −
1−1∕(2NeE)

[1+II∞(�)]1∕�

}

(61)N
eGD

=
1

2I(1)

eq

= N
eE
,
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and

respectively, where the right hand sides of (61)–(64) refer to migration–drift 
equilibrium, with I∞(1) and II∞(1) the drift and gene flow terms in (46) and (47) at 
equilibrium, for two consecutive generations. Typically the gene flow term is small 
( II(1) ≪ 1 ) unless there is much migration between the subpopulations and a large 
amount of subpopulation differentiation at time t. Consequently, for most scenarios 
of practical interest the three versions of variance effective size are practically the 
same,

(62)NeV =
1

2[I(1) + II(1)]

eq
=

1
1

NeE

+ 2II∞(1)
,

(63)N int
eV

=
1 +

1

2
II(1)

2[I(1) + II(1)]

eq
=

1 +
1

2
II∞(1)

1

NeE

+ 2II∞(1)
,

(64)Nback
eV

=
1 + II(1)

2[I(1) + II(1)]

eq
=

1 + II∞(1)

1

NeE

+ 2II∞(1)

(65)
1

2[I(1) + II(1)]
= NeV ≈ N int

eV
≈ Nback

eV
,

Table 2   Values of the realized local variance effective size NeVRx at migration–drift equilibrium for a 
time interval of length � = 1 , so that the same subpopulation x receives full weight at the two end points 
of the interval

An island model with s = 10 subpopulations is used, with local effective size Nex = 50 under 
isolation, local census size Ncx and migration parameter m (where Bxy = m∕s when x ≠ y and 
Bxx = 1 − (s − 1)m∕s ). The three methods of computing NeVRx refer to the forward approach (= For, the 
right hand side of (62)), the intermediate approach (= Int, the right hand side of (63)), and the backward 
approach (= Back, the right hand side of (64)). A more explicit approximation of NeVRx , for the forward 
approach, appears in (66)

N
cx
= 50 N

cx
= 500

For Int Back For Int Back

0.1 47.2960 47.5232 47.7504 56.4109 56.6337 56.8566
0.2 45.0331 45.2609 45.4888 64.3622 64.5805 64.7988
0.3 42.7467 42.9755 43.2043 74.2336 74.4468 74.6600
0.4 40.4368 40.6667 40.8966 86.5645 86.7714 86.9783
0.5 38.1032 38.3342 38.5652 101.9387 102.1379 102.3371
0.6 35.7455 35.9777 36.2098 120.7432 120.9329 121.1227
0.7 33.3633 33.5967 33.8300 142.4849 142.6637 142.8426
0.8 30.9564 31.1909 31.4254 164.3497 164.5176 164.6854
0.9 28.5242 28.7599 28.9956 179.5012 179.6615 179.8217
1.0 26.0664 26.3033 26.5403 178.4566 178.6174 178.7781
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when the expected squared allele frequency change between two consecutive gener-
ations is analyzed. This is illustrated in Tables 2 and 3 for the realized local variance 
effective size of an island model with s = 10 subpopulations at migration–drift equi-
librium, corresponding to the right hand side of (62)–(64). Whereas the same sub-
population weights are used at both time points in Table 2 ( w = v = ex or k = l = 1 ), 
this is not the case in Table 3 ( w = ex , v = ey , x ≠ y or k = 1 , l = 0 ). Note in particu-
lar that all three versions of the realized local variance effective size depend strongly 
on the local census size. This phenomenon is discussed in Ryman et al. (2023), and 
in the present framework in can be explained as follows: The term II∞(1) is approxi-
mated by (49) and (50) for the island model and it depends on the amount of migra-
tion into x or y from the other subpopulations as well as the amount of subpopulation 
differentiation Feq

ST
 in (44). The larger the migration rate and the local census size 

are, the smaller is the amount of subpopulation differentiation, and the smaller is the 
gene flow term II∞(1) at equilibrium, so that the variance effective size approaches 
the eigenvalue effective size.

A more analytical interpretation of the results of Table 2 is obtained by inserting 
� = 1 and w = v = ex into (49) and the right hand side of (62). This yields

On the other hand, in order to approximate the results of Table 3, we insert � = 1 , 
w = ex , and v = ey into the right hand side of (62). This yields

(66)N
eq

eVRx
≈

1
1

NeE

+
2(1−1∕s)

(2−m)Ñ

(44)
≈

1
1

NeE

+ 4mF
eq

ST

.

Table 3   Values of the realized 
local variance effective size 
NeVRxy at migration–drift 
equilibrium, for a time interval 
of length � = 1 , so that different 
subpopulations x and y receive 
full weight at the two end points 
of the interval

An island model with s = 10 subpopulations is used, with local 
effective size Nex = 50 under isolation, local census size Ncx 
and migration parameter m (where Bxy = m∕s when x ≠ y and 
Bxx = 1 − (s − 1)m∕s ). The three methods of computing NeVRxy 
refer to the forward approach (=For, the right hand side of (62)), 
the intermediate approach (=Int, the right hand side of (63)), and 
the backward approach (=Back, the right hand side of (64)). A more 
explicit approximation of NeVRxy , for the forward approach, appears 
in (67)

m N
cx
= 50 N

cx
= 500

For Int Back For Int Back

0.1 4.6878 4.9355 5.1833 5.6902 5.9375 6.1847
0.2 8.9166 9.1622 9.4078 13.1853 13.4288 13.6723
0.3 12.6738 12.9175 13.1612 23.1186 23.3572 23.5957
0.4 15.9668 16.2089 16.4509 36.3781 36.6100 36.8419
0.5 18.8007 19.0413 19.2820 54.0715 54.2945 54.5176
0.6 21.1778 21.4172 21.6567 77.2921 77.5035 77.7149
0.7 23.0977 23.3362 23.5746 106.2835 106.4804 106.6774
0.8 24.5571 24.7948 25.0326 138.5156 138.6964 138.8772
0.9 25.5498 25.7870 26.0242 166.3374 166.5042 166.6710
1.0 26.0664 26.3033 26.5403 178.4566 178.6174 178.7781



	 O. Hössjer et al.

1 3

19  Page 28 of 49

Formulas (66) and (67) are also obtained from (57), with � = 1 , k = 1 , and l = 1 or 
l = 0 respectively. They are accurate when the migration rate m is not too small. In 
particular, under panmixia it follows from (57) that

regardless of the loal weight vectors w = ex and v = ey of the subpopulations at time 
points t and t + 1 . Note that (68) is the limit of (66) and (67) when m → 1 , and that 
(68) approaches NeE when Nc → ∞.

