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Abstract
Despite several research on HIV/AIDS, it is still incumbent to investigate more 
effective control measures to mitigate its infection level. Therefore, we introduce 
an HIV/AIDS-resistant model with behavior change and study its basic properties. 
In order to determine the most sensitive parameters that are responsible for disease 
transmission with respect to the basic reproduction number and those responsible for 
disease prevalence with respect to the endemic equilibrium, the sensitivity analysis 
was established and it was confirmed that the influx rate of people into the infected 
population and total abstinence from all risk practices and endemic areas are some 
of the most sensitive parameters for disease spread and disease eradication, respec-
tively. Furthermore, by considering controls u1 denoting the government’s interven-
tion in promoting and encouraging behavior change, u2 representing intake of bal-
anced nutritional supplementation, and u3 connoting antiretroviral therapy (ART), an 
optimal control problem was developed and analyzed. Before the establishment of 
the necessary conditions of the optimal control using Pontryagin’s Maximum Prin-
ciple, we proved the existence of the optimal control triplet (u1(t), u2(t), u3(t) ∈ Φ, 
where Φ is the control set at time t,) which has been neglected by many researchers 
in recent years. Using the Runge–Kutta scheme, the optimal control problem was 
solved to understand the best combination of control strategies. Using the demo-
graphic and epidemiological data for South Africa on HIV/AIDS, a numerical simu-
lation was carried out and results are presented on 3D surface plots. The obtained 
results suggested that the combination of all the considered control measures is the 
best method to ensure disease eradication.
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1 Introduction

HIV infection has been a dangerous health hazard for people across the world for 
decades, and consequently claims millions of lives, especially in the resource-less 
and undeveloped countries. From the recent data of the World Health Organization 
(WHO), an estimated 36.7 million people were living with HIV, with approximately 
2 million newly infected globally, and more than a million deaths due to its spread 
in 2015 (UNAIDS 2015). The two main types of HIV strains are HIV-1 and HIV-2. 
The most dangerous one that has spread worldwide is HIV-1, while the latter is less 
pathogenic and less spread, and therefore it is confined mainly to the West African 
countries. The tests carried out on one can not sufficiently detect the other due to 
large genetic differences between them.

Several factors account for the uneven global distribution of the HIV-1 virus inci-
dence across the world. Some of these factors are political, social and economic, 
especially on the African continent. The epicenter of the disease is South Africa, 
some other countries in Sub-Sahara Africa are neither spared from the spread. Out 
of over millions of infected adults and children around the world, more than 70% of 
them are from sub-Sahara Africa, of which over 32% resides in Southern African 
countries such as Botswana, Lesotho, Swaziland etc. (HIV 2018; Phillips and Pirkle 
2011).

Unfortunately, no substantial treatment of HIV/AIDS has been discovered. An 
alternative treatment that can guarantee viral suppression, reduction in morbidity 
and mortality rate is the antiretroviral treatment (ART). However, it does not ensure 
complete eradication of the virus from the blood stream. To achieve this objective 
and ensure complete treatment, perfect vaccine and medicinal drugs are still much 
needed (Simon et al. 2006).

The threat of HIV/AIDS seems unassailable. However, several preventive strate-
gies have been identified, and effect of behavior change has been highly recognized 
and acknowledged. Behavior change is is about modifying behaviors that lower 
the probabilities of disease transmission and chronic illness, and maintain disease 
management (Coleman and Pasternak 2012). This includes the process of conduct-
ing actions that encourage positive behavior and alter negative behavior, or appli-
cation of different types of intervention strategies which can be achieved through 
motivational and educational techniques by targeting some specific groups of peo-
ple or particular individuals (Coates et al. 2008). The positive impacts of behavior 
change strategy have been recorded for a big reduction in HIV infections. The ABC-
approach, which simply means advocating abstinence, being faithful and consistent 
condom usage, has been identified as the most common behavior change strategy 
(Shelton et al. 2004).

According to (Report 2012), appearance of new HIV/AIDS infection cases has 
been drastically reduced in the majority of Southern African countries. For exam-
ple, behavior change such as reduction of sexual partners, delay of the onset of 
sexual intercourse, and increase in condom usage accounts for 73% reduction of 
infection in Malawi, 71% in Botswana, 68% in Namibia, 58% in Zambia, 50% in 
Zimbabwe and 41% in South Africa. Those who show partial abstinence are those 
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that only reduce their sexual partners but still live in an endemic environment, 
while those who totally abstain are those who maintain only one sexual partner 
and do away from all endemic or exposed environments.

Some category of people develop resistance to HIV/AIDS (Marmor et  al. 
2006; Paxton et al. 1996; Samson et al. 1996). The resistance can be in the form 
of an exposed uninfected scenario which has been identified among health work-
ers, prostitutes and infants of infected mothers. The other scenario is the case of 
infected individuals with slow or no progression to AIDS without any medication 
or treatment. They live for years with the virus with insignificant or no loss of 
CD4+ cells (Easterbrook 1999; Marmor et al. 2006), as may be expected to occur 
under healthy circumstances.

The 2014 report (Green 2015) established that some people show partial or 
total inborn resistance to HIV/AIDS. The possible reasons behind this strange 
occurrences have been studied by (Altman 2000; Blackwell 2012; Mendus and 
Ring 2016; Singh 2015; Minnesota 2014). Just a decade ago, it was opined that 
acute-phase amyloid A protein, interleukin-22, Toll-like receptors, natural killer 
cells and some other proteins may be the reason why some infected individuals 
do not seroconvert let alone progress to AIDS despite multiple exposure to HIV 
(Biasin et al. 2010). These individuals live a normal life because the virus cannot 
bind itself together, and perhaps it is here that the key to overcome the infection 
lies.

Despite the implementation of ART in sub-Saharan Africa for the past few years, 
the mortality rate of HIV/AIDS is still alarming, especially in the first few months 
of the treatment. One of the major identified reasons is poor nutrition otherwise 
called malnutrition. Few patients who maintain a balanced nutritional supplementa-
tion have improved prognosis (Braitstein et al. 2006; Koethe et al. 2010; Olsen et al. 
2014). Nutritional support with balanced optimal composition has become a key 
factor in the ART program and it is needed in abundance to be distributed among 
the infected and less privileged patients who constitute the poorest of the poor com-
munity in some African countries to reduce the mortality rate (Grobler et al. 2013; 
Lamb et al. 2012).

Researchers such as in Jeremiah et  al. (2014), Polasa et  al. (1984) discovered 
that nutritional deficiency hinders the effectiveness of pharmacokinetics, such as 
rifampin which is identified as the most effective drug for HIV-tuberculosis (HIV-
TB) co-infected patients. Frequent intake of balanced nutritional supplementation 
leads to increase in body weight and decreases mortality rate during the infection 
and treatment period.

The essence of optimal control is inestimable in mathematical modeling. This is 
the analysis that shows the best combination of control strategies that ensure reduc-
tion in the spread of infectious diseases. This analysis has been studied by many 
researchers such as (Makinde and Okosun 2011; Ngina et  al. 2019; Okosun et  al. 
2013, 2013). Few researchers have proved the existence of the optimal control vari-
ables, in fact, to the best of our knowledge, it has only been proved by Ngina et al. 
(2019) in their within-host and drug-resistant model. We shall employ the same 
approach to establish the existence of our optimal control variables, which is a new 
element in the study of HIV/AIDS models.
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Several mathematical models on HIV/AIDS are readily available online, but optimal 
control and sensitivity analyses of an HIV/AIDS model with resistance and behavior 
change still pose an unanswered biological question that we will like to address in this 
work. The available works that examined the effects of resistance are (Jia and Xiao 
2018; Khanh 2016; Rabiu et al. 2020), where all of them incorporated it in flu model 
which is very much different from this study. Uniquely, our model also incorporates 
time-dependent controls (government’s intervention in promoting and encouraging 
behavior change, intake of balanced nutritional supplementation and ART) to deter-
mine the best combination of strategies capable in dealing with the virus spread.

A mathematical modeling approach shall be used to study the dynamics, sensitivity 
analysis and optimal control analysis of an HIV/AIDS-resistant model with behavior 
change. In order to contribute to the work of the aforementioned researchers, we devel-
oped a new model as follows: 

1. We incorporate the susceptible class (S) and the class of susceptibles with behav-
ior change (Sb) . We also include classes (I1) and (I1b) for slow progressors and 
slow progressors with behavior change, respectively. They are considered to have 
partial resistance to the virus. Classes (I2) and (I2b) for non progressors and non 
progressors with behavior change respectively, are also incorporated. They are 
considered to have complete resistance to the virus and do not progress to the 
AIDS compartment (A). We finally include classes (I3) and (I3b) for fast progres-
sors and fast progressors with behavior change, respectively. They are considered 
to have no resistance to the virus.

2. We calculate the sensitivity analysis indices to determine the most sensitive 
parameters that are responsible for disease transmission with respect to the basic 
reproduction number, and those responsible for disease prevalence with respect 
to the endemic equilibrium.

3. We apply optimal controls to the model to determine the combined effects of the 
control triplet u1(t), u2(t), u3(t).

4. The proof of existence of the optimal control variables, which has been largely 
neglected by many researchers, is also established.

5. We examine the effect of the control variables on the control reproduction number.

The work is arranged as follows. Section 2 contains model formulation and parameter 
description, while Sect.  3 entails the model and its basic properties. The sensitivity 
analysis of the model is discussed in Sect. 4. Furthermore, we solve the optimal control 
problem and prove the necessary conditions and uniqueness of the control variables in 
the same section. Section 5 presents numerical solutions and graphical representations 
of the obtained results. The concluding remarks, acknowledgment, disclosure state-
ment, and conflict of interest follow in Sect. 6.
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2  Model Formulation and Assumptions

We formulate a model of HIV resistance and behavior change by splitting the 
total human population at time t, denoted by N(t), into nine mutually-exclusive 
compartments of susceptible individuals S(t),  susceptible individuals with behav-
ior change Sb(t), slow progressors HIV-1 I1(t) , slow progressors HIV-1 with 
behavior change I1b(t) , non progressors HIV-1 I2(t) , non progressors HIV-1 with 
behavior change I2b(t) , fast progressors HIV-1 I3(t) , fast progressors HIV-1 with 
behavior change I3b(t) , and AIDS class A such that

We assume that the AIDS class consists of weak and unhealthy infected individuals 
that are sexually inactive.

Sexually active individuals are recruited into the susceptible population at a 
constant rate B. The susceptible individuals acquire the virus through effective 
contact with HIV-1 positive and infectious individuals at the rate � (known as 
force of infection) given by

where � in (1) denotes the effective contact rate that is capable of leading to infec-
tion, 0 ≤ �1, �2, �3, �4, �5 ≤ 1 denote the modification parameters that account for 
the assumed reduction in the transmission of virus by the various HIV-1 infected 
classes.

The acquisition of infection by slow, non and fast progressors HIV-1 individu-
als I1, I2 and I3 occurs at the rates �1�, �2� and �3� respectively, while natural 
death occurs at a constant rate � . The susceptible individuals in class S change 
their sexual behavior through total abstinence at a rate �1 . The individuals in Sb 
become reckless and regress to S at a rate �2 . Individuals in Sb are assumed to 
have no contacts with infectious individuals due to total behavior change. There-
fore, the rate of change of the total population of both susceptible and susceptible 
with behavior change classes is respectively given by

where ⋅ represents derivative with respect to time.
The slow-progressor HIV-1 infected class I1 is generated by the break-through 

of infection of susceptible class at the rate �1� . A fraction of this category of 
people abstains totally from HIV-1 (due to the change of behavior) and then pro-
gresses to I1b at the rate �3 . Those who abstain partially (that is those who are 
reckless) may regress back to I1 at the rate �4 . This compartment also contains 
those who slowly progress to AIDS (due to the partial resistance to AIDS) at the 
rate �1 so that the governing equations are:

N(t) = S(t) + Sb(t) + I1(t) + I1b(t) + I2(t) + I2b + I3(t) + I3b + A(t).

