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Abstract
Here, an epidemiological model considering pro and anti-vaccination groups is 
proposed and analyzed. In this model, susceptible individuals can migrate between 
these two groups due to the influence of false and true news about safety and effi-
cacy of vaccines. From this model, written as a set of three ordinary differential 
equations, analytical expressions for the disease-free steady state, the endemic 
steady state, and the basic reproduction number are derived. It is analytically shown 
that low vaccination rate and no influx to the pro-vaccination group have similar 
impacts on the long-term amount of infected individuals. Numerical simulations are 
performed with parameter values of the COVID-19 pandemic to illustrate the ana-
lytical results. The possible relevance of this work is discussed from a public health 
perspective.
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1  Introduction

Vaccines have saved many lives throughout our history (Domachowske and Sury-
adevara 2021). For instance, in the period 2000–2019, vaccination prevented 37 mil-
lion of deaths in 98 countries (Li et  al. 2021). However, despite reducing mortal-
ity, reaching a high vaccine coverage remains a challenge worldwide, as alerted by 
the World Health Organization (2019). Two barriers are availability and confidence. 
Vaccine availability depends on supply and logistic networks (Zaffran et al. 2013); 
vaccine confidence depends on perceived risks and benefits (Lane et al. 2018).

Sociocultural, political, and religious factors influence the likelihood of getting 
a vaccine (Lane et  al. 2018; Lin et  al. 2021; Loomba et  al. 2021; Megget 2020; 
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Neumann-Böhme et  al. 2020). In addition, the diffusion of misinformation and 
factual information affects the public perception about safety and efficacy of vac-
cines (Lane et  al. 2018; Lin et  al. 2021; Loomba et  al. 2021; Megget 2020; Neu-
mann-Böhme et  al. 2020). Unfortunately, the anti-vaccine sentiment, fed by irra-
tional beliefs and conspiracy theories (Latkin et  al. 2021), is widespread and can 
undermine the control of epidemics by vaccination (Hussain et  al. 2018; Lane 
et al. 2018; Smith and Graham 2019). In fact, if the proportion of the unvaccinated 
group remains above a critical number, herd immunity can not be achieved and the 
pathogen can endemically persist in the host population (Anderson and May 1985). 
Hence, the anti-vaccine movement has been identified as a top threat to global health 
(World Health Organizations 2019). COVID-19, the contagious disease responsible 
for a huge public health emergency and an unprecedent economic crisis, has fueled 
the debate on vaccine hesitancy (Latkin et al. 2021; Lin et al. 2021; Loomba et al. 
2021; Megget 2020; Neumann-Böhme et  al. 2020). However, vaccination can be 
the only way to achieve and maintain a sustained reduction in COVID-19 infections 
(Priesemann et al. 2021a, b).

The vaccination decision-making process has been considered in theoretical 
investigations based on ordinary differential equations (ODE) (Arefin et  al. 2020; 
Buonomo 2020; Buonomo et al. 2022; Flaig et al. 2018), game theory (Schimit and 
Monteiro 2011; Liu et al. 2012; Wang et al. 2016), regular and complex networks 
(Curiel and Ramirez 2021; Pires et al. 2018, 2021), Bayesian inference (Coelho and 
Codeço 2009). In these studies, the propagation of infections in human communities 
is affected by beliefs, fears, circulating rumors, factual information. Here, a model 
formulated in terms of ODE is used for studying the spread of vaccine-preventable 
infectious diseases, by taking into account the vaccination intention of the suscepti-
ble individuals. Thus, each susceptible individual is either pro-vaccine or anti-vac-
cine; however, change of mind is possible.

The text is organized as follows. The proposed model is introduced in Sect.  2. 
Analytical results are presented in Sect.  3 and numerical simulations illustrating 
these results are shown in Sect. 4. In Sect. 5, the possible relevance of this work is 
stressed by considering the current COVID-19 outbreak.

