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Abstract
The susceptible-transmissible-removed (STR) model is a deterministic compart-
ment model, based on the susceptible-infected-removed (SIR) prototype. The STR 
replaces 2 SIR assumptions. SIR assumes that the emigration rate (due to death 
or recovery) is directly proportional to the infected compartment’s size. The STR 
replaces this assumption with the biologically appropriate assumption that the emi-
gration rate is the same as the immigration rate one infected period ago. This results 
in a unique delay differential equation epidemic model with the delay equal to the 
infected period. Hamer’s mass action law for epidemiology is modified to resem-
ble its chemistry precursor—the law of mass action. Constructing the model for an 
isolated population that exists on a surface bounded by the extent of the popula-
tion’s movements permits compartment density to replace compartment size. The 
STR reduces to a SIR model in a timescale that negates the delay—the transmissible 
timescale. This establishes that the SIR model applies to an isolated population in 
the disease’s transmissible timescale. Cyclical social interactions will define a rhyth-
mic timescale. It is demonstrated that the geometric mean maps transmissible time-
scale properties to their rhythmic timescale equivalents. This mapping defines the 
hybrid incidence (HI). The model validation demonstrates that the HI-STR can be 
constructed directly from the disease’s transmission dynamics. The basic reproduc-
tion number ( R

0
 ) is an epidemic impact property. The HI-STR model predicts that 

R
0
∝

�

√

�
n
 where �

n
 is the population density, and � is the ratio of time increments 

in the transmissible- and rhythmic timescales. The model is validated by experimen-
tally verifying the relationship. R

0
 ’s dependence on �

n
 is demonstrated for droplet-

spread SARS in Asian cities, aerosol-spread measles in Europe and non-airborne 
Ebola in Africa.
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1 Introduction

The modelling of infectious disease dates from Bernoulli’s eighteenth century sta-
tistical model and En’ko’s compartment-model in the nineteenth century (Foppa 
2017). In this manuscript, the models will arbitrarily be introduced as determinis-
tic or stochastic. The deterministic models will either be ordinary differential equa-
tion (ODE), partial differential equation (PDE) or delay differential equation (DDE) 
compartment models. These deterministic compartment models’ numerical simu-
lation will not be discussed. Under stochastic models, cellular automata (CA) are 
introduced as a subcategory of stochastic models because the distinction between 
the model and the numerical method is not obvious.

The ODE deterministic theory describing the propogation of an infectious disease 
as presented by Kermack and McKendrick (1927, 1991a, b, c) is the convergence of 
the basic reproduction number concepts of Böckh (1886), Kuczynski (1928), Dub-
lin and Lotka (1925); Hamer (1906)’s mass action incidence; and the compartment 
models of En’ko (1989), Ross and Hudson (1917).

Böckh’s contribution is from demography (Dietz 1993; Heesterbeek 2002). See 
Perasso (2018), Heesterbeek and Dietz (1993) for discussions on Kuczynski’s and 
Lotka (1925)’s contributions, respectively. Hamer’s mass action incidence is based 
on a chemistry precursor (Heesterbeek 2005) – the law of mass action (Waage and 
Gulberg 1986). En’ko’s compartment model was published in Russian in 1889 
(Dietz 1988). It predates Ross and Hudson’s compartment model of 1917 (Heester-
beek and Dietz 1993).

The 2 ODE compartment model prototypes classify all individuals in a closed 
population as either susceptible, infected or removed. Removed can either mean 
recovered (assumed immune) or dead. In the susceptible-infected-removed (SIR) 
model, all three compartments are used and individuals move in one direction 
only—from susceptible to infected to removed. The susceptible-infected-susceptible 
(SIS) model only uses 2 of these compartments and individuals are able to return to 
the susceptible compartment upon resolution of infection. Since then, an analytic 
solution for the SIR model has been found (Harko et al. 2014), standard incidence 
introduced (Hethcote 2000; Brauer et  al. 2019) and pragmatic problems like herd 
immunity (Thompson et  al. 2020) and vaccination threshold (Tuite and Fisman 
2013) solved.

At least 2 layers of complexity have since been added. The basic ODE models 
assume an homogenous population—every infected-susceptible pair has the same 
probability of successful pathogen transmission over a fixed interaction period. 
Diekmann et al. define a next generation matrix (NGM) on a heterogenous popula-
tion (Diekmann et  al. 1990, 2013; Diekmann and Heesterbeek 2000). This NGM 
predicts the secondary infections due to the current infected population. They then 
show that R0 is the dominant eigenvalue of this NGM. Van den Driessche et  al. 
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propose that an heterogenous population can be approximated as the superposition 
of N homogenous population compartments (van den Driessche and Watmough 
2002; Brauer et al. 2008). The NGM calculates R0 for this system of equations.

Secondly, additional compartments allow more realistic simulation of the dynam-
ics of each disease (Hethcote 2000; Ivorra et al. 2020; Baccini et al. 2021; Leontitsis 
et  al. 2021; Rǎdulescu et  al. 2020; Giordano et  al. 2020). One such model is the 
susceptible-exposed-infective-removed (SEIR) model (Liu 1993; Greenhalgh 1997; 
Korobeinikov and Maini 2005). The incubation period effectively subdivides the 
infected compartment into an asymptomatic, non-infectious, exposed compartment 
and an infectious compartment (van den Driessche 2017).

Conventional DDE compartment models are an alternative to the exposed com-
partment of ODE models (Huang et al. 2010; Li and Liu 2014). These DDE com-
partment models simulate a biologically appropriate constant incubation period. 
In contrast, the exposed compartment in the SEIR and SEIRS models implies an 
exponential distribution of incubation time (Huang et al. 2010; Arino and van den 
Driessche 2006). The delay from infection to infectious is typically included with 
the force of infection term as �I(t − �)S(t) or �I(t)S(t − �). Hethcote et al. introduced 
alternative delay models (Arino and van den Driessche 2006; Hethcote and Tudor 
1980; Hethcote et al. 1981a, b, 1989; Hethcote and van den Driessche 1995).

The homogenous mixing and large population assumptions reduce epidemic sim-
ulation to ODE models (Nåsell 2002; Diekmann et al. 2013). The assumption that 
the rate at which migrants enter a compartment is directly proportional to the size 
of compartment they exit is inconsistent with the biology (Bailey 1956a, b; Lloyd 
2001; Krylova and Earn 2013).

