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Abstract The purpose of the paper is to use analytical method and optimization
tool to suggest a vaccination program intensity for a basic SIR epidemic model with
limited resources for vaccination. We show that there are two different scenarios for
optimal vaccination strategies, and obtain analytical solutions for the optimal
control problem that minimizes the total cost of disease under the assumption of
daily vaccine supply being limited. These solutions and their corresponding optimal
control policies are derived explicitly in terms of initial conditions, model param-
eters and resources for vaccination. With sufficient resources, the optimal control
strategy is the normal Bang—Bang control. However, with limited resources, the
optimal control strategy requires to switch to time-variant vaccination.

Keywords SIR model - Maximum principle - Vaccination - Optimal
control - Limited vaccine supply

1 Introduction

Mathematical models are often used to study disease spread, with the susceptible-
infectious-recovered (SIR) model being preferred for disease spread via droplet and
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aerosol. For example, the SIR model has been used to study pandemic flu (Bootsma
and Ferguson 2007; Carrat et al. 2006; Chowell et al. 2005; Mills et al. 2004),
seasonal flu (Bridges et al. 2003; Cauchemez et al. 2004; Dushoff et al. 2004),
SARS (Lipsitch et al. 2003; Riley et al. 2003; Wearing et al. 2005), HIV/AIDS
(Magombedze et al. 2009; Okosun et al. 2013) and smallpox (Elderd et al. 2006;
Kaplan et al. 2002; Riley and Ferguson 2007). These studies use SIR models to
simulate the disease outbreak and evaluate the effectiveness of selected control
measures under various predefined scenarios. Optimal control theory approaches
based on mathematical models of epidemics can provide valuable information about
how best to control infectious disease outbreaks, and in particular, can determine the
optimal distribution of limited resources during epidemics. We refer to Abakuks
(1974), Behncke (2000), Clancy (1999), Hansen and Day (2011), Lin et al. (2010),
Morton and Wickwire (1974), Sethi and Staats (1978), Sethi (1978) and Wickwire
(1975) for studies of SIR model based on optimal control that minimizes a
prescribed objective function.

Some of the earlier work in this area was by Abakuks. Abakuks (1974)
investigated the optimal control of a simple deterministic SIR model, and
determined the optimal vaccination strategy under the assumption that, at any
instant, either all or none of the susceptibles are vaccinated. Shortly after the
publication of Abakuks (1974), Morton and Wickwire (1974) studied the same
problem but with two notable differences. They found that the optimal vaccination
policy is a Bang-Bang control from maximal vaccination to no vaccination.
Behncke (2000) expanded Wickwire’s results to models with more general contact
rates. Sethi & Staats (1978) and Sethi (1978) derived optimal closed-form results for
isolation and immunization policies using an SI model. The control is to either
isolate and vaccinate at a maximum rate or do nothing. Clancy (1999) studied the
properties of optimal policies for isolation and immunization assuming that all
infectious individuals can be immediately isolated and all susceptible individuals
can be immediately immunized. The policy takes no action when the number of
infectious is below an optimal threshold and immediately isolates and/or immunizes
when the number exceeds the threshold. However, no analytical solution for an
optimal control problem of epidemics was discussed. Hansen and Day (2011)
extended that of Abakuks (1974), Behncke (2000), Clancy (1999), Morton and
Wickwire (1974), Sethi and Staats (1978), Sethi (1978) by examining the kind of
resource constraints mentioned earlier. Specifically, the simple SIR model with
mass action contact is revisited, and the analytical solutions rather than numerical
ones are obtained. For the vaccination model (Problem 2 in Hansen and Day 2011),
under an assumption of total vaccine supply being limited, the optimal policy is to
vaccinate with maximal effort until either all of the resources are used up or the
epidemic is over.

However, in preparation for an outbreak, the allocated resources are sometimes
limited at each day besides stockpiling a fixed amount of vaccine and other drugs
over time. In order to find out the relation between a vaccination policy and
environment factors, we will still consider a basic SIR epidemic model and suggest
a vaccination program under the assumption of daily vaccine supply, rather than
total vaccine supply in Hansen and Day (2011), being limited. Unlike Hansen and

@ Springer



Optimal Vaccination Policies 173

Day (2011), our objective is to minimize the total cost of disease with linear control,
the purpose is also to study analytically and numerically how Bang—Bang control is
influenced with the initial conditions, model parameters and constraint conditions.