2 � The Epidemic Model

Let the host population be divided into four groups: the P-group of the susceptible 
individuals who are pro-vaccine, the A-group of the susceptible individuals who are 
anti-vaccine, the I-group of the infected individuals; and the R-group of the recovery 
individuals. Assume that these four groups are uniformly distributed over the region 
where they live; thus, the time evolution of the number of individuals belonging to 
each group is not affected by the particular geographic location of its individuals. In 
other words, assume that the homogeneous mixing assumption holds (Turnes and 
Monteiro 2014). The PAIR model proposed here is written as the following set of 
ODE:
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In these equations, the variables P(t), A(t), I(t), and R(t) denote the numbers of P, 
A, I, and R-individuals at the time t, respectively; a is the infection rate constant of 
P and A-individuals; b the recovery rate constant of I-individuals; c the death rate 
constant of I-individuals; h the death rate constant of R-individuals; v the immuniza-
tion rate constant (that is, the product between the vaccination rate constant and the 
vaccine efficacy) of P-individuals; � the rate constant representing migration from 
the A-group to the P-group; and � the rate constant representing migration from 
the P-group to the A-group. Disseminating negative false news about vaccines can 
decrease � and increase � ; disseminating data related to the protective power of vac-
cines can increase � and decrease � . Thus, the influences of traditional media and 
social media are taken into account in the parameters � and �.

Notice that the contagious disease is transmitted through contacts between P and 
I-individuals and between A and I-individuals according to the same rate constant a. 
Thus, it is assumed that the P-group and the A-group take similar preventive meas-
ures (such as frequent hand washing, wearing face masks, use of latex condoms). 
Also, it is assumed that both groups have similar spatial movement patterns and are 
aware that the pathogen can cause a serious illness. The difference between them is 
that P-individuals trust in the benefits of getting a vaccine and A-individuals do not.

Notice also that the deaths of I and R-individuals are balanced by the births of P 
and A-individuals. In 2020, the growing rate (per year) of the population was, for 
instance, 0.59% in USA and 0.04% in Russia (Worldometer 2021). Thus, supposing 
that the deaths are balanced by the births can be considered a reasonable assump-
tion. Observe that this assumption implies that the birth of individuals that remain 
susceptible throughout their lives is balanced by the death of these individuals at the 
same rate constant. Since these terms cancel out, they were omitted in Eqs. (1) and 
(2). In addition, in this model, individuals cannot be born infected or immunized.

The parameter f denotes the fraction of births of P-individuals (the fraction of 
susceptible individuals who engage in the P-group); consequently, 1 − f  is the frac-
tion of births of A-individuals. When R-individuals lose their acquired immunity, 
they return to the susceptible groups according to these same proportions. In this 
model, the parameters a, b, c, f, h, v, � , and � are non-negative numbers.

Since dP(t)∕dt + dA(t)∕dt + dI(t)∕dt + dR(t)∕dt = 0 , then 
P(t) + A(t) + I(t) + R(t) = N ; that is, the total number of individuals remains 

(1)
dP(t)

dt
= − aP(t)I(t) + f [cI(t) + hR(t)] − vP(t) + �A(t) − �P(t)

(2)
dA(t)

dt
= − aA(t)I(t) + (1 − f )[cI(t) + hR(t)] − �A(t) + �P(t)

(3)
dI(t)

dt
=a[P(t) + A(t)]I(t) − bI(t) − cI(t)

(4)
dR(t)

dt
=bI(t) − hR(t) + vP(t)
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constant and equal to N. Therefore, R(t) = N − P(t) − A(t) − I(t) and the original 
set of ODE can be rewritten as:

From a public health point of view, the best scenario is given by f = 1 (only 
P-individuals can be introduced in the population) and � = 0 (no migration to the 
A-group), and the worst scenario is given by f = 0 (only A-individuals can be intro-
duced in the population) and � = 0 (no migration to the P-group).

In the next section, this model is analyzed from a dynamical systems theory 
perspective (Guckenheimer and Holmes 2002).