PDE models allow the simulation of spatial spread. The spatial spread model 
commonly used is diffusion (Brauer et  al. 2008; Diekmann and Heesterbeek 
2000; Plank et al. 2009; Chalub and Souza 2011). Although diffusions models are 
described for rabies in foxes (Källén et al. 1985; Brauer et al. 2008) and the mos-
quito-vector West Nile fever in birds (Lin and Zhu 2017; Brauer et  al. 2008), the 
statistical mechanical derivation of Fick’s law of diffusion requires random move-
ment (Gillespie and Seitaridou 2012). Given non-random human-vector movement 
(Kurashima et  al. 2018; Mollison 1977; Mansilla and Gutierrez 2001), the condi-
tions under which the diffusion model is appropriate are not obvious. Furthermore, 
the diffusion model is not the only spatial spread model (Chen et al. 2014; Schneck-
enreither et  al. 2008; Mollison 1977; Diekmann 1978; Bosch et  al. 1988) nor the 
most general (Diekmann et al. 2013; Diekmann 1978; Mollison 1991).

The large number of discrete events assumed by the deterministic models result 
in continuous differentiable functions (Nåsell 2002). Stochastic models are a com-
plement able to simulate small populations (e.g. early in the epidemic) and assign 
probabilities to outlier events (Bartlett 1964; Chowell et  al. 2009; Brauer et  al. 
2019; Allen 2010). In 1760, Bernoulli used a statistical model to predict the effect 
of vaccination (Dietz and Heesterbeek 2002; Bailey 1975). Farr fitted bell-shaped 
curves to epidemics—attempting to identify empiric laws that describe their epi-
sodic nature (Bailey 1975). M’Kendrick constructed a spatial stochastic model on 
a two dimensional lattice (M’Kendrick 1925; Andersson and Britton 2000) but it 
was the Reed-Frost and Greenwood (Greenwood 1931) binomial chain models that 
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became popular (Allen 2010; Bailey 1975). Both of these models assume long incu-
bation periods with comparatively negligible infectious periods. A time increment 
equates to the incubation period and all infections occur at the end of this period. 
These assumptions result in asynchronous generations of pathogen hosts. Biologi-
cally, the model is consistent with seasonal procreation where the female dies after 
producing multiple offspring at that time ( e.g. spawning salmon). The conditions 
under which these models simulate epidemics most appropriately are not obvious. 
(Gani and Jerwood 1971) recognised these binomial chain models as examples of 
discrete time Markov chains (Gagniuc 2017; Allen and Burgin 2000). Continuous 
time Markov chains extrapolate the model to continuous time, discrete state vari-
ables (Allen 2017, 2010; Allen and Burgin 2000). This also represents a long latent 
period, branching process but the latent period is variable. Finally, continuous time, 
continuous state variables are simulated with stochastic differential equations (Allen 
2017, 2010; Allen and Burgin 2000; Cai et al. 2019; Gray et al. 2011) with the vari-
ance of a Gaussian distribution (Osthus et al. 2017).

Cellular automata (CA) arose to study the complex phenomena that evolve when 
simple rules are applied on a regular lattice (Neumann 1966; Codd 1968; Sarkar 
2000; Toffoli and Margolus 1987; Wolfram 1983). CA have been applied to compu-
tational fluid dynamics (CFD), economics, biology, ecology, physics and chemistry 
(Li et al. 2018; Menshutina et al. 2020). Schneckenreither et al. classify epidemic 
CA as lattice gas cellular automata (LGCA) or stochastic cellular automata (SCA) 
(Schneckenreither et al. 2008). The terms LGCA and the lattice Boltzmann method 
(LBM) are from CFD (Frisch et al. 1986; Wolf-Gladrow 2000) where the appropri-
ate 2-step rules of stream and redistribute are shown to simulate the macroscopic, 
incompressible Navier-Stokes (NS) equations (Guo et al. 2000; He and Luo 1997). 
Similarly, Boccara and Cheong applied LGCA to epidemics by constructing a 2-step 
rule of streaming and redistribution of states S,I and R on a regular lattice (Boccara 
and Cheong 1992, 1993; Boccara et al. 1994). Schneckenreither et al. describe the 
LGCA spatial spread model as diffusion and classically simulates individuals occu-
pying a cell. Mansilla and Gutierrez construct a spatial spread CA that can be tuned 
between the LGCA extreme of diffusion and perfect mixing (Mansilla and Gutierrez 
2001).

In contrast, SCA redistributes cell states based on that cell’s previous state and 
adjacent cells’ proximity and previous states (White et al. 2007, 2009). The simula-
tion does not model migration between cells but is intended to allow individuals 
within a cell to make contact with individuals in adjacent cells. States are repre-
sented as a ratio. Schneckenreither et al. refers to this spatial spread model as con-
tact spread (Schneckenreither et al. 2008). Redistribution of compartments is based 
on the probabilities of changing compartment upon contact. The probabilistic cel-
lular automata (PCA) model combines the contact spread of the SCA model with 
the LGCA’s integer cell occupants (Schimit and Monteiro 2009; Pereira and Schimit 
2018). In the PCA model, the integer is 1. Holka et  al.’s PCA model simulates a 
whole country and superimposes daily commutes (Holko et  al. 2016)—migration 
is a LGCA feature. The SCA model has been extended to include uncertainty using 
a Markov chain Monte Carlo method with coupled Beta and Dirichlet distributions 
(Osthus et al. 2017; Wang et al. 2020; Zhou et al. 2020),.
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Of note, in the CFD CA analogy, a Chapman-Enskog expansion is performed on 
the LGCA and LBM to derive the PDEs that describe the macroscopic phenomena 
(Guo et  al. 2000; He and Luo 1997; Chapman et  al. 1990). In contrast, the mean 
field approximation used on epidemic CAs necessarily describe population level 
ODEs (Berec 2002; Boccara and Cheong 1992, 1993; Boccara et al. 1994). Thus the 
population level spatial spread models described by the epidemic CAs are not obvi-
ous. In the CFD analogy, the CAs’ time- and space increments are tuned to achieve 
the appropriate viscosity—given that the viscocity in the CA-derived NS equations 
is a function of the time and space increments (Guo et al. 2000; He and Luo 1997). 
Without epidemiology CA derived PDEs, it is not obvious whether similar con-
straints pertain to the discretisation of these CAs.

This manuscript derives a DDE model where the delay is not due to the incu-
bation period and is not an alternative to the exposed compartment. The delay 
addresses the assumption that the rate at which individuals leave the infectious com-
partment is proportional to the size of that compartment.

