
REGULAR A RTI CLE

Optimal Vaccination Policies for an SIR Model
with Limited Resources

Yinggao Zhou • Kuan Yang • Kai Zhou • Yiting Liang

Received: 14 July 2013 / Accepted: 29 March 2014 / Published online: 11 April 2014

� Springer Science+Business Media Dordrecht 2014

Abstract The purpose of the paper is to use analytical method and optimization

tool to suggest a vaccination program intensity for a basic SIR epidemic model with

limited resources for vaccination. We show that there are two different scenarios for

optimal vaccination strategies, and obtain analytical solutions for the optimal

control problem that minimizes the total cost of disease under the assumption of

daily vaccine supply being limited. These solutions and their corresponding optimal

control policies are derived explicitly in terms of initial conditions, model param-

eters and resources for vaccination. With sufficient resources, the optimal control

strategy is the normal Bang–Bang control. However, with limited resources, the

optimal control strategy requires to switch to time-variant vaccination.

Keywords SIR model � Maximum principle � Vaccination � Optimal

control � Limited vaccine supply

1 Introduction

Mathematical models are often used to study disease spread, with the susceptible-

infectious-recovered (SIR) model being preferred for disease spread via droplet and
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aerosol. For example, the SIR model has been used to study pandemic flu (Bootsma

and Ferguson 2007; Carrat et al. 2006; Chowell et al. 2005; Mills et al. 2004),

seasonal flu (Bridges et al. 2003; Cauchemez et al. 2004; Dushoff et al. 2004),

SARS (Lipsitch et al. 2003; Riley et al. 2003; Wearing et al. 2005), HIV/AIDS

(Magombedze et al. 2009; Okosun et al. 2013) and smallpox (Elderd et al. 2006;

Kaplan et al. 2002; Riley and Ferguson 2007). These studies use SIR models to

simulate the disease outbreak and evaluate the effectiveness of selected control

measures under various predefined scenarios. Optimal control theory approaches

based on mathematical models of epidemics can provide valuable information about

how best to control infectious disease outbreaks, and in particular, can determine the

optimal distribution of limited resources during epidemics. We refer to Abakuks

(1974), Behncke (2000), Clancy (1999), Hansen and Day (2011), Lin et al. (2010),

Morton and Wickwire (1974), Sethi and Staats (1978), Sethi (1978) and Wickwire

(1975) for studies of SIR model based on optimal control that minimizes a

prescribed objective function.

Some of the earlier work in this area was by Abakuks. Abakuks (1974)

investigated the optimal control of a simple deterministic SIR model, and

determined the optimal vaccination strategy under the assumption that, at any

instant, either all or none of the susceptibles are vaccinated. Shortly after the

publication of Abakuks (1974), Morton and Wickwire (1974) studied the same

problem but with two notable differences. They found that the optimal vaccination

policy is a Bang–Bang control from maximal vaccination to no vaccination.

Behncke (2000) expanded Wickwire’s results to models with more general contact

rates. Sethi & Staats (1978) and Sethi (1978) derived optimal closed-form results for

isolation and immunization policies using an SI model. The control is to either

isolate and vaccinate at a maximum rate or do nothing. Clancy (1999) studied the

properties of optimal policies for isolation and immunization assuming that all

infectious individuals can be immediately isolated and all susceptible individuals

can be immediately immunized. The policy takes no action when the number of

infectious is below an optimal threshold and immediately isolates and/or immunizes

when the number exceeds the threshold. However, no analytical solution for an

optimal control problem of epidemics was discussed. Hansen and Day (2011)

extended that of Abakuks (1974), Behncke (2000), Clancy (1999), Morton and

Wickwire (1974), Sethi and Staats (1978), Sethi (1978) by examining the kind of

resource constraints mentioned earlier. Specifically, the simple SIR model with

mass action contact is revisited, and the analytical solutions rather than numerical

ones are obtained. For the vaccination model (Problem 2 in Hansen and Day 2011),

under an assumption of total vaccine supply being limited, the optimal policy is to

vaccinate with maximal effort until either all of the resources are used up or the

epidemic is over.