7.2 � Long Time Intervals

When the length � of the time interval gets large, it may happen that the 
standardized allele frequency change of the forward and intermediate versions of 
the variance effective size satisfy Q(�) ≥ 1 , so that the corresponding effective 
size equals 0 or −∞ . In this subsection we will provide formulas for the maximal 
length �max,Q of the time interval for which each type Q of effective size exists 
under migration–drift equilibrium. Since the gene diversity effective size equals 
the eigenvalue effective size at equilibrium, for time intervals of any length (cf. 
(51)), it follows that

For the forward version of the variance effective size, it follows from (53) that

where the right hand side is interpreted as plus infinity whenever

is zero or negative. The approximation in (69) is accurate for large NeE . It implies 
that Neq

eV
 exists for time intervals up to a maximal length that is proportional to NeE . 

For the intermediate version of the variance effective size, we similarly deduce

from formula (59). We recall from (60) that the backward version of the variance 
effective size exists at equilibrium for time intervals of any length, so that

(67)N
eq

eVRxy
≈

1
1

NeE

+
2(1−m∕s)

(2−m)mÑ

(44)
≈

1
1

NeE

+ 4F
eq

ST

s−m

s−1

.

(68)N
eq

eV

m=1
=

1
1

NeE

+
2(1−1∕s)

Nc

,

�max,GD = ∞.

(69)�max,V ≈ log[II−1
∞
] ⋅ 2NeE,

(70)II∞ = lim
�→∞

II∞(�) =
2
∑

x,y(�x − wx)wyrxy
∑

x,y wxwyrxy

(71)� int
max,V

≈ log
[

2II−1
∞

]

⋅ 2NeE

�back
max,V

= ∞.



1 3

Assessment of the Global Variance Effective Size of Subdivided… Page 29 of 49  19

In particular, by increasing the length of the time interval in (60) we find that

for all types of subpopulation weights w.
Figure  1 illustrates the eigenvalue effective size NeE , and the forward, inter-

mediate, and backward versions of the realized local variance effective size over 
time intervals [0, �] of increasing length when the population is at migration–drift 
equilibrium. The model is an island model with s = 10 subpopulations and the 
migration rate equals m = 0.1 . It can be seen that NeVRx and N int

eVRx
 initially increase 

as � grows, until they reach a maximum, start to decline and eventually do not 
exist. In contrast, Nback

eVRx
 always exists and increases monotonically to NeE as the 

length � of the time interval grows, in agreement with (72). The corresponding 
variance effective sizes NeVMeta , N int

eVMeta
 and Nback

eVMeta
 of the metapopulation, based 

on equal subpopulation weights wx = 1∕s , equal NeE for all values of �.
The three realized local variance effective sizes of Fig.  1 are almost the same 

for time intervals of length up to 200–300 generations, which is at least tenfold the 
time span typically employed in the context of genetic conservation. However, it is 
shown in Appendix A that for a small and subdivided population, the three effective 
sizes may differ substantially for time intervals of length 5–10 generations. More 

(72)N
back,eq

eV

�→∞
−−−−→NeE,

Fig. 1   The figure plots effective sizes for an island model with s = 10 , N
ex
= N

cx
= 50 and m = 0.1 , 

when t = 0 corresponds to migration–drift equilibrium ( T → ∞ ). The horizontal solid line corre-
sponds to N

eE
= 519.28 . The three curves correspond to N

eVRx
 (dotted), N int

eVRx
 (dash-dotted) and Nback

eVRx
 

(dashed) for intervals [0, �] of increasing length. N
eVRx

 increases with � at first, then it starts to drop until 
� = �max = 2431 , and for longer intervals N

eVRx
 does not exist. In comparison, formula (69) predicts 

�max,V = log(II−1
∞
) ⋅ 2N

eE
= 2432.8 . In a similar fashion N int

eVRx
 increases with � at first, then it starts to 

drop until � = �max = 3151 , and after this generation N int

eVRx
 does not exist. In comparison, formula (71) 

predicts � int
max,V

= log(2II−1
∞
) ⋅ 2N

eE
= 3152.7 . On the other hand, Nback

eVRx
 increases monotonically to N

eE
 as 

� → ∞
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generally, the value of � for which the three effective sizes significantly start to differ 
is proportional to NeE . For populations that are either very small locally or experi-
ence a severe bottleneck, it may therefore be of interest to use the most stable ver-
sion Nback

eVRx
 of the realized local variance effective size.

8 � Estimation of Effective Sizes

In this section we will investigate how the length � of the time interval impacts the 
accuracy of an estimator of the gene diversity and variance effective sizes at 
equilibrium ( Neq

eQ
 , Q ∈ {GD,V} ). Our theoretical analysis is complementary to the 

simulation results of Luikart et  al. (1999), where interval lengths with maximal 
accuracy, for a variance effective size estimator, were derived for a population going 
through a bottleneck. Here we stick to the model introduced in Sect. 2, with time-
invariant population sizes of all subpopulations. We start by introducing

the value, at migration–drift equilibrium, of the quantity Q used to define each 
effective size. More specifically, in this section Q(�) corresponds to the limit, when 
T → ∞ , of the quantities that appear in (18), (20), (25), and (30) respectively. A 
necessary requirement for Neq

eQ
 to exist is that 0 < Q(𝜏) < 1 . Recall from Sect. 7.2 

that this is not always the case for the forward and intermediate versions of the 
variance effective size.