(1)� =
�(I3 + �1I3b + �2I2 + �3I2b + �4I1 + �5I1b)

N
,

Ṡ(t) =B − (𝛼1 + 𝛼2 + 𝛼3)𝜆S + 𝛾2Sb − (𝜇 + 𝛾1)S,

Ṡb(t) = 𝛾1S − (𝛾2 + 𝜇)Sb,
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Similarly, we compose the non-progressor HIV-1 infected class I2 by the break-
through of infection of susceptible class at the rate �2� . A fraction of this category 
of people abstains totally from HIV-1 (due to the change of behavior) and then pro-
gresses to I2b at the rate �5 . Those who abstain partially (that is those who are reck-
less) may regress back to I2 at the rate �6 . This compartment does not contain those 
who progress to AIDS due to their full resistance to AIDS, so that the governing 
equations are:

The fast-progressor HIV-1 infected class I3 is generated by the break-through of 
infection of susceptible class at the rate �3� . A fraction of this category of people 
abstains totally from HIV-1 (due to the change of behavior) and then progresses to 
I3b at the rate �7 . Those who abstain partially (that is those who are reckless) may 
regress back to I3 at the rate �8 . This compartment also contains those who progress 
fast to AIDS at the rate �2 (because they have no resistance to AIDS) so that the gov-
erning equations are:

Taking � to be the disease-induced death rate, the AIDS class dynamics is given by

We assume that the transfers of infections from susceptibles to the classes I1, I2 and 
I3 are different; so that we have

The resultant mathematical model is given by:

̇I1(t) = 𝛼1𝜆S + 𝛾4I1b − (𝛾3 + 𝜇 + 𝜌1)I1,

̇I1b(t) = 𝛾3I1 − (𝛾4 + 𝜇)I1b.

̇I2(t) = 𝛼2𝜆S + 𝛾6I2b − (𝛾5 + 𝜇)I2,

̇I2b(t) = 𝛾5I2 − (𝛾6 + 𝜇)I2b.

̇I3(t) = 𝛼3𝜆S + 𝛾8I3b − (𝛾7 + 𝜇 + 𝜌2)I3,

̇I3b(t) = 𝛾7I3 − (𝛾8 + 𝜇)I3b.

Ȧ(t) = 𝜌1I1 + 𝜌2I3 − (𝜇 + 𝜏)A.

(2)0 ≤ 𝛼2 < 𝛼1 < 𝛼3 < 1 and 𝛼1 + 𝛼2 + 𝛼3 = 1.

(3)
dS

dt
=B − (�1 + �2 + �3)�S + �2Sb − K1S,

(4)
dSb

dt
= �1S − K2Sb,

(5)
dI1

dt
= �1�S + �4I1b − K3I1,
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where

with initial condition

The flow chart of this model is given below (Fig. 1).

(6)
dI1b

dt
= �3I1 − K4I1b,

(7)
dI2

dt
= �2�S + �6I2b − K5I2,

(8)
dI2b

dt
= �5I2 − K6I2b,

(9)
dI3

dt
= �3�S + �8I3b − K7I3,

(10)
dI3b

dt
= �7I3 − K8I3b,

(11)
dA

dt
= �1I1 + �2I3 − K9A,

K1 = �1 + �,K2 = �2 + �,K3 = �3 + � + �1,K4 = �4 + �,

K5 = �5 + �,K6 = �6 + �,K7 = �7 + � + �2,K8 = �8 + �,K9 = � + �,

(12)
S(0) ≥ 0, Sb(0) ≥ 0, I1(0) ≥ 0, I1b(0) ≥ 0, I2(0) ≥ 0, I2b(0) ≥ 0,

I3(0) ≥ 0, I3b(0) ≥ 0,A(0) ≥ 0.

Fig. 1  Flow chart of the model
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3  Analysis of the Model

3.1  Basic Properties of the Model

Here, we shall establish that the mathematical model (3)–(11) is epidemiologically 
feasible. This can be done by establishing that the populations remain non-negative, 
which means we need to prove that all the solutions of the model with positive ini-
tial conditions are non-negative at all time t > 0 . We assume that the initial condi-
tions at the onset of the HIV-1 disease outbreak is given by (12).

We define a region

Theorem 3.1 The feasible region Σ with initial conditions presented in (12) is posi-
tively invariant and attracting.

Proof Since N > 0 in Σ , so the force of infection � is well-defined, and since the 
right-hand side of (3)–(11) is Liptschitzian, differentiable and continuous with par-
tial derivatives defined in Σ , the Picard Theorem (Dass 2008) provides the existence 
of solutions on some interval [0,Θ) where 0 < Θ ≤ ∞ depends on (12). It can be 
easily observed that

Therefore, from the provision of (12), the solutions 
S(t), Sb(t), I1(t), I1b(t), I2(t), I2b(t), I3(t), I3b(t),A(t) are non-negative in the interval 
[0,Θ).

Consequently, adding (3)–(11) together gives

whose solution satisfies

This confirms that the solution is bounded above by B
�
 in the domain defined by (13). 

Therefore, the model is epidemically well-posed and meaningful since all the state 

(13)Σ =

{
(S, Sb, I1, I1b, I2, I2b, I3, I3b,A) ∈ ℜ

9
+
∶ 0 < N ≤ B

𝜇

}
.

Ṡ ≥ 0 if S = 0, Ṡb ≥ 0 if Sb = 0, İ1 ≥ 0 if I1 = 0, İ1b ≥ 0 if I1b = 0,

İ2 ≥ 0 if I2 = 0, İ2b ≥ 0 if I2b = 0, İ3 ≥ 0 if I3 = 0, İ3b ≥ 0 if I3b = 0,

Ȧ ≥ 0 if A = 0.

(14)
dN

dt
= B − �N − �A ≤ B − �N,

(15)

N(t) ≤ B

�
+

[
N(0) −

B

�

]
exp (−�t),

lim
t→∞

N(t) ≤ B

�
+ lim

t→∞

[
N(0) −

B

�

]
exp (−�t) ≤ B

�
,

lim
t→∞

N(t) ≤ B

�
.



551

1 3

Optimal Control Strategies and Sensitivity Analysis of an…

variables are non-negative for all t ≥ 0 (Djomegni et  al. 2020; Rabiu et  al. 2020, 
2020; Rabiu and Akinyemi 2016) . Hence, Σ is a feasible region and it is sufficient to 
study the model in Σ . This completes the proof.   ◻

3.2  Disease‑Free Equilibrium and Its Stability

The disease-free equilibrium is defined as the point where no virus is present 
in the community. The equilibrium will show the behavior of the model in the 
absence of HIV-1 virus. It is worth noting here that since the susceptible indi-
viduals are uninfected, their change of behavior should be through total absti-
nence from all activities that can lead to HIV/AIDS contraction and not partial 
abstinence. It is only the infected individuals that can choose whether to abstain 
totally or partially. For this case, �2 for partial abstinence will be zero, while �1 for 
total abstinence will not be equal to zero. For the system of Eqs. (3)–(11), only 
the compartments S and Sb are involved with uninfected individuals, while others 
( I1 = I1b = I2 = I2b = I3 = I3b = A = 0 ) are the infected ones. Hence, the disease-
free equilibrium of (3)–(11) is given by

But if we assume they abstain both partially and totally (i.e �1 ≠ 0, �2 ≠ 0 ), then the 
disease-free equilibrium of (3)–(11) becomes

Note that for the subsequent analyses, Eq. (16) shall be used and �2 shall be set to 
zero, so that K2 = �.

Employing the next generation method (Diekmann et al. 1990; Van den Driessche 
and Watmough 2002) to Eqs. (3)–(11), F  (the new infection terms) and V (transfer 
terms) are expressed as

(16)

Ψ∗ = (S∗, S∗
b
, I∗

1
, I∗

1b
, I∗

2
, I∗

2b
, I∗

3
, I∗

3b
,A∗) =

(
B

� + �1
,

�1B

�(�1 + �)
, 0, 0, 0, 0, 0, 0, 0

)
.

(17)

Ψ∗

c
= (S∗, S∗

b
, I∗

1
, I∗

1b
, I∗

2
, I∗

2b
, I∗

3
, I∗

3b
,A∗) =

(
BK2

K1K2 − �1�2
,

�1B

K1K2 − �1�2
, 0, 0, 0, 0, 0, 0, 0

)
.
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Using � as the spectral radius (magnitude of the dominate eigenvalue) of the next 
generation matrix FV−1 , then �(FV−1) is given by

The threshold parameter RT is the reproduction number of (3)–(11). It is used in 
measuring the average number of new HIV infections generated by a single infected 
individual introduced into a community/population where a certain fraction of the 
population changed their behavior towards HIV-1 infection by using condom, being 
faithful to one partner, etc. Hence, we present the following Lemma.

Lemma 3.2 The disease-free equilibrium point (DFE) of the model is locally 
asymptotically stable (LAS) if RT < 1, and unstable when RT > 1.

The biological implication of Lemma 3.2 is that, when the reproduction number 
is less than unity, the infection will die out in the community quickly, thereby mak-
ing the disease-free equilibrium stable. On the other hand, when the reproduction 
number is greater than unity, the whole community will be infected quickly since 
more than 1 person will be contracting the infection on a daily basis. This makes the 
disease-free equilibrium unstable.

3.3  Existence of Endemic Equilibrium

The model has a unique positive endemic equilibrium point (EEP). This is the point 
where at least one of the virus infected compartments is non-zero. Let

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

K3 − �4 0 0 0 0 0

−�3 K4 0 0 0 0 0

0 0 K5 − �6 0 0 0

0 0 − �5 K6 0 0 0

0 0 0 0 K7 − �8 0

0 0 0 0 − �7 K8 0

−�1 0 0 0 − �2 0 K9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1��4�

K1

�1��5�

K1

�1��2�

K1

�1��3�

K1

�1��

K1

�1��1�

K1

0

0 0 0 0 0 0 0
�2��4�

K1

�2��5�

K1

�2��2�

K1

�2��3�

K1

�2��

K1

�2��1�

K1

0

0 0 0 0 0 0 0
�3��4�

K1

�3��5�

K1

�3��2�

K1

�3��3�

K1

�3��

K1

�3���1

K1

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)RT =
��1�(�4K4 + �5�3)

K1(K3K4 − �3�4)
+

��2�(�2K6 + �3K5)

K1(K5K6 − �5�6)
+

��3�(K8 + �7�1)

K1(K7K8 − �7�8)
.
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be the endemic equilibrium point. We further define the force of infection as

Solving Eq. (3)–(11) in terms of the force of infection �∗∗ at steady-state as follows:

where

Substituting all the equations in (21) into (20), it can be shown that the non-zero 
equibria of the model satisfy the following linear equation in terms of �∗∗:

where

where W1 = K1K2.
Obviously, a2 > 0 , a3 ≥ 0 if and only if RT ≤ 1 so that �∗∗ = −

a3

a2
≤ 0 , which 

shows no existence of a positive endemic equilibrium whenever RT ≤ 1 . Hence, the 
endemic equilibrium point Ψ∗∗ exists and is unique whenever RT > 1. We claim the 
following result.

Lemma 3.3 The endemic equilibrium point (EEP) of the model (3)–(9) is locally 
asymptotically stable (LAS) if RT > 1.

