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Abstract
We study the long-time behaviour of a run and tumble model which is a kinetic-transport
equation describing bacterial movement under the effect of a chemical stimulus. The exper-
iments suggest that the non-uniform tumbling kernels are physically relevant ones as op-
posed to the uniform tumbling kernel which is widely considered in the literature to reduce
the complexity of the mathematical analysis. We consider two cases: (i) the tumbling ker-
nel depends on the angle between pre- and post-tumbling velocities, (ii) the velocity space
is unbounded and the post-tumbling velocities follow the Maxwellian velocity distribution.
We prove that the probability density distribution of bacteria converges to an equilibrium
distribution with explicit (exponential for (i) and algebraic for (ii)) convergence rates, for
any probability measure initial data. To the best of our knowledge, our results are the first
results concerning the long-time behaviour of run and tumble equations with non-uniform
tumbling kernels.

Keywords Run and tumble equation · Hypocoercivity · Kinetic equations · Harris’s
theorem

Mathematics Subject Classification 35B40 · 35Q92 · 37A25

1 Introduction

We consider a kinetic-transport equation which describes the movement of biological mi-
croorganisms biased towards a chemoattractant. The model is called the run and tumble
equation and introduced in [1, 22] based on some experimental observations [3] on the bac-
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terium called Escherichia coli (E. coli). The equation is given by

∂tf + v · ∇xf =
ˆ

V

λ(v′ · ∇xM(x))κ(v, v′)f (t, x, v′)dv′ − λ(v · ∇xM(x))f (t, x, v)

f (0, x, v) = f0(x, v)

(1)

where f := f (t, x, v) ≥ 0 is the density distribution of microorganisms at time t ≥ 0 at a
position x ∈R

d , moving with a velocity v ∈ V ⊆ R
d .

The term λ(v′ · ∇xM(x))κ(v, v′) is called the tumbling frequency where λ :R → [0,∞)

is the tumbling rate. The tumbling rate λ depends on the gradient of the external signal M

along the direction of the velocity v, and it is defined by

M(x) = m0 + log(S(x)),

where m0 ∈ R
+
0 represents the external signal in the absence of a chemical stimulus and

S(x) is a given function for the density of the chemoattractant. In Eq. (1), the tumbling or
turning kernel κ(v, v′) is a probability distribution on the space V and gives the probability
of moving from velocity v to velocity v′, i.e.

´
V κ(v, v′)dv′ = 1.

In the case of peritrichous bacteria such as E. coli and Salmonella typhimurium, experi-
ments conducted in [3, 17] suggest that κ depends only on the relative angle θ between the
pre- and post-tumbling velocities v and v′ respectively. Particularly, for bacterium E. coli,
the tumbling kernel κ is given by

κ(v, v′) = κ(θ) = g(θ)

2π sin θ
, θ = arccos

(
v · v′

|v||v′|
)

,

where g(θ) is a sixth order polynomial satisfying g(0) = g(π) = 0 (see [4, 21] for more
details). The exact form of g is provided in [14] by polynomial fitting to the data of [3].
Here we will work in a bounded velocity space.

In our previous paper [13] we studied this equation under the assumption that κ was
uniformly bounded above and below. However, this assumption is not realistic as the bacteria
are not able to turn a full half circle. We aim to extend our previous work to the case where
the maximum turning angle of the bacteria may be bounded.

We are also interested in unbounded velocity spaces, i.e., v ∈ V = R
d . In this setting,

we consider that the tumbling kernel is given by the Maxwellian distribution on the post-
tumbling velocities independently from the pre-tumbling velocities, i.e.,

κ(v, v′) = M(v) = 1

(2π)
d
2

e
−|v|2

2 .

To the best of our knowledge, we provide the first results concerning the long-time behaviour
of the run and tumble equation with these non-uniform tumbling kernels which are more
physically relevant in terms of modelling the chemotactic bacterial motion. We believe the
main reason for this is the fact that the classical hypocoercivity techniques such as [9] cannot
be used for the run and tumble equation even though it is a linear, conservative kinetic
equation. On the other hand, Harris-type theorems (see e.g. [7, 24]) proved very effective for
obtaining quantitative hypocoercivity results, especially for kinetic equations arising from
applied sciences where classical techniques provide limited results. We elaborated on this
fact in our previous paper [13] in detail and a brief explanation can be found below in the
paragraph Motivation and novelty.
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Summary of Previous Results Previous important works on the linear run and tumble equa-
tion include [5, 6, 19–21]. In [20, 21], the authors study the diffusion approximation to a lin-
ear run and tumble equation and the diffusion limit of this equation to obtain macroscopic
chemotaxis equations, respectively. Using the L2 hypocoercivity techniques developed in
[9], the authors [6] show the existence of a unique equilibrium and exponential decay to-
wards it in dimension d = 1. This paper works with the assumption that the tumbling rate
λ can take two values depending if the bacteria is travelling up or down the gradient of the
chemoattractant density. Though it is expressed differently in [6] the tumbling rate can be
written as

λ(x, v, v′) = 1 + χsgn(x · v), χ ∈ (0,1),

where χ is called the chemotactic sensitivity. In [19], the authors extended this results to
higher dimensions d ≥ 1 considering

λ(x, v, v′) = 1 − χsgn( ∂tS + v · ∇xS), χ ∈ (0,1).

The result in [19] works under the assumption that the concentration of the chemoattractant
S(x) is radially symmetric and decreasing in x such that S(x) → 0 as |x| → ∞. In our
previous paper, [13] we improve the result in [19] by proving the exponential convergence
to unique equilibrium without requiring S(x) to be radially symmetric. Our result is valid
in an arbitrary dimension d ≥ 1 where the tumbling kernel λ can take a much more general
form. Most importantly, we show that existence and convergence to a steady state hold
when λ is a Lipschitz function. Our techniques in [13] are based on Harris-type theorems
coming from the ergodic theory of Markov processes. They differ from the techniques used
in [19] that are based on the Krein-Rutman theorem. Moreover in [13], we also consider
a non-linear run and tumble model where we can prove the exponential decay to a unique
equilibrium. In [5], the author studies a non-linear coupled run and tumble equation in one
dimension d = 1. Even though [5] is mainly concerned with the travelling wave solutions
of the non-linear equation, as an intermediate step, the author shows the existence of steady
states for the linear equation.

All these previous works deal with situations where the tumbling kernel, which tells
us how the post-tumbling velocities depend on the pre-tumbling velocities, is essentially
uniform, i.e., κ ≡ 1, and on a bounded velocity space. The main goal of this work is to look
at physically more realistic cases where the tumbling kernel is not uniform and the bacteria
are not able to turn to every angle in one tumbling event.

Motivation and Novelty In our previous paper [13] we studied Eq. (1) in the case where
the velocity space was a ball and the post-tumbling velocities were uniformly distributed so
that κ ≡ 1. We showed exponential convergence to equilibrium in suitable weighted total
variation distances. The result was built around probabilistic techniques called Harris-type
theorems coming from the theory of Markov processes. The goal of this paper is to extend
the previous result to a wider class of tumbling kernels that are non-uniform and physically
more relevant for modelling the motion of chemotactic bacteria.

The typical tools for showing convergence to equilibrium for kinetic equations come
from hypocoercivity. It is important to note that “classical” hypocoercivity techniques such
as [9, 23] cannot be applied without strong a priori knowledge of the steady state which we
do not have for the run and tumble equation. This is the main reason for scarce results on the
long-time behaviour with arbitrary dimensions d ≥ 1 even though the run and tumble equa-
tion is widely studied. Harris-type theorems (see, e.g., [7, 15, 16] and references therein)
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provide the existence and uniqueness of the steady state as a by-product while simultane-
ously showing convergence to equilibrium. Using these tools, one can obtain quantitative
hypocoercivity results in weighted total variation (or in weighted L1) distances indepen-
dently from the initial data (see, e.g., [8, 24]).