The conventional, ODE model concepts and properties are explored before deriv-
ing the susceptible-transmissible-removed (STR) model. The deterministic SIR 
model (Kermack and McKendrick 1991a, b, c; Kermack et al. 1927) assumes that 
individuals move between three compartments—susceptible (S), infected-infec-
tious (I) and removed-recovered (R)—during an epidemic. S(t), I(t) and R(t) refer 
to the size of their respective compartments. There is no delay from infection to 
being infectious in the SIR model. R’s individuals can either be dead or recovered 
(assumed immune). The ODE model describing the movement between these com-
partments is (Chowell et al. 2009)

where S(t) + I(t) + R(t) = N—the constant population size. The rate of new infec-
tion is proportional to S(t)I(t). This corresponds to the rate at which individuals 
leave S. The rate of recovery is directly proportional to I(t).

In Model (1), the rate of recovery is directly proportional to I(t). This has no bio-
logical interpretation. Biologically, an infection lasts for a fixed period ( TI ). Indi-
viduals leave I at the same rate at which they entered it one TI ago.

Hethcote (2008), refers to �(t) as the horizontal transmission incidence and it is 
usually treated as a constant ( � ). Epidemiologically, incidence is the number of new 
cases of a disease per unit time as a proportion of the susceptible population. At 
t ⪆ t0 , when S ≈ N and no individuals leave I,

(1)

Ṡ(t) = −

𝜉(t)

N
S(t)I(t)

İ(t) =
𝜉(t)

N
S(t)I(t) − 𝛼I(t)

Ṙ(t) =𝛼I(t)

(2)𝜉(t0) =
İ(t0)

S(t0)
= −

Ṡ(t0)

S(t0)
=

İ(t0)

N
.
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There are two � s in epidemiology. The conventional mass action � assumes that 
interactions are completely random. Further, N is so large that, early in the epidemic, 
all interactions are with susceptible individuals. Here, � = �N.

Hethcote (2000) and Brauer et  al. (2019) argue that individuals have regular 
close contacts that are of similar count whether in a tribe, a village or a metropolis. 
Furthermore, as a generalisation, interactions only occur with these close contacts. 
This second � is the standard incidence. � = �si is a constant for standard incidence. 
Although standard incidence is usually used for sexually transmitted diseases; 
Anderson demonstrates experimentally that, for airborne diseases, 0.03 ≤ � ≤ 0.07 
in � = �N� (Anderson and May 1982, 1992).

The basic reproduction number ( R0 ) is a demographic concept (Dietz 1993; 
Heesterbeek 2002) that has been repurposed as an epidemic impact property. It rep-
resents the number of new infections produced by an infected individual directly. A 
straightforward R0 (Brauer et  al. 2019) derivation exists for the SIR model. Con-
sider I of Model (1).

Define

For a completely susceptible population (at t = 0 ), S(0) ≈ N. Then

implies that I grows indefinitely when R0 > 1. Biologically, � is interpreted as the 
infection frequency.

2  A Boundaried, Delayed Differential Equation, SIR‑Like Model

Define a host as an individual harbouring a pathogen that has the capacity to cause 
a disease. If the pathogen can be transmitted to a new host, the disease is infectious. 
The disease can only be transmitted to a new host if the host makes sufficient contact 
with a susceptible individual or potential host.

There is a delay from becoming infected to being infectious. Thus the infectious 
period (Ti) is shorter than TI . In the SIR model this delay is negligible. Ti and TI are 
biologically defined and limited by either recovery or death. Interventions like vac-
cination or medication either shorten TI or reduce the case fatality rate (CFR). The 
CFR is the ratio of those infected that die.

A host’s ability to transmit a disease can also be limited behaviourally and techno-
logically. An example of the former is isolation in chicken pox. When the vesicular 
rash appears, the diagnosis is obvious and the caregiver isolates the host. The pharma-
cological treatment of tuberculosis (TB) is an example of technological transmission 

İ(t) =

(

𝜉S(t)

N
− 𝛼

)

I(t) > 0 ⟺
𝜉S(t)

N
− 𝛼 > 0 ⟺

𝜉

𝛼

S(t)

N
> 1.

(3)R0 ∶ =

�

�
.

(4)R0 > 1 ⟺ İ(t) > 0
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restriction. TB treatment results in non-infectious hosts. The transmissible period ( �� ) 
will therefore be defined as the weighted average of the biological, behavioural and 
technological restrictions that limit the period during which a host has the opportunity 
to transmit a disease.

Define an isolated community as a subset of individuals that only interact with other 
members of that subset. The isolation can be due to a physical boundary like a moun-
tain range or a wall; a cultural barrier like a tribal taboo or language; or a legal barrier 
prohibiting social interaction.

Let an isolated community of large population size ( N(�, t) ) exist on a boundaried 
surface �A(�) , where � is a central measure of �A , at time t. Natural births and deaths 
are neglected. Let the susceptible population in this community be S(�, t) . Let the den-
sity of susceptible individuals be s(�, t) = S(�,t)

�A
 . Similarly, let population density be 

�n(�) =
N(�)

�A
 at �, ∀ t . Then for N(�) = ∫

�A
�n(�)d�,

where N(�, t) and �n(�, t) are assumed positive constants in time because natural 
births and deaths are not significant in this time frame. Let

by the definition of properties of �n and N above. For arbitrary scalar variable � , (5) 
is

because M is a constant. Substituting (6) back into (7),

Similarly, for the transmissible compartment (T) and transmission-capable host pop-
ulation density ( �(�, t)),

(5)
S(�, �) =�

�A

s(�, t)d� ⟺
S(�, t)

N(�, t)
=

∫
�A
s(�, t)d�

∫
�A
�n(�, t)d�

⟺ �
�A

s(�, t)d� = S(�, t)�
�A

�n(�, t)

N(�, t)
d�

(6)M ∶=

1

N(�) ∫
�A

�n(�)d� = 1,

(7)∫
�A

s(�, t)d� = MS = ∫
�S

��
Md�

(8)
∫
�A

s(�, t)d� =∫ ∫
�A

�S

��

�n

N
d� d� = ∫

�A

�n

N ∫
�S

��
d� d�

=∫
�A

S(�, t)
�n(�)

N(�)
d�

(9)⟺ s(�, t) =
S(�, t)

N(�, t)
�n(�, t).

(10)T(�, t) = ∫
�A

�(�, t)d� ⟺ �(�, t) =
T(�, t)

N(�)
�n(�).
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Define sufficient contact between two individuals as sufficient proximity, and dura-
tion of that proximity, to allow pathogens to be transmitted from host to potential 
host within that period. An interaction is necessarily spatial and of sufficient contact.