(19)Ψ∗∗ = (S∗∗, S∗∗
b
, I∗∗

1
, I∗∗

1b
, I∗∗

2
, I∗∗

2b
, I∗∗

3
, I∗∗

3b
,A∗∗),

(20)�∗∗ =
�(I∗∗

3
+ �1I

∗∗
3b

+ �2I
∗∗
2

+ �3I
∗∗
2b

+ �4I
∗∗
1

+ �5I
∗∗
1b
)

N∗∗
.

(21)

S∗∗ =
BK2

K2(f1�
∗∗ + K1)

, I∗∗
1

=
�1�

∗∗BK2K4

K2(K3K4 − �3�4)(f1�
∗∗ + K1)

,

I∗∗
1b

=
�1�

∗∗BK2�3

K2(K3K4 − �3�4)(f1�
∗∗ + K1)

, S∗∗
b

=
B�1

K2(f1�
∗∗ + K1)

,

I∗∗
2

=
B�2K2K6�

∗∗

W5K2(f1�
∗∗ + K1)

, I∗∗
2b

=
B�2K2�5�

∗∗

W5K2(f1�
∗∗ + K1)

,

I∗∗
3

=
B�3K2K8�

∗∗

W7K2(f1�
∗∗ + K1)

, I∗∗
3b

=
B�3K2�7�

∗∗

W7K2(f1�
∗∗ + K1)

,

A∗∗ =
(�1�1K4W7 + �3K8�2W3)�

∗∗BK2

K9W3W7K2(f1�
∗∗ + K1)

,

N∗∗ =
BK9W3W7[K2(f1�

∗∗ + K1)] − ��∗∗BK2[(�1�1K4W7 + �3K8�2W3)]

K9W3W7K2(f1�
∗∗ + K1)

,

(22)
f1 = � + (�1 + �2 + �3)�

∗∗,W3 = K3K4 − �3�4,

W5 = K5K6 − �5�6,W7 = K7K8 − �7�8.

(23)a2�
∗∗ + a3 = 0,

(24)

a2 = W5W7K2𝛼1(W3K9 − 𝜏K4𝜌1) + 𝛼3W3W5K2(W7K9 − K8𝜌2𝜏)

+W3W5W7K2K9𝛼2 > 0,

a3 = K9W1W3W5W7

(
1 −RT

)
,
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3.4  Parameter Estimation and Sensitivity Analysis

In this section, we shall carryout the sensitivity analysis of the model parameters 
(Awan et al. 2018; Marsudi and Andari 2014; Tchuenche et al. 2011). This analy-
sis will save time, money and energy in our effort to curtail the spread by focusing 
squarely on the most sensitive parameters for both disease transmission and preva-
lence. Since the basic reproduction number causes initial disease transmission and 
endemic equilibrium causes disease prevalence, we shall focus on parameters in the 
basic reproduction number and the endemic equilibrium of the non-behavior change 
infected classes. This is because the non-behavior change infected classes are more 
dangerous than those that do not change behavior.

The South African mid-year population estimates of 2019 (South 2019) shall be 
used to estimate our parameter values and the initial conditions for each population 
class. Since our model is an HIV-1 model incorporating behavior change, only those 
who are mature and sexually active are involved. For this reason, we shall only focus 
on data of people within the age bracket 15–49 years as appeared in the statistical 
report.

The simple rationale behind the fact that we took South Africa as a case study 
is that, in 2018, South Africa was ranked 4th behind Botswana (21.90%), Leso-
tho (25.00%) and Eswatini (Swaziland) (27.20%) as the country with highest HIV/
AIDS prevalence rate with 18.90% of the population affected (countries yyy). The 
more alarming issue is the fact that the HIV/AIDS population of South Africa only 
(7,060,000) is higher than the total population of Swaziland (1,136,191), Botswana 
(2,254,126) and Lesotho (2,108,132) ac- cording to the 2018 report in Population 
(2018). We therefore see South Africa as a suitable country to be taken as a case 
study. The South African population as at 2019 was estimated at 58,775,022 among 
which the mature and sexually active population within the age 15–49 is given by 
31,842,922. This gives the initial condition S(0) = 31, 842, 922.

The calculated HIV prevalence rate is approximately 13.5% of the South Afri-
can population. The total number of HIV infected individuals is approximately 
7,970,000 in the year 2019. For the age group 15–49, 19.07% of 7,970,000 which 
is 1,519,879 is HIV positive. Since the data doesn’t differentiate between the rate of 
progression of the infected classes, we divide the 1,519,879 between I1 , I2 and I3 as 
I1(0) = 350, 000 , I2(0) = 519, 879 and I3(0) = 650, 000 . More so, the report doesn’t 
cover those who change their behavior, hence we set Sb(0) = 0 , I1b(0) = 0, I2b(0) = 0 
and I3b(0) = 0 . Furthermore, we have no data for the AIDS group, hence, A(0) = 0.

The migration rate of people in to South Africa is given by 1,039,749 so that 
B = 1, 039, 749 . Life expectancy at birth in 2019 for male is estimated at 61.5 and 
67.7 for female. We calculate the average of these values as 64.6. As we already 
know that the natural death rate is the reciprocal of life expectancy, then we have 
� =

1

64.6
= 0.0155 . The AIDS related death is estimated at 23.4% which means 

0.234 so that our disease-induced death rate � = 0.234 . According to Afassinou 
et al. (2017), it was reported that HIV-1 infected individuals who are not on treat-
ment will develop AIDS within 12 years. Therefore, �2 =

1

12
= 0.084 . Since �2 is for 

fast progressors while �1 is for slow progressors, we assumed that 𝜌1 < 𝜌2 = 0.045 . 
Other parameter values are given in Table 2.
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Definition 3.4 The normalized forward sensitivity analysis index of the basic 
reproduction number RT that depends on the differentiability with respect to a 
parameter � is defined as

The sensitivity indices of parameters in RT , I1, I2 and I31 are given in Table . It 
can be observed from Table 1 that the most sensitive parameter for the increase of 
the reproduction number is the contact rate � and the infection rate �3 for the I3 class 
. If � and �3 are respectively increased by 10% , the reproduction number will be 
increased by 10% and almost 6% respectively. Also the most sensitive parameter 
for the decrease of the reproduction number is the total abstinence rate �1 and rate 
of progression to the AIDS class �2 . If �1 and �2 are respectively increased by 10% , 
the reproduction number will be decreased by approximately 10% and 4%, respec-
tively. Increase in �2 reduces RT because those in AIDS class are assumed weak and 
unhealthy so causing little damage in disease spread.

For the endemic equilibrium I1 , the most sensitive parameter for the increase of I1 
class is the recruitment rate B and the infection rate �1 . This is because if more peo-
ple migrate to an infected zone, the infection increases which is the reason behind 

(25)ΥRT

�
=

�RT

��
×

�

RT

.

Table 1  Sensitivity analysis of parameters in R
T
, I1, I2, I3

No Para meter Sensitivity Sensitivity Sensitivity Sensitivity
Analysis of R

T
Analysis of I1 Analysis of I2 Analysis of I3

1 � 0.9999 0.4165 0.4165 0.4165
2 �3 0.5783 − 0.3793 − 0.3793 0.6207
3 �1 − 0.9847 − 0.2294 − 0.2294 − 0.2294
4 �2 − 0.3787 −  – − 0.6549
5 �1 0.0054 0.9927 − 0.0058 − 0.0058
6 �2 0.4164 − 0.1984 0.8016 − 0.1984
7 B – 0.9990 0.9999 0.9999
9 �3 0.0018 − 0.4199 – 0.2250
10 �4 − 0.0017 0.3953 – –
11 �5 − 0.0038 – − 0.5461 –
12 �6 − 0.0030 – 0.5258 –
13 �7 − 0.0244 – – − 0.2243
14 �8 0.0226 – – 0.2082
15 � 0.3742 − 0.9561 − 1.3917 − 0.7411
16 �2 0.1858 0.0537 0.0537 0.0537
17 �4 0.0013 0.0271 0.0271 0.0271
18 �1 − 0.0023 − 0.4315 – –
19 �1 0.1053 – – –
20 �3 0.2305 – – –
21 �5 0.0040 – – –
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wide spread of COVID-19 presently claiming lives. For decrease in I1 class, total 
abstinence �3 and AIDS progression rate �1 should be increased.

For the endemic equilibrium I2 , the parameters with most negative index is the 
mortality rate � . But the mortality rate are not encouraged to be increased so we 
pick the next most negative parameters which are �5 and �1 . Since they are both total 
abstinence parameters, this shows that total abstinence is inversely proportional to 
I2 , hence they must be increased to reduce the infection rate. More so, B and �2 
increase I2 most and must be reduced to ensure reduction in I2 class. �3 was also 
neglected because its rate of infection and thus, its increase is not encouraged.

The same thing goes to I3 , the parameter with most negative index is the mor-
tality rate � . But the mortality rate is not encouraged to be increased so we pick 
the next most negative parameters which are �1 and �2 . More so, B and �3 must be 
reduced to ensure reduction in I1 class. In general, total abstinence parameters �odd 
are the most sensitive parameters that ensure reduction in the reproduction number 
and endemic equilibrium. We also note here that a reduction in reproduction number 
translates to a reduction in endemicity and hence leads to disease eradication. The 
effects of the most positive and negative parameters on RT and endemic equilibrium 
are shown in the 3D plots.

From Figs. 2, 4, 6 and 8, we can see the effects of the most sensitive parameters 
with positive indices as they increase RT , I1 , I2 and I3 . The higher those parameters, 
the higher the reproduction number and the endemic equilibrium. Hence, we recom-
mend this parameters are kept as low as possible for HIV/AIDS eradication.

From Figs. 3, 5, 7 and 9, we can see the effects of the most sensitive parameters 
with negative indices as they decrease RT , I1 , I2 and I3 . The higher those param-
eters, the lower the reproduction number and the endemic equilibrium. Since this 
parameters are inversely proportional to RT , I1 , I2 and I3 Hence, we recommend this 
parameters are kept as high as possible for HIV/AIDS eradication.  

4  Optimal Control Analysis

The optimal control model is given by:

Fig. 2  Effects of the most sensi-
tive parameters with negative 
indices on the reproduction 
number
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(26)Ṡ(t) = B − (1 − u2)(𝛼1 + 𝛼2 + 𝛼3)𝜆S − (𝜇 + u1)S,

(27)Ṡb(t) = u1S − 𝜇Sb,

Fig. 3  Effects of the most sensi-
tive parameters with positive 
indices on the reproduction 
number

Fig. 4  Effects of the most sensi-
tive parameters with negative 
indices on the reproduction 
number

Fig. 5  Effects of the most sensi-
tive parameters with positive 
indices on the reproduction 
number
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(28)̇I1(t) = (1 − u2)𝛼1𝜆S + 𝛾4I1b − (u1 + 𝜇 + 𝜌1u3)I1,

(29)̇I1b(t) = u1I1 − (𝛾4 + 𝜇)I1b,

Fig. 6  Effects of the most sensi-
tive parameters with negative 
indices on the reproduction 
number

Fig. 7  Effects of the most sensi-
tive parameters with positive 
indices on the reproduction 
number

Fig. 8  Effects of the most sensi-
tive parameters with negative 
indices on the reproduction 
number
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where

The control function u1(t), u1 ∈ [0, 1] , connotes government’s intervention aimed 
at promoting and encouraging change in behavior through total abstinence from all 
risky activities that leads to HIV-1 contraction or transmission.

The force of infection in the model Eqs. (26)–(34) is reduced by a factor 
(1 − u2(t)) , where u2(t) ∈ [0, 1] denotes the fraction of susceptible individuals who 
maintain a balanced nutritional supplementation aimed at boosting the immune 
system.

The final control u3(t), u3 ∈ [0, 1] , denotes the anti-retroviral treatment inter-
vention on infected individuals. We chose the control functions such that they 
operate on the time interval [0, Tf ]. The Pontryagin’s Maximum Principle (Len-
hart and Workman 2007) shall be used to determine the conditions under which 
eradication or reduction of disease is ensured in finite time.