In order to estimate Neq

eQ
 from data, let Q̂(𝜏) = Q(𝜏) + 𝜀 be an estimate of Q(�) , 

based on samples of sizes nt and nt+� at time points t and t + � . We will assume that 
the estimation error � of Q̂(𝜏) is a random variable with E(�) = 0 and Var (�) = �2 . 
Typically �2 is inversely proportional to the number of biallelic markers used to 
estimate Q(�) , with a proportionality constant that is a monotone increasing function 
of 1∕(2nt) and 1∕(2nt+�) (Waples 1989). Our objective is to estimate the asymptotic 
amount of genetic drift

per generation at equilibrium, where

is the inverse of g. By a first order Taylor expansion of h, it can be seen that the error 
of the estimate Q̂ = h(Q̂(𝜏)) has an approximate variance

Q(�) = Qeq(�) = g

(

1

2N
eq

eQ

)

= 1 −

(

1 −
1

2N
eq

eQ

)�

,

(73)Q =
1

2N
eq

eQ

= h(Q(�))

h(Q(�)) = g−1(Q(�)) = 1 − (1 − Q(�))1∕�

(74)Var (Q̂) ≈ 𝜎2

(

dh(Q(𝜏))

dQ(𝜏)

)2

= 𝜎2
{

1

𝜏
[1 − Q(𝜏)]

1

𝜏
−1
}2

.
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Our objective is to express Var (Q̂) as a function of � for each quantity Q and 
weighting scheme w . The variance in (74) will initially decrease with � , since for 
short time intervals Q(𝜏) ≪ 1 and consequently

When � gets larger and Q(�) approaches 1, the variance in (74) will reach a minimum 
and then start to increase. For this reason it is of interest to find approximate 
expressions for the interval length

that minimizes the estimation variance in (74). As we will find below, Var (Q̂) is a 
function of NeE and the equilibrium gene flow term II∞(�) , defined in (47). It turns 
out that the optimal time interval will have a length �opt,Q that is proportional to NeE . 
For a system with strong migration between its subpopulations (Nagylaki 1980) 
II∞(�) approaches the asymptotic limit (70) so quickly that the length of the transient 
period is small in comparison to NeE . For a population with strong migration we will 
therefore approximate �opt,Q by minimizing a simplified version of dh(Q(�))∕dQ(�) 
with respect to � , where II∞(�) is replaced by the constant II∞ in (70).

As a complement to (76) we also define

as the largest value of � for which the standard deviation of the estimate of Q has not 
exceeded � by a factor of at least C > 1 . In particular, �∞,Q is closely related to �max,Q

.

8.1 � Gene Diversity Effective Size

For the gene diversity effective size we recall from (18) and (46) that

Insertion of this equation into (74) yields

Minimizing (78) with respect to � , we find that the optimal length of the time 
interval, when estimating the gene diversity effective size, is

(75)Var (Q̂) ≈
𝜎2

𝜏2
.

(76)
𝜏opt,Q = arg min𝜏 Var (Q̂)

= arg min𝜏 dh(Q(𝜏))∕dQ(𝜏)

= arg min𝜏
1

𝜏
[1 − Q(𝜏)]

1

𝜏
−1

(77)𝜏C,Q = min{𝜏;

√

Var (Q̂)

𝜎2
≥ C} − 1

Q(�) = I∞(�) = 1 −

(

1 −
1

2NeE

)�

.

(78)
dh(Q(�))

dQ(�)
=

1

�

[

1 − I∞(�)
]

1

�
−1

=
1

�

(

1 −
1

2NeE

)1−�

.
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8.2 � Variance Effective Size

8.2.1 � Forward Approach

The quantity Q(�) of the forward version of the variance effective size is obtained 
from (20) and (46) and (47). The resulting formula

leads to

(79)�opt,GD = 2NeE.

(80)Q(�) = 1 −

(

1 −
1

2NeE

)�

+ II∞(�)

(81)dh(Q(�))

dQ(�)
=

1

�
[1 − Q(�)]

1

�
−1 =

1

�

[(

1 −
1

2NeE

)�

− II∞(�)

]

1

�
−1

.

Fig. 2   Using the forward definition of variance effective size, the figure shows a log–log plot of the 
normalized standard deviation Var (Q̂)1∕2∕𝜎 for estimating Q = 1∕(2N

eq

eV
) , the average amount of 

genetic drift per generation at equilibrium, for time intervals [0, �] . The population model is the same 
as in Fig.  1, and the solid and dash-dotted curves correspond to Neq

eVRMeta
 and Neq

eVRx
 respectively. The 

solid curve has �1.5 = 9980 , �2 = 10313 , �3 = 10780 , �4 = 11110 , and �5 = 11365 (cf. (77)), whereas 
the optimal interval has length �opt = 1038 (cf. (76)). For comparison, formula (83) gives dopt = 1.000 
and dopt2NeE

= 1038.6 . The corresponding values of the dash-dotted curve are �1.5 = 2428 , �2 = 2429 , 
�3 = �4 = 2430 , �5 = 2431 , and �opt = 819 , dopt = 0.7886 , and dopt2NeE

= 819.0
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Equating the derivative with respect to � to 0, of a simplified version of (81) (where 
II∞(�) is replaced by II∞ ), and assuming NeV is large, it can be shown that

whenever II∞ ≥ 0 , where dopt,V = dopt,V (II∞) solves the equation

We interpret II∞ as a number that quantifies how much migration between subpopu-
lations impacts the variance of allele frequency change. It can be seen from (83) 

that dopt,V is a decreasing function of II∞ , with dopt,V = 1 for Neq

eVMeta
 and II∞ = 0 , 

whereas dopt,V → 0 as II∞ → 1 . It follows from (83) that dopt,V < log(II−1
∞
) , and con-

sequently, the optimal interval (76) is shorter than the length �max,V of the maximal 
interval in (69) for which Neq

eV
 exists.

Figure 2 is a log–log plot of the normalized standard deviation Var (Q̂)1∕2∕𝜎 of 
Q̂ as a function of � for an island model with s = 10 subpopulations, when esti-
mating the variance effective size of the metapopulation and a local population 
respectively. The linear decay to the left of the figure, for smaller � , corresponds 
to Var (Q̂)1∕2 being inversely proportional to � for intervals of short length, in 
agreement with (75). Note in particular the vertical asymptote of the dash-dotted 
curve. This corresponds to the fact that Var (Q̂) diverges when � approaches the 
length of intervals for which Neq

eVRx
 is no longer defined (cf. Fig. 1).