The position vector will be omitted because only one community is considered 
further. Let the probability density function, P(t), of an interaction at t be propor-
tional to the product of the transmission-capable host density and the potential host 
density as for the law of mass action (Ferner and Aronson 2016). Then

where � is an infectious disease-specific variable that reflects avidity (cumulative 
binding strength), � is a function of mode of transmission (aerosol spread has a 
higher � than droplet spread) and �(�) is a function of social behaviour (higher for a 
culture that greets by kissing compared to bowing). By definition,

An example of increased � resulting in higher probability of transmission has been 
demonstrated for the � and � variants of SARS-CoV2 in reference (Ramanathan 
et al. 2021). In corona virus disease 2019 (COVID19), it is necessary that the SARS-
CoV2 spike protein binds to the luminal angiotensin converting enzyme 2 (ACE2) 
receptor for transmission. The authors propose that the increased transmissibility of 
the � and � variants may be due to increased spike protein density, increased furin 
cleavage accessibility or increased spike protein-ACE2 receptor binding affinity. 
Affinity is the binding strength of one spike protein-ACE2 receptor combination. 
Avidity is the cumulative binding effect. In this case, avidity would be a function 
of the spike protein density, affinity and the concentration of virus particles. The 
authors demonstrate that the greater affinity of the � and � variants are consistent 
with the increased transmissibility (probability of transmission) of these variants.

The 4 recognised respiratory virus modes of transmission are direct contact, indi-
rect contact (fomite), droplet and aerosol (Leung 2021). Although the distinction 
between droplet and aerosol spread is recognised, a consensus metric for distin-
guishing between them does not exist. In principle droplets are larger, heavier and 
travel a shorter distance. Aerosols form a suspension in the air and are displaced, 
dispersed and diluted by ventilation and convection currents (Wells 1934). Influenza 
is an airborne disease (droplet and aerosol). Nguyen-Van-Tam et al. expose a con-
trol group and an intervention group to influenza. Droplet- and direct contact spread 
are negated in the intervention group. They demonstrate that, for influenza, drop-
let- and direct contact spread make negligible contributions to disease propagation. 
This and a proof of concept study were conducted in closed rooms. The infection 
rate (secondary attack rate) between this study and the proof of concept study dif-
fered significantly. The difference is ascribed to the ventilation rate of 4 L/s per per-
son confined to the rooms of the main study diluting the aerosol (Nguyen-Van-Tam 
et al. 2020). Given that both aerosol and droplet spread occur in influenza, they have 
demonstrated (at least for influenza and barring an additional mode of spread) that 

(11)P(t) = ���(�) s(t)�(t)

0 ≤ �
�t

P(t)dt ≤ 1.
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aerosol spread has a higher transmission probability than droplet spread. This is the 
effect of � in (11).

It is assumed that cultures are location specific. �(�) can be interpreted as culture-
specific, short-term, socially-acceptable, casual proximity—to distinguish it from 
population density. Casual contact is the collection of interaction types that exclude 
the intimate interactions typically occurring within families. For example, an accept-
able distance from a stranger in Hong Kong is ⪆ 1, 1m while in the USA this dis-
tance is ⪅ 1m (Sorokowska et al. 2017). Hong Kong has a much higher population 
density at 6677 per km2 compared to the USA at 34 per km2. Despite this difference 
in population density, R0 for 2009 influenza epidemic is consistently higher for the 
USA (Biggerstaff et al. 2014). The difference in culturally acceptable personal space 
may explain part of the anomaly.

In a population of size N, the possible unique interactions are the sum of an arith-
metic series 

(

N(N−1)

2

)

 . For N ≫ 1 , this approximates to N
2

2
 . Each interaction repre-

sents a transmission opportunity. Then the maximum transmission opportunities 
(

�(N)
)

 approximate as

The maximum possible direct secondary transmissions due to a single host is N − 1 
but this is limited by �� . Similarly, the maximum possible secondary transmissions 
over �� are

Substituting (9), (10) and (11) into (13), the transmissions produced over a primary 
host’s �� are

where �A =
1

2
���.

For interval 𝛥t > 𝛥𝜏 , the Heaviside step function is used and emphasises the dis-
crete underlying processes. The equivalent of (14) over this �t is

Thus (14) is formulated over interval �� or an arbitrary period 𝛥t > 𝛥𝜏 (15).

(12)�(N) ⪅
N2

2
.

(13)�(N)∫
��

P(t)dt ⪅
N2

2 ∫
��

P(t)dt.

(14)

∫
t0+𝛥𝜏

t0

Ṫ(t0)dt =∫
t0+𝛥𝜏

t0

𝜂𝜇𝜅
N2

2
s(t0)𝜏(t0)dt

=∫
t0+𝛥𝜏

t0

𝜂𝜇𝜅

2
𝜌
2
n
S(t0)T(t0)dt

=∫
t0+𝛥𝜏

t0

𝛽A𝜌
2
n
S(t0)T(t0)dt

(15)∫
𝛥t

Ṫ(t0) dt = ∫
𝛥t

[u(t0) − u(t0 + 𝛥𝜏)] 𝛽A𝜌
2
n
S(t0)T(t0) dt.
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As for the SIR model, the rate at which individuals leave S is the same as the 
rate at which they enter T. Restated, Ṡ(t) = −Ṫ(t). Then from (14)

For an interval greater than �� (15), the Heaviside version of (14), is required.
Redefine the removed compartment as consisting of hosts no longer transmis-

sion capable by virtue of recovery, death, behavioural adaptation or technological 
intervention. An individual is infected at t0 . That host remains transmission-capa-
ble for ��  . Thus the rate at which hosts enter R is the same as the rate at which 
they entered T one ��  ago (Brauer et al. 2019). Restated,

The SIR model proposes that İ(t) is the difference between S’s rate of decrease and 
R’s rate of increase. Similarly, substituting (16) and (17) to determine Ṫ(t) , the sys-
tem of DDEs describing the movement between compartments S, T  and R are

Model (18) is the boundaried DDE version of Model (1) and is designated the 
STR model. The derivation of this model on a surface has incorporated population 
density.

Assume that the homogenous solution to T(�, t) is exponential such that

Equation (19) is the real, homogenous solution to the linearised STR (18) (Smith 
2010)(See Appendix). Substituting (19) into the delay term of Model (18)’s T,

where

and 
�
�(�) = r(�)e−r(�)�� . The subscript � is for transmissible. Substituting (20) into 

Model (18), reduces the latter to an ODE-like model,

Comparing Models (22) and (1), the horizontal transmission incidence (Hethcote 
2008) is

(16)Ṡ(t) = −𝛽A𝜌
2
n
S(t)T(t).

(17)Ṙ(t) = Ṫ(t − 𝛥𝜏).