Economically, the effective control of the HIV-1 infection may be too expen-
sive when constant controls are used because it requires treatment at higher levels 
at all time. We consequently need to consider time dependent controls in order 
to achieve effective control in finite time. It is worth noting that the disease-free 

(30)̇I2(t) = (1 − u2)𝛼2𝜆S + 𝛾6I2b − (𝜇 + u1)I2,

(31)̇I2b(t) = u1I2 − (𝛾6 + 𝜇)I2b,

(32)̇I3(t) = (1 − u2)𝛼3𝜆S + 𝛾8I3b − (u1 + 𝜇 + 𝜌2u3)I3,

(33)̇I3b(t) = u1I3 − (𝛾8 + 𝜇)I3b,

(34)Ȧ(t) = 𝜌1I1u3 + 𝜌2I2u3 − (𝜇 + 𝜏)A,

(35)� =
�(I3 + I3b�1 + �2I2 + �3I2b + �4I1 + �5I1b)

N
.

Fig. 9  Effects of the most sensi-
tive parameters with positive 
indices on the reproduction 
number
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equilibrium will cease to exist when the chosen controls are time dependent 
(Okosun et al. 2013).

To examine and establish the optimal level of efforts required to curtail the disease 
burden, we construct an objective functional �(u, u2, u3) , which is to minimize the 
number of non, slow and fast progressors and the cost of control application, as

subject to the differential quations in (26)–(34), where Tf  is the final time, m1,m2,m3 
are positive weight to balance the factors of the slow progressors individuals, non-
progressors individuals and fast progressors infected individuals respectively. Fur-
thermore, m4,m5 and m6 are positive weight constants for the use of government 
intervention strategy, nutritional supplementation and antiretroviral treatment efforts 
respectively which regularize the optimal control. We only included I1, I2 and I3 
because these are the categories of individuals that are worst hit with the infection 
due to their lack of change in behavior. More so, individuals in these categories are 
affected by all the three proposed controls which can easily minimize their progres-
sion to the AIDS compartment and boost their immune system.

Additionally, the objective functional (36) also contains m4u
2
1
 , the cost of govern-

ment intervention aimed at promoting behavior change, m5u
2
2
 the cost of ART. We also 

chose a linear function for the cost of slow-progressors m1I1 , non-progressors m2I2 and 
fast-progressors m3I3.

The weights m4,m5 and m6 depend on the relative importance of the control efforts 
in minimizing disease spread as well as the cost of implementing each control efforts 
per unit time. The effort of government’s intervention to promote behavior change can 
be through creation of awareness, public health education among others. The cost of 
treatment could be from cost of medical equipments, drugs, salary of public health 
workers, follow up of drug management and possible fight against drug-resistance 
strains. The cost of nutritional supplementation includes cost of eating balanced diet, 
fruits and vegetables, and so on.

The aim of this analysis is to minimize the number of infected individuals in the 
slow progression class I1(t) , non-progression class I2(t) and fast progressor class I3(t) 
by decreasing the viral load while minimizing the cost of controls u1(t), u2(t) and u3(t). 
We seek an optimal control u∗

1
(t), u∗

2
(t) and u∗

3
(t) such that

where

denotes the control set subject to the system (26)–(34) and its associated initial 
conditions. It is noteworthy to state that ui(t) is Lebesgue measurable. This clearly 
shows that u1, u2 and u3 lie in [0, 1] while uimax depends on the quantity of available 

(36)

�(u1, u2, u3) = min
u1,u2,u3

1

2 ∫
Tf

0

[m1I1 + m2I2 + m3I3 + m4u
2
1
+ m5u

2
2
+ m6u

2
3
]dt,

(37)�(u∗
1
(t), u∗

2
(t), u∗

3
(t)) = min

u1,u2,u3∈Φ
�(u1, u2, u3),

(38)
Φ =

{
u = (u1, u2, u3)|, 0 ≤ ui(t) ≤ uimax(t) ≤ 1 for t ∈ [0, Tf ] → [0, 1], i = 1, 2, 3

}
,
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resources to implement the control strategies. Now, we shall establish the existence 
of the optimal control and its characterization through the optimality system.

The characterization of the optimal control problem shall be two folds. First will 
be concerned with the proof of existence of the optimal control problem and sec-
ond is the establishment of the necessary conditions of the optimal control problem 
using Pontryagin’s Maximum Principle.

4.1  Existence of an Optimal Control Problem

Here we will discuss, in detail, the existence of the optimal controls 
�(u∗

1
(t), u∗

2
(t), u∗

3
(t)) using the approach of (Fleming and Rishel 2012) applied and 

reproduced in (Ngina et al. 2019).

Theorem 4.1 Suppose the objective functional

is minimized subject to the controls and state variables given in model Eqs. (26)–
(34) satisfying the initial conditions

then there exist optimal controls (u∗
1
, u∗

2
, u∗

3
∈ Φ) such that

The proof of Theorem 4.1 can be found in Appendix 1.

4.2  Necessary Conditions of the Optimal Control

The Pontryagin’s Maximum Principle shall be adopted in this subsection to achieve 
our aim.

Theorem  4.2 Given the existence of the optimal control triplet u∗
1
, u∗

2
, u∗

3
 and the 

corresponding solutions

of the optimal control system (26)–(34) that minimizes �(u1, u2, u3) over Φ, then 
there exist adjoint variables

satisfying

(39)

�(u1(t), u2(t), u3(t)) =
1

2 ∫
Tf

0

(m1I1 + m2I2 + m3I3 + m4u
2
1
+ m5u

2
2
+ m6u

2
3
)dt,

(40)
S(0) = S0, Sb(0) = Sb0, I1(0) = I10, I1b(0) = I1b0,

I2(0) = I20, I3(0) = I30, I3b(0) = I3b0,A(0) = A0,

(41)
�(u∗

1
(t), u∗

2
(t), u∗

3
(t)) = min

{
�
[
u1(t), u2(t), u3(t)

]
∶ (u1(t), u2(t), u3(t)) ∈ Φ

}
.

S, Sb, I1, I1b, I2, I2b, I3, I3b,A,

�1, �2, �3, �4, �5, �6, �7, �8, �9,
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where H is the Hamiltonian and i = S, S
b
, I1, I1b, I2, I2b, I3, I3b,A, with transversality 

condition

Proof Suppose u∗
i
(t) ∈ Φ , is optimal for the objective functional presented in (36) 

with fixed final time Tf  , then there exists a nontrivial absolutely continuous mapping 
�(t) ∶ [0, Tf ] → ℝ

9 , that is

Equation (42) is otherwise called adjoint vector which exists subject to the following 
stated conditions for all t ∈ [0, Tf ] . 

(1) The state variables: 

(2) The optimality conditions: 

(3) The adjoint equations: 

−
d�i

dt
=

�H

��i
,

�1(Tf ) = �2(Tf ) = �3(Tf ) = �4(Tf ) = �5(Tf ) = �6(Tf ) = �7(Tf ) = �8(Tf ) = �9(Tf ) = 0.

(42)�(t) = (�1(t), �2(t), �3(t), �4(t), �5(t), �6(t), �7(t), �8(t), �9(t)).

(43)

dS

dt
=

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

��1
,
dSb

dt
=

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

��2
,

dI1

dt
=

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

��3
,
dI1b

dt
=

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

��4
,

dI2

dt
=

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

��5
,
dI2b

dt
=

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

��6
,

dI3

dt
=

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

��7
,
dI3b

dt
=

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

��8
,

dA

dt
=

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

��9
.

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�u1
= 0,

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�u2
= 0,

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�u3
= 0.
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The Lagrangian, in form of augmented Hamiltonian is defined as

where wi(t) ≥ 0, i ∈ [1, 6] are the penalty multipliers which ensure that the control 
variables u1(t), u2(t) and u3(t) are bounded satisfying:

where u∗
1
, u∗

2
, u∗

3
 are optimal controls.

From the Pontryagin’s Maximum Principle, we can derive the adjoint variables 
by partially differentiating Eq. (44) with respect to S, Sb, I1, I2, I2b, I3, I3b and A.

where K̃1 = 1 − u2, K̃2 = 𝛼1 + 𝛼2 + 𝛼3, K̃5 = 𝜇 + u1,

and

d�1

dt
= −

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�S
,
d�2

dt
= −

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�Sb
,

d�3

dt
= −

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�I1
,
d�4

dt
= −

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�I1b
,

d�5

dt
= −

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�I2
,
d�6

dt
= −

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�I2b
,

d�7

dt
= −

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�I3
,
d�8

dt
= −

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�I3b
,

d�9

dt
= −

�H(t, u∗
1
, u∗

2
, u∗

3
, �(t))

�A
.

(44)

H(S, Sb, I1, I1b, I2, I2b, I3, I3b,A, �1, �2, �3, �4, �5, �6, �7, �8, �9, u1, u2, u3)

= (m1I1(t) + m2I2(t) + m3I3(t) + m4u
2
1
+ m5u

2
2
+ m6u

2
3
)

+ �1[B − (1 − u2)(�1 + �2 + �3)�S − (� + u1)S] + �2[u1S − �Sb]

+ �3[(1 − u2)�1�S + �4I1b − (u1 + � + �1u3)I1] + �4[u1I1 − (�4 + �)I1b]

+ �5[(1 − u2)�2�S + �6I2b − (� + u1)I2] + �6[u1I2 − (�6 + �)I2b]

+ �7[(1 − u2)�3�S + �8I3b − (u1 + � + �2u3)I3] + �8[u1I3 − (�8 + �)I3b]

+ �9[�1I1u3 + �2I3u3 − (� + �)A] + w1u1 + w2(1 − u1) + w3u2

+ w4(1 − u2) + w5u3 + w6(1 − u3),

w1u1 = w2(1 − u1) = 0, at u∗
1
,

w3u2 = w4(1 − u2) = 0, at u∗
2
,

w5u3 = w6(1 − u3) = 0, at u∗
3
,

(45)
d𝜆1

dt
= −

𝜕H

𝜕S
=

𝜕

𝜕S

[
𝜆1
{
−K̃1K̃2𝜆S − K̃3S

}

+ 𝜆2u1S + 𝜆3K̃1𝛼1𝜆S + 𝜆5K̃1𝛼2𝜆S + 𝜆7K̃1𝛼3𝜆S],

𝜕H

𝜕S
=

𝜕

𝜕S

{
K̃1𝜆S[𝛼1𝜆3 + 𝛼2𝜆5 + 𝛼3𝜆7 − K̃2𝜆1] − K̃3S𝜆1 + 𝜆2u1S

}
,
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Multiplying (46) by negative, we have

which implies that

Finally,

where K̃4 = I3 + 𝜎1I3b + 𝜎2I2 + 𝜎3I2b + 𝜎4I1 + 𝜎5I1b.

Using the same approach, the partial derivative of H with respect to 
Sb, I1, I1b, I2, I2b, I3, I3b,A is given by

(46)

𝜕𝜆

𝜕S
=

𝜕

𝜕S

[
𝛽(I3 + 𝜎1I3b + 𝜎2I2 + 𝜎3I2b + 𝜎4I1 + 𝜎5I1b)S

N

]
=

N𝛽K̃4 − 𝛽K̃4S

N2
.

𝜕H

𝜕S
=

K̃1N𝛽K̃4 − 𝛽K̃4S

N2
(𝛼1𝜆3 + 𝛼2𝜆5 + 𝛼3𝜆7 − K̃2𝜆1) − K̃3𝜆1 + 𝜆2u1.