8.2.2 � Intermediate Approach

For the intermediate definition of the variance effective size we proceed similarly 
as in Sect. 8.2.1. It follows from (25), (28), and (46) and (47) that

which leads to

Replacing II∞(�) in (85) by II∞ and minimizing with respect to � , it follows that

with

(82)�opt,V ≈ dopt,V ⋅ 2NeE

(83)dopt,V + II∞e
dopt,V = 1.

(84)Q(�) =
1 −

(

1 −
1

2NeE

)�
+ II∞(�)

1 +
1

2
II∞(�)

,

(85)dh(Q(�))

dQ(�)
=

1

�
[1 − Q(�)]

1

�
−1 =

1

�

⎡

⎢

⎢

⎣

�

1 −
1

2NeE

��
−

1

2
II∞(�)

1 +
1

2
II∞(�)

⎤

⎥

⎥

⎦

1

�
−1

.

(86)� int
opt,V

≈ dint
opt,V

⋅ 2NeE,
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Notice that dint,Vopt = 1 when II∞ = 0 , whereas dint,Vopt < 1 is larger than (83) whenever 
II∞ > 0 . This verifies that it is possible to estimate the variance effective size with 
high accuracy over longer time intervals when the intermediate approach is used, 
compared to using the forward approach.

Figure  3 illustrates Var (Q̂)1∕2∕𝜎 for an island model with s = 10 subpopu-
lations. The linear decay to the left of the figure, for smaller � , corresponds to 
Var (Q̂)1∕2 being inversely proportional to � for intervals of short length, in agree-
ment with (75). The vertical asymptote of the dash-dotted curve corresponds to 
the fact that Var (Q̂) diverges when � approaches the length of intervals for which 
N

int,eq

eVRx
 is no longer defined (cf. Fig. 1).

8.2.3 � Backward Approach

In order to find Q(�) for the backward definition of the variance effective size we 
combine (30), (33), and (46) and (47). This leads to

(87)dint
opt,V

+
1

2
II∞e

dint
opt,V = 1.

Fig. 3   Using the intermediate definition of variance effective size, the figure shows a log–log plot of 
the normalized standard deviation Var (Q̂)1∕2∕𝜎 for estimating Q = 1∕(2N

int,eq

eV
) , the average amount of 

genetic drift per generation at equilibrium, for time intervals [0, �] . The population model is the same 
as in Fig.  1, and the solid and dash-dotted curves correspond to N int,eq

eVRMeta
 and N int,eq

eVRx
 respectively. The 

solid curve has �1.5 = 9980 , �2 = 10313 , �3 = 10780 , �4 = 11110 , and �5 = 11365 (cf. (77)), whereas 
the optimal interval has length �opt = 1038 (cf. (76)). For comparison, formula (83) gives dopt = 1.000 
and dopt2NeE

= 1038.6 . The corresponding values of the dash-dotted curve are �1.5 = 3146 , �2 = 3147 , 
�3 = 3148 , �4 = �5 = 3149 , and �opt = 917 , dopt = 0.8837 , and dopt2NeE

= 917.8
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and

It can be seen that the length �back
opt,V

= dback
opt,V

⋅ 2NeE that minimizes (89) is proportional 
to 2NeE , as in (76). For large NeE , the proportionality constant is dback

opt,V
≈ 1 . 

Consequently, the length of the optimal interval for the backward version of the 
variance effective size is

similarly as for the gene diversity effective size in (79). Comparing (90) with (83) 
and (87) we find that the optimal time interval of the backward approach is longer 
than the corresponding optimal intervals of the forward and intermediate definitions 
of the variance effective size.

(88)Q(�) =
1 −

(

1 −
1

2NeE

)�
+ II∞(�)

1 + II∞(�)

(89)dh(Q(�))

dQ(�)
=

1

�
[1 − Q(�)]

1

�
−1 =

1

�

(

1 −
1

2NeE

)1−�

(1 + II∞(�))
1

�
−1
.

(90)�back
opt,V

≈ 2NeE,

Fig. 4   Using the backward definition of variance effective size, the figure shows a log–log plot of the 
normalized standard deviation Var (Q̂)1∕2∕𝜎 for estimating Q = 1∕(2N

back,eq

eV
) , the average amount of 

genetic drift per generation at equilibrium, for time intervals [0, �] . The population model is the same 
as in Fig. 1, and the solid and dash-dotted curves correspond to Nback,eq

eVRMeta
 and Nback,eq

eVRx
 respectively. The 

solid curve has �1.5 = 9980 , �2 = 10313 , �3 = 10780 , �4 = 11110 , and �5 = 11365 (cf. (77)), whereas the 
optimal interval has length �opt = 1038 (cf. (76)). The corresponding values of the dash-dotted curve are 
�1.5 = 9874 , �2 = 10207 , �3 = 10674 , �4 = 11005 , �5 = 11260 , and �opt = 1038 . For comparison, formula 
(83) gives dopt = 1.000 and dopt2NeE

= 1038.6 for both curves
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Figure 4 illustrates Var (Q̂)1∕2∕𝜎 for an island model with s = 10 subpopulations. 
The linear decay to the left of the figure, for smaller � , corresponds to Var (Q̂)1∕2 
being inversely proportional to � for intervals of short length, in agreement with (75).

9 � Estimation of Variance Effective Size from a Real Data Set

In order to illustrate how the variance effective size depends on the chosen 
subpopulation weights, in this section we analyze a genetic data set of brown 
trout (Salmo trutta) from the Swedish lake Ånnjön. This data set is part of a large 
longitudinal study comprising 27 different lakes that are located in protected areas 
of Jämtland County in the central part of Sweden (cf. Andersson et  al. (2022) 
for more details). Biallelic markers are sampled from 96 distinct loci, scattered 
along the whole genome (all 40 chromosomes) of brown trout, at two time points, 
corresponding to data that was collected in 1976 and 2017 respectively. Using 
estimates of the generation time of brown trout, it is assumed that these two time 
points are approximately � = 6 generations apart. The Structure software (v.2.3.4; 
Pritchard et  al. 2000; Falush et  al. 2003) was used to identify s = 3 cryptic 
subpopulations within Ånnjön.