(18)
Ṡ(t) = − 𝛽A𝜌

2
n
(�) S(t)T(t)

Ṫ(t) =𝛽A𝜌
2
n
(�) S(t)T(t) − Ṫ(t − 𝛥𝜏)

Ṙ(t) =Ṫ(t − 𝛥𝜏).

(19)T(�, t) = A(�)er(�)t.

(20)
�

�t
T(�, t − ��) = A(�)r(�)e−r(�)��er(�)t = �T(�, t)

(21)�(�, t) =
�
� u(��)

(22)
Ṡ(t) = − 𝛽A𝜌

2
n
(�) S(t)T(t)

Ṫ(t) =𝛽A𝜌
2
n
(�) S(t)T(t) − 𝛼(�)T(t)

Ṙ(t) =𝛼(�)T(t).
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Applying the definition of R0 for the SIR model from Section 1’s (3) (Brauer et al. 
2019), STR Model (22)’s basic reproduction number is

and undefined for t < 𝛥𝜏.
� ’s derivation for Models (18) and (22) differs from Brauer et al.’s (Brauer et al. 

2019) mass action � derivation. Brauer et al. assume that a host has �N transmis-
sion-capable interaction per unit time. They then multiply this by the chance that 
such an interaction is with a susceptible individual 

(

S

N

)

 . This product is Ṡ(t) . Conse-
quently, � = �N for mass action incidence. Thus only the potential direct secondary 
transmissions are considered. In contrast, (14)’s � calculates the average transmis-
sions over all potential interactions on N over �� . This includes indirect secondary 
transmissions. Thus, in principle,

Comparing the STR’s 
�
R0 to R0 for mass action incidence (� = �N) and the stand-

ard incidence (� = �si),

3  Biological Derivation of a Continuous Basic Reproduction Number

A transmissible timescale is derived that converts the STR model (18) into an ODE 
model. A rhythmic timescale is then defined and mass action-, standard- and hybrid 
incidence (HI) derived in the rhythmic timescale.

3.1  Defining the Transmissible Timescale

STR Model (18)’s coefficients are derived, in part, from (14). Equation (14)’s Heavi-
side version (15) emphasises the finite transmissible period.

For timescale 1 ∶ 𝛥t < 1 ∶ 𝛥𝜏, (15) should be used to derive a Heaviside version 
of (16). Thus timescale 1 ∶ 𝛥t < 1 ∶ 𝛥𝜏 introduces a step function (15) in the STR 
Model (18)’s �. Conversely, 1 ∶ 𝛥t > 1 ∶ 𝛥𝜏 introduces a step function in ODE-like 
Model (22)’s �.

Thus timescale

(23)�(�) = �A�
2
n
(�)N(�).

(24)�
R0(�) =

�(�)

�(�, t ≥ ��)

R0 ≤ �
R0.

(25)
𝛽A𝜌

2
n
(�)N(�)

𝛼(t > 𝛥𝜏)
=

𝜏
R0(�) ≥ R0 =

𝛽N

𝛼
or

𝛽is

𝛼
.

1 ∶ �t = 1 ∶ ��.
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transforms (22) into an ODE model similar to Model (1). This ��-based timescale 
is the transmissible timescale. 

�
� and 

�
R0 are then the transmissible timescale infec-

tion frequency and basic reproduction number, respectively.

3.2  Defining the Rhythmic Timescale

Consider a host infected by chickenpox (Varicella Zoster). The host becomes infec-
tious after 14 days. There is an additional 2-3 days (the prodrome) before the vesicu-
lar rash appears, the diagnosis is obvious and the host is isolated.

This host’s routine may include sleeping from 10 PM to 6 AM, public transport 
between 7:30 and 8AM, and from 5:30 to 6PM; classroom from 8AM to 5PM; a 
cafeteria at 1PM; and family time from 6PM to 10PM. Comparing this routine with 
(11), a diurnal variation exists to the probability of a successful interaction. Select-
ing a timescale of 1 : 1 day masks this variation. Restated,

Similarly, weekly, monthly and annual activities are periodic. Thus multiple time-
scales may exist that result in constant integrals of (11) over a time unit in that 
timescale.

A rhythmic timescale

is defined for periodic host transmission opportunity. Assuming a periodic transmis-
sion opportunity, ∃ �t ∈ ℝ such that ∀ t0 ∈ ℝ

The constant, p, represents the probability of an event on �(N) over �t. Successful 
interactions are then independent events with probability p on �(N).

3.3  The Rhythmic Timescale Mass Action‑, Standard‑ and Hybrid Incidence R
0

Let the time increments in the transmissible timescale be an integer multiple of the 
increments in the rhythmic timescale. Then

� is necessary to transform between the transmissible- and rhythmic timescales.

3.3.1  Mass Action Incidence, Basic Reproduction Number in Rhythmic Timescale

The mass action incidence formulation assumes that all host interactions are random 
and that S ≈ N for several �t early in the epidemic. By definition, 

�
R0 is the number 

∫
t0+(k+1)�t

t0+k�t

P(t)dt = pdaily ∀ �t = 1 day, k ∈ ℕ

1 ∶ �t = 1 ∶ �t

(26)p = ∫
t0+�t

t0

P(t)dt = ∫
�t

P(t)dt.

(27)�� ≈ ��t where � ∈ ℕ.
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of secondary hosts produced by a primary host over ��. At t = t0 the only host is the 
primary host and the number of secondary hosts over �� are necessarily 

�
R0. This 

can be restated as

At the equivalent t = �� in any timescale, (28) is true. From (2), in 1 time unit of the 
transmissible timescale,

From (26) the primary host will infect pS ≈ pN individuals over �t . Applying (2), 
over 1 time unit of the rhythmic timescale,

where 
�
�(t0) is the rhythmic timescale � at t0 . Because mass action incidence 

assumes S ≈ N for several �t , there are �pN transmissions over ��t = �� . From 
(28), �pN =

�
R0 . Therefore, after � time units in the rhythmic timescale,

Therefore, the rhythmic timescale � is the arithmetic mean of the transmissible time-
scale � . Restated

From (21), for 0 < t < 𝛥𝜏 , � = 0 and, consequently, 
�
R0 is undefined. 

�
R0 is the 

number of secondary hosts originating over the primary host’s �� in a completely 
susceptible population. Therefore either R0 is timescale invariant or R0 ≥ 1 or 
R0 < 1 (4) should be timescale invariant.

Define a non-zero rhythmic timescale � as

Then, from (3), one can use (29) and (30) to derive a rhythmic timescale R0:

that preserves R0 and the property R0 ≥ 1 or R0 < 1 . The resultant mass action 
incidence, STR model in the rhythmic timescale is then

(28)𝜏
R0 = ∫

𝛥t=𝛥𝜏

Ṫ(t0)dt.