2 Statement of the Optimization Problem

The following standard deterministic SIR model is used throughout this article
(Anderson and May 1992; Hansen and Day 2011; Morton and Wickwire 1974)

S = —pSI — uS,

I = BSI— ul, M)

where § and I are the numbers of susceptible and infected hosts (a dot indicating
time derivative), f§ is the transmission rate, p is the per capita loss rate of infected
individuals through both mortality and recovery, and u is the per capita rates of
vaccination, 0 <u <u,,,. By definition, vaccination has a direct effect only on
susceptible individuals.

The model (1) may be used to describe the diseases like small-pox, influenza,
SARS and HIV/AIDS in a particular situation. Although the model presented is
simple, it provides notation, concepts, intuition and foundation for considering more
refined models.

From (1), we have

[ (B
S(t) = Stto)e Lo " 5 0, 1 € [1o, 1], -
7

1(6) = I(g)e)0 P

' > 0, Vite [l‘(),tf],
if the initial states S(#p) > 0,1(zy) > 0.

Commonly, in preparation for an outbreak of epidemics, a fixed amount of
vaccine are stockpiled and supplied at each day. In this paper, we will explore the
impact of the following control inequality constraints (limited vaccine supply) on
the optimal vaccination policies:

uS < w, (3)

where o represents the total amount of vaccines available at the time ¢ € [to, #7].

As in Behncke (2000), Castilho (2006), Greenhalgh (1988), Morton and
Wickwire (1974), Sethi (1974, 1978), Wickwire (1975), our objective is to design
a vaccination program intensity over time such that the total cost (intensity) of
disease is minimized, i.e.

I
minJ = /(Cdl—i—ku))dt, (4)
0]

where C; is social cost per infective, k is cost per unit level of vaccination program.
So, our optimal control problem can be formulated as follows:
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min J = ftZ(CdI—Fku))dt,

s.t. S =—PBSI—uS,
I=pBSI—ul, (5)
uS < w,
S(O) = SOaI(O) = 107 uc [O; umux]a

and the corresponding optimal control problem without any constraints is

min J = ftZ(CdI-i—ku))dt,

sit. S=—PpSI—uS,
0 (©
I =pSI—ul,
S(O) = S(), I(O) = 107 uc [O; umax]-

3 Lemma

For the sake of convenience, we state the Maximum Principle to be used in the
sequel and we refer to Chiang and Wang (1999), Kamien and Schwartz (1991) for
more details. We consider the following optimal control problem with control
inequality constraints:

minJ = (1, x( —|—ft (t,x,u)d

s.t.
x=f(t,x,u), x(to) = xo,u € U, (7)
C(tyx,u) <o,
W (i, (7)) = 0,

where, x € R” is the state vector, u € R™ is the control vector, ¢, L, C and { are
vector functions of their respective variables, and have continuous partial deriva-
tives with respect to all of their arguments, w is a constant vector, U is an admissible
control region.

Lemma 3.1 For optimal control problem (7), if u(t)is an optimal control with
x(t)being the corresponding optimal path, then there exist nontrivial vector
Sfunctions Jand & nontrivial constant vectors v,and a slack variable asuch that the
following conditions are satisfied:

(1) For the off-boundary subarc (¢ = 0),
i=f,h=—H],
u is determined from H, =0, o> = w — C,
Y =0,H|_, =—Gy, Aty) = Gy, x(to) = Xo;
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(2) For the on-boundary subarc (o = 0),
Xx=f, i=—H",
u is determined from C(t,x,u) = w, ¢ from H, =0,
V=0, I:I\,:,f = =Gy, Aty) = Gy, x(t0) = xo0;

(3) For a corner point cwhere two subarcs joint,

H|t:c+ = H|t:c—’ )V(c_'_) = /I(C_)7

where, H(t,x,u, 1) = L(t,x,u) + A" ()f(t,x,u)is Hamiltonian, H(t,x,u, 1, & o) =
H(t,x,u,2) + & (C — w + o?)is extended Hamiltonian, G(t;,x(tr)) = $(tr, x(t7))+
Vi (17, x(17))-

Notice that, if the optimal system (7) is autonomous, then the Hamiltonian His
constant, i.e.