The variance effective size is estimated as in Jorde and Ryman (2007). This 
estimator is defined for a homogeneous population. Its properties for subdivided 
populations, where the allele frequency at each time point and locus is a weighted 
average of allele frequencies from all subpopulations, were studied in Ryman 
et  al. (2014, 2023). As mentioned in Sect.  5.3.2, the JR07-estimator targets the 
intermediate version N int

eV
 of the variance effective size. We will write N̂ int

eVwv
 to 

denote the version of the JR07-estimator that makes use of subpopulation weights 
w and v at the two time points at which data was collected. It is based on estimates

of the subpopulation weighted allele frequencies at loci l = 1,… , L = 96 and 
time points t and t + � = t + 6 respectively. Here p̂txl refers to the estimated allele 
frequency at locus l in subpopulation x at time t, based on a sample of size ntx . In 
order to define N̂ int

eVwv
 we also need to introduce sample sizes nt and nt+� at time t and 

t + � . To this end, we use subpopulation weighted harmonic averages

of the subpopulation specific sample sizes. The rationale for (92) is that 
Var (p̂txl) = ptxl(1 − ptxl)∕(2ntx) , and therefore the variances

(91)
p̂tl =

∑3

x=1
wxp̂txl,

p̂t+𝜏,l =
∑3

x=1
vxp̂t+𝜏,xl,

(92)
nt = 1∕

∑3

x=1
(w2

x
∕ntx),

nt+� = 1∕
∑3

x=1
(v2

x
∕nt+�,x)

Var (p̂tl) =
∑

x w
2
x
Var (p̂txl) ≈ ptl(1 − ptl)∕(2nt),

Var (p̂t+𝜏,l) =
∑

x v
2
x
Var (p̂t+𝜏,xl) ≈ pt+𝜏,l(1 − pt+𝜏,l)∕(2nt+𝜏),
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of the estimated subpopulation weighted allele frequencies, in (91), are approxi-
mately the same as for homogeneous, binomial samples of sizes nt and nt+�.

Table 4 illustrates values of N̂ int
eVwv

 for various choices of subpopulation weights 
w and v . In particular, the local realized variance effective sizes N̂ int

eVR1
= 155 , 

N̂ int
eVR2

= 590 , and N̂ int
eVR3

= 343 correspond to choosing local weights w = v = ex for 
x = 1, 2, 3 . It can be seen that the intermediate version of the variance effective pop-
ulation size is maximized for local weights of subpopulation 2, i.e. N̂ int

eVwv
= 590 , for 

w = v = e2 = (0, 1, 0).

Table 4   Estimated variance 
effective sizes N̂ int

eVwv
 , based on 

subpopulation weights w and 
v at time points t and t + 6 , 
for the brown trout data set of 
lake Ånnjön, with s = 3 cryptic 
subpopulations

For the first subpopulation weight scenario, the weights are propor-
tional to sample sizes, with C1 =

∑3

x=1
ntx and C2 =

∑3

x=1
nt+6,x . For 

all other scenarios, the same subpopulation weights are used at both 
time points ( w = v ). The (locus averaged) sample sizes at the first 
time point are nt1 = 30 , nt2 = 9.9 , and nt3 = 9 , whereas at the sec-
ond time point they are nt+6,1 = 19.5 , nt+6,2 = 9.7 , and nt+6,3 = 19.9 . 
The realized variance effective sizes N̂ int

eVR1
= 155 , N̂ int

eVR2
= 590 , and 

N̂ int

eVR3
= 343 for subpopulations 1,2,3 correspond to values of N̂ int

eVwv
 

for the three local weighting schemes w = v = ex , for x = 1, 2, 3

Subpopulation weight scenario N̂
int

eVwv

Type w v

Sample sizes (nt1, nt2, nt3)∕C1 (nt+6,1, nt+6,2, nt+6,3)∕C2 207
Equal (0.333,0.333,0.333) = w 335
Mostly 1 (1.000,0.000,0.000) = w 155

(0.833,0.083,0.083) = w 210
(0.667,0.167,0.167) = w 260

Mostly 2 (0.000,1.000,0.000) = w 590
(0.003,0.993,0.003) = w 575
(0.017,0.967,0.017) = w 526
(0.033,0.933,0.033) = w 479
(0.083,0.833,0.083) = w 398
(0.167,0.667,0.167) = w 349

Mostly 3 (0.000,0.000,1.000) = w 343
(0.017,0.017,0.967) = w 369
(0.033,0.033,0.933) = w 392
(0.083,0.083,0.833) = w 436
(0.167,0.167,0.667) = w 422

Mostly 1 
and 2

(0.458,0.458,0.083) = w 337
(0.417,0.417,0.167) = w 327

Mostly 1 
and 3

(0.458,0.083,0.458) = w 263
(0.417,0.167,0.417) = w 299

Mostly 2 
and 3

(0.083,0.458,0.458) = w 413
(0.167,0.417,0.417) = w 380
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Recall the discussion of Sect. 6.4.2 that equations (55) and (56) are also valid for 
the intermediate version of the variance effective size, if the system is in 
migration–drift equilibrium. The findings of Table  4 could therefore indicate that 
the reproductive weights � are close to e2 , so that Neq

eVMeta
= NeE is close to 

N̂ int
eVe2

= 590 . According to Sect.  3, � = (�1, �2, �3) contains the long term genetic 
contributions from the three subpopulations. If our conclusion �2 ≈ 1 is correct, this 
indicates that x = 2 is a source population from which most or all genetic material 
originates (i.e. unidirectional migration from 2 to 1 and 3). However, for at least two 
reasons, this is so far only a conjecture: Firstly, more data analysis, with larger 
sample sizes and more loci, is needed in order to confirm the conclusion that 2 is a 
source population. Although the JR07-estimator corrects for the sampling effect, the 
low sample sizes (for x = 2 in particular) of this data set indicate that the results of 
Table 4 are a bit uncertain. A separate analysis, based on the (wrong) assumption 
that all sample sizes are very large, gives a maximal variance effective size N̂ int

eVwv
 

when the three subpopulations are weighted close to uniformly ( wx = vx ≈ 1∕3 for 
x = 1, 2, 3 ) at both time points, with a corresponding much lower value of NeE . 
Secondly, the theoretical results (55) and (56) have only been proved for populations 
in migration–drift equilibrium, with (55) derived for island models and (56) for 
models with symmetric migration between subpopulations.