�(t0) =
�
R0

N × 1
.

�
�(t0) =

pN

N × 1

∫
t0+�

t0

�
�(t)dt =

∑

�

pN

N × 1
=

�pN

N
= �

�
�(t0)

=
�
R0

N
= �(t0).

(29)
�
�(t0) =

�(t0)

�
.

(30)�
� ∶ =

�
�

�
.

�
R0 =

�
�(t0)

�
�

=

�(t0)

�
�

=
�
R0
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3.3.2  Standard Incidence Basic Reproduction Number in the Rhythmic Timescale

Hethcote’s standard incidence assumes that interactions are non-random. One only 
interacts with close contacts, Nc ≪ N (Hethcote 2008). Hethcote (2000), Anderson and 
May (1982, 1992) provide experimental evidence to support the argument.

From Sect.  3.2 and (26), the new transmissions over �t occur with probability p. 
Transmission occurring in subsequent �t are independent events. Early in the epidemic, 
the new entrants to T equate to Ṫ(t).

Table 1 provides the compartment sizes, at �t intervals, before primary host removal 
( ��t ≤ ��).

From (2) and the definition of incidence,

Substituting terms from Table 1 into (31), without loss of generality,

In the rhythmic timescale ( 1 ∶ �t ), over one time unit,

After � time units in this rhythmic timescale, S(t) is S0e−�� . � time units in the 
rhythmic timescale is only one time unit in the transmissible timescale. Substituting 
(32) at t0 over �� into the discrete version of (2),

Ṡ(t) = −

𝛽

�
S(t)T(t)

Ṫ(t) =
𝛽

�
S(t)T(t) −

𝜏
𝛼

�
T(t)

Ṙ(t) =
𝜏
𝛼

�
T(t).

(31)𝜉(t ≈ t0) = −

Ṡ(t)

S(t)
=

Ṫ(t ≈ t0)

S(t ≈ t0)
.

𝜉(t ≈ t0) = −

Ṡ(t)

S(t)
= 𝜒 where 𝜒 = p or

p

1 − p
⟺ S(t) = S0e

−𝜒 t.

(32)�
� =

S0e
−�

− S0

S0 × 1
⟺ e−� =

�
� + 1.

Table 1  Changes in the SI compartments per �t in the standard incidence model

� ∶ � ∈ ℤ, � ≤ � New T = Ṫ Cumulative T S N

< 0 0 0 N
c

N
c

0 1 1 N
c

N
c
+ 1

1 N
c
p N

c
p + 1 N

c
(1 − p) N

c
+ 1

2 N
c
(1 − p)p N

c
p[(1 − p)

0
+ (1 − p)

1
] + 1 N

c
(1 − p)

2
N
c
+ 1

3 N
c
(1 − p)

2
p

N
c
p
1−(1−p)

3

1−(1−p)
+ 1 N

c
(1 − p)

3
N
c
+ 1

� N
c
p(1 − p)

�−1
N
c
p
1−(1−p)

�

p

+ 1 N
c
(1 − p)

�
N
c
+ 1
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Performing the binomial expansion,

For 
𝜚
𝜉 ≫ 1 and 

𝜏
𝜉 ≫ 1,

As for the transmissible timescale mass action incidence in Section 3.3.1, from (21), 
� = 0 in the rhythmic timescale. Consequently, R0 is undefined. Define

for 
𝜚
𝛼 ≫ 1 and 

𝜏
𝛼 ≫ 1 . Substituting (33) and (34) into (3),

and the property of R0 < 1 or > 1 (4) is preserved across timescales.
The standard incidence, STR in the rhythmic timescale is approximately

3.3.3  Hybrid Incidence Basic Reproduction Number in the Rhythmic Timescale

Section 2 derives an N-dependent � (23). Substituting (23) into (33),

ensures the geometric decrease in S. As in (34),

From (35) and (25), the property R0 < 1 or R0 > 1 (4) is preserved by

�
� =

S0e
−��

− S0

S0 × 1
= (

�
� + 1)� − 1 ⟺

�
√

�
� + 1 =

�
� + 1.

�
∑

k=0

(

�

k

)

�
�
k
=

�
� + 1 ⟺

�
� =

�
∑

k=1

(

�

k

)

�
�
k.

(33)�
� ⪅ �

√

�
�.

(34)𝜏
𝛼 ∶ =

�
�

k=1

�

�

k

�

𝜚
𝛼
k
⟹

𝜚
𝛼 ⪅ �

√

𝜏
𝛼 =

𝛥t
𝛿t

√

𝛼(t > 𝛥𝜏) 0 ≤ t < 𝛥𝜏

(35)
�
R0 ⪅

�

�

�
�

�
�
=

�
√

�
R0

Ṡ(t) = −
�
√

𝛽si

S(t)T(t)

N(�)

Ṫ(t) = �
√

𝛽si

S(t)T(t)

N(�)
−

�

√

𝜏
𝛼 T(t)

Ṙ(t) = �

√

𝜏
𝛼 I(t).

(36)�
� =

�

√

�A�
2
n
N

�
� ∶ =

1

�

�

√

�
�.
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The HI, STR in the rhythmic timescale is then approximately

4  Hybrid Incidence, STR Validation in the 1 : 1 Day Timescale

The HI-STR’s predicted relationship between 
�
R0 and �n is demonstrated for a drop-

let spread, an aerosol spread and a non-airborne disease. Published central measures 
(mode, median or mean) will represent 

�
R0 ranges.

4.1  SARS (SARS‑CoV)

Severe acute respiratory syndrome (SARS) was caused by SARS Coronavirus (SARS-
CoV) in the Far East Asia in 2002 (Cheng et al. 2007; Christian et al. 2004). Transmis-
sion was primarily droplet spread (Christian et al. 2004). 22% may have required hos-
pitalisation (Lau et al. 2004). Symptom onset marked infectiousness (Zeng et al. 2009). 
The incubation mode was 4 days (Lessler et al. 2009; Donnelly et al. 2003). Symptom 
onset to self-isolation is unknown. Symptom onset to hospitalisation mode was 0.5 to 
2.5 days (Donnelly et al. 2003; Anderson et al. 2004). This is summarised in Table 2.

The unknown non-hospitalised �� is assumed the same as for the hospitalised. 
�� = 1.5 days (Anderson et al. 2004). �t = 1 day . Substituting the resultant � = 1.5 
into (37).

(where � =
�
√

�AN∕�� ). SARS’ 
�
R0 ’s theoretical dependence on �n is (38).

(37)�
R0(�) ≈

�
√

�
R0 ≥ �

√

R0.