However, in preparation for an outbreak, the allocated resources are sometimes

limited at each day besides stockpiling a fixed amount of vaccine and other drugs

over time. In order to find out the relation between a vaccination policy and

environment factors, we will still consider a basic SIR epidemic model and suggest

a vaccination program under the assumption of daily vaccine supply, rather than

total vaccine supply in Hansen and Day (2011), being limited. Unlike Hansen and
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Day (2011), our objective is to minimize the total cost of disease with linear control,

the purpose is also to study analytically and numerically how Bang–Bang control is

influenced with the initial conditions, model parameters and constraint conditions.

2 Statement of the Optimization Problem

The following standard deterministic SIR model is used throughout this article

(Anderson and May 1992; Hansen and Day 2011; Morton and Wickwire 1974)

_S ¼ �bSI � uS;

_I ¼ bSI � lI;
ð1Þ

where S and I are the numbers of susceptible and infected hosts (a dot indicating

time derivative), b is the transmission rate, l is the per capita loss rate of infected

individuals through both mortality and recovery, and u is the per capita rates of

vaccination, 0� u� umax. By definition, vaccination has a direct effect only on

susceptible individuals.

The model (1) may be used to describe the diseases like small-pox, influenza,

SARS and HIV/AIDS in a particular situation. Although the model presented is

simple, it provides notation, concepts, intuition and foundation for considering more

refined models.

From (1), we have

SðtÞ ¼ Sðt0Þe
�
R tf

t0
ðbIþuÞdt

[ 0; 8 t 2 ½t0; tf �;

IðtÞ ¼ Iðt0Þe
R tf

t0
ðbS�lÞdt

[ 0; 8 t 2 ½t0; tf �;
ð2Þ

if the initial states Sðt0Þ[ 0; Iðt0Þ[ 0.

Commonly, in preparation for an outbreak of epidemics, a fixed amount of

vaccine are stockpiled and supplied at each day. In this paper, we will explore the

impact of the following control inequality constraints (limited vaccine supply) on

the optimal vaccination policies:

uS�x; ð3Þ

where x represents the total amount of vaccines available at the time t 2 ½t0; tf �.
As in Behncke (2000), Castilho (2006), Greenhalgh (1988), Morton and

Wickwire (1974), Sethi (1974, 1978), Wickwire (1975), our objective is to design

a vaccination program intensity over time such that the total cost (intensity) of

disease is minimized, i.e.

min J ¼
Ztf

t0

ðCdI þ kuÞÞdt; ð4Þ

where Cd is social cost per infective, k is cost per unit level of vaccination program.

So, our optimal control problem can be formulated as follows:
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min J ¼
R tf

t0
ðCdI þ kuÞÞdt;

s:t: _S ¼ �bSI � uS;

_I ¼ bSI � lI;

uS�x;

Sð0Þ ¼ S0; Ið0Þ ¼ I0; u 2 ½0; umax�;

8
>>>>>><

>>>>>>:

ð5Þ

and the corresponding optimal control problem without any constraints is

min J ¼
R tf

t0
ðCdI þ kuÞÞdt;

s:t: _S ¼ �bSI � uS;

_I ¼ bSI � lI;

Sð0Þ ¼ S0; Ið0Þ ¼ I0; u 2 ½0; umax�:

8
>>>><

>>>>:

ð6Þ

3 Lemma

For the sake of convenience, we state the Maximum Principle to be used in the

sequel and we refer to Chiang and Wang (1999), Kamien and Schwartz (1991) for

more details. We consider the following optimal control problem with control

inequality constraints:

min J ¼ /ðtf ; xðtf ÞÞ þ
R tf

t0
Lðt; x; uÞdt;

s:t:

_x ¼ f ðt; x; uÞ; xðt0Þ ¼ x0; u 2 U;

Cðt; x; uÞ�x;

wðtf ; xðtf ÞÞ ¼ 0;

ð7Þ

where, x 2 R
n is the state vector, u 2 R

m is the control vector, /; L;C and w are

vector functions of their respective variables, and have continuous partial deriva-

tives with respect to all of their arguments, x is a constant vector, U is an admissible

control region.