−
𝜕H

𝜕S
= (1 − u2)

[
N𝛽K̃4 − 𝛽K̃4S

N2

][
(𝛼1 + 𝛼2 + 𝛼3)𝜆1 − 𝛼1𝜆3 − 𝛼2𝜆5 − 𝛼3𝜆7

]

+ (𝜇 + u1)𝜆1 − 𝜆2u1,

−
𝜕H

𝜕S
= (1 − u2)𝛽

[
N𝛽K̃4 − 𝛽K̃4S

N2

][
(𝛼1 + 𝛼2 + 𝛼3)𝜆1 − 𝛼1𝜆3 − 𝛼2𝜆5 − 𝛼3𝜆7

]

+ (𝜆1 − 𝜆2)u1 + 𝜇𝜆1.

(47)

d𝜆1

dt

= −
𝜕H

𝜕S
=

(1 − u2)𝛽K̃4(N − S)

N2
[𝛼1(𝜆1 − 𝜆3) + 𝛼2(𝜆1 − 𝜆5) + 𝛼3(𝜆1 − 𝜆7)] + (𝜆1 − 𝜆2)u1 + 𝜇𝜆,
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where �i(Tf ) = 0, i = 1...9 are the transversality conditions.   ◻

Theorem 4.3 The optimal controls (u∗
1
, u∗

2
, u∗

3
) which minimize the objective func-

tional defined in (39) are

Proof At the optimal control triplet u∗
1
, u∗

2
, u∗

3
 , the following conditions hold:

(48)

d𝜆2

dt
= −

𝜕H

𝜕Sb
= +𝜆2𝜇,

d𝜆3

dt
= −

𝜕H

𝜕I1
= −m1 +

(1 − u2)𝛽S(N𝜎4 − K̃4)

N2

[
𝛼1(𝜆1 − 𝜆3) + 𝛼2(𝜆1 − 𝜆5) + 𝛼3(𝜆1 − 𝜆7)

]

+ (𝜆3 − 𝜆1)u1 + (𝜆3 − 𝜆9)𝜌1u3 + 𝜆3𝜇,

d𝜆4

dt
= −

𝜕H

𝜕I1b
=

𝛽SK̃1(N𝜎5 − K̃4)

N2

[
𝛼1(𝜆1 − 𝜆3) + 𝛼2(𝜆1 − 𝜆5) + 𝛼3(𝜆1 − 𝜆7)

]

+ 𝛾4(𝜆4 − 𝜆3) + 𝜆4𝜇,

d𝜆5

dt
= −

𝜕H

𝜕I2
= −m2 +

(1 − u2)𝛽S(N𝜎2 − K̃4)

N2

[
𝛼1(𝜆1 − 𝜆3) + 𝛼2(𝜆1 − 𝜆5) + 𝛼3(𝜆1 − 𝜆7)

]

+ (𝜆5 − 𝜆6)u1 + 𝜆5𝜇,

d𝜆6

dt
= −

𝜕H

𝜕I2b
=

𝛽SK̃1(N𝜎3 − K̃4)

N2

[
𝛼1(𝜆1 − 𝜆3) + 𝛼2(𝜆1 − 𝜆5) + 𝛼3(𝜆1 − 𝜆7)

]

+ 𝛾6(𝜆6 − 𝜆5) + 𝜆6𝜇,

d𝜆7

dt
= −

𝜕H

𝜕I3
= −m3 +

(1 − u2)𝛽S(N − K̃4)

N2

[
𝛼1(𝜆1 − 𝜆3) + 𝛼2(𝜆1 − 𝜆5) + 𝛼3(𝜆1 − 𝜆7)

]

+ (𝜆7 − 𝜆8)u1 + (𝜆7 − 𝜆9)𝜌2u3 + 𝜆7𝜇,

d𝜆8

dt
= −

𝜕H

𝜕I3b
=

𝛽SK̃1(N𝜎1 − K̃4)

N2

[
𝛼1(𝜆1 − 𝜆3) + 𝛼2(𝜆1 − 𝜆5) + 𝛼3(𝜆1 − 𝜆7)

]

+ 𝛾8(𝜆8 − 𝜆7) + 𝜆8𝜇,

d𝜆9

dt
= −

𝜕H

𝜕A
= (𝜇 + 𝜏)𝜆9,

(49)

u∗
1
(t) =min

[
max

(
0,

(�1 − �2)S + (�3 − �4)I1 + (�5 − �6)I2 + (�7 − �8)I3

2m4

)
, 1

]
, t ∈ [0, Tf ],

(50)

u∗
2
(t) =min

[
max

(
0,

�1(�3 − �1)�S + �2(�5 − �1)�S + �3(�7 − �1)

2m5

)
, 1

]
, t ∈ [0, Tf ],

(51)u∗
3
(t) =min

[
max

(
0,

(�3 − �9)�1I1 + (�7 − �9)�2I3

2m6

)
, 1

]
, t ∈ [0, Tf ].

(52)
�H

�u1
= 0,

�H

�u2
= 0,

�H

�u3
= 0.
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Differentiating the Hamiltonian in (44) with respect to control variable u1 on the set 
Λ ∶ t|0 ≤ u1(t) ≤ 1 , we have

Putting u1 = u∗
1
 and solving for u∗

1
 , we have

We need to determine an explicit expression for u∗
1
 excluding the penalty functions 

w1 and w2 , we come up with three possible cases explained below. 

1. Let w1 = w2 = 0 for the set 
{
t|0 < u

∗
1
< 1

}
 , in (53), then u∗

1
 becomes 

2. Let w1 = 0 , w2 ≥ 0 on the set 
{
t|u∗

1
= 1

}
 , then (53) becomes 

3. Lastly, when w2 = 0 , w1 ≥ 0 on the set 
{
0t|u∗

1
= 0

}
 , then (53) becomes 

 which implies 

 Therefore, for the control variable u∗
1
 , we have 

 Combining all the three cases together, we have 

Similarly, to determine an explicit expression for u∗
2
 , we partially differentiate 

(44) with respect to control variable u2 on the set Φ ∶ t|0 ≤ u2(t) ≤ 1 . So that we 
have

�H

�u1
= 2m4u1 − �1S + �2S − �3I1 + �4I1 − �5I2 + �6I2 − �7I3 + �8I3 + w1 − w2 = 0.

(53)u∗
1
=

(�1 − �2)S + (�3 − �4)I1 + (�5 − �6)I2 + (�7 − �8)I3 − w1 + w2

2m4

.

u∗
1
=

(�1 − �2)S + (�3 − �4)I1 + (�5 − �6)I2 + (�7 − �8)I3

2m4

.

u∗
1
= 1 =

(�1 − �2)S + (�3 − �4)I1 + (�5 − �6)I2 + (�7 − �8)I3 + w2

2m4

.

u∗
1
= 0 =

(�1 − �2)S + (�3 − �4)I1 + (�5 − �6)I2 + (�7 − �8)I3 − w1

2m4

,

(�1 − �2)S + (�3 − �4)I1 + (�5 − �6)I2 + (�7 − �8)I3

2m4

≥ 0.

u∗
1
(t) = max

(
0,

(�1 − �2)S + (�3 − �4)I1 + (�5 − �6)I2 + (�7 − �8)I3

2m4

)
.

u∗
1
(t) = min

[
max

(
0,

(�1 − �2)S + (�3 − �4)I1 + (�5 − �6)I2 + (�7 − �8)I3

2m4

)
, 1

]
,

t ∈ [0, Tf ].
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Equating this to zero and putting u2 = u∗
2
 , we have

To determine an explicit expression for u∗
2
 excluding the penalty functions w3 and 

w4 , we come up with three possible cases as follows: 

1. Let w3 = w4 = 0 for the set 
{
t|0 < u

∗
2
< 1

}
 in (54), then u∗

2
 becomes 

2. Let w3 = 0 , w4 ≥ 0 on the set 
{
t|u∗

2
= 1

}
 , then (54) becomes 

3. Lastly, when w4 = 0 , w3 ≥ 0 on the set 
{
t|u∗

2
= 0

}
 , then (54) becomes 

 which implies 

 Therefore, for the control variable u∗
2
 , we have 

 Combining all the three cases together, we have 

Similarly, to determine an explicit expression for u∗
3
 , we partially differentiate (44) 

with respect to control variable u3 on the set Φ ∶ t|0 ≤ u3(t) ≤ 1 . So that we have

To determine an explicit expression for u∗
3
 excluding the penalty functions w5 and 

w6 , we come up with three possible cases as follows: 

�H

�u2
= 2m5u2 + �1(�1 + �2 + �3)�S − �3�1�S − �5�2�S − �7�3�S + w3 − w4.

(54)u∗
2
=

�1(�3 − �1)�S + �2(�5 − �1)�S + �3(�7 − �1)�S − w3 + w4

2m5

.

u∗
2
=

�1(�3 − �1)�S + �2(�5 − �1)�S + �3(�7 − �1)�S

2m5

.

u∗
2
= 1 =

�1(�3 − �1)�S + �2(�5 − �1)�S + �3(�7 − �1)�S + w4

2m5

.

u∗
2
= 0 =

�1(�3 − �1)�S + �2(�5 − �1)�S + �3(�7 − �1)�S − w3

2m5

,

�1(�3 − �1)�S + �2(�5 − �1)�S + �3(�7 − �1)�S

2m5

≥ 0.

u∗
2
= max

(
0,

�1(�3 − �1)�S + �2(�5 − �1)�S + �3(�7 − �1)�S

2m5

)
≥ 0.

u∗
2
(t) =

[
max

(
0,

�1(�3 − �1)�S + �2(�5 − �1)�S + �3(�7 − �1)�S

2m5

)
, 1

]
.

(55)u∗
3
=

(�3 − �9)�1I1 + (�7 − �9)�2I3 − w5 + w6

2m6

.
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1. Let w5 = w6 = 0 for the set 
{
t|0 < u

∗
3
< 1

}
 in (55), then u∗

3
 becomes 

2. Let w5 = 0 , w6 ≥ 0 on the set 
{
t|u∗

3
= 1

}
 , then (55) becomes 

3. Lastly, when w6 = 0 , w5 ≥ 0 on the set 
{
t|u∗

3
= 0

}
 , then (55) becomes 

 which implies 

 Therefore, for the control variable u∗
3
 , we have 

 Combining all the three cases together, we have 

  ◻

4.3  Analysis of the Control Reproduction Number

As usual, using the same approach as in the previous sections, we calculate 
the control reproduction number as follows. The disease-free equilibrium of 
(26)–(34) is given by

It can be verified that �∗ attracts the same region Σ (of model Eqs. (3)–(11)) for Eqs. 
(26)–(34). By employing the next generation method (Diekmann et  al. 1990; Van 
den Driessche and Watmough 2002), F2 (the new infection terms) and V2 (transfer 
terms) are expressed as

u∗
3
=

(�3 − �9)�1I1 + (�7 − �9)�2I3

2m6

.

u∗
3
= 1 =

(�3 − �9)�1I1 + (�7 − �9)�2I3 + w6

2m6

.

u∗
3
= 0 =

(�3 − �9)�1I1 + (�7 − �9)�2I3 − w5

2m6

,

(�3 − �9)�1I1 + (�7 − �9)�2I3

2m6

≥ 0.

u∗
3
= max

(
0,

(�3 − �9)�1I1 + (�7 − �9)�2I3

2m6

)
.

u∗
3
(t) = min

[
max

(
0,

(�3 − �9)�1I1 + (�7 − �9)�2I3

2m6

)
, 1

]
.