Harris-type theorems are based on verifying two hypotheses: minorisation and geometric
drift conditions. The minorisation condition requires providing a quantifiable positive lower
bound on the process. Therefore, non-uniform tumbling kernels pose additional challenges
compared to the case with a uniform tumbling kernel when using Harris-type theorems.
This is because we need to prove lower bounds on the law uniform over a large set of
initial conditions. This means that we need to find some possible paths a bacterium can take
when moving from one point in phase space to another. The fact that the tumbling angle
is bounded means that bacteria may only be able to travel between two points along paths
involving many tumbling events. Tracking bounds on the probabilities of these complex
paths (and paths close to them) is challenging and required us to generate new technical
tools.

1.1 Assumptions and Main Results

The two main results of our paper concern angularly dependent tumbling kernels and un-
bounded velocity spaces. In both cases, we will make the following assumptions on the
tumbling rate, λ, and the logarithm of the chemoattractant concentration, M .

(H1) The tumbling rate λ(m) :R→ (0,∞) is a function of the form

λ(m) = 1 − χψ(m), χ ∈ (0,1) (λ)

where ψ is a bounded (with ‖ψ‖∞ ≤ 1), odd, increasing function and mψ(m) ∈
W

1,∞
loc (R).

(H2) There exists a contstant a strictly positive integer b > 0, such that for every B > 0,
there exists c > 0 depending on B so that

mψ(m) ≥ c|m|b (m)

for |m| ≤ B . We note that this holds if ψ is the sign function or if it is odd and
differentiable around zero with strictly positive kth derivative for some k ≥ 1.

(H3) We suppose that M(x) → −∞ as |x| → ∞, |∇xM(x)| is bounded and that there exist
R ≥ 0 and m∗ > 0 such that whenever |x| > R we have

|∇xM(x)| ≥ m∗. (M)

Moreover, we suppose that Hess(M)(x) → 0 as |x| → ∞ and |Hess(M)(x)| is
bounded.

The following assumptions concern the tumbling kernels we work with.

(H4) We assume that V = V0S
d−1 and there exist α,β > 0 such that

κ(v, v′) = κ1(θ) ≥ β1|θ |<α(θ), (κ1)

where θ = arccos

(
v · v′

V 2
0

)
and κ1 is a decreasing function of |θ | (similar arguments

work if κ1 is even and bounded below by a decreasing function of |θ |).
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(H5) We assume that V = R
d and the tumbling kernel is given by the Maxwellian distribu-

tion on the post-tumbling velocities independently from the pre-tumbling velocities,

κ(v, v′) = κ2(v) = 1

(2π)
d
2

e− |v|2
2 . (κ2)

After the assumptions, we state the main results of the paper below.

Theorem 1.1 (Angularly dependent tumbling kernel (κ1)) Suppose that t → ft is the solu-
tion of Equation (1) with initial data f0 ∈ P(R2 × S

1). We suppose that hypotheses (H1),
(H2), (H3) and (H4) are satisfied. Then there exist positive constants C, σ (independent of
f0) such that

‖ft − f∞‖∗ ≤ Ce−σ t‖f0 − f∞‖∗, (2)

where f∞ is the unique steady state solution to Equation (1). The norm ‖ · ‖∗ is the weighted
total variation norm defined by

‖μ‖∗ :=
ˆ

Rd

ˆ

Sd−1

(
1 − γ

1 − Cκ

v · ∇xM(x) − γAv · ∇xM(x)ψ(v · ∇xM(x))
)

× e−γM(x)|μ|dv dx,

(3)

where γ,A,Cκ > 0 are positive constants that can be computed explicitly and will be chosen
so that ‖ · ‖∗ is indeed a norm, and μ is a finite measure.

Remark 1.2 We believe that Theorem 1.1 works in arbitrary dimension d ≥ 1. The reason
for stating Theorem 1.1 in dimension d = 2 is that we provide the proof of Proposition 2.7
only in d = 2. We do not believe that there is a major mathematical obstacle in proving it
in higher dimensions. However, even in d = 2, the computations become delicate, and the
notations get intricate. Therefore, we decided to provide it in d = 2 to keep the exposition
of our ideas clear.

Theorem 1.3 (Unbounded velocity space with tumbling kernel (κ2)) Suppose that t → ft

is the solution of Equation (1) with initial data f0 ∈ P(Rd ×R
d). We suppose that hypotheses

(H1), (H2), (H3) and (H5) are satisfied and assume further that M Hess(M) is bounded.
Then there exists a positive constant C > 0 such that

‖ft − f∞‖T V ≤ Ct−1Mf0 (4)

where

Mf0 :=
ˆ

Rd

ˆ

Rd

f0(x, v)

×
(

1 + M(x)2 + 2v · ∇xM(x)M(x)
(

1 + χ

1 + χ
ψ

(
v · ∇xM(x)

))
+ Av2

)
dv dx,

(5)

with A > 0 is a constant that can be computed explicitly and it is sufficiently large so that
Mf0 > 0.

Even though we study the long-time behaviour of the run and tumble equation (1) with
the non-uniform tumbling kernels in this paper, we would like to briefly comment on the
Cauchy theory for these equations.
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Cauchy Theory for Equation (1) As Eq. (1) is a linear integro-differential equation with
bounded coefficients, showing the existence and uniqueness of global-in-time, measure-
valued solutions is relatively standard. One could either use Picard iteration arguments to
construct short-time solutions and then use the fact that λ is bounded to show these can
be glued together globally in time or one can directly write down a Markov process whose
law satisfies Eq. (1). We briefly explain how to do the latter. Let us generate a Poisson
process with intensity (1 + χ) and call its jump times J1, J2, . . . and a series of thinning
variables U1,U2, . . . independent and all having the uniform law on [0,1 + χ ] then we de-
fine initial points (X0,V0) having law f0 then set J0 = 0 and for t ∈ (Ji, Ji+1) we write
Xt = XJi

+ (t −Ji)VJi
and Vt = VJi

then for t = Ji+1 we set Xt = XJi
+ (Ji+1 −Ji)VJi

then
if Ui+1 ≤ λ(VJi

∇xM(Xt)) we generate VJi+1 as a new random variable having law κ(VJi
, ·)

and if Ui+1 > λ(VJi
∇xM(Xt)) we set VJi+1 = VJi

.

Plan of the Paper After listing our assumptions and stating our main results in Sect. 1.1, in
the following section (Sect. 1.2), we describe our methodology, particularly we state Harris’s
theorem in geometric and subgeometric settings, Theorems 1.4 and 1.6 respectively. Then,
Sects. 2 and 3 are dedicated to proving Theorems 1.1 and 1.3 for the cases (i) angularly
dependent tumbling kernels and (ii) unbounded velocity spaces respectively.

1.2 Methodology

This paper is an extension of the work in [13] and as such is built on Harris’s theorem from
Markov process theory. More precisely, Harris-type theorems are used in showing geomet-
ric (exponential) or sub-geometric (algebraic) rates of convergence to a unique equilibrium
solution for equations that can be described as Markov processes. Harris-type theorems rely
on verifying two hypotheses: a Foster-Lyapunov condition and a uniform minorisation con-
dition.

We briefly introduce the functional setting and some notations below and then we provide
the statements of the theorems both in geometric and sub-geometric settings in the spirit of
[7, 16, 18] and the references therein. We skip the proofs of these theorems.

Notations We consider a measurable space (,�) where  is a Polish space endowed with
a probability measure. We denote the space of probability measures on  by P(). Note
that in our setting  = R

d ×V so that (x, v) ∈R
d ×V = . We sometimes use the notation

z := (x, v).
We define the weighted total variation (or weighted L1) distance by

‖μ‖φ :=
ˆ



φ(z)|μ|(dz),

where μ is a finite measure or a measurable function and φ :  → [1,+∞) is a measurable
weight function.