3 � Analytical Results

In the state space P × A × I , an equilibrium point (P∗,A∗, I∗) corresponds to 
a stationary solution; that is, a solution satisfying dP(t)∕dt = 0 , dA(t)∕dt = 0 , 
and dI(t)∕dt = 0 . Such a solution is given by P(t) = P∗ , A(t) = A∗ , and I(t) = I∗ , 
in which the constants P∗ , A∗ , and I∗ are obtained from F1(P

∗,A∗, I∗) = 0 , 
F2(P

∗,A∗, I∗) = 0 , and F3(P
∗,A∗, I∗) = 0.

The third-order dynamical system given by Eqs. (5)–(7) presents a disease-free 
equilibrium point (that is, an equilibrium point with I∗ = 0 ). Its coordinates are:

Obviously, R∗
free

= N − P∗
free

− A∗
free

− I∗
free

.
The local stability of an equilibrium point (P∗,A∗, I∗) can be inferred from the 

eigenvalues � of the Jacobian matrix J, which corresponds to the linearization of 
Eqs. (5)–(7) around this point (Guckenheimer and Holmes 2002). Here:

(5)
dP

dt
= − aPI + f [cI + h(N − P − A − I)] − vP + �A − �P ≡ F1(P,A, I)

(6)
dA

dt
= − aAI + (1 − f )[cI + h(N − P − A − I)] − �A + �P ≡ F2(P,A, I)

(7)
dI

dt
=a(P + A)I − bI − cI ≡ F3(P,A, I)

(8)P∗
free

=
�hN

[� + � + (1 − f )v]h + �v

(9)A∗
free

=
[� + (1 − f )v]hN

[� + � + (1 − f )v]h + �v

(10)I∗
free

=0
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An equilibrium point is locally asymptotically stable if the real part of all eigen-
values � of J is negative (Guckenheimer and Holmes 2002). Recall that � is deter-
mined from det(� − ��) = 0 (in which � is the identity matrix). Thus, the eigenvalues 
� associated with the disease-free solution are the roots the polynomial:

with �1 = � + � + h + v and �2 = [� + � + (1 − f )v]h + �v . Since 𝜃1 > 0 and 𝜃2 > 0 , 
then both roots of �2 + �1� + �2 = 0 have negative real part. Therefore, the disease-
free equilibrium point is locally asymptotically stable if the third eigenvalue is nega-
tive. This condition can be expressed as R0 < 1 if R0 is defined as:

In epidemic models, R0 is a parameter known as basic reproduction number (Ander-
son and May 1992; Schimit and Monteiro 2012). Usually, for R0 < 1 , the disease-
free equilibrium point is asymptotically stable and an endemic equilibrium point 
(that is, an equilibrium point with I∗ > 0 ) is unstable; for R0 > 1 , these equilibrium 
points exchange their stabilities. Therefore, R0 is a bifurcation parameter, because 
the corresponding dynamical system experiences a (transcritical) bifurcation (Guck-
enheimer and Holmes 2002) for a particular value of R0 (in this case, this particular 
value is R0 = 1 ). This parameter is also interpreted as the average number of second-
ary infections caused by a single infected individual inserted into a completely sus-
ceptible population (Anderson and May 1992; Schimit and Monteiro 2012). Hence, 
if R0 < 1 , the disease tends to naturally disappear; if R0 > 1 , the disease tends to 
endemically persist.

For � = 0 and � = 0 , then R0 = r0 , with:

This expression was derived in other works on theoretical epidemiology (Ferraz and 
Monteiro 2019; Schimit and Monteiro 2012). Note that R0 ≤ r0 for � ≥ 0 , � ≥ 0 , 
and v ≥ 0 . Thus, r0 is the superior limit of R0.