10 � Discussion

In this paper we study the variance effective size NeV of a substructured 
population, with particular focus on the size of the metapopulation ( NeVMeta ). Our 
main findings are: (i) That the version of NeV that is of interest for conservation, 
under certain conditions can be found by maximizing the variance effective 
size with respect to subpopulation weights in order to minimize the impact of 
migration and approximate NeGD , (ii) that two new and more stable versions of 
NeV are introduced and (iii) that the length of the optimal time window of NeV , in 
terms of estimation accuracy, is derived.

As a major tool for understanding the properties of NeV , we analyze in 
detail two components of expected squared allele frequency change, defined in 
equations (21)–(23). The first term I is caused by genetic drift in subpopulations 
between the two time points at which genetic data is collected, whereas the second 
term II (or more precisely −II ) quantifies a correlation between allele frequency 
change of the past and present. We refer to II as a migration or gene flow term, 
since it is mainly caused by gene flow between subpopulations, when these are 
assigned the same weights at both time points at which allele frequencies are 
estimated from data. General expressions are obtained for how the genetic drift 
and gene flow terms I and II involve the local census sizes and local effective 
sizes of subpopulations, the migration pattern between subpopulations and the 
way in which subpopulations are weighed at the two time points between which 
genetic change is monitored.
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The variance effective size is traditionally defined as in (20), so that expected 
squared allele frequency change is normalized by its expectation, a normalization 
that involves allele frequencies at the first time point at which genetic data is 
collected. We refer to this as the forward version of NeV , since it corresponds 
to a forward time perspective on how allele frequency change is normalized. As 
mentioned under (ii), in this article we also introduce, in (25) and (30), two other 
notions of variance effective size, the intermediate and backward versions of 
NeV , for which allele frequency change is normalized based on expected allele 
frequency change at both or only the last time point at which genetic data is 
collected.

The abovementioned three versions of NeV are very close when the interval 
between the two time points at which genetic data is collected is small, but they 
start to differ substantially for intervals with a length that is at least of the same 
order as the eigenvalue effective size NeE . Two numerical examples are given in this 
paper in order to illustrate this. The first example represents a large metapopulation 
with s = 10 subpopulations of size 50, for which 200–300 generations are required 
for the three versions of NeV to differ substantially. The second example represents 
a small metapopulation with s = 2 subpopulations of size 10, for which less than 
10 generations is sufficient for the three versions of NeV to differ significantly. We 
also show that the backward version of NeV is most stable and exists under general 
conditions, for time intervals of any length. In addition, as mentioned under (iii), 
we derive in (76), (86), and (90) the length of the optimal time interval for which 
the forward, intermediate and backward versions of NeV are estimated with maximal 
accuracy.

As mentioned under (i), a major implication of our work is that the variance 
effective size of a substructured population, with appropriately chosen subpopulation 
weights, is relevant for conservation applications. In more detail, let N̂eVw be an 
estimate of the variance effective size, based on using the same subpopulation 
weight vector w = v at both time points at which genetic data is collected. We 
conjecture that

is an estimate of the eigenvalue effective size NeE for some population systems close 
to migration–drift equilibrium. The rationale for (93) is equation (56), which implies 
that the variance effective size NeVw , based on using the same subpopulation weights 
w = v at both time points at which genetic data is collected, is maximized for repro-
ductive subpopulation weights w = � . This follows from the fact that NeVw is maxi-
mized when the gene flow term II vanishes, which happens for reproductive sub-
population weights � . The conservation relevance of (93) follows from the fact that 
(a) NeV� is closely related to the gene diversity effective size NeGD , (b) NeGD equals 
NeE under migration drift equilibrium, and (c) NeGD also approximates the additive 
genetic variance effective size NeAV , which is of particular interest for long term con-
servation (Hössjer et al. 2016). Because of the conservation relevance of (93), it is 

(93)N̂eE = max
w

N̂eVw
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of interest to develop software that automatically perform the maximization of this 
equation in order to compute N̂eE.

The reproductive weights � depend on the migration pattern between the 
subpopulations, which typically is unknown. However, equation (93) suggests 
that it is possible to estimate � indirectly (without first estimating migration rates 
between subpopulations) as the subpopulation weights that maximize N̂eVw . If all 
subpopulations contribute to the long term reproduction of the metapopulation, 
all components of � are positive. Whenever this is the case, in order to compute 
the estimator of NeE in (93), it is required that genetic data is collected from all 
subpopulations at the two time points between which genetic change is monitored. 
On the other hand, analysis of the dataset in Sect.  9 indicates that one of the 
subpopulations might be a source, since the maximum of (93) occurs when this 
subpopulation is assigned a maximal weight of 1. If this is a correct interpretation 
of the biological situation, only data from this subpopulation is needed in order 
to estimate NeE . However, in order to confirm this conclusion a larger dataset is 
needed, and the validity of (93) must be investigated beyond our present theoretical 
assumptions (migration–drift equilibrium and symmetric backward migration rates 
Bxy = Byx between all pairs x, y of subpopulations, which implies � = (1∕s,… , 1∕s) ) 
fail.

Fig. 5   The figure plots effective sizes for an island model with s = 2 , N
ex
= N

cx
= 10 and m = 0.1 , 

when t = 0 corresponds to migration–drift equilibrium ( T → ∞ ). The horizontal solid line depicts 
N
eE

= 22.42 . The three curves correspond to N
eVRx

 (dotted), N int
eVRx

 (dash-dotted) and Nback
eVRx

 (dashed) 
for intervals [0, �] of increasing length. N

eVRx
 increases with � at first, then it starts to drop until 

� = �max = 52 , and for longer intervals N
eVRx

 does not exist. In comparison, formula (69) predicts 
�max,V = log(II−1

∞
) ⋅ 2N

eE
= 52.96 . In a similar fashion N int

eVRx
 increases with � at first, then it starts to drop 

until � = �max = 83 , and after this generation N int

eVRx
 does not exist. In comparison, formula (71) predicts 

� int
max,V

= log(2II−1
∞
) ⋅ 2N

eE
= 84.04 . On the other hand, Nback

eVRx
 increases monotonically to N

eE
 as � → ∞
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Several extensions of our work are possible. Firstly, it is possible to investigate 
whether the present conditions (migration–drift equilibrium and symmetric migra-
tion) for equations (56) and (93) can be extended to structured populations of more 
general form.