We call (St )t≥0 a Markov (or stochastic) semigroup if it is a linear semigroup conserving
mass and positivity. Remark that if f solves Eq. (1), then f (t, x, v) = Stf0(x, v) and (St )t≥0

is a Markov semigroup since Eq. (1) is positivity and mass-preserving. Moreover, we also
use the notation ∂tf = L[f ] equivalently to Eq. (1). If Eq. (1) has a stationary soluton f∞,
this means that ∂tf∞ = L[f∞] = 0 and f∞ is an invariant measure for the semigroup St , i.e.,
Stf∞ = f∞.
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Theorem 1.4 (Harris’s Theorem) Let (St )t≥0 be a Markov semigroup satisfying the following
hypotheses:

Hypothesis 1 (Foster-Lyapunov condition). There exist positive constants ζ , D and a
continuous, measurable function φ :  → [1,+∞) such that

L∗[φ](z) ≤ D − ζφ(z). (FL1)

Hypothesis 2 (Minorisation condition). There exist a probability measure ν, a constant
β ∈ (0,1) and some time τ > 0 such that

Sτ δz ≥ βν, for all z ∈ C, (M1)

where C = {z : φ(z) ≤ R} for some R > 2D(1−e−ζ τ )

ζ(1−α)
.

Then (St )t≥0 has a unique invariant measure μ∞ and for any μ ∈ P() there exist some
constants C > 1, σ > 0 such that for all t ≥ 0 we have

‖Stμ − μ∞‖φ ≤ Ce−σ t‖μ − μ∞‖φ. (6)

Remark 1.5 The constants C, σ can be computed explicitly in terms of D, τ , α, β , ζ (see
Remark 3.10 in [15] or Remark 2 in [24]).

There are versions of Harris’s Theorem adapted to weaker Lyapunov conditions, provid-
ing subgeometric convergence results, see, e.g., [2, 10–12]. Here, we state and use a version
which is found in [7, 15, 24]. We refer the reader, e.g., to [11] (Theorems 3.10 and 3.12) or
to [2] (Theorem 1.2) for different versions of this theorem.

Theorem 1.6 (Subgeometric Harris’s Theorem) Let (St )t≥0 be a Markov semigroup satisfy-
ing the following hypotheses:

Hypothesis 3 (Weaker Foster-Lyapunov condition). There exist constants ζ > 0, D ≥ 0
and a continuous function φ :  → [1,+∞) with pre-compact sub-level sets such that

L∗[φ](z) ≤ D − ζh(φ), (FL2)

where h : R+ → R is a strictly concave, positive, increasing function and limu→+∞ h′(u) =
0.

Hypothesis 4 (Minorisation condition). For every R > 0, there exist a probability measure
ν, a constant β ∈ (0,1) and some time τ > 0 such that

Sτ δz ≥ βν for all z ∈ C, (M2)

where C = {z : φ(z) ≤ R}.
Then (St )t≥0 has a unique invariant measure μ∞ satisfying

ˆ
h(φ(z))μ∞(dz) ≤ D,

and there exists a constant C such that

‖Stμ − μ∞‖TV ≤ Cμ(φ)

H−1
h (t)

+ C

(h ◦ H−1
h )(t)
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holds for every μ(φ) = ´
φ(z)μ(dz) where the function Hh is defined by

Hh :=
uˆ

1

ds

h(s)
.

The proofs of these theorems can be found in [7, 11, 15]. In [11, 15], the authors make
a weaker assumption, namely h(u) ≤ u for any u ≥ 1, instead of the one which is stated
above limu→+∞ h′(u) = 0. Their assumption allows for linear growth at infinity, whereas
limu→+∞ h′(u) = 0 essentially requires h to be flat at infinity.

For the case of angularly dependent jump kernels, we are able to recover exponential con-
vergence using Harris’s theorem (Theorem 1.4). The Foster-Lyapunov condition is proven
in a similar way though more intricate than the work in our previous paper [13]. The minori-
sation condition is considerably more challenging due to the fact that we need to track the
dynamics over many more jumps to produce a lower bound. Therefore, we present the proof
that the minorsiation condition holds in dimension d = 2 to simplify the computations of
the lower bound. Thus, the convergence result is stated in d = 2 in Theorem 1.4. However,
we believe that there is no serious obstacle to generalising it to higher dimensions.

For the case of unbounded velocity spaces, we are only able to show subgeometric rates
of convergence. We do this via the subgeometric version of Harris’s theorem (Theorem 1.6).
Here, we are able to use exactly the same uniform minorisation condition as in our previous
paper [13] in the linear case. The Foster-Lyapunov condition is substantially different and
this is reflected in the subgeometric rate of convergence.

Before verifying these hypotheses for Eq. (1) we would like to add some comments on
the Foster-Lyapunov condition. In order to show that (FL1) holds true for Eq. (1) we would
like to find some function φ(z) where φ(z) → ∞ as |z| → ∞ and the existence of some
τ > 0, C > 0 and α ∈ (0,1) such that

ˆ

Rd

ˆ

V

φ(x, v)f (τ, x, v)dx dv ≤ α

ˆ

Rd

ˆ

V

φ(x, v)f0(x, v)dx dv + C, (7)

for any initial data f0(x, v) ∈ P(Rd × V). This is because for f satisfying ∂tf = L[f ], (7)
is equivalent to showing that

L∗[φ] ≤ D − ζφ, (8)

where L∗ is the formal adjoint of L and ζ = logα

τ
and D = C

logα

τ(1+α)
. In our case we have

L[f ](x, v) = −v · ∇xf +
ˆ

V

λ(v′ · ∇xM(x))κ(v′, v)f (t, x, v′)dv′

− λ(v · ∇xM(x))f (t, x, v),

(9)

and therefore,

L∗[φ](x, v) = v · ∇xφ(x, v) + λ(v · ∇xM(x))

⎛
⎝ˆ

V

κ(v, v′)φ(x, v′)dv′ − φ(x, v)

⎞
⎠ . (10)
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2 Angle-Dependent Tumbling Kernel

This section is dedicated to the long-time behaviour of the linear run and tumble equation,
Eq. (1) with the angularly dependent tumbling kernel (κ1). The following two sections are
dedicated to verifying the two hypotheses of Harris’s theorem (Theorem 1.4). At the end of
this section, we provide a proof of Theorem 1.1.

2.1 Minorisation Condition

In this section, we prove that Hypothesis 2, (M1), is satisfied for Eq. (1) with the angular-
dependent tumbling kernel (κ1). Our overall strategy is as follows: we show that the solution
f ≡ ft fo Eq. (1) attains a lower bound using a Duhamel’s formula and bounding below by
the part of ft where there are a particular number of jumps.

To keep the exposition of our strategy clear, we provide the following computations for
only d = 2. The very same approach can be used to extend the results to higher dimensions.

Denoting vθ := (cos θ, sin θ) and ∇x,yg := (∂xg, ∂yg) for any differentiable function g,
Eq. (1) becomes

∂tf + vθ · ∇x,yf =
ˆ

b(θ ′ − θ)λ(vθ · ∇x,yM)f (t, x, y, θ ′)dθ ′ − λ(vθ · ∇x,yM)f. (11)

Next, we define the semigroup (Tt )t≥0 accounting for the transport part,

(Ttf )(t, x, y, θ) := f (t, x − t cos θ, y − t sin θ, θ),

and the operator L̃,

(L̃f )(t, x, y, θ) :=
ˆ

1|θ ′−θ |<α(θ
′)f (t, x, y, θ ′)dθ ′ =

ˆ
1|θ ′ |<α(θ

′)f (t, x, y, θ + θ ′)dθ ′.

Then we have the following lemma

Lemma 2.1 Suppose that b(θ) ≥ β1|θ |≤α(θ). Then for any n ≥ 1 we have

f (t, x, y, θ) ≥

βn(1 − χ)ne−(1+χ)t

tˆ

0

tnˆ

0

. . .

t2ˆ

0

t1ˆ

0

(
Tt−tn L̃Ttn−tn−1 . . . L̃Tt2−t1 L̃Tt1f0

)
(x, y, θ)dt1 dt2 . . . dtn.

Proof We have that

∂t (f (t, x − t cos θ, y − t sin θ, θ) = λ(vθ · ∇x,yM(x − t cos θ, y − t cos θ))×(ˆ
b(θ ′)f (t, x − t cos θ, y − t sin θ, θ + θ ′)dθ ′ − f (t, x − t cos θ, y − t sin θ, θ)

)
.