Equation (13) can be used to derive the critical immunization rate constant vc above 
which the disease can be eradicated by vaccination. Observe that R0 < 1 implies:

For R0 > 1 , the system converges to the endemic equilibrium point given by:

(11)

J(P∗,A∗, I∗)

=

⎡⎢⎢⎣

−aI∗ − fh − v − � − fh + � − aP∗ + f (c − h)

−(1 − f )h + � − aI∗ − (1 − f )h − � − aA∗ + (1 − f )(c − h)

aI∗ aI∗ a(P∗ + A∗) − b − c

⎤
⎥⎥⎦

(12)(�2 + �1� + �2)[a(P
∗ + A∗) − b − c − �] = 0

(13)R0 ≡

a(P∗
free

+ A∗
free

)

b + c
=
(

aN

b + c

) [� + � + (1 − f )v]h

[� + � + (1 − f )v]h + �v

(14)r0 ≡
aN

b + c

(15)v > vc ≡
(𝛼 + 𝛽)h(r0 − 1)

(1 − f )h(1 − r0) + 𝛼
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in which p = (b + h)∕v , q = hN(r0 − 1)∕(vr0) , x = ap , 
y = −aq + f (c − h) + p(� + � + v) , and z = (�N∕r0) − q[� + � + (1 − f )v] , with 
z < 0 (that is, v < vc ). Obviously, R∗

ende
= N − P∗

ende
− A∗

ende
− I∗

ende
.

In the best scenario (that is, f = 1 and � = 0 ), then P∗
ende

= N∕r0 , A∗
ende

= 0 , 
and I∗

ende
= hN[1 − (1∕R0)]∕(b + h) , with R0 = r0h∕(h + v) . Therefore, the higher 

the value of v, the smaller the values of R0 and I∗
ende

 . Also, in this scenario, the 
A-group vanishes. In the worst scenario (that is, f = 0 and � = 0 ), then P∗

ende
= 0 , 

A∗
ende

= N∕r0 , and I∗
ende

= hN[1 − (1∕r0)]∕(b + h) . Since R0 = r0 , then R0 and I∗
ende

 
can not be reduced by taking v > 0 . In addition, the P-group disappears. Note that, 
except in these two extreme scenarios, the exact formulas for the coordinates of the 
endemic equilibrium point given by Eqs. (16)–(18) are so intricate that approximate 
formulas may be more useful in practice.

Consider that v ≪ 1 (this choice is justified in the next section). In this limit, 
approximate expressions for the attractor endemic steady-state are given by:

Observe that Eq. (21) (the approximate endemic solution obtained by taking v ≪ 1 ) 
is equal to Eq. (18) for the worst scenario (the exact endemic solution obtained by 
taking f = 0 and � = 0 ). Therefore, in this context, low immunization rate is equiva-
lent to no influx to the pro-vaccine group.

Observe also that, for v ≪ 1 , I∗
approx

 does not depend on � , � , and f. Therefore, 
these three parameters do not affect the long-term amount of sick people (that is, 
I∗
approx

 ). They do not affect also the long-term amount of recovered people, because 
R∗
approx

= N − (N∕r0) − I∗
approx

 . However, these three parameters affect the long-term 
composition of the susceptible population (that is, P∗

approx
 and A∗

approx
 ) and the criti-

cal immunization rate constant vc given by Eq. (15).
In the next section, these analytical results are illustrated by computer simulations 

performed with plausible parameter values for COVID-19. The propagation of this 

(16)P∗
ende

=q − pIende∗

(17)A∗
ende

=
N

r0
− Pende∗

(18)I∗
ende

=
−y +

√
y2 − 4xz

2x

(19)P∗
approx

=
N

r0
− A∗

approx

(20)A∗
approx

≈
(�N∕r0) + [(1 − f )hN(r0 − 1)∕r0] + (1 − f )(c − h)I∗

approx

� + � + aI∗
approx

(21)I∗
approx

≈
hN

(b + h)

(
1 −

1

r0

)
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contagious disease has been analytically and numerically studied by using similar 
epidemiological models (Angeli et al. 2022; Grimm et al. 2021; Harari and Mon-
teiro 2021; He et al. 2020; Ram and Schaposnik 2021).