Lemma 3.1 For optimal control problem (7), if uðtÞis an optimal control with

xðtÞbeing the corresponding optimal path, then there exist nontrivial vector

functions kand n;nontrivial constant vectors m;and a slack variable asuch that the

following conditions are satisfied:

(1) For the off-boundary subarc (n ¼ 0),

_x ¼ f ; _k ¼ �HT
x ;

u is determined from Hu ¼ 0; a2 ¼ x� C;

w ¼ 0; �Hjt¼tf
¼ �Gtf ; kðtf Þ ¼ Gxðtf Þ; xðt0Þ ¼ x0;
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(2) For the on-boundary subarc (a ¼ 0),

_x ¼ f ; _k ¼ � �HT
x ;

u is determined from Cðt; x; uÞ ¼ x; n from �Hu ¼ 0;

w ¼ 0; �Hjt¼tf
¼ �Gtf ; kðtf Þ ¼ Gxðtf Þ; xðt0Þ ¼ x0;

(3) For a corner point cwhere two subarcs joint,

Hjt¼cþ ¼ Hjt¼c�; kðcþÞ ¼ kðc�Þ;

where, Hðt; x; u; kÞ ¼ Lðt; x; uÞ þ kTðtÞf ðt; x; uÞis Hamiltonian, �Hðt; x; u; k; n; aÞ ¼
Hðt; x; u; kÞ þ nTðC � xþ a2Þis extended Hamiltonian, Gðtf ; xðtf ÞÞ ¼ /ðtf ; xðtf ÞÞþ
mTwðtf ; xðtf ÞÞ.

Notice that, if the optimal system (7) is autonomous, then the Hamiltonian His

constant, i.e.

Hðx; u; k; k1; k2Þ ¼ const ; 8 t 2 ½t0; tf �:

4 Optimal Control, Analytical Results

It is not difficult to see that the optimal control problem (5) admits an optimal

solution (see Bryson and Ho 1975; Geering 2007; Hull 2003). So, we need only find

the necessary conditions.

This is an optimal control problem with a control inequality constraint. The key

is to determined whether there exist any corner points for the optimal control

problem (5).

4.1 Optimal Vaccination Policy Without Any Constraints

In this section, we study the optimal control problem (6) (without the control

inequality constraint (3)). Denote Hamiltonian HðS; I; u; kS; kIÞ as

H ¼ CdI þ kuþ kSð�bSI � uSÞ þ kIðbSI � lIÞ; ð8Þ

where kS; kI are co-state variables. By the Lemma 3.1, we have the following

necessary conditions:

_S ¼ �bSI � uS; ð9Þ
_I ¼ bSI � lI; ð10Þ

_kS ¼ ðbI þ uÞkS � bIkI ; ð11Þ
_kI ¼ �Cd þ bSkS þ ðl� bSÞkI ; ð12Þ

HðS; I; u; kS; kIÞ�HðS; I; u1; kS; kIÞ; 8 u1 2 ½0; umax�; ð13Þ
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Sðt0Þ ¼ S0; Iðt0Þ ¼ I0; ð14Þ

kSðtf Þ ¼ 0; kIðtf Þ ¼ 0; ð15Þ

HðS; I; u; kS; kIÞ � 0; 8 t 2 ½t0; tf �: ð16Þ

Thus,

H ¼ �I _kI þ ðk � kSSÞu
¼ �S _kS þ kuþ CdI � lIkI

¼ 0; 8 t 2 ½t0; tf �:
ð17Þ

From (13), we have

u ¼
umax; k � kSS\0;

?; k � kSS ¼ 0;

0; k � kSS [ 0;

8
><

>:

and, by (17)

_kIðtÞ� 0; 8 t 2 ½t0; tf �: ð18Þ

First, we will show that the optimal control of (6) is Bang–Bang (that is, has no

singular components).