Therefore writing �(t, x, y, θ) = ´ t

0 λ(vθ · ∇xM(x − s cos θ, y − s cos θ))ds we obtain

f (t, x − t cos θ, y − t sin θ, θ) = e−�(t)f0(x, y, θ)
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+ e−�(t)

tˆ

0

λ(vθ · ∇xM(x − s cos θ, y − s cos θ))

×
ˆ

b(θ ′)f (t, x − s cos θ, y − s sin θ, θ + θ ′)dθ ds.

Changing variables and using the fact that 1 − χ ≤ λ ≤ 1 + χ , we obtain

f (t, x, y, θ) ≥ e−(1+χ)tTtf0 + (1 − χ)

tˆ

0

e−(1+χ)(t−s)

ˆ
b(θ ′)(Tt−sfs)(x, y, θ + θ ′)dθ ′ ds.

Then using the assumption on b we have

f (t, x, y, θ) ≥ e−(1+χ)tTtf0 + β(1 − χ)

tˆ

0

e−(1+χ)(t−s)Tt−s L̃fs ds.

We note that the second term above is positive, so we have

f (t, x, y, θ) ≥ e−(1+χ)tTtf0.

Then, we can plug this into the integral term to obtain

f (t, x, y, θ) ≥ β(1 − χ)e−(1+χ)t

tˆ

0

Tt−s L̃Tsf0 ds.

We then continue substituting this into the integral term n times to obtain the result for any
n ≥ 1. This finishes the proof. �

Next, we want to show that we can find an n ≥ 1 and a range of admissible times for
which we can provide a lower bound on the term Tt−tn L̃Ttn−tn−1 . . . L̃Tt3−t2 L̃Tt2−t1 L̃Tt1f0.

Let us define Ptg := L̃Ttg for any probability measure g. Then we write P 3
t1,t2,t3

:=
Pt1Pt2Pt3 and note that for any measure g, P 3

t1,t2,t3
g has a density. In particular, P 3

t1,t2,t3
δx0 ×

δy0δθ0(x, y, θ) is bounded below by a uniform measure of a set with non-empty interior.
Hence, we can bound it below by a constant times the indicator function of a ball in the
position variable x with a centre at a point which we can compute. We can then use this
computation to show that P 3

t1,t2,t3
acting on the indicator function of a ball is bounded below

by a constant times the indicator function of another ball with a slightly larger radius and a
different centre. By tracking how these centres move and how the radii of the balls grow, we
can then get a bound below in (x, y)-space by the indicator function of a ball whose centre
is at the origin (rather than depending on the initial point).

We then need to prove that we can subsequently reach all possible angles (i.e., velocities)
while maintaining a uniform lower bound below in position. We show this by looking at
repeated jumps in a small time period so that we reach all angles without moving too far.
This then allows us to reach all possible angles but slightly shrinks the ball we found in the
lower bound for the spatial variables.

Therefore, in the following lemma, we look at P 3
t1,t2,t3

δx0δy0δθ0(x, y, θ) and show that it
is bounded below by a constant times the indicator function of a set which contains a ball
whose radius and centre we can compute.
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Lemma 2.2 Let α <
π

2
and r1, r2, r3 > 0 are a set of times, ε > 0 and |si − ri | < ε for each

i ∈ {1,2,3}. Then if ε is sufficiently small we have

P 3
s1,s2,s3

δx0δy0δθ0(x, y, θ) ≥ 1

s2s3
1B((x∗,y∗);r)(x, y)1|θ−θ0±δθ |≤ α

2
(θ),

where

x∗ = x0 + (r1 + R) cos(θ0), y∗ = y0 + (r1 + R) sin(θ0), r = r2r3(1 − cos(α/2)),

δθ = ± arctan

(
r2 sin(α/2)

r3 + r2 cos(α/2)

)
, R =

√
r2

2 + r2
3 + 2r2r3 cos(α/2).

Proof Since we have

Ts1(δx0δy0δθ0)(x, y, θ) = δx0+s1 cos(θ0)(x)δy0+s1 sin(θ0)(y)δθ0(θ)

= δx0(x − s1 cos(θ0))δy0(y − s1 sin(θ0))δθ0(θ),

and

L̃Ts1(δx0δy0δθ0)(x, y, θ) =
αˆ

−α

δx0+s1 cos(θ0)(x)δy0+s1 sin(θ0)(y)δθ0(θ − θ ′)dθ ′,

applying Ts2 once more we obtain,

Ts2 L̃Ts1(δx0δy0δθ0)(x, y, θ)

=
αˆ

−α

δx0(x − s1 cos(θ0)− s2 cos(θ0 + θ1))δy0(y − s1 sin(θ0)− s2 sin(θ0 + θ1))δθ0(θ − θ1)dθ1.

Iterating this yields

L̃Ts3 L̃Ts2 L̃Ts1(δx0δy0δθ0)(x, y, θ)

=
αˆ

−α

αˆ

−α

αˆ

−α

δx0(x − s1 cos(θ0) − s2 cos(θ0 + θ1) − s3 cos(θ0 + θ1 + θ2))

× δy0(y − s1 sin(θ0)− s2 sin(θ0 + θ1)− s3 sin(θ0 + θ1 + θ2))δθ0(θ − θ1 − θ2 − θ3)dθ1 dθ2 dθ3.

We perform a change of variables,

x̃ = s2 cos(θ0 + θ1) + s3 cos(θ0 + θ1 + θ2), ỹ = s2 sin(θ0 + θ1) + s3 sin(θ0 + θ1 + θ2),

then we have

∂x̃

∂θ1
= −s2 sin(θ0 + θ1) − s3 sin(θ0 + θ1 + θ2),
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Fig. 1 This image is an
illustration of the set S (dotted
region) mentioned in the proof of
Lemma 2.2 for fixed values of r2,
r3, α. The ball found inside the
set S is grey coloured.

∂ỹ

∂θ1
= s2 cos(θ0 + θ1) + s3 cos(θ0 + θ1 + θ2)

and

∂x̃

∂θ2
= −s3 sin(θ0 + θ1 + θ2),

∂ỹ

∂θ2
= s3 cos(θ0 + θ1 + θ2).

The Jacobian of this change of variables is dx̃ dỹ = s2s3 sin(θ2)dθ1 dθ2.
Moreover, defining θ̃ := θ1 + θ2 + θ3 and then dθ̃ = dθ , we obtain

L̃Ts3 L̃Ts2 L̃Ts1(δx0δy0δθ0)(x, y, θ) =
ˆ

S(x0,y0,θ0,s1,s2,s3)

δx0(x − s1 cos(θ0) − x̃))

× δy0(y − s1 sin(θ0) − ỹ)δθ0(θ − θ̃ )
1

s2s3| sin(θ2(x̃, ỹ))| dx̃ dỹ dθ̃ ,

where S(x0, y0, θ0, s1, s2, s3) is the set of possible values of x0 + s1 cos(θ0) + x̃, y0 +
s1 sin(θ0) + ỹ, and θ0 + θ̃ , (see Fig. 1). Then, as | sin(θ2)| ≤ 1 we have

L̃Ts3 L̃Ts2 L̃Ts1(δx0δy0δθ0)(x, y, θ) ≥ 1

s2s3
1S(x0,y0,θ0,s1,s2,s3)(x, y, θ).

Next, we want to show that S(x0, y0, θ0, s1, s2, s3) contains the ball mentioned in the state-
ment of the lemma. We notice that

x̃2 + ỹ2 = s2
1 + s2

2 + 2s1s2 cos(θ2) = R(θ2)
2.

We choose θ2 = ± α
2 and θ1 = ± arctan

(
s3 sin(α/2)

s2+s3 cos(α/2)

)
and this will give the centre of the

ball.
Now for a given θ2, we choose β = arctan

(
s3 sin(θ2)

s2+s3 cos(θ2)

)
then we can write

x̃ = (s2 cos(β) + s3 cos(θ2 − β)) cos(θ0 + θ1 + β) = R(θ2) cos(θ0 + θ1 + β)

ỹ = (s2 cos(β) + s3 sin(θ2 − β)) sin(θ0 + θ1 + β) = R(θ2) sin(θ0 + θ1 + β).