Ṡ(t) = −
�

�

𝛽A𝜌
2
n
N

S(t)T(t)

N(�)

Ṫ(t) = �

�

𝛽A𝜌
2
n
N

S(t)T(t)

N(�)
−

�

√

𝜏
𝛼 I(t)

Ṙ(t) = �

√

𝜏
𝛼 I(t).

(38)𝜚
R0 =

�
√

𝜏
R0 =

�

�

𝛽A𝜌
2
n
N

𝛼(t > 𝛥𝜏)
=

�

�

𝛽AN

𝜏
𝛼

× 𝜌

2.0

1.5

n

⟺ ln(
𝜚
R0) = ln(𝛤 ) + 1.3 ln(𝜌n)

Table 2  Transmission dynamics 
for SARS—removal refers to 
removal from society

Group Group pro-
portion (%)

Incubation 
mode (days)

Time to 
removal mode 
(days)

Hospitalised 22 4 1.5
Non-hospitalised 78 4 N/A
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Toronto and 4 Asian cities’ experimental 
�
R0 (Chowell et  al. 2004a; Tuan et  al. 

2007; Zhang et al. 2004) and �n (Statistics Canada. 2017 2017; Hong Kong Govern-
ment 2003; Central Population and Housing Census Steering Committee 2010; Taipei 
City Government 2020) are presented in Table 3. The natural logarithms are plotted in 
Fig. 1. The experimental gradient of 1.35 should be compared with (38).

The SARS-CoV validation uses retrospective 
�
R0 on a cross-section of (mostly 

Asian) cities during the course of one droplet-spread epidemic.

4.2  Measles (Rubeola)

Measles incubates for 10–12 days (Lessler et al. 2009). The prodrome of non-specific 
(Moss and Griffin 2012), but debilitating, symptoms heralds the infectious (Klinken-
berg and Nishiura 2011) period. The pathognomonic morbilliform rash ends the 2-4 
day prodrome.

Conjecturing isolation at day 3 of the prodrome, �� is 3 days; �t = 1 day and � = 3. 
Substituting the latter into (37), for measles:

(39)ln(
�
R0) = ln(� ) + 0.66 ln(�n).

Table 3  2002/2003 SARS epidemic’s population density and basic reproduction number

Population density ( �
n
) Median 

�
R0 Year

Toronto 4334 (Statistics Canada. 2017 2017) 0.58 (Chowell et al. 2004a) 2003
Hong Kong 6300 (Hong Kong Government 2003) 1.1 (Chowell et al. 2004a) 2003
Singapore 6186 (World Bank 2020e) 1.17 (Chowell et al. 2004a) 2003
Hanoi 1926 (Central Population and Housing 

Census Steering Committee 2010)
0.2 (Tuan et al. 2007) 2003

Taipei 9461 (Taipei City Government 2020) 1.54 (Zhang et al. 2004) 2003

Toronto

Hong Kong

Singapore

Hanoi

Taipei

ln( R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98ln( R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98ln( R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98ln( R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98ln( R0) = 1.35 ln(ρn)− 11.8 , R2 = 0.98

-1.5

-1.0

-0.5

0.0

0.5

9.08.58.07.5

ln(ρn)

ln
(
R

0
)

Hybrid incidence, STR SARS-CoV 2003 validation in Asia

Fig. 1  Experimental depiction of the predicted linear ln(
�
R0) to ln(�

n
) relationship
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Table  4 documents the experimental 
�
R0 for 5 countries at 8 historical periods 

Guerra et al. (2017). Figure 2 demonstrates the linear relationship predicted by (39).
Several experimental 

�
R0 methods across multiple, historical, European measles 

epidemics have validated the STR for aerosol-spread infections. The increased R2 
is likely due to the several methods used by several investigators to calculate R0 for 
measles. The STR model applies to isolated communities. Although regions within 
countries may be treated as sufficiently isolated, it may be that countries are insuf-
ficiently isolated in Europe.

4.3  Ebola (EBOV)

Ebola disease is caused by 1 of 7 Ebola virus species in the genus Ebolavirus of 
the family filoviridae (Feldmann et al. 2020; Weppelmann et al. 2016; Jacob et al. 
2020). Ebola disease has a high CFR (Colebunders and Borchert 2000; Chow-
ell and Nishiura 2014; Althaus 2014; Feldmann et al. 2003) and is not airborne. 

Table 4  Population density and historical measles pR0
 for Measles in Europe

Country Population density ( �
n
 ) (Mitchell 1998) Middle 

�
R0 (Guerra 

et al. 2017)
Year

Germany 70 (Wikipedia contributors 2020) 9 1861
Italy 110 (World Bank 2020c) 13 1901
Denmark 65 (World Bank 2020a) 6 1911
Denmark 101 (World Bank 2020a) 16 1948
Netherlands 443 (World Bank 2020d) 23 1990
Luxembourg 161 (Grand-Duché de Luxembourg 2020) 7 1996
Germany 236 (World Bank (2020b) 30 2006

Italy 1901

Germany 1861

Denmark 1911

Netherlands 1990

Germany 2006

Denmark 1948

Luxembourg 1996

ln( R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln( R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln( R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln( R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln( R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln( R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51ln( R0) = 0.62 ln(ρn)− 0.53 , R2 = 0.51

2.0

2.5

3.0

4.5 5.0 5.5 6.0

ln(ρn)

ln
(
R

0
)

Hybrid incidence, STR validation for Measles in Europe

Fig. 2  Predicted linear relationship between ln(
�
R0) and ln(�

n
)for measles in Europe
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Bodily fluid transmission is by blood, urine, faeces, vomit, breast milk, saliva and 
sexual contact (Jacob et al. 2020).

Ebola virus disease is the ebola disease caused by the Zaire species (EVOD). 
CFR is 43-89% (Jacob et al. 2020; Colebunders and Borchert 2000; Chowell and 
Nishiura 2014) and �t is 1 day. The infected are categorised as

– asymptomatic,
– symptomatic and quarantined (hospital or an ebola treatment unit) (Jacob et al. 

2020),
– symptomatic and isolated at home (Chowell and Nishiura 2014; Weppelmann 

et al. 2016).

The median incubation period—6-12 days (Feldmann et al. 2003, 2020; Weppel-
mann et al. 2016; Chowell and Nishiura 2014; Althaus 2014; Jacob et al. 2020; 
Velásquez et al. 2015; Van Kerkhove et al. 2015).

Kerkhove et al.’s median time from symptom onset to hospitalisation is 4 days 
(Van  Kerkhove et  al. 2015). Hospitalisation has been demonstrated to reduce 
transmission (Agua-Agum et al. 2016).