Secondly, it is of interest to develop a multilocus estimator of the backward 
version Nback

eV
 of the variance effective size, which analogously to the JR07-estimator 

of N int
eV

 in Jorde and Ryman (2007) adjusts for finite sampling.
Thirdly, for conservation purposes it is important to study the relation between 

NeV , NeGD , and NeAV for more general models. We have emphasized that NeV , with 
reproductive subpopulation weights w = v = � , is closely related to NeGD and NeAV 
(and also with NeE under migration–drift equilibrium). However, this is based on 
the assumption that NeAV refers to the change of additive genetic variance of a 
quantitative trait with no epistasis (Hössjer et  al. 2016). It is therefore of interest 
to give more general expressions for NeAV when epistasis is taken into account. We 
conjecture that NeAV is still very similar to NeGD , and NeV with reproductive weights, 
for models with epistasis, since all these three effective sizes only involve the drift 
term I, whereas NeV with other subpopulation weights will be different, since it also 
involves the correlation term II between past and present allele frequency change.

Fig. 6   The figure shows a log–log plot of the normalized standard deviation Var (Q̂)1∕2∕𝜎 for estimating 
Q = 1∕(2N

method,eq

eVw
) , the average amount of genetic drift per generation at equilibrium, for time intervals [0, �] . 

The population is an island model with s = 2 , N
ex
= N

cx
= 10 , and m = 0.1 . The dotted, dashed and dashdot-

ted lines correspond to variance effective sizes of a local population ( w = x ), using the forward, intermediate 
and backward methods respectively, whereas the solid line (the same for all three methods) corresponds to 
the metapopulation ( w = Meta ). The optimal time intervals have lengths �opt = 20 , � int

opt
= 29 , and � int

opt
= 44 

for the local curves of the forward, intermediate and backward methods, and �opt,Meta = 44 for the metapopu-
lation. The corresponding approximations are dopt2NeE

= 22.24 , dint
opt
2N

eE
= 31.07 , dback

opt
2N

eE
= 44.83 , and 

dopt,Meta2NeE
= 44.83 respectively. The largest time intervals for which the forward and intermediate effective 

sizes can be estimated, are �max,V = 52 and � int
max,V

= 83 respectively
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A: Appendix with Numerical Examples for a Small and Subdivided 
Population

In this appendix we demonstrate that sometimes the forward, intermediate, and 
backward versions of the local realized variance effective size differ substantially 
for a small and subdivided population, even for time intervals [0, �] of moderate (and 
biologically realistic) lengths.

This is illustrated in Fig. 5 for an island model with s = 2 subpopulations of sizes 
Nex = Ncx = 10 , and a migration rate of m = 0.1 . It can be seen that the three effec-
tive size differ a lot already for � = 5 , with values NeVRx = 9.71 , N int

eVRx
= 10.39 , and 

Nback
eVRx

= 11.07 , and even more for � = 10 , with values NeVRx = 9.98 , N int
eVRx

= 11.25 , 
and Nback

eVRx
= 12.51 . The forward and intermediate versions of the realized variance 

effective size exist for intervals of length up to � = 52 and 83 generations respec-
tively, whereas the backward version of the realized variance effective exists for 
intervals of any length.

The corresponding plot of the accuracy of estimates of genetic drift per genera-
tion, for intervals of varying length, also reveals a substantial difference between the 
three versions of variance effective size (cf. Fig. 6).

B: Appendix with Further Numerical Examples and Proofs

B.1: Series Expansion of r

We will view the right eigenvector r = r(�) of A as a function of � = 1∕(2NeE) . 
Assuming that 0 < NeE ≤ ∞ is large, or equivalently that � ≥ 0 is small, we apply 
perturbation theory of matrices (Maruyama 1970a; Nagylaki 1980, 1995; Hössjer 
2015) in order to find a linear approximation r(𝜀) ≈ r(0) + ṙ𝜀.

Put ex = NeE∕Nex , cx = NeE∕Ncx and rewrite the elements of A = A(�) in (4) as

where

and

Note in particular that the two exponents 1(x = y) and 1(z = u) appear in Axy,zu(�) as a 
consequence of (4). For this reason Axy,zu(�) varies with � , and Ȧxy,zu ≠ 0 , only when 
at least one of the two conditions x = y and z = u is satisfied. It follows from (94) 
that r(0) = 1s2 = 1 is a right eigenvector of A(0) with eigenvalue 1, and therefore

Axy,zu(𝜀) = (1 − cx𝜀)
1(x=y)BxzByu[(1 − ex𝜀)∕(1 − cx𝜀)]

1(z=u)

≈ Axz,yu(0) + 𝜀Ȧxz,yu,

(94)Axy,zu(0) = BxzByu

(95)Ȧxy,zu =
[

(cz − ez)1(z = u) − cx1(x = y)
]

BxzByu.
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is a valid first order Taylor approximation of r(�) . In order to find a more explicit 
expression of ṙ , we will rewrite it as a linear combination of a system of orthonormal 
basis functions. To this end, recall that li = (li1,… , lis) is a left eigenvector of B with 
a real-valued eigenvalue �i , and that {li}si=1 is an orthonormal system of basis func-
tions for ℝs . Define, for each 1 ≤ i, j ≤ s a row vector lij = (lij,xy = lixljy;1 ≤ x, y ≤ s) 
of length s2 . Then {lij; 1 ≤ i, j ≤ s} forms an orthonormal system of basis functions 
for ℝs2 . We also introduce

as the coefficient of lT
ij
 in the basis function expansion

of ṙ . Since l11 = 1∕s is proportional to r(0) = 1 , we may assume that a change 
from � = 0 to 𝜀 > 0 results in a perturbation r(�) − r(0) orthogonal to r(0) . This 
corresponds to an assumption 0 = 𝜉11 = l11ṙ = 1