So we can set x̃ = R cos(ω) and ỹ = R sin(ω) as long as we can choose

θ2 = arccos

(
R2 − s2

2 − s2
3

s2s3

)
and θ1 = ω − arctan

(
s3 sin(θ2)

s2 + s3 cos(θ2)

)
.
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We can see that for θ1 and θ2 small we have

θ1 ≈ ω − s3θ2

s2 + s3
.

Thus, we expect to be able to choose |β| up to s3α

s2+s3
which is at least as large as it is needed

to cover the ball given that α is small. Then since all the computations depend continuously
on s1, s2, s3 and the ball is strictly contained inside the set S, we can replace s1, s2, s3 with
r1, r2, r3 provided that ε is small enough. This concludes the proof. �

Using Lemma 2.2 we then prove the following:

Lemma 2.3 Let r1, r2, r3 > 0 be a set of times, R, α are as in Lemma 2.2. Then we have

P 3
r1,r2,r3

1B((x0,y0);r̃)(x, y)1|θ−θ0|< α
2
(θ) ≥ γ1B(x∗∗,y∗∗;r̃+ r

2 )(x, y)1|θ∗∗−θ |≤α(θ),

where

x∗∗ = x0 − (r1 + R) cos(θ0 + δθ), y∗∗ = y0 − (r1 + R) sin(θ0 + δθ), θ∗∗ = θ0 + δθ

and γ a constant that can be computed explicitly. Let us define the map F ,

F(x0, y0, θ0) := (x∗∗, y∗∗, θ∗∗) (12)

which tracks how the centres of the balls move.

Proof We have

1B((x0,y0);r̃)(x, y)1|θ−θ0|< α
2
(θ)

=
ˆ

δx′(x)δy′(y)δθ ′(θ)1B((x0,y0);r̃)(x ′, y ′)1|θ ′−θ0|< α
2
(θ)dx ′ dy ′ dθ ′,

where
´

represents the triple integral,
´
R2×R2 dx ′ dy ′ ´ α

−α
dθ ′. Now applying three times Tt

and L̃ yields,

P 3
r1,r2,r3

1B((x0,y0);r̃)(x, y)1|θ−θ0|< α
2
(θ)

≥
ˆ (

P 3
r1,r2,r3

δx′δy′δθ ′
)
(x, y, θ)1B((x0,y0);r̃)(x ′, y ′)1|θ ′−θ0|< α

2
dx ′ dy ′ dθ ′

≥ 1

r2r3

ˆ
1B((x′+(r1+R) cos(θ ′),y′+(r1+R) sin(θ ′));r)(x, y)1B((x0,y0);r̃)(x ′, y ′)1|θ−θ ′−δθ |< α

2

× 1|θ ′−θ0|< α
2

dx ′ dy ′ dθ ′

= 1

r2r3

ˆ
1B((x−(r1+R) cos(θ ′),y−(r1+R) sin(θ ′));r)(x ′, y ′)1B((x0,y0);r̃)(x ′, y ′)1|θ−θ ′−δθ |< α

2

× 1|θ ′−θ0|< α
2

dx ′ dy ′ dθ ′

= 1

r2r3

ˆ ∣∣B (
(x − (r1 + R) cos(θ ′), y − (r1 + R) sin(θ ′)); r) ∩ B ((x0, y0); r̃)

∣∣
× 1|θ−θ ′−δθ |< α

2
1|θ ′−θ0|< α

2
dθ ′
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In the last line above, we fixed θ ′ and considered the integral in x ′ and y ′ which will measure
the size of the overlap between the balls B((x − (r1 + R) cos θ ′, y − (r1 + R) sin θ ′); r) and
B((x0, y0); r̃).

If (x, y) ∈ B((x0 + (r1 + R) cos θ ′, y0 + (r1 + R) sin θ ′); r̃ + r
2 ) then we can bound the

size of the overlap below by πr2

4 . We recall from Lemma 2.2 that r = r2r3

(
1 − cos( α

2 )
)
, so

we have

∣∣B (
(x − (r1 + R) cos(θ ′), y − (r1 + R) sin(θ ′)); r) ∩ B ((x0, y0); r̃)

∣∣ ≥
πr2r3

4

(
1 − cos

(α

2

))2
1B((x0+(r1+R) cos θ ′,y0+(r1+R) sin θ ′);r̃+ r

2 )(x, y).

Therefore the lower bound becomes, denoting C(r2, r3, α) := πr2r3
4

(
1 − cos

(
α
2

))2
(a con-

stant depending on r2, r3, α),

P 3
r1,r2,r3

1B((x0,y0);r̃)(x, y)1|θ−θ0|< α
2
(θ)

≥ C(r2, r3, α)

ˆ
1B

(
(x0+(r1+R) cos θ ′,y0+(r1+R) sin θ ′);r̃+ r

2

)(x, y)

×1|θ−θ ′−δθ |< α
2
1|θ ′−θ0|<α dθ ′,

= C(r2, r3, α)

ˆ
1B

(
(x0−x,y0−y);r̃+ r

2

)((r1 + R) cos(θ ′), (r1 + R) sin(θ ′))1|θ−θ ′−δθ |< α
2

×1|θ ′−θ0|<α dθ ′

= C(r2, r3, α)

ˆ
1∣∣∣θ ′−arccos

(
y0−y
x0−x

)∣∣∣≤arccos
(

r̃+r/2
r1+R

)1|θ−θ ′−δθ |< α
2
1|θ ′−θ0|<α dθ ′

Thus, if we impose that (x0 − x, y0 − y) ∈ B
(
((R + r1) cos(θ0 + δθ), (R + r1) sin(θ0 +

δθ)); r̃ + r
4

)
then we can bound the last integral above by

γ1B
(
(x0−(r1+R) cos(θ0+δθ),y0−(r1+R) sin(θ0+δθ));r̃+ r

4

)(x, y)1|θ−θ0−δθ |< α
2
(θ),

where γ is a constant depending on r1, r2, r3 and is bounded uniformly in terms of upper

and lower bounds on r1, r2, r3. Roughly we can compute this constant γ ≈ πr2
2 r2

3 α2

32(r1+R)
. �

As we iterate the process that moves the centre of the balls, we can find a radius R̂ > 0
so that the path of centres stays inside B((x0, y0); R̂) forever. We prove this in the following
lemma.

Lemma 2.4 Let k ≥ 1 and consider a sequence of maps (xk, yk, θk) = Fk(x0, y0, θ0) where
F is defined in Lemma 2.3. Then there exists a constant R̂ > 0 depending on r1, r2, r3 such
that (xk, yk) ∈ B((x0, y0); R̂) for every k ≥ 1.

Proof We have

xk = x0 − (r1 + R) cos(θ0 + δθ) − (r1 + R) cos(θ0 + 2δθ) − · · · − (r1 + R) cos(θ0 + kδθ),

and yk is defined similarly. The points (xk, yk) are illustrated in Fig. 2 below.
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Fig. 2 This image shows the
iterates of the map F in
(x, y)-space. We notice that each
triangle formed by the points C,
(xk, yk), (xk+1, yk+1) is an
isosceles triangle and a rotation
of the triangle formed by the
points C, (x0, y0), (x1, y1). We
can then compute the circle that
they all lie on and the point at the
centre C using standard tools in
trigonometry.

We can then compute the ball that all the points lie on, which is a circle whose radius R̂

and centre C are given by

R̂ = r1 + R

sin(δθ/2)
, C = (x0, y0) − R̂ (cos(π/2 − (θ0 + δθ/2)), sin(π/2 − (θ0 + δθ/2))) .

This finishes the proof. �

In the next lemma, we prove that after 24R̂
r

steps, the x, y marginal is bounded by a

constant times the indicator function of a ball of radius R̂.