H(x,u,A,21,22) = const , V1€ [ty, 1]

4 Optimal Control, Analytical Results

It is not difficult to see that the optimal control problem (5) admits an optimal
solution (see Bryson and Ho 1975; Geering 2007; Hull 2003). So, we need only find
the necessary conditions.

This is an optimal control problem with a control inequality constraint. The key
is to determined whether there exist any corner points for the optimal control
problem (5).

4.1 Optimal Vaccination Policy Without Any Constraints

In this section, we study the optimal control problem (6) (without the control
inequality constraint (3)). Denote Hamiltonian H(S, 1, u, /s, A;) as

H = Cyl + ku + As(—pSI — uS) + 4, (BSI — ul), (8)

where Ag,4; are co-state variables. By the Lemma 3.1, we have the following
necessary conditions:

S = —pSI — uS, (9)

I = BSI — ul, (10)

Js = (B +u)is — Loy, (11)

iy =—Cq+ BSis+ (— pS) A, (12)

H(S, Lu, s, Ap) <H(S, L uy, As, A1), ¥V uy € [0, thyna], (13)
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S(lo) = So, I(l‘o) = Io, (14)
As(ty) = 0, 44(t) =0, (15)
H(S,I,u,is,21) =0,V 1t € [to,1]. (16)

Thus,
H= L+ (k—JsS)u

= —S/;LS + ku + Cdl - ,uIiI (17)
=0, V1€ lt,1]

From (13), we have

Upar, Kk — 4sS<0),

u = ?7 k - ASS - O,
0, k— )5S >0,
and, by (17)
Ji(1) <0, Vi€ [t 1]. (18)

First, we will show that the optimal control of (6) is Bang—Bang (that is, has no
singular components).
If, now, k — AsS = 0 on some sub-interval J C [y, 7], then

k . k.
ds==>0,s=—=8>0,VteJ,
ST ST s
i.e., As > 0 and Ay is increasing on J, that is on the left of the final point #;, which

implies that there exists an extremum point . € (f, #r) such that Js(t:) = 0 due to
the differentiability of Ag and Ag(fy) = 0. This, in turn, will results in

S(t.) = 0.
Thus, from (9), we get
u(t.
1) = =25,

which contradict (2). Hence, the optimal control must be purely Bang—Bang.
Second, we will prove that the optimal control is as follows:

Umax re [lo,T),
u =
0, te T, k.

(1) Notice that k — 43S <0 cannot occur on some final sub-interval [z,, ;] C [to, #]
due to Ag(tr) = 0, SO U = Umayx is not optimal on final sub-interval [z, #].
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(2) We will show that # = 0 is not optimal for the problem (6).
In fact, u = 0 hints that 4; = 0 due to (17) and (15). Thus, by (17) and (12),

Js = % >0 and Ag = % > 0, that is impossible owing to As(#r) = 0.
(3) We show that the optimal control # = 0 cannot also begin in initial stages. If
not, there exist two switches between 0 and u,,,,, that is, there exist two times

feyyle, 2 o Stey <tc, <t such that

0, te [l‘(),[cl)(ls—§<0)7
=< Unax, 1€ [ty 1,) (As — & > 0), (19)
0, 1€ [te,, 1] (As — £ <0).
Then
s ais -4
— 0, ——52 0
e |_, = a |, =% (20)
<1 )
H(t.) = —S(to)hs + 1(10) (Ca — (1)) = 0, i = 1,2. (21)
From (20), (21) and (9), we have
Mte ) <Ca+ kB, Ai(te,) > Ca+kp, (22)

which contradicts (18).
Therefor, We have the following result:

Theorem 4.1 For the optimal control problem (6), there exists a T € [ty, tr|such
that the optimal vaccination policy is

{umam (S [t()vf)v
u =

0, 1€ [T, (23)

That is, the optimal vaccination policy is to vaccinate with maximal effort until
either all of the resources are used up or the epidemic is over.

Remark 1 The above Theorem 4.1 is similar with the Theorem 4.2 in Hansen and
Day (2011), that is, the optimal vaccination policy without any constraints is similar
to one with limited total vaccine supply, which implies that the impact of limited
total resources on optimal vaccination policy (in Hansen and Day 2011) is
indistinctive.

4.2 Optimal Vaccination Policy with Control Inequality Constraint

Next, we study the optimal control problem (5) (with a control inequality constraint
3)).