If, now, k � kSS ¼ 0 on some sub-interval J � ½t0; tf �, then

kS ¼
k

S
[ 0; _kS ¼ �

k

S2
_S [ 0; 8 t 2 J;

i.e., kS [ 0 and kS is increasing on J, that is on the left of the final point tf , which

implies that there exists an extremum point tc 2 ðt0; tf Þ such that _kSðtcÞ ¼ 0 due to

the differentiability of kS and kSðtf Þ ¼ 0. This, in turn, will results in

_SðtcÞ ¼ 0:

Thus, from (9), we get

IðtcÞ ¼ �
uðtcÞ

b
;

which contradict (2). Hence, the optimal control must be purely Bang–Bang.

Second, we will prove that the optimal control is as follows:

u ¼
umax; t 2 ½t0; sÞ;

0; t 2 ½s; tf �:

�

(1) Notice that k � kSS\0 cannot occur on some final sub-interval ½te; tf � � ½t0; tf �
due to kSðtf Þ ¼ 0, so u ¼ umax is not optimal on final sub-interval ½te; tf �.
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(2) We will show that u � 0 is not optimal for the problem (6).

In fact, u � 0 hints that kI � 0 due to (17) and (15). Thus, by (17) and (12),
_kS ¼ CdI

S
[ 0 and kS ¼ Cd

bS
[ 0, that is impossible owing to kSðtf Þ ¼ 0.

(3) We show that the optimal control u ¼ 0 cannot also begin in initial stages. If

not, there exist two switches between 0 and umax, that is, there exist two times

tc1
; tc2

: t0� tc1
\tc2

� tf such that

u ¼
0; t 2 ½t0; tc1

Þ kS � k
S
\0

� �
;

umax; t 2 ½tc1
; tc2
Þ kS � k

S
[ 0

� �
;

0; t 2 ½tc2
; tf � kS � k

S
\0

� �
:

8
><

>:
ð19Þ

Then

d kS � k
S

� �

dt

�
�
�
�
t¼tc1

[ 0;
d kS � k

S

� �

dt

�
�
�
�
t¼tc2

\0; ð20Þ

Hðtci
Þ ¼ �Sðtci

Þ _kS þ Iðtci
ÞðCd � lkIðtci

ÞÞ ¼ 0; i ¼ 1; 2: ð21Þ

From (20), (21) and (9), we have

kIðtc1
Þ\Cd þ kb; kIðtc2

Þ[ Cd þ kb; ð22Þ

which contradicts (18).

Therefor, We have the following result:

Theorem 4.1 For the optimal control problem (6), there exists a s 2 ½t0; tf �such

that the optimal vaccination policy is

u ¼
umax; t 2 ½t0; sÞ;

0; t 2 ½s; tf �:

�

ð23Þ

That is, the optimal vaccination policy is to vaccinate with maximal effort until

either all of the resources are used up or the epidemic is over.

Remark 1 The above Theorem 4.1 is similar with the Theorem 4.2 in Hansen and

Day (2011), that is, the optimal vaccination policy without any constraints is similar

to one with limited total vaccine supply, which implies that the impact of limited

total resources on optimal vaccination policy (in Hansen and Day 2011) is

indistinctive.

4.2 Optimal Vaccination Policy with Control Inequality Constraint

Next, we study the optimal control problem (5) (with a control inequality constraint

(3)).

By (2), SðtÞ is decreasing and bounded, and the control inequality constraint (3) is

inactive if x is large enough or u is sufficiently small. In this case, the optimal

control problem (5) is one without any constraints, that is the case in Theorem 4.1.
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We, now, suppose that SðtÞ and uðtÞ are the optimal path and the optimal control

in Theorem 4.1 respectively. The optimal control problem (5) must fall into one of

following two cases owing to the monotonicity and boundedness of SðtÞ and Bang–

Bang of optimal control uðtÞ:
Case I: x

umax
� Sðt0Þ which implies that the inequality (3) is satisfied. This is

equivalent to an optimal control problem without any constraints. This case is

illustrated by the numerical simulation shown in the left panel of Fig. 1, where the

parameters in (5) are taken as Cd ¼ 1; k ¼ 10; b ¼ 0:0003; l ¼ 0:03; Sð0Þ ¼
1,000; Ið0Þ ¼ 10;x ¼ 55; tf ¼ 60 and umax ¼ 0:05.