Lemma 2.5 If we let ñ = ⌈
24R̂
r

⌉
, then there exists some constant γ̃ > 0 such that

P ñδx0δy0δθ0(x, y, θ) ≥ γ̃1B((x0,y0);R̂)(x, y) 1|θ−θk |≤α(θ). (13)

Proof By Lemma 2.4 we can choose a path such that (xk, yk) ∈ B((x0, y0); R̂) and writing
k = ñ

3 Lemma 2.3 yields

P ñδx0δy0δθ0(x, y, θ) ≥ γ k1
B

(
(xk ,yk);

(
1+ k−1

4

)
r
)(x, y)1|θ−θk |≤α(θ).

Since we also have that
(
1 + k−1

4

)
r ≥ 2R̂, therefore we obtain (13) with γ̃ = γ k . �

Next, we look at the angles and prove the following lemma:

Lemma 2.6 Let n∗ = ⌈
4π
α

⌉
and suppose that t1 + t2 + · · · + tn∗ ≤ l. Then we have

P n∗
t1,t2,...,tn∗

(
1

B

(
(0,0); R̂

2

)(x, y)1|θ−θ0|<α(θ)
) ≥ γ1

B

(
(0,0); R̂

2 −2l

),
uniform in θ .

Proof First, let us look at
ˆ

P n∗δx0δy0δθ0(x, y, θ)dx dy

=
¨

P n∗−1(δx0δy0δθ0)(x − tn∗ cos(θ), y − tn∗ sin θ, θ + θ ′)1|θ ′ |≤α(θ
′)dx dy dθ ′
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=
˚

P n∗−1(δx0δy0δθ0)(x, y, θ + θ ′)1|θ ′ |≤α(θ
′)dx dy dθ ′dθ.

We can keep iterating this to obtain
ˆ

P n∗δx0δy0δθ0(x, y, θ)dx dy

=
¨

· · ·
ˆ

δx0δy0δθ0(θ + θ1 + θ2 + · · · + θn∗)1|θ1|≤α . . .1|θn∗ |≤α dx dy dθ1 . . . dθn∗

=
ˆ

δθ0(θ + θ1 + θ2 + · · · + θn∗)1|θ1|≤α . . .1|θn∗ |≤α dθ1 . . . dθn∗

≥ C.

For some constant C that doesn’t depend on θ0, θ . Therefore,
ˆ

P n∗δx0δy0δθ0(x, y, θ)dx dy ≥ C.

Hence we can write

P n∗δx0δy0δθ0(x, y, θ) = μ(θ | θ0)μ((x, y) | θ, (x0, y0, θ0)) ≥ Cμ((x, y) | θ, (x0, y0, θ0))

where μ((x, y) | θ, (x0, y0, θ0)) is the conditional law of the position variables given θ and
the initial point (x0, y0) so we have that

ˆ
μ((x, y) | θ, (x0, y0, θ0))dx dy = 1.

We can also see that

supp(μ((x, y) | θ, (x0, y0, θ0)) ⊆ 1B((x0,y0);l)

as the x and y variables can have travelled a distance of at most l. Then

P n∗(1B((0,0);R̂)1|θ−θ∗|<α

)

≥
ˆ

cμ((x, y) | θ, (x ′, y ′, θ ′))1B((0,0);R̂)(x
′, y ′)1|θ ′−θ0|<α dx ′ dy ′ dθ ′.

Then using the translation invariance of the transport map we can write

μ((x, y) | θ, (x ′, y ′, θ ′)) = μ((−x ′,−y ′) | θ, (−x,−y, θ ′)),

so we have

P n∗(1B((0,0);R̂)1|θ−θ∗|<α

) ≥
ˆ

μ((−x ′,−y ′) | θ, (−x,−y, θ ′))1B((0,0);R̂)(x
′, y ′)

× 1|θ ′−θ0|<α dx ′ dy ′ dθ ′

≥ C1B((0,0);R̂−2l)(x, y).

Above, we use the fact that if (x, y) ∈ B((0,0); R̂ − 2l) then we will be integrating over the
full support of μ((−x ′,−y ′) | θ, (−x,−y, θ ′)). �
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Using the previous lemmas, we can prove that the minorisation condition (M1) for Eq. (1)
with the angularly dependent tumbling kernel is satisfied.

Proposition 2.7 Let f0(x, y, θ) = δx0δy0δθ0(x, y, θ) with (x0, y0) ∈ B
(
(0,0); R̂

2

)
then, after⌈

24R̂
r

⌉ + n∗ steps, provided that the times are chosen suitably, we have

f (t, x, y, θ) ≥ C1
B

(
(0,0); R̂

4

),

for some C and R̂ that can be computed explicitly.

Proof Suppose that the first n∗∗ inter-jump times are within ε of r1, r2, r3 with ε small
enough so that Lemma 2.2 applies and γ is chosen such that Lemma 2.5 holds for any
interjump times in this range with constant γ . Suppose further that the sum of the last n∗
jump times is less than l. Then, using the previous result we have

P n∗∗+n∗δx0δy0δθ0(x, y, θ) = P n∗ (
P n∗∗δx0δy0δθ0

)
(x, y, θ)

using Lemma 2.5 ≥ P n∗(γ n∗∗
3 1B((x0,y0);R̂)1

∣∣∣θ−θ0−n∗∗ δθ
3

∣∣∣≤ α
2

)

using that (x0, y0) ∈ B
(
(0,0); R̂

2

) ≥ P n∗(γ n∗∗
3 1

B((0,0); R̂
2 )
1∣∣∣θ−θ0−n∗∗ δθ

3

∣∣∣≤ α
2

)

using Lemma 2.6 ≥ γ1
B

(
(0,0); R̂

2 −2l
).

We then take m = R̂
8 and substitute this into Lemma 2.1 and integrate over the admissible

possible jump times and obtain

f (t, x, v) ≥ γ̂1
B

(
(0,0); R̂

4

)

where γ̂ is a constant we could, in principle, compute. This verifies (M1) for (11) with the
angularly dependent kernel (κ1). �

2.2 Foster-Lyapunov Condition

In this section, we verify the Foster-Lyapunov condition (FL1) for Eq. (1) for the case (κ1).
We remark that the minorisation condition in the previous section was given in dimension
d = 2 to keep the exposition clear. The Foster-Lyapunov condition we prove in this section
is valid for arbitrary dimensions d ≥ 1. We start by proving the following lemma.

Lemma 2.8 Suppose that κ is a collision kernel (κ1) satisfying the hypothesis (H4) then

ˆ

Sd−1

κ(v′, v)v′ · ∇xM(x)dv′ = Cκv · ∇xM(x), (14)

where Cκ ≤ 1 is a constant that only depends on the form of the collision kernel.



    6 Page 18 of 26 J. Evans, H. Yoldaş

Proof We perform a change of variables and write v′ = cos(θ)v + sin(θ)w where w ∈ Sv

ranges over the sphere of dimension d − 2 lying in the hyperplane perpendicular to v. This
gives us

ˆ

Sd−1

κ(v′, v)v′ · ∇xM(x)dv′ =
π̂

−π

ˆ

Sv

κ1(θ)(cos(θ)v · ∇xM(x) + sin(θ)w · ∇M(x))dw dθ.

Since κ1 is an even function, integrating first in θ yields

|Sv|
(ˆ

κ1(θ) cos(θ)dθ
)
v · ∇xM(x) = |Sd−2|

(ˆ
κ1(θ) cos(θ)dθ

)
v · ∇xM(x).

where |Sv| is the size of Sv , similarly for |Sd−2|. Therefore we obtain (14) with

Cκ = |Sd−2|
(ˆ

κ1(θ) cos(θ)dθ
)
. �

Lemma 2.9 Suppose that κ is a collision kernel (κ1) and that hypotheses (H2) and (H4) are
satisfied. Then we have

ˆ

Sd−1

κ(v′, v)v′ · ∇xM(x)ψ(v′ · ∇xM(x))dv′ ≥ λ̃(‖∇xM‖∞, κ)|∇xM(x)|b.