The end of ��  is the weighted average of the time to hospitalisation and the 
time to isolation. These periods are assumed the same. The median time to hospi-
talisation is �� = 4 days (Van Kerkhove et al. 2015). Substituting �t and ��  into 
(37),

The Democratic Republic of Congo (DRC) outbreak in 1995 differs from the 2000 
Uganda outbreak and the 2014 outbreak (Chowell et al. 2004b; Legrand et al. 2007). 
Chowell et al. (2004b) shows a shortened infectious period and Legrand (Legrand 
et  al. 2007) demonstrates more transmission at funerals in the DRC. The DRC 
outbreak is omitted. Table  5 summarises 

�
R0 for Guinea, Sierra Leone, Liberia 

(Althaus 2014) and Uganda (Legrand et al. 2007) . Equation (40)’s predicted linear 
relationship is demonstrated experimentally in Fig. 3.

The non-airborne Ebola validation has been performed using retrospective 
�
R0 

data for multiple African countries.

(40)ln(
�
R0) = ln(� ) + 0.50 ln(�n).

Table 5  Population density and Ebola 
�
R

0
 for African countries

Country Population density ( �
n
 ) (World 

Bank 2018)
�
R0 Year

Uganda 118 2.7 (Legrand et al. 2007) 2000
Guinea 45 1.51 (Althaus 2014) 2014
Sierra Leone 97 2.53 (Althaus 2014) 2014
Liberia 33 1.59 (Althaus 2014) 2014
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5  Discussion

The transmissible timescale is based on the period that a host is able to transmit 
disease. This period ends with either host demise, recovery, behavioural modifi-
cation or technological intervention.

The rhythmic timescale is a consequence of the host’s cyclical transmis-
sion opportunity. The sleep-wake cycle is the origin of the periodic transmis-
sion opportunity of the childhood infectious diseases. For childhood infectious 
diseases the diurnal periodicity corresponds to the period of experimental data 
collection.

Hybrid incidence lies between the extremum of completely random interac-
tions (mass action incidence) and completely non-random interactions (standard 
incidence). The geometric mean converts the basic reproduction number, infec-
tion frequency and horizontal transmission incidence between the transmissible- 
and rhythmic timescales under special circumstances.

The HI-STR model can predict the basic reproduction number for sufficiently 
isolated communities. The prediction is based on transmission dynamics, popula-
tion-size and -density. It reduces to an ODE model in the transmissible timescale. 
The resultant localised basic reproductive numbers facilitate differentiated con-
trol measures and resource allocation. The isolated community idealisation has 
imposed a significant constraint on the discretisation of a surface. Experiential 
construction of isolated communities is necessary until an objective measure of 
sufficient isolation is derived.

The geographical constraints of the SIR model were not obvious. The HI-STR 
has established that the SIR model applies to sufficiently isolated populations. 
The HI-STR model effectively recognises a pandemic as a collection of epidem-
ics of the same kind at multiple locations and stages of temporal propagation.

Uganda 2000

Guinea 2014

Sierra Leone 2014

Liberia 2014

ln( R0) = 0.48 ln(ρn)− 1.3 , R2 = 0.92ln( R0) = 0.48 ln(ρn)− 1.3 , R2 = 0.92ln( R0) = 0.48 ln(ρn)− 1.3 , R2 = 0.92ln( R0) = 0.48 ln(ρn)− 1.3 , R2 = 0.92

0.4

0.6

0.8

1.0

5.40.45.3

ln(ρn)

ln
(
R

0
)

Hybrid incidence STR validation for Ebola in Africa

Fig. 3  Experimental linear relationship between ln(
�
R0) and ln(�

n
) for Ebola in Africa



1 3

The Hybrid Incidence Susceptible‑Transmissible‑Removed… Page 21 of 29 10

6  Conclusion

A boundaried, DDE SIR-like model—the STR model—is constructed. The hybrid 
incidence (HI) STR model in the rhythmic timescale predicts the basic reproduction 
number ( R0)’s dependence on population density. The model has been validated 
for multiple transmission modes where one host-vector predominates. The HI-STR 
allows a priori determination of localised R0 s by adjusting for local population-size 
and -density. This permits localised mitigation strategies, resource allocation and 
temporal resource redistribution. Cultural similarity is required to transfer adjusted 
R0s.

For models simulating only one host type transmitting a disease, the transmis-
sible timescale masks the HI-STR model’s delays. The geometric mean converts the 
horizontal transmission incidence and infection frequency between the transmissi-
ble- and rhythmic timescales.

7  Recommendation

The HI-STR allows geographical risk stratification based on population-size and 
-density. The impact is not obvious. It is conceivable that a high � diminishes the 
significance of geographical stratification.

The isolated community idealisation simplifies the reduction of the HI-STR 
model to an ODE model. The resultant ODEs prohibit the modelling of spatial 
spread. A surface STR model with partial differential equations will simplify surface 
discretisation, simulate population mobility and predict a pandemic’s wave-like spa-
tial propagation.

The model has been validated for infectious diseases with a diurnal variation in 
transmission opportunity. The sexually transmitted diseases’ (STDs’) cyclical trans-
mission opportunities have a low frequency. The STDs thus provide an opportunity 
to validate the model in (non-diurnal) timescales that mask their longer transmission 
opportunity period.

Appendix: Solution for Linearised STR Model

A real solution to the linearised STR model is derived. Smith (2010) and Diekmann 
et al. (1995) provide comprehensive coverage.

Consider the system of DDEs (18). Early in the disease, one can make the 
approximation N ≈ S reducing the system to the linear DDE system

which (for � ∈ ℝ3 ) is of the form

⎛
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⎜
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Ṡ

Ṫ

Ṙ
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0 𝜉 0

0 0 0
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Refer to Kuang for analysis of this first order real scalar linear neutral delay equation 
(Kuang 1993). Only the transmissible compartment is considered further. For

Let z2(t) = e�t where � ∈ ℂ . Substituting this into (42),

and the roots of the characteristic equation

are the solutions to � . Let the real part of � be x and the imaginary part be y then on 
the complex plane,

where I is the identity matrix 
[

1 0

0 1

]

 and R(�y) =
[

cos(�y) − sin(�y)

sin(�y) cos(�y)

]

 is the rotation 

matrix. Note that a positive real solutions exist. At y = 0 , for x > 0 . 0 < e−x < 1 and 
therefore 𝜉

2
< x < 𝜉 . Given that (biologically) 𝜉 > 0 , for y = 0 , all the terms in 

R(𝜏y) > 0 and e−𝜏x > 0 ⇒ x ≰ 0.
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