(56)

�∗ = (S∗, S∗
b
, I∗

1
, I∗

1b
, I∗

2
, I∗

2b
, I∗

3
, I∗

3b
,A∗) =

(
B

� + u1
,

u1B

�(u1 + �)
, 0, 0, 0, 0, 0, 0, 0

)
.
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Using � as the spectral radius (magnitude of the dominate eigenvalue) of the next 
generation matrix F2V

−1
2

 , �(F2V
−1
2
) gives the control reproduction number as

where

In the absence of any control strategies, Eq. (57) reduces to Eq. (18).
If the government’s intervention for promoting behavior change u1(t) , is the only 

considered control strategy then Eq. (57) reduces to

where K̄3 = 𝜇 + u1, K̄7 = 𝜇 + u1.
If the nutritional supplementation u2(t) , is the only considered control strategy then 

Eq. (57) reduces to

If the only considered control strategy is ART u3(t) , then Eq. (57) reduces to

F2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛼1𝛽𝜎4𝜇K̃1

K̃5

𝛼1𝛽𝜎5𝜇K̃1

K̃5

𝛼1𝛽𝜎2𝜇K̃1

K̃5

𝛼1𝛽𝜎3𝜇K̃1

K̃5

𝛼1𝛽𝜇K̃1

K̃5

𝛼1𝛽𝜎1𝜇K̃1

K̃5

0

0 0 0 0 0 0 0

𝛼2𝛽𝜎4𝜇K̃1

K̃5

𝛼2𝛽𝜎5𝜇K̃1

K̃5

𝛼2𝛽𝜎2𝜇K̃1

K̃5

𝛼2𝛽𝜎3𝜇K̃1

K̃5

𝛼2𝛽𝜇K̃1

K̃5

𝛼2𝛽𝜎1𝜇K̃1

K̃5

0

0 0 0 0 0 0 0

𝛼3𝛽𝜎4𝜇K̃1

K̃5

𝛼3𝛽𝜎5𝜇K̃1

K̃5

𝛼3𝛽𝜎2𝜇K̃1

K̃5

𝛼3𝛽𝜎3𝜇K̃1

K̃5

𝛼3𝛽𝜇K̃1

K̃5

𝛼3𝛽𝜇𝜎1K̃1

K̃5

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K̃3 − 𝛾4 0 0 0 0 0

−u1 K4 0 0 0 0 0

0 0 K̃5 − 𝛾6 0 0 0

0 0 − u1 K6 0 0 0

0 0 0 0 K̃7 − 𝛾8 0

0 0 0 0 − u1 K8 0

−𝜌1u3 0 0 0 − 𝜌2u3 0 K9

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(57)

Rcon =
𝛽𝛼1𝜇(𝜎4K4 + 𝜎5u1)K̃1

K̃5(K̃3K4 − u1𝛾4)
+

𝛽𝛼2𝜇(𝜎2K6 + 𝜎3K̃5)K̃1

K̃5(K̃5K6 − u1𝛾6)
+

𝛽𝛼3𝜇(K8 + u1𝜎1)K̃1

K̃5(K̃7K8 − u1𝛾8)
,

K̃1 = 1 − u2, K̃3 = u1 + 𝜇 + 𝜌1u3, K̃5 = 𝜇 + u1, K̃7 = u1 + 𝜇 + 𝜌2u3,
S∗

N∗
=

𝜇

K̃5

, 𝛾odd = u1.

(58)

Rcon|u2=u3=0 = Ru1
=

𝛽𝛼1𝜇(𝜎4K4 + 𝜎5u1)

K̃5(K̄3K4 − u1𝛾4)
+

𝛽𝛼2𝜇(𝜎2K6 + 𝜎3u1)

K̃5(K̃5K6 − u1𝛾6)
+

𝛽𝛼3𝜇(K8 + u1𝜎1)

K̃5(K̄7K8 − u1𝛾8)
,

(59)Rcon|u1=u3=0 = Ru2
=

𝛽𝛼1𝜎4K̃1

𝜇
+

𝛽𝛼2𝜎2K̃1

𝜇
+

𝛽𝛼3K̃1

𝜇
.
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where K̂3 = 𝜇 + 𝜌1u3, K̂7 = 𝜇 + 𝜌2u3.
It is easy to establish that

for 0 ≤ u1, u2, u3 ≤ 1 due to possibility of infection reduction in the presence of con-
trol interventions. This implies that the behavior change, balanced nutritional sup-
plementation and the ART have positive impact on the reduction of HIV/AIDS in 
the community.

4.4  Effect of the Control Strategies on the Control Reproduction Number

Here, we shall graphically investigate the effect of the control measures on the trans-
mission of disease using the control reproduction number. The control reproduction 
number is plotted against the control variables u1(t), u2(t) and u3(t) where unity is 
considered as perfect and effective impact on disease transmission and zero is con-
sidered as unavailability of control interventions.

We shall investigate to what level will behavior change reduces the infection. We 
shall also determine whether or not eating balanced nutritional supplementation and 
use of ART will help in reducing HIV/AIDS transmission.

We have

where

Thus, adequate nutritional supplementation u2(t) → 1 and an efficient ART u3(t) → 1 
are very good combination of strategies that can ensure reduction in HIV/AIDS 
transmission. This is in confirmation with reports (Grobler et al. 2013; Lamb et al. 
2012; Jeremiah et al. 2014; Polasa et al. 1984) where they claimed that nutritional 
deficiency has become a major reason why ART is no more effective in some Afri-
can countries. ART on empty stomach of starved patients will be null and void while 
nutritional efficiency and ART combination will guarantee patient’s recovery level 

(60)Rcon|u1=u2=0 = Ru3
=

𝛽𝛼1𝜎4

K̂3

+
𝛽𝛼2𝜎2

𝜇
+

𝛽𝛼3

K̂7

,

(61)Rcon ≤ RT ,

(62)

lim
u1→1

Rcon =
𝛽𝛼1𝜇(𝜎4K4 + 𝜎5)K̃1

K51(K31K4 − 𝛾4)
+

𝛽𝛼2𝜇(𝜎2K6 + 𝜎3)K̃1

K51(K51K6 − 𝛾6)
+

𝛽𝛼3𝜇(K8 + 𝜎1)K̃1

K51(K71K8 − 𝛾8)
,

(63)lim
u2→1

Rcon = 0,

(64)

lim
u3→1

Rcon =
𝛽𝛼1𝜇(𝜎4K4 + 𝜎5u1)K̃1

K̃5(K32K4 − 𝛾4u1)
+

𝛽𝛼2𝜇(𝜎2K6 + 𝜎3u1)K̃1

K̃5(K̃5K6 − 𝛾6u1)
+

𝛽𝛼3𝜇(K8 + 𝜎1u1)K̃1

K̃5(K72K8 − u1𝛾8)
,

K32 = u1 + � + �1,K72 = u1 + � + �2,K51 = 1 + �,K31 = 1 + � + �u3,K71 = 1 + � + �2u3.
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and boost immune system. Figures 10, 11, 12, 13, 14, 15 and 16 show the compari-
son of the control intervention strategies. 

The positive and independent effect of behavior change, nutritional supplementa-
tion and ART on the control reproduction number can be noticed in Figures 10, 11 
and 12. These control strategies reduced the control reproduction number signifi-
cantly as expected biologically.

A more positive and combined effects of government’s intervention to promote 
behavior change and nutritional supplementation, behavior change and ART, and 
nutritional supplementation and ART on the control reproduction number can be 
noticed in Figs. 13, 14 and 15. These combined control strategies reduced the con-
trol reproduction number more significantly as expected.

The most effective control strategy is the combination of all the three strategies as 
depicted in Fig. 16.

5  Numerical Solution of the Optimal Control Problem

In this section, we shall solve the optimal control problem to study the effects 
of promotion of behavior change, u1(t) , nutritional supplementation, u2(t) , and 
ART, u3(t) on the transmission dynamics of the disease. We shall carry out the 
numerical simulation and the results shall be presented graphically. The results 
shall be investigated and compared in four folds. The first one shall contain the 

Fig. 10  Effects of u1 on Rcon
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Fig. 11  Effects of u2 on Rcon

Fig. 12  Effects of Control u3 on Rcon
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Fig. 13  Effects of Controls u1, u2 and u1, u3 on Rcon

Fig. 14  Effects of Controls u1, u2 and u1, u3 on Rcon
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Fig. 15  Effects of Controls u2, u3 and  u1, u2, u3 on Rcon

Fig. 16  Effects of Controls u2, u3 and  u1, u2, u3 on Rcon
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combine effects of controls u2(t) and u3(t) while u1(t) is set to zero. The sec-
ond shall examine the complementary effects of u1(t) and u2(t) while the con-
trol u3(t) is set to zero. The third one shall check the effects of u1(t) and u3(t) 
while the control u2(t) is set to zero. The fourth and final one shall examine the 
effects of all controls u1(t), u2(t) and u3(t) . The fourth-order Runge–Kutta scheme 
shall be used throughout the analysis. We assumed that the weight functions 
m1 = 230,m2 = 500,m3 = 450,m4 = 55,m5 = 30,m6 = 75 . Other parameter val-
ues used are on Table 2. 

In Fig.  17, control u2(t) for nutritional supplementation and control u3(t) for 
ART were used to optimize the objective functional presented in (39). It can be 
observed in Fig. 17a that intake of nutritional supplementation results in increase 
in the susceptible class above the level without control measures. The controls 
u2(t) and u3(t) also decrease the levels of infected individuals in the I1, I2 and I3 
classes significantly. 

In Fig.  18, control u1(t) for government’s promotion of behavior change and 
control u2(t) for nutritional supplementation were used to optimize the objective 
functional presented in (39). It can be observed in Fig. 18a that intake of nutri-
tional supplementation and change of behavior result in increase in the suscepti-
ble class above the level without control measures more than it did in Fig. 17a. 
The controls u1(t) and u2(t) also decrease the levels of infected individuals in the 
I1, I2 and I3 classes obviously. 

In Fig. 19, control u1(t) and u3(t) were used to optimize the objective functional 
in (39). It can be observed in Fig. 19a that change of behavior results in increase 
in the susceptible class above the level without control measures but not as high 
as in Figs.  17a and 18a. The controls u1(t) and u3(t) also decrease the levels of 
infected individuals in the I1, I2 and I3 classes obviously. Though it appears that 
the effects of u1 and u3 for I2(t) and I3(3) classes seem to be of the same level as 
those in Fig. 18c, d. 

Table 2  Hypothetical Value of Parameters

Parameter Value (per day) Source

� 0.234 South (2019)
� 0.0155 South (2019)
�2 0.084 Afassinou et al. (2017)
�1 0.045 Estimated From Afassinou et al. (2017)
B 1,039,749 South (2019)
�1 0.34 Estimated From Afassinou et al. (2017), South (2019)
�2 0.01 Estimated From Afassinou et al. (2017), South (2019)
�3 0.65 Estimated From Afassinou et al. (2017), South (2019)
� 2 Assume
�1, �2, �3, �4, �5 0.12, 0.20, 0.20, 0.15, 0.16 Estimated From Afassinou et al. (2017), South (2019)
�1, �3 Variable Assumed
�4, �5, �6 Variable Assumed
�7, �8 Variable Assumed



576 M. Rabiu et al.

1 3

Fig. 17  Simulation of the Model Using controls u2 and u3 only.
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In Fig. 20, the effects of all the controls in optimizing the objective functional in 
(39) is of the highest standard. It is second to none among all the aforementioned 
scenarios. The susceptible population in Fig. 20a increased constantly more than the 
previous ones. Consequently, the reduction of infections in all the infected classes 
almost tends to zero which was not the case in the previous scenarios. Hence, we 
conclude that the combination of all the considered control measures is the best 
strategy to ensure significant reduction in the disease transmission. 