Proof Let us first prove the lemma when d = 2 which is the application of Theorem 1.1.
Performing the same change of variables as in Lemma 2.8, we have

ˆ

S1

κ(v′, v)v′ · ∇xM(x)ψ(v′ · ∇xM(x))dv′

=
π̂

−π

κ1(θ)(cos(θ)v · ∇xM + sin(θ)v⊥ · ∇xM)ψ(cos(θ)v · ∇xM + sin(θ)v⊥ · ∇xM)dθ.

Then, using the assumption (m) we can bound this integral below by

c

π̂

−π

κ1(θ)| cos(θ)v · ∇xM + sin(θ)v⊥ · ∇xM|b dθ = c|∇xM|b
π̂

−π

κ1(θ)| cos(θ − α)|b dθ,

where α is the angle between v and ∇xM . If we write

F(α) =
π̂

−π

κ1(θ)| cos(θ − α)|b dθ,

then we can compute that

F ′(α) = b

π̂

−π

κ1(θ)| cos2(θ − α)| b
2 −1 cos(θ − α) sin(θ − α)dθ
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and by changing variables to get F ′(α) = b
´ π

−π
κ1(θ + α)| cos2(θ)| b

2 −1 cos(θ) sin(θ)dθ and
then changing variables back we have

F ′′(α) = b

π̂

−π

κ ′
1(θ)| cos2(θ − α)| b

2 −1 cos(θ − α) sin(θ − α)dθ.

Therefore, F(α) = 0 when α = {
0,± π

2 ,±π
}

and in the case α = ± π
2 we have F ′′(α) < 0

as

F ′′
(
±π

2

)
= −b

π̂

−π

κ ′
1(θ)| sin2(θ)|b/2−1 sin(θ) cos(θ)dθ,

which is negative when κ ′
1(θ) sin(θ) ≥ 0 for all θ which will be the case if κ1 is a decreasing

function of |θ |. Therefore, for all α we have

F(α) ≥
π̂

−π

κ1(θ)| sin(θ)|bdθ.

In the case where we have d > 2, let us make the change of variables

v′ = cos(θ)v + sin θ cos(ψ)u + sin(θ) sin(ψ)p,

where u is the unit vector in the direction ∇xM − (∇xM · v) v and p is a variable vector
that ranges over the sphere of vectors of norm 1 perpendicular to both v and u (which we
call Sv,u. The Jacobian of this change of variable is | sin(θ)|d−2. Therefore, we want to find
a lower bound for the integral

π̂

−π

π̂

−π

ˆ

Sv,u

κ1(θ)| sin(θ)|d−2| cos(θ)v · ∇xM + sin(θ) cos(ψ)u · ∇xM|b dp dψ dθ.

The integral dp just gives us a constant factor. To evaluate the rest, we write φv to be the
angle between ∇xM and v. Then we have

|∇xM|b
π̂

−π

π̂

−π

κ1(θ)| sin(θ)|d−2| cos(θ) cos(φv) + sin(θ) sin(φv) cos(ψ)|b dψ dθ

= |∇xM|b
π̂

−π

(1 − sin2(φv) sin2(ψ))b/2

π̂

−π

κ1(θ)| sin(θ)|d−2| cos(θ − α(φv,ψ))|b dθ dψ

≥ |∇xM|b
⎛
⎝

π̂

−π

| cos(ψ)|bdψ

⎞
⎠ inf

α

⎛
⎝

π̂

−π

κ1(θ)| sin(θ)|d−2| cos(θ − α)|bdθ

⎞
⎠

= |∇xM|b
⎛
⎝

π̂

−π

| cos(ψ)|bdψ

⎞
⎠

⎛
⎝

π̂

−π

κ1(θ)| sin(θ)|d−2| sin(θ)|bdθ

⎞
⎠ .

In the last line above, we have used similar considerations to the case d = 2. �
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Now, we can move on to the proof of the Foster-Lyapunov condition (FL1).

Proposition 2.10 If hypotheses (H1), (H2), (H3) and (H4) are satisfied then we can choose
a constant A so that the function

φ(x, v) =
(

1 − γ

1 − Cκ

v · ∇xM(x) − γAv · ∇xM(x)ψ(v · ∇xM)
)
e−γM(x)

verifies a Foster-Lyapunov condition (FL1) for Eq. (1).

Proof First, we notice that if A is sufficiently small then

φ(x, v) ≥
(

1 − 2γ
( 1

1 − Cκ

+ χ

1 + χ

)
V0‖∇xM‖∞

)
e−γM(x),

so we can choose

γ ≤ 1

4V0‖∇xM‖∞

( 1

1 − Ck

+ χ

1 + χ

)−1

and this ensures

φ(x, v) ≥ 1

2
e−γM(x). (15)

Now, we differentiate the separate parts of the Lyapunov function, remembering (10) and
using Lemmas 2.8 and 2.9,

L∗(e−γM) = −γ v · ∇xMe−γM,

L∗(v · ∇xMe−γM) = vT Hess(M)ve−γM + γ (v · ∇xM)2e−γM

− (1 − Cκ)v · ∇xMe−γM + χ(1 − Cκ)ψ(v · ∇xM)v · ∇xMe−γM,

and

L∗(v · ∇xMψ(v · ∇xM)e−λM)

≥ vT Hess(M)v
(
ψ(v · ∇xM) + ψ ′(v · ∇xM)v · ∇xM

)
e−γM

+ γ (v · ∇xM)2ψ(v · ∇xM)e−γM − v · ∇xMψ(v · ∇xM)(1 + χ)e−γM

+ λ̃(‖∇xM‖∞, κ1)(1 − χ)|∇xM|b.

Now, we can put this all together in a Lyapunov functional for positive A sufficiently small

L∗
((

1 − γ

1 − Cκ

v · ∇xM − γAv · ∇xMψ(v · ∇xM)
)
e−γM

)

≤ γ vT Hess(M)ve−γM
( 1

1 − Cκ

+ A
(

1 + sup
z

(zψ ′(z)))
)

+ γ 2V 2
0 e−γM

( 1

1 − Cκ

+ A
)

+ v · ∇xMψ(v · ∇xM)e−γMγ (−χ + A(1 + χ)) − γA(1 − χ)|∇xM|be−γM



Trend to Equilibrium for Run and Tumble Equations with Non-uniform. . . Page 21 of 26     6 

Then, choosing A ≤ χ

1+χ
we have

L∗
((

1 − γ

1 − Cκ

v · ∇xM − γAv · ∇xMψ(v · ∇xM
)
e−γM

)

≤ γ
(
C1V

2
0 |Hess(M)|e−γM + γC2V

2
0 e−γM − A(1 − χ)|∇xM|b

)
e−γM.

Now, we know that we can choose R∗ such that if |x| > R∗ then,

|∇xM(x)| ≥ m∗ and C1V
2

0 |Hess(M)(x)| ≤ A(1 − χ)
mb∗
4

,

then if we choose γ small enough so that γC2V
2

0 ≤ A(1 − χ)
mb∗
4

, then we will have

L∗
((

1 − γ

1 − Cκ

v · ∇xM − γAv · ∇xMψ(v · ∇xM
)
e−γM

)

≤ γ
(

− 1

2
A(1 − χ)mb

∗e
−γM1|x|>R∗ + C31|x|≤R∗

)
, (16)

for some constant C3. Finally, using (15) we have

L∗[φ] ≤ −γA(1 − χ)mb
∗φ + C4.

This verifies (FL1) with ζ = γ A(1 − χ)mb∗ and D = C4. �

Proof of Theorem 1.1 We verify the two hypotheses of Harris’s theorem in Propositions 2.7
and 2.10. The contraction in the φ-weighted total variation norm and the existence of a
unique steady state follow by Harris’s theorem (Theorem 1.4). �

3 Unbounded Velocity Spaces

This section is dedicated to the long-time behaviour of the linear run and tumble equation,
Eq. (1) posed in an unbounded velocity space V = R

d with a tumbling kernel (κ2). The
following two sections are dedicated to verifying the two hypotheses of the subgeometric
version of Harris’s theorem (Theorem (1.6)). At the end of this section, we provide a proof
of Theorem 1.3.