4 � Numerical Results

Equations (1)–(4) were numerically solved by employing the 4th-order Runge-Kutta 
integration method with integration time step of 0.01. In the simulations, N = 1 ; 
thus, the variables P(t), A(t), I(t), and R(t) correspond to the percentages of P, A, 
I, and R-individuals in the whole population. The time t is measured in weeks. The 
initial condition of the simulations is P(0) = 0.49 , A(0) = 0.49 , I(0) = 0.02 , and 
R(0) = 0 ; however, as in other works (Monteiro et al. 2020), the long-term behavior 
does not depend on the initial condition (it depends only on the parameter values).

Here, parameter values related to the infection by SARS-CoV-2 are considered. 
Assume that the average life expectancy of the population is 80 years; assume also 
that the immunity (either acquired after recovery or elicited by vaccine) lasts for 
1 year, on average. Therefore, h = 1∕(80 × 52) + 1∕52 . Assume that the recovery 
period is about 2 weeks (Gostic et al. 2020; Singhal 2020); thus, b = 1∕2 . In addi-
tion, assume that I-individuals can die only due to the infection. Consider that 3% of 
I-individuals die in 3 weeks (Johns Hopkins University 2021; Singhal 2020); hence, 
c = 1∕100 . Also, take f = 3∕4 . This choice was motivated by surveys on vaccine 
acceptance. For instance, surveys conducted in 7 European countries showed that 
73.9% of the respondents are willing to get vaccinated against COVID-19 (Neu-
mann-Böhme et al. 2020). This percentage is lower in USA (Loomba et al. 2021; 
Perlis et al. 2020) and higher in China (Chen et al. 2021). With this value of f, the 
aim is to obtain the fraction of the susceptible population who is pro-vaccine similar 
to those found in such surveys.

In addition, take a = 3∕5 . With this choice, for � = 0 , � = 0 , and v = 0 , the basic 
reproduction number of COVID-19 is R0 = r0 ≃ 1.2 . A similar value was found in 
the beginning of the pandemic after imposing travel restrictions (Kucharski et  al. 
2020) and is still found in many countries (EpiForecasts 2021). In the absence of 
preventive measures, R0 can be higher (Gostic et al. 2020; Singhal 2020).

Between the end of 2020 and the beginning of 2021, the USA had fully vacci-
nated 25 million people in 10 weeks (Our World in Data 2021). Since its population 
is 330 million people, then v = 0.9 × 25∕(330 × 10) ≃ 7∕1000 , by considering 90% 
vaccine efficacy (Kim et  al. 2021). In the UK, 0.8 out of 67 million people were 
fully vaccinated in 11 weeks; therefore, v = 0.9 × 0.8∕(67 × 11) ≃ 1∕1000 . In many 
other countries, however, v has been lower (Our World in Data 2021). Hence, here, 
v = 0.5∕1000.

Figure 1a, b show the time evolutions of P(t) (blue line), A(t) (cyan line), I(t) (red 
line), and R(t) (green line). In Fig. 1a, � = 1∕10 and � = 1∕20 ; in Fig. 1b, � = 1∕20 
and � = 1∕10 . In both cases, R0 ≃ 1.2 . In Fig.  1a, P(t) → 0.568 , A(t) → 0.282 , 
I(t) → 0.005 , and R(t) → 0.145 , as time t progresses. These numbers are in good 
agreement with the values of P∗ , A∗ , I∗ , and R∗ = 1 − (P∗ + A∗ + I∗) obtained 
from the analytical expressions given by Eqs. (20)–(21). In Fig. 1b, P(t) → 0.291 , 



	 G. S. Harari, L. H. A. Monteiro 

1 3

20  Page 8 of 13

A(t) → 0.559 , I(t) → 0.005 , and R(t) → 0.145 . In this case, the coordinates of the 
endemic equilibrium point (P∗,A∗, I∗) reached in the numerical simulation also 
agree with the numbers computed from Eqs. (20)–(21).