6  Conclusion

This study qualitatively and quantitatively examined an HIV/AIDS-resistant model 
with behavior change which is absolutely different from existing HIV/AIDS models 
and provide a better result than the one obtained by Afassinou et al. (2017); Marmor 
et al. (2006); Okosun et al. (2013) (because their models does not consider the effect 
of HIV/AIDS resistance and behavior change ) and (Mastahun and Abdurahman 
2017) (apart from the fact that the effect of HIV-resistance is missing, the behav-
ior change considered was not as detailed as ours because it only considered one 
single compartment but ours considered all the compartments except compartment 
A(t) since behavior change and resistance are of no benefit to this class). Incorpora-
tion of resistance to HIV/AIDS and its analysis is one of the novelty of this study. In 
order to understand the control measures capable of tackling the infectiousness and 
spread of HIV/AIDS, we considered control u1 , which is the government’s interven-
tion in promoting and encouraging behavior change, u2 , which represents intake of 
balanced nutritional supplementation and u3 , which connotes antiretroviral therapy 
(ART). An optimal control problem was developed and analyzed as well as the con-
trol reproduction number. It was further explained that if the control reproduction 

Fig. 17  (continued)
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Fig. 18  Simulation of the Model Using controls u1 and u2 only.
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number Rcon < 1 , the HIV virus will eventually die out in no time. Hence, the con-
trol reproduction number, Rcon , is an important indication of the level of efforts 
required to eliminate the virus. We further explicitly explained that Rcon < RT , 
for 0 ≤ u1, u2, u3,≤ 1 which means increase in the control strategies had a positive 
impact on the reduction of RT . In other words, HIV/AIDS can be completely erad-
icated with full implementation of all the three aforementioned control strategies 
which is in confirmation with the work of Grobler et al. (2013); Lamb et al. (2012); 
Jeremiah et al. (2014); Polasa et al. (1984) where they opined that the ART interven-
tion can never be effective in patients with nutritional deficiencies.

Since majority of the citizens of the Southern African countries who are the worst 
hit of HIV/AIDS are languishing in penury with stark poverty, this study also estab-
lished that not only the wealthy ones are guarantee of safety from HIV/AIDS due to 
their capability of ensuring adequate nutritional supplementation or ART treatment. 
The poor ones can easily change their behavior and practice total abstinence from 
all HIV/AIDS endemic region and infected objects. This will also go a long way to 
guarantee their safety even in the midst of poverty.

The sensitivity analysis was also established in order to determine the most sen-
sitive parameters that are responsible for disease transmission with respect to the 
basic reproduction number and those responsible for disease prevalence with respect 
to the endemic equilibrium. It was ascertained that the rate of influx of people in 
to the infected population and total abstinence from all risk practices and endemic 
areas are some of the most sensitive parameters for disease spread and disease eradi-
cation respectively. The graphical representation affirms the analytic results.

The obtained results on the importance of behavior change discussed in the intro-
ductory section is also confirmed in our obtained results. Reports on the global 
AIDS pandemic in Report (2012) for countries like Zambia, Zimbabwe, South 
Africa, Namibia etc which show great reduction in HIV/AIDS incidence was also 
confirmed in our analysis as significant reduction of infection rates was recorded 
according to our numerical simulations. The adverse effect of malnutrition on ART 

Fig. 18  (continued)
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Fig. 19  Simulation of the Model Using controls u1 and u3 only.
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treatment presented by Braitstein et  al. (2006); Koethe et  al. (2010); Olsen et  al. 
(2014) was also discovered in the numerical simulation of our model. As depicted 
in Figs. 17, 18, and 20, adequate nutritional supplementation has a great effect in 
ensuring effective ART usage.

Appendix 1: Proof of Theorem 4.1

Proof The existence of the control variables can be established with the help of the 
results obtained in Ngina et al. (2019) via the following five procedures: 

(1) It can be observed that all the stated initial conditions as well as the control vari-
ables u1, u2 and u3 in the control set Φ are non-negative values and non-empty 
where ui, i = 1, 2, 3 is a Lebesgue-integrable function on [0, Tf ].

(2) The right hand sides of the model Eqs. (26)–(34) with control variables are 
bounded by a linear function of the control and state variables whose solutions 
exist. By definition, each right hand side of system (26)–(34) is continuous and 
can be expressed as a linear function of Φ , where the coefficients depend on 
time and state. This translates to the fact that all the control and state variables 
u1, u2, u3, S, Sb, I1, I1b, I2, I2b, I3, I3b and A are all bounded on [0, Tf ] . Particularly, 
the system Eqs. (26)–(34), its control variables and aforementioned initial condi-
tions can be expressed as: 

 where 

(65)Ġ = G1H + G2(H),

Fig. 19  (continued)
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 is the vector of the state variables. Furthermore, G1(H) and G2(H) are respec-
tively defined as 

(66)H = [S, Sb, I1, I1b, I2, I2b, I3, I3b,A]
T ,

Fig. 20  Simulation of the Model Using all controls u1 , u2 and u3
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Fig. 20  (continued)
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 and 

 Let 

 and then G2(H) in (69) satisfies 

 where the positive constant r = max(ri, i = 1, 2, 3, ..., 9) is independent 
of the state variables. Furthermore, P(H1) − P(H2) ≤ r|H1 − H2|, where 
r =

∑9

i=1
ri + ‖M‖ ≤ ∞. It can be deduced that the function P(H) is uniformly 

Lipschitz continuous. From the restrictions on the non-negativeness of the state 

(67)G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−� 0 0 0 0 0 0 0 0

0 − � 0 0 0 0 0 0 0

0 0 − � 0 0 0 0 0 0

0 0 0 − � 0 0 0 0 0

0 0 0 0 − � 0 0 0 0

0 0 0 0 0 − � 0 0 0

0 0 0 0 0 0 − � 0 0

0 0 0 0 0 0 0 − � 0

0 0 0 0 0 0 0 0 − �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(68)G2(H) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B − (1 − u2)(�1 + �2 + �3)�S − �S

u1S

(1 − u2)�1�S + �4I1b − (u1 + �1u3)I1
u1I1 − �4I1b

(1 − u2)�2�S + �6I2b − u1I2
u1I2 − �6I2b

(1 − u2)�3�S + �8I3b − (u1 + �2u3)I3
u1I3 − �8I3b

�1I1u3 + �2I2u3 − �A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(69)P(H) = G1H + G2(H),

|G2(H1) − G2(H2)| ≤ r1|S1(t) − S2(t)| + r2|Sb1(t) − Sb2(t)|
+ r3|I11(t) − I12(t)| + r4|I1b1(t) − I1b2 |
+ r5|I21(t) − I22(t)| + r6|I2b1(t) − I2b2(t)|
+ r7|I31(t) − I32(t)| + r8|I3b1(t) − I3b2(t)|
+ r9|A1(t) − A2(t)|

≤ r
[|S1(t) − S2(t)| + |Sb1(t) − Sb2(t)|

+ |I11(t) − I12(t)| + |I1b1(t) − I1b2(t)|
+ |I21(t) − I22(t)| + |I2b1(t) − I2b2(t)|
+ ||I31(t) − I32(t)| + |I3b1(t) − I3b2 (t)|
+ |A1(t) − A2(t)|],
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variables and the definition of the control variables u1, u2, u3 , the solutions of 
the model Eq. (65) exist.

(3) The control set Φ is convex and closed.
  The elements of the control set Φ in a vector form are given by 

 Next is to establish the convexity of Φ in the following lines.
  Let v = (v1, v2, v3) be another element in Φ , such that 0 ≤ v1, v2, v3 ≤ 1. Now, 

we need to establish that 

 is also contained in Φ . 

 Then, we have the following pairs: 

 Therefore, z = (z1, z2, z3) satisfies the conditions (70) for convexity. Therefore, 
we conclude that the control set Φ is bounded and convex thereby satisfying the 
condition 3 above.

(4) Next is to establish that the integrand 

 as appeared in the objective functional is convex in Φ using the Hessian matrix 
approach. Before that, we have the following definition:

  ◻

Definition 6.1 Let Q(z1, z2, z3,⋯ , zn) be a function of many variables, the function Q 
is said to be concave if and only if the Hessian matrix (Hes)

and convex if and only if

Let

(70)Φ = (u1, u2, u3), where 0 ≤ u1, u2, u3 ≤ 1.

z = �u + (1 − �)v, for 0 ≤ � ≤ 1,

z = �(u1, u2, u3) + (1 − �)(v1, v2, v3)

=
[
�u1 + (1 − �)v1, �u2 + (1 − �)v2, �u3 + (1 − �)v3

]

= (z1, z2, z3).

z1 = �u1 + (1 − �)v1, which is in the interval [0, 1], thus 0 ≤ z1 ≤ 1,

z2 = �u2 + (1 − �)v2, which is in the interval [0, 1], thus 0 ≤ z2 ≤ 1,

z3 = �u3 + (1 − �)v3, which is in the interval [0, 1], thus 0 ≤ z3 ≤ 1.

(71)B =
1

2

[
m1I1 + m2I2 + m3I3 + m4u

2
1
+ m5u

2
2
+ m6u

2
3

]
,

Hes(z) =

[
�2Q

�zi�zj

]
≤ 0, ∀ z ≠ 0,

Hes(z) =

[
�2Q

�zi�zj

]
≥ 0, ∀ z ≠ 0.
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then the Hessian matrix Hes of Bi is composed as

Since the Hessian matrix Hes ≥ 0 , then Bi is convex. If Bi ∈ B is convex on Φ , then 
B is also convex on Φ as required. 

(5) There exist c1 > 0, c2 > 0 and c3 > 1 such that B in (71) which is equivalent to 
the integrand of �(u, t) in (36) is bounded by 

 where c1, c2 and c3 are constants. From the objective function 
�(u1(t), u2(t), u3(t)),

 Then 

 Suppose m = max
{
m4,m5,m6

}
 , then 

 which implies that 

 where c2 depends on the upper bound of I1, I2 and I3 and c1 > 0 since 
m4 > 0,m5 > 0,m6 > 0. Hence, Eq. (72) can be re-expressed as 

 It is obvious from (73) that c1 > 0, c2 > 0 and c3 = 2 > 1 there by satisfying 
the stated condition 5. Since all the aforementioned conditions are satisfied, 
then there exist optimal control variables u∗

1
, u∗

2
 and u∗

3
.

  ◻

Bi =
1

2
(m4u

2
1
+ m5u

2
2
+ m6u

2
3
), where Bi ∈ B,

Hes =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�2Bi

�u2
1

�2Bi

�u1�u2

�2Bi

�u1�u3
�2Bi

�u2�u1

�2Bi

�u2
2

�2Bi

�u2�u3
�2Bi

�u3�u1

�2Bi

�u3�u2

�2Bi

�u2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

m4 0 0

0 m5 0

0 0 m6

⎤
⎥⎥⎦
≥ 0.

B(t, S, Sb, I1, I1b, I2, I2b, I3, I3b,A,m4,m5,m6) ≤ c2 − c1(|u1|2 + |u2|2 + |u3|2)
c3

2 ,

�(u1(t), u2(t), u3(t)) =
1

2

[
m1I1 + m2I2 + m3I3 + m4u

2
1
+ m5u

2
2
+ m6u

2
3

]
.

�(u1(t), u2(t), u3(t)) ≤ m1I1 + m2I2 + m3I3 + m4u
2
1
+ m5u

2
2
+ m6u

2
3
.

(72)�(u1, u2, u3) ≤ m1I1 + m2I2 + m3I3 + m(u2
1
+ u2

2
+ u2

3
),

m1I1 + m2I2 + m3I3 + m4u
2
1
+ m5u

2
2
+ m6u

2
3
≤ c2 + c1(|u1|2 + |u2|2 + |u3|2),

(73)�(u1, u2, u3) ≤ c2 + c1(u1, u2, u3)
2.



587

1 3

Optimal Control Strategies and Sensitivity Analysis of an…

Acknowledgements The first author, Rabiu Musa, acknowledges funding from the NRF and DST of 
South Africa through grant number 48518. The authors really acknowledge and appreciate the efforts of 
the unknown reviewers.