T ṙ∕s . In order to find a more explicit 
expression for all {�ij; (i, j) ≠ (1, 1)} , we will derive a linear system of equations for 
the components of ṙ = (ṙxy) , based on an analysis of how r(�) is perturbed after 
small change of � away from zero. From the definition of � , and of the eigenvalue 
effective size in (34), it follows that �(�) = 1 − � . Together with (96), this makes it 
possible to rewrite �(�)r(�) = A(�)r(�) as

Equating the linear �-terms of the left- and right-hand sides of (99) we find, after 
some rearrangements, that

Because of (94) and (95), component xy of Eq. (100) takes the form

where the term 1(x = y) of the second step is inherited from (95). In the last step 
of (101) we assumed Nex = Ne and Ncx = Nc , so that ex = e and cx = c . Assume 
that (i, j) ≠ (1, 1) . Multiplying the left and right hand sides of (101) with lij,xy , and 
summing jointly over x and y, we find, making use of

(96)r(𝜀) ≈ 1 + 𝜀ṙ + o(𝜀)

(97)𝜉ij = lijṙ =
∑

xy

lij,xyṙxy

(98)ṙ =
∑

ij

𝜉ijl
T
ij

(99)(1 − 𝜀)(1 + 𝜀ṙ) = (A(0) + 𝜀Ȧ)(1 + 𝜀ṙ) + o(𝜀)

= 1 + 𝜀(Ȧ1 + A(0)ṙ) + o(𝜀).

(100)ṙ − A(0)ṙ = 1 + Ȧ1.

(101)
ṙxy −

∑

z,u BxzByuṙzu = 1 + (Ȧ1)xy
= 1 − cx1(x = y) +

∑

z(cz − ez)BxzByz

= 1 − c1(x = y) + (c − e)
∑

z BxzByz,
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that

or equivalently

B.2: Proof of Equation (43)

Inserting (96) into (42) we find that

where in the second step of (103) we used w = � = 1s∕s and the fact that 
∑

xy ṙxy = 𝜉11 = 0 . In the third step of (103) we inserted the series expansion (98) of 
ṙ , in the fourth step we utilized (102), and in the final step we invoked the definitions 
of c = NeE∕Nc , e = NeE∕Ne , and � = 1∕(2NeE) . This completes the proof since the 
right hand side of (103) agrees with (43).

B.3: Proof of Equation (48)

In order to prove (48) we will utilize the series expansion of r (or ṙ ). As a first step 
we need to express II∞(�) in terms of ṙ . Insertion of (96) into (47) yields

Since �i = wlT
i
 and �i = vlT

i
 by assumption, it follows that the analogue of (104), 

without the factor 2 and with lij,xy in place of ṙxy , reads

∑

x,y lij,xyṙxy = 𝜉ij,
∑

x,y lij,xyBxzByu = 𝜂i𝜂jlij,zu,
∑

x,y lij,xyBxzByz = 𝜂i𝜂jlij,zz,
∑

x,y lij,xy1(x = y) =
∑

x lij,xx = 1(i = j),

(1 − �i�j)�ij = −c1(i = j) + (c − e)�2
i
1(i = j),

(102)�ij =

{

1(i = j) ⋅ (−c + (c − e)�2
i
)∕(1 − �2

i
), (i, j) ≠ (1, 1),

0, (i, j) = (1, 1).

(103)

F
eq

ST
≈

�

∑

x,y wxwyṙxy −
∑

x wxṙx

�

𝜀

= − s−1
∑

x ṙx ⋅ 𝜀

= − s−1
∑

ij 𝜉ijlil
T
j
⋅ 𝜀

= s−1
∑s

i=2
[c − (c − e)𝜂2

i
]∕(1 − 𝜂2

i
) ⋅ 𝜀

= s−1
∑s

i=2
[1∕Nc − (1∕Nc − 1∕Ne)𝜂

2
i
]∕[2(1 − 𝜂2

i
)],

(104)II∞(𝜏) ≈ 2
∑

x,y

[

(vB𝜏)x − wx

]

wyṙxy ⋅ 𝜀.
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Inserting (98) and (105) into (104) we find that

Then we insert the expression (102) for �ij , that was derived in Appendix B.1, into 
(106). This yields

By substituting the definitions of � = 1∕(2NeE) , c = NeE∕Nc and e = NeE∕Ne into 
(107) we finally arrive at (48).

B.4: Proofs of Equations (55) and (56)

Recall that Eq. (55) stipulates that the variance effective size at equilibrium, for the 
island model, is maximized when the same subpopulation weights are used at time 
points t and t + � ( w = v ). Equation (56), on the other hand, is a claim that whenever 
the same subpopulation weights are used at both time points ( w = v ), the variance 
effective size at equilibrium is maximized for reproductive subpopulation weights 
( w = v = � ). In order to prove these claims we will make use of (52), which states that 
the variance effective size Neq

eV
 under equilibrium is a strictly decreasing function of the 

equilibrium gene flow term II∞(�) of Eq. (47). That is, we need to translate (55) and 
(56) into analogous inequalities for the equilibrium gene flow term in (47). To this end, 
we will highlight that this term is a function of the weight vectors w and v at time points 
t and t + � . More specifically, we will write II∞(�) = II∞wv(�) and II∞w(�) = II∞ww(�) . 
Then, in order to prove (55) it suffices to establish that

for the island model whenever wvT ≤ |w|2 , with equality in (108) if and only if 
wv = |w|2 . And in order to establish (56) it suffices to prove that

for the symmetric migration models of Example 1, with equality if and only if 
w = � . But (108) follows immediately from (49), whereas (109) is deduced from 
(48) with �i = �i (since w = v is assumed), and the fact that w = � if and only if 
�2 = … = �s = 0.
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(105)
∑

xy

�

(vB�)x − wx

�

wy ⋅ lij,xy =
∑

x

�
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�
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(��
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i
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i

⋅ �
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�i(�i−�i�
�
i
)
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i

�

(1 − �2
i
)c + �2

i
e
�
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