In the proposed model, the higher the value of � , the greater the spread of misin-
formation about vaccines; the higher the value of � , the greater the effort to combat 
these fake news. Figure  1a, b show that, as expected, P∗ increases with � and A∗ 
increases with � . In Fig. 1a, P∗∕(P∗ + A∗) ≃ 67% , which is the fraction of the sus-
ceptible population who is pro-vaccine found in the USA (Lin et  al. 2021; Perlis 
et al. 2020). In Fig. 1b, this fraction is 34%.

For the parameter values of Fig. 1a, disease eradication is achieved by vaccina-
tion for v > vc ≃ 5.3∕1000 ; in Fig. 1b, for v > vc ≃ 11∕1000 . Notice that the esti-
mated value of v for the USA (7/1000) in the beginning of 2021 is enough to elimi-
nate the disease in the scenario corresponding to Fig. 1a, but is not enough in the 
scenario of Fig.  1b. Hence, reducing misinformation about vaccines can facilitate 
disease eradication. In the end of March of 2022, there were 2175 million people 
fully immunized in USA (Johns Hopkins University 2022); therefore, v ≃ 9∕1000 . 
This value is still not enough to eradicate the disease in the second scenario.

Figure 2a, b exhibit the time evolutions of P(t) (blue line), A(t) (cyan line), I(t) 
(red line), and R(t) (green line) for v = 15∕1000 , which surpasses the critical rate 
vc in both plots. In these figures, the other parameter values are the same as those 
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Fig. 1   Numerical solutions of Eqs. (1)–(4) for a = 3∕5 , b = 1∕2 , c = 1∕100 , f = 3∕4 , 
h = 1∕(80 × 52) + 1∕52 , and v = 0.5∕1000 . In (a), � = 1∕10 and � = 1∕20 ; in (b), � = 1∕20 and 
� = 1∕10 . Also, N = 1 ; hence, P(t) (blue line), A(t) (cyan line), I(t) (red line), and R(t) (green line) rep-
resent normalized concentrations. The time t is measured in weeks. The initial condition is P(0) = 49% , 
A(0) = 49% , I(0) = 2% , and R(0) = 0 . In both plots, I(t) → 0.5% , R(t) → 14.5% , and P(t) + A(t) → 85% . 
In (a), P(t) → 57% and A(t) → 28% ; in (b), P(t) → 29% and A(t) → 56% . Notice that, for v ≪ 1 , the 
parameters � and � do not influence the asymptotical value of the sum P(t) + A(t) , but they influence the 
asymptotical value of P(t) and the asymptotical value of A(t). Also, notice that P(t) and A(t) can present 
equivalent dynamical behaviors if the values of � and � are switched as done in (a) and (b). (Color figure 
online)
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used in Fig. 1a, b, respectively. In Fig. 2a, P(t) → 0.433 , A(t) → 0.233 , I(t) → 0 , and 
R(t) → 0.334 ; in Fig. 2b, P(t) → 0.260 , A(t) → 0.540 , I(t) → 0 , and R(t) → 0.200 . 
In both cases, the coordinates of the disease-free equilibrium points reached in the 
numerical simulations are equal to the numbers computed from Eqs. (8)–(10).

5 � Discussion and Conclusion

Here, an epidemic model based on ODE was proposed and analyzed. This model 
describes the transmission dynamics of a vaccine-preventable infection, by tak-
ing into consideration pro and anti-vaccination groups. The analytical expressions 
derived in Sect.  3 predict the long-term composition of a population subject to a 
vaccine-preventable infection that endemically persists, as measles and possibly 
COVID-19. In fact, COVID-19 is still a major problem (Allaerts 2021) and it can 
remain in our population after the pandemic is over (John and Seshadri 2021).