By (2), S(¢) is decreasing and bounded, and the control inequality constraint (3) is
inactive if w is large enough or u is sufficiently small. In this case, the optimal
control problem (5) is one without any constraints, that is the case in Theorem 4.1.
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Fig. 1 The paths S(¢) and the optimal control u(¢) for the parameters C; = 1,k = 10, f = 0.0003, u =
0.03,8(0) = 1,000, 1(0) = 10, = 55,1 = 60 and tt,e, = 0.05
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Fig. 2 The paths S(¢) and the optimal control u(¢) for the parameters C; = 1,k = 10, f = 0.0003, u =
0.03,5(0) = 1,000, 1(0) = 10, = 20,1y = 60 and t,,ex = 0.05

We, now, suppose that S(7) and u(r) are the optimal path and the optimal control
in Theorem 4.1 respectively. The optimal control problem (5) must fall into one of
following two cases owing to the monotonicity and boundedness of S(z) and Bang—
Bang of optimal control u(?):

Case I: -2 > S(#y) which implies that the inequality (3) is satisfied. This is

Umax —

equivalent to an optimal control problem without any constraints. This case is
illustrated by the numerical simulation shown in the left panel of Fig. 1, where the
parameters in (5) are taken as C,; =1,k =10, = 0.0003, u = 0.03,5(0) =
1,000,1(0) = 10, w =55, ty = 60 and u,q = 0.05.

Case II: S(7) < -2 < S(#p) which hints that there exists a corner point 7, € [fy, 1].

Umax

From Lemma 3.1, u(¢) is determined from u(7)S(f) = w on the boundary subarc
[fo, 2.]. Tt follows that

u(t) = %, t € [to, t.]. (24)

This case is illustrated by the numerical simulation shown in the left panel of Fig. 2,

where the parameters in (5) are taken as C,; =1,k =10, =0.0003, u=
0.03, 5(0) = 1,000, I(0) =10, @ =20, t; = 60 and u,, = 0.05.
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Therefor, We have the following Theorem 4.2.

Theorem 4.2 Depending on the initial conditions, model parameters and
constraint conditions, we have the following optimal vaccination strategies for
the optimal control problem (5):

(i) Let S(t)and u(t)be the optimal path and the optimal control in Theorem 4.1
respectively (without the constrain u(t)S(t) <w). If ;- >S(to), then optimal
control is one in Theorem 4.1, i.e., there exists a T € [t, tf]such that the optimal
vaccination policy is

u =

Umar, 1€ [f0,7),
max [ 0 ) (25)
0, 1€ [1,4]

(In Fig. 1, T = 51.5).

(ii) Let S(t)and u(t)be the optimal path and the optimal control in Theorem 4.1
respectively (without the constrain u(t)S(t) < w). If S(t) < 2~ <S(to), then there
exist a corner point t.and a switch twith to <t. <t <trsuch that the optimal
vaccination policy is

<, t € [to, 1),
u = umax, t E [tc,f), (26)
0, t € [t,1]

(In Fig. 2, t. ~ 16.5,7 ~ 49.5).

Remark 2 The Theorem 4.2 means that the limited vaccine supply has a distinct
effect on optimal vaccination policies. This should be a more reasonable result using
of limited resources.

5 Conclusion

The resources are usually limited. It is critical that the limited resources are
administered in a time-optimal fashion. In this paper, we use analytical method and
optimization tool to study optimal vaccination policies for a basic SIR epidemic
model under the assumption of daily vaccine supply, rather than total vaccine
supply, being limited. We find that the optimal vaccination strategies are closely
associate with the initial conditions, model parameters and constraint conditions
when daily vaccine supply is limited, which hints that the change of environment
should be considered in making a vaccination program. These results are different
from ones in Hansen and Day (2011). For the basic model, there are two different
scenarios for optimal vaccination strategies. The optimal control policies are
derived explicitly in terms of initial conditions, model parameters and resources for
vaccination. With sufficient resources, the optimal control strategy is the normal
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Bang-Bang control, i.e., to vaccinate with maximal effort until either all of the
resources are used up or the epidemic is over. However, with limited resources, the
optimal control strategy requires to switch to time-variant vaccination, i.e., from
increasing gradually vaccination to maximizing vaccination until either all of the
resources are used up or the epidemic is over.

Dynamic of infection is certainly far more complicated and varied than the one
captured by this mathematical model. But, it illustrate the role that mathematical
methods can play in formulate treatment strategy.
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