Case II: SðsÞ� x
umax

\Sðt0Þ which hints that there exists a corner point tc 2 ½t0; s�.
From Lemma 3.1, uðtÞ is determined from uðtÞSðtÞ ¼ x on the boundary subarc

½t0; tc�. It follows that

uðtÞ ¼ x
SðtÞ ; t 2 ½t0; tc�: ð24Þ

This case is illustrated by the numerical simulation shown in the left panel of Fig. 2,

where the parameters in (5) are taken as Cd ¼ 1; k ¼ 10; b ¼ 0:0003; l ¼
0:03; Sð0Þ ¼ 1,000; Ið0Þ ¼ 10; x ¼ 20; tf ¼ 60 and umax ¼ 0:05.
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Fig. 1 The paths SðtÞ and the optimal control uðtÞ for the parameters Cd ¼ 1; k ¼ 10;b ¼ 0:0003;l ¼
0:03; Sð0Þ ¼ 1,000; Ið0Þ ¼ 10;x ¼ 55; tf ¼ 60 and umax ¼ 0:05
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Fig. 2 The paths SðtÞ and the optimal control uðtÞ for the parameters Cd ¼ 1; k ¼ 10;b ¼ 0:0003;l ¼
0:03; Sð0Þ ¼ 1,000; Ið0Þ ¼ 10;x ¼ 20; tf ¼ 60 and umax ¼ 0:05
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Therefor, We have the following Theorem 4.2.

Theorem 4.2 Depending on the initial conditions, model parameters and

constraint conditions, we have the following optimal vaccination strategies for

the optimal control problem (5):

(i) Let SðtÞand uðtÞbe the optimal path and the optimal control in Theorem 4.1

respectively (without the constrain uðtÞSðtÞ�x). If x
umax
� Sðt0Þ, then optimal

control is one in Theorem 4.1, i.e., there exists a s 2 ½t0; tf �such that the optimal

vaccination policy is

u ¼
umax; t 2 ½t0; sÞ;

0; t 2 ½s; tf �

�

ð25Þ

(In Fig. 1, s 	 51:5).

(ii) Let SðtÞand uðtÞbe the optimal path and the optimal control in Theorem 4.1

respectively (without the constrain uðtÞSðtÞ�x). If SðsÞ� x
umax

\Sðt0Þ, then there

exist a corner point tcand a switch swith t0� tc� s� tf such that the optimal

vaccination policy is

u ¼

x
S
; t 2 ½t0; tcÞ;

umax; t 2 ½tc; sÞ;
0; t 2 ½s; tf �

8
><

>:
ð26Þ

(In Fig. 2, tc 	 16:5; s 	 49:5).

Remark 2 The Theorem 4.2 means that the limited vaccine supply has a distinct

effect on optimal vaccination policies. This should be a more reasonable result using

of limited resources.

5 Conclusion

The resources are usually limited. It is critical that the limited resources are

administered in a time-optimal fashion. In this paper, we use analytical method and

optimization tool to study optimal vaccination policies for a basic SIR epidemic

model under the assumption of daily vaccine supply, rather than total vaccine

supply, being limited. We find that the optimal vaccination strategies are closely

associate with the initial conditions, model parameters and constraint conditions

when daily vaccine supply is limited, which hints that the change of environment

should be considered in making a vaccination program. These results are different

from ones in Hansen and Day (2011). For the basic model, there are two different

scenarios for optimal vaccination strategies. The optimal control policies are

derived explicitly in terms of initial conditions, model parameters and resources for

vaccination. With sufficient resources, the optimal control strategy is the normal
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Bang–Bang control, i.e., to vaccinate with maximal effort until either all of the

resources are used up or the epidemic is over. However, with limited resources, the

optimal control strategy requires to switch to time-variant vaccination, i.e., from

increasing gradually vaccination to maximizing vaccination until either all of the

resources are used up or the epidemic is over.

Dynamic of infection is certainly far more complicated and varied than the one

captured by this mathematical model. But, it illustrate the role that mathematical

methods can play in formulate treatment strategy.
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