Disclosure The research work forms part of the first authors PhD. work and the co-authors are his 
supervisors.

Declarations 

Conflict of interest No conflict of interest as far as this research is concerned.

References

Afassinou K, Chirove F, Govinder KS (2017) Pre-exposure prophylaxis and antiretroviral treatment 
interventions with drug resistance. Math Biosci 285:92–101

Altman, L. (2000). A new AIDS mystery: prostitutes who have remained immune. New York Times, 
2(3), A17. Available on https:// www. nytim es. com/ 2000/ 02/ 03/ us/a- new- aids- myste ry- prost 
itutes- who- have- remai ned- immune. html

Awan AU, Hussain T, Okosun KO, Ozair M (2018) Qualitative analysis and sensitivity based optimal 
control of pine wilt disease. Adv. Differ. Equ. 2018(1):27

Biasin M, Clerici M, Piacentini L (2010) Innate immunity in resistance to HIV infection. J. Infect. 
Dis. 202(Supplement3):S361–S365

Blackwell T (2012) Blackwell on health: montreal researchers discover why some prostitutes evade 
HIV. National Post. Retrieved 20 Jan 2015

Braitstein P, Brinkhof MW, Dabis F, Schechter M, Boulle A, Miotti, P. & Bangsberg, D. R. (2006) 
Mortality of HIV-1-infected patients in the first year of antiretroviral therapy: comparison 
between low-income and high-income countries. Lancet (Lond Engl) 367(9513):817

Coates JT, Richter L, Caceres C (2008) Behavioral strategies to reduce HIV transmission: how to 
make them work better. Lancet 372(9639):669–684

Coleman MT, Pasternak RH (2012) Effective strategies for behavior change primary care: clinics in 
office practice. Prim Care 39(2):281–305

Dass HK (2008) Advanced engineering mathematics. S. Chand Publishing, Bengaluru
Diekmann O, Heesterbeek P, Metz JA (1990) On the definition and the computation of the basic 

reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol 
28(4):356–382

Djomegni PMT, Tekle A, Dawed MY (2020) Pre-exposure prophylaxis HIV/AIDS mathematical 
model with non classical isolation. Jpn J Indust Appl Math 37:781–801. https:// doi. org/ 10. 1007/ 
s13160- 020- 00422-2

Easterbrook PJ (1999) Long-term non-progression in HIV infection: definitions and epidemiological 
issues. J Infect. 38(2):71–73

Mendus E, T Ring (2016) A genetic mutation that blocks HIV may hold the key to future treatment 
and, perhaps, a cure. Available on: https:// www. hivpl usmag. com/ resea rch- break throu ghs/ 2016/3/ 
23/ anyone- immune- hiv

Fleming WH, Rishel RW (2012) Deterministic and stochastic optimal control, 1st edn. Springer Sci-
ence & Business Media, New York

Green J (2015) The man who was immune to AIDS. NYMag.com. Retrieved, 01–20. Available on 
https:// nymag. com/ health/ bestd octors/ 2014/ steve- crohn- aids- 2014-6/

Grobler L, Siegfried N, Visser ME, Mahlungulu SSN, Volmink J (2013) Nutritional interventions for 
reducing morbidity and mortality in people with HIV. Cochrane Database Syst Rev, 2:CD004536

HIV/AIDS and human rights’, UNAIDS, (2018) Available on: http:// www. unaids. org
Jeremiah K, Denti P, Chigutsa E, Faurholt-Jepsen D, PrayGod G, Range N, Changalucha J (2014) 

Nutritional supplementation increases rifampin exposure among tuberculosis patients coinfected 
with HIV. Antimicrob Agents Chemother 58(6):3468–3474

https://www.nytimes.com/2000/02/03/us/a-new-aids-mystery-prostitutes-who-have-remained-immune.html
https://www.nytimes.com/2000/02/03/us/a-new-aids-mystery-prostitutes-who-have-remained-immune.html
https://doi.org/10.1007/s13160-020-00422-2
https://doi.org/10.1007/s13160-020-00422-2
https://www.hivplusmag.com/research-breakthroughs/2016/3/23/anyone-immune-hiv
https://www.hivplusmag.com/research-breakthroughs/2016/3/23/anyone-immune-hiv
https://nymag.com/health/bestdoctors/2014/steve-crohn-aids-2014-6/
http://www.unaids.org


588 M. Rabiu et al.

1 3

Jia J, Xiao J (2018) Stability analysis of a disease resistance SEIRS model with nonlinear incidence 
rate. Adv Differ Equ 2018(1):75

Khanh NH (2016) Stability analysis of an influenza virus model with disease resistance. J Egypt Math 
Soc 24(2):193–199

Koethe JR, Lukusa A, Giganti MJ, Chi BH, Nyirenda CK, Limbada MI et  al (2010) Association 
between weight gain and clinical outcomes among malnourished adults initiating antiretroviral 
therapy in Lusaka. Zambia J Acquir Immune Defic Syndr 53:507–13

Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman and Hall, 
London

Lamb MR, El-Sadr WM, Geng E, Nash D (2012) Association of adherence support and outreach 
services with total attrition, loss to follow-up, and death among ART patients in sub-Saharan 
Africa. PLoS ONE 7:e38443

List of countries by HIV/AIDS adult prevalence rate. Available on: https:// en. wikip edia. org/ wiki/ List 
of count ries by HIV/ AIDS adult  preva lence  rate

Makinde OD, Okosun KO (2011) Impact of chemo-therapy on optimal control of malaria disease with 
infected immigrants. BioSystems 104(1):32–41

Mastahun M, Abdurahman X (2017) Optimal control of an HIV/AIDS epidemic model with infective 
immigration and behavioral change. Appl Math 8(1):87–106

Marmor M, Hertzmark K, Thomas SM, Halkitis PN, Vogler M (2006) Resistance to HIV infection. J 
Urban Health 83(1):5–17

Marsudi M, Andari A (2014) Sensitivity analysis of effect of screening and HIV therapy on the 
dynamics of spread of HIV. Appl Math Sci 8(155):7749–7763

Ngina P, Mbogo RW, Luboobi LS (2019) HIV drug resistance: insights from mathematical modelling. 
Appl Math Modell 75:141–161

Okosun KO, Makinde OD, Takaidza I (2013) Impact of optimal control on the treatment of HIV/
AIDS and screening of unaware infectives. Appl Math Modell 37(6):3802–3820

Okosun KO, Rachid O, Marcus N (2013) Optimal control strategies and cost-effectiveness analysis of 
a malaria model. BioSystems 111(2):83–101

Olsen MF, Abdissa A, Kæstel P, Tesfaye M, Yilma D, Girma T, Zerfu D (2014) Effects of nutritional 
supplementation for HIV patients starting antiretroviral treatment: randomised controlled trial in 
Ethiopia. BMJ 348:g3187

Paxton WA, Martin SR, Tse D, O’Brien TR, Skurnick J, VanDevanter NL, Koup RA (1996) Relative 
resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite 
multiple high-risk sexual exposures. Nat Med 2(4):412

Phillips AF, Pirkle CM (2011) Moving beyond behavior: advancing HIV risk prevention epistemolo-
gies and interventions (A report on the state of the literature). Global Public Health 6(6):577–592

Polasa K, Murthy KJ, Krishnaswamy K (1984) Rifampicin kinetics in undernutrition. Br J Clin Phar-
macol 17:481–484. https:// doi. org/ 10. 1111/j. 1365- 2125. 1984. tb023 77.x

Population, total-Sub-Saharan Africa (2018) Available on: https:// data. world bank. org/ indic ator/ SP. 
POP. TOTL? locat ions= ZG

Rabiu M, Willie R, Parumasur N (2020) Mathematical analysis of a disease-resistant model with 
imperfect vaccine, quarantine and treatment. Ricerche Mat 69:603–627. https:// doi. org/ 10. 1007/ 
s11587- 020- 00496-7

Rabiu M, Willie R, Parumasur N (2020) Analysis of a virus-resistant HIV-1 Model with behavioural 
change in non-progressors. Biomath J 9:2006143

Rabiu M, Akinyemi ST (2016) Global analysis of dengue fever in a variable population. J Niger Assoc 
Math Phys. 33:363–376

Report on the global AIDS pandemic, UNAIDS (2012) available on http:// www. unaids. org
Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Muyldermans G (1996) Resist-

ance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine 
receptor gene. Nature 382(6593):722

Simon V, Ho DD, Abdool-Karim Q (2006) HIV/AIDS epidemiology, pathogenesis, prevention, and 
treatment. Lancet 368:489–504

Shelton JD, Halperin DT, Nantulya V, Potts M, Gayle HD, Holmes KK (2004) Partner reduction is 
crucial for balanced “ABC” approach to HIV prevention. BMJ 328(7444):891–893

Singh M (2015) In life, man immune to HIV helped scientists fight virus. NPR.org. Retrieved 01–20
The South African mid-year population (2019) Available on:http:// www. stats sa. gov. za/ publi catio ns/ 

P0302/ P0302 2019. pdf

https://en.wikipedia.org/wiki/List%20of%20countries%20by%20HIV/AIDS%20adult%20prevalence%20rate
https://en.wikipedia.org/wiki/List%20of%20countries%20by%20HIV/AIDS%20adult%20prevalence%20rate
https://doi.org/10.1111/j.1365-2125.1984.tb02377.x
https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ZG
https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ZG
https://doi.org/10.1007/s11587-020-00496-7
https://doi.org/10.1007/s11587-020-00496-7
http://www.unaids.org
http://www.statssa.gov.za/publications/P0302/P03022019.pdf
http://www.statssa.gov.za/publications/P0302/P03022019.pdf


589

1 3

Optimal Control Strategies and Sensitivity Analysis of an…

Tchuenche JM, Khamis SA, Agusto FB, Mpeshe SC (2011) Optimal control and sensitivity analysis of 
an influenza model with treatment and vaccination. Acta biotheoretica 59(1):1–28

University of Minnesota (2014) Why some people may be immune to HIV-1: clues. ScienceDaily. 
ScienceDaily, 20 November 2014. www. scien cedai ly. com/ relea ses/ 2014/ 11/ 14112 01417 50. htm

UNAIDS, World AIDS day (2015). http:// www. unaids. org/ en/ resou rces/ fact- sheet. Accessed on 25 
May 2016

Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria 
for compartmental models of disease transmission. Math Biosci 180(1–2):29–48

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Authors and Affiliations

Musa Rabiu1  · Robert Willie1 · Nabendra Parumasur1

 Robert Willie 
 wyliert673@outlook.com

 Nabendra Parumasur 
 parumasurn1@ukzn.ac.za

1 School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, 
Durban, South Africa

http://www.sciencedaily.com/releases/2014/11/141120141750.htm
http://www.unaids.org/en/resources/fact-sheet
http://orcid.org/0000-0002-2626-7921

	Optimal Control Strategies and Sensitivity Analysis of an HIVAIDS-Resistant Model with Behavior Change
	Abstract
	1 Introduction
	2 Model Formulation and Assumptions
	3 Analysis of the Model
	3.1 Basic Properties of the Model
	3.2 Disease-Free Equilibrium and Its Stability
	3.3 Existence of Endemic Equilibrium
	3.4 Parameter Estimation and Sensitivity Analysis

	4 Optimal Control Analysis
	4.1 Existence of an Optimal Control Problem
	4.2 Necessary Conditions of the Optimal Control
	4.3 Analysis of the Control Reproduction Number
	4.4 Effect of the Control Strategies on the Control Reproduction Number

	5 Numerical Solution of the Optimal Control Problem
	6 Conclusion
	Acknowledgements 
	References