3.1 Minorisation Condition

For unbounded velocities, our minorisation part is essentially identical to that in our previ-
ous paper [13]. For the sake of completeness, we include a proof here. Let us again write
(Ttf )(t, x, v) = f (t, x − vt, v) for the transport semigroup and define

(L̂f )(t, x, v) :=
ˆ

Rd

f (t, x,u)du1|v|≤V0(v).

Then we have the following lemmas.
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Lemma 3.1 There exists a constant C such that

f (t, x, v) ≥ Ce−(1+χ)t

tˆ

0

sˆ

0

Tt−s L̂Ts−r L̂Trf0(x, v)dr ds.

Proof The proof is exactly the same as in [13] after observing that there exists some C̃ > 0
such that

κ2(v) ≥ C̃1|v|≤V0(v). �

Lemma 3.2 For every R∗ > 0, we can take t = 3 + R∗
V0

such that any solution of Eq. (1) with

initial data f0 ∈ P(Rd ×R
d) with

´
|x|≤R∗

´
B(0;V0)

f0(x, v)dx dv = 1 satisfies

f (t, x, v) ≥ (1 − χ2)e−(1+χ)t 1

td |B(V0)|1|x|≤V0(x)1|v|≤V0(v). (17)

Proof We take f0(x, v) := δ(x0δv0) where (x0, v0) ∈R
d ×B(0,V0), is an arbitrary point with

an arbitrary velocity. We only need to consider x0 ∈ B(0,R∗), then the bound we obtain
depends on R∗. First, we have that

Trf0 ≥ δx0+rv0(x)δv0(v).

Applying L̂ to this we obtain

L̂Trf0 ≥ δx0+rv0(x)1|v|≤V0(v).

Performing a change of variables we have
ˆ

Rd

(Ts−r L̂Trf0)(x, v)dv ≥ 1

(s − r)d |B(V0)|1|x−x0−rv0|≤V0(s−r)(x).

Therefore we have

L̂Ts−r L̂Trf0 ≥ 1

(s − r)d |B(V0)|1|x−x0−rv0|≤V0(s−r)(x)1|v|≤V0(v).

Applying the transport operator once more we obtain

Tt−s L̂Ts−r L̂Trf0 ≥ 1

(s − r)d |B(V0)|1|x−(t−s)v−x0−rv0|≤V0(s−r)(x)1|v|≤V0(v).

Moreover, we have

|x| ≤ (s − r)V0 − (t − s)V0 − rV0 − R∗

which is implied by |x − v(t − s)− x0 − rv0| ≤ (s − r)V0 since all the velocities are smaller
than V0. Then, if we ensure that (s − r) ≥ 2 + R∗

V0
, r ≤ 1

2 and that (t − s) ≤ 1
2 , we will obtain

Tt−s L̂Ts−r L̂Trf0 ≥ 1

(s − r)d |B(V0)|1|x|≤V0(x)1|v|≤V0(v).
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Therefore, setting t = 3+ R∗
V0

and restricting the time integrals to r ∈ (
0, 1

2

)
, s ∈ (

5
2 + R∗

V0
,3+

R∗
V0

)
, we obtain

f (t, x, v) ≥ C

tˆ

0

sˆ

0

Tt−s L̂Ts−r L̂Trf0(x, v)dr ds

≥ C(1 − χ)2e−(1+χ)t

3+ R∗
V0ˆ

5
2 + R∗

V0

1
2ˆ

0

1

(s − r)d |B(V0)|1|x|≤V0(x)1|v|≤V0(v)dr ds

≥ C(1 − χ)2e−(1+χ)t 1

td |B(V0)|1|x|≤V0(x)1|v|≤V0(v).

This gives the uniform lower bound and verifies the minorisation condition (M2). We can
extend this result from the Dirac delta function initial data to general initial data by using
the fact that the associated semigroup is Markov. �

3.2 Foster-Lyapunov Condition

In this section, we verify the Foster-Lyapunov condition (FL2) for Eq. (1) for the case (κ2).
Thus, we prove the following lemma.

Lemma 3.3 If hypotheses (H1), (H2), (H3), (H5) are satisfied and assuming that M ×
Hess(M) is bounded, then the function

φ(v,M) = M2 + 2v · ∇xMM
(

1 + χ

1 + χ
ψ(v · ∇xM)

)
+ Av2

verifies a weaker Foster-Lyapunov function (FL2) for a constant A sufficiently large and
with computable constants C > 0, � > 0 so that

L∗[φ](v,M) ≤ C − �
√

φ(v,M).

Proof In this proof, it is useful to remember that M is negative for |x| sufficiently large.
Since it is only defined up to a constant, let us choose M < 0. Similar to the previous case,
we look at how the adjoint L∗ (defined by (10)) acts on different terms. Precisely, we have

L∗(M2) = 2v · ∇xMM,

L∗(2v · ∇xMM) = 2vT Hess(M)vM + 2(v · ∇xM)2 − 2v · ∇xMM

− 2χv · ∇xMψ(v · ∇xM)|M|
Then we have, for any c > 0

L∗(cv · ∇xMψ(v · ∇xM)M
)

= cvT Hess(M)vM
(
ψ ′(v · ∇xM)v · ∇xM + ψ(v · ∇xM)

) + c(v · ∇xM)2ψ(v · ∇xM)

+ c(1 − χψ(v · ∇xM))
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× M

(ˆ
κ2(v

′)v′ · ∇xMψ(v′ · ∇xM)dv′ − v · ∇xMψ(v · ∇xM)

)

≤ c
(‖Hess(M)M‖∞‖ψ(z)(z)‖Lip + ‖∇xM‖2

∞
) |v|2

− c(1 − χ)λ̃(‖∇xM‖∞, κ2)|M| + c(1 + χ)v · ∇xMψ(v · ∇xM)|M|.

Summing these up and choosing c = 2χ

1+χ
we have

L∗(M2 + 2v · ∇xMM + 2χ

1 + χ
v · ∇xMψ(v · ∇xM)M

)

≤
((

2 + 2χ

1 + χ
‖ψ(z)(z)‖Lip

)
‖Hess(M)M‖∞ +

(
2 + 2χ

1 + χ

)
‖∇xM‖2

∞
)
|v|2

− 2χ(1 − χ)

1 + χ
λ̃|M|

Now we also have

L∗(|v|2) ≤ (1 + χ) − (1 − χ)|v|2.
Therefore choosing

A ≥ 1 + 1

1 − χ

((
2 + 2χ

1 + χ
‖ψ(z)(z)‖Lip

)
‖Hess(M)M‖∞ +

(
2 + 2χ

1 + χ

)
|∇xM‖2

∞
)
,

we have

L∗
(
M2 + 2v · ∇xMM + 2χ

1 + χ
v · ∇xMψ(v · ∇xM)M + A|v|2

)

≤ A(1 + χ) − (1 − χ)|v|2 − 2χ(1 − χ)λ̃

1 + χ
|M|

≤ C − �
√

φ(v,M).

Lastly, choosing A sufficiently large ensures that φ > 0, and for A sufficiently large, φ is
comparable to M2 + v2. �

3.3 Subgeometric Convergence Rates

We can now combine the results of the two previous sections to get a proof of Theorem 1.3.

Proof of Theorem 1.3 We have verified the hypotheses of the subgeometric Harris’s theorem
with the Foster-Laypunov function being

φ(v,M) = M2 + 2v · ∇xMM
(

1 + χ

1 + χ
ψ(v · ∇xM)

)
+ Av2,

and the function h(t) = √
t . We can, therefore, compute that the function H−1(t) = (

t
2 +

1
)2

and h ◦ H−1
h (t) = (

t
2 + 1

)
. Hence, applying the conclusion of Theorem 1.6 gives the

existence of a steady state f∞ and that

‖ft − f∞‖T V
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≤ C
( t

2
+ 1

)−2
ˆ

f0

(
M2 + 2v · ∇xMM

(
1 + χ

1 + χ
ψ(v · ∇xM)

)
+ Av2

)
dx dv

+ C
( t

2
+ 1

)−1
.

This proves the result. �
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