It was shown that if R0 < 1 , the disease-free steady-state, given by Eqs. (8)–(10), is 
reached; if R0 > 1 , the attractor is the endemic steady-state, given by Eqs. (16)–(18). 
For v ≪ 1 , the coordinates of the endemic attractor can be approximated by Eqs. 
(20)–(21). These approximated expressions reveal that, for v ≪ 1 , the values of the 
parameters � , � , f, and v do not significantly affect I∗ , R∗ , and P∗ + A∗ ; they only affect 
P∗ and A∗ ; that is, the composition of the susceptible group. Therefore, if v ≪ 1 , the 
fight against false information about vaccines may not have a meaningful impact on the 
long-term number of sick individuals. This finding is illustrated by Fig. 1a, b, which 
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Fig. 2   Numerical solutions of Eqs. (1)–(4) for a = 3∕5 , b = 1∕2 , c = 1∕100 , f = 3∕4 , 
h = 1∕(80 × 52) + 1∕52 , and v = 15∕1000 . In (a), � = 1∕10 and � = 1∕20 ; in (b), � = 1∕20 and 
� = 1∕10 . In addition, N = 1 ; therefore, P(t) (blue line), A(t) (cyan line), I(t) (red line), and R(t) (green 
line) represent normalized concentrations. The time t is measured in weeks. The initial condition is 
P(0) = 49% , A(0) = 49% , I(0) = 2% , and R(0) = 0 . In (a), P(t) → 43% , A(t) → 23% , I(t) → 0 , and 
R(t) → 34% ; in (b), P(t) → 26% , A(t) → 54% , I(t) → 0 , and R(t) → 20% . In both cases, the disease is 
eradicated by vaccination because v > vc . (Color figure online)  
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were plotted by taking parameter values of the current COVID-19 pandemic. In these 
figures, I(t) → I∗

approx
≃ 0.5% . In the USA, this fraction corresponds to 1.65 million 

people infected by SARS-CoV-2 at any time step. Recall that this number was obtained 
by taking v = 0.5∕1000 , which is a low value of v. In fact, the current vaccination rate 
in this country is v ≃ 9∕1000 . With this value, I(t) → I∗

free
= 0 in the scenario of 

Fig. 1a and I → I∗
ende

≃ 0.077% in the scenario of Fig. 1b (about 250 thousand people 
infected  in the USA at any time step). It is relevant to stress that any prediction for I∗ 
can be tested only after I(t) reaching its long-term behavior and it depends on v. The 
available data, however, still reflect the transient phase of this disease spread.

Notice that the condition v ≪ 1 can describe the vaccination rate of other contagious 
diseases, such as measles, mumps, and rubella, because only children usually take 
MMR vaccine (Kauffmann et al. 2021), and hepatitis A, due to the poor adherence to 
the vaccination against this infection (Johnson et al. 2019).

Although � , � , and f do not significantly influence the long-term number of sick 
individuals for v ≪ 1 , these three parameters do affect the critical immunization rate 
constant vc . Equation (15) shows that, for instance, vc increases with � (the parame-
ter related to the transition P → A ). Thus, the reduction in vaccine acceptance found 
in surveys conducted in the USA in 2020 (Lin et al. 2021) implies an increase in the 
immunization rate required to eliminate the pathogen causing COVID-19. Such a 
reduction may continue to occur for the next years (Johnson et al. 2020). Hence, cam-
paigns against fake news about vaccines are crucial for reducing ( � and consequently) 
vc . Figure 2a, b confirm that, if v > vc , vaccination eradicates the contagious disease. 
Therefore, eradication is possible even if A-individuals remain unvaccinated.

This study predicts the long-term behavior of an epidemic model with pro and anti-
vaccine groups. For COVID-19, the accuracy of the predictions can be affected by sev-
eral factors, such as implementation of irregular quarantine/lockdown regimes, emer-
gence of variants of the virus SARS-CoV-2, the use of different vaccines with different 
immunization rates, data used in the predictions were obtained in the transient phase 
of this disease propagation. However, the main message here is: to contain the spread 
of vaccine-preventable infections, nations must promote high vaccination engagement 
by mitigating concerns about effectiveness and side-effects. Misinformation hampers 
eradication.
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