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Abstract
General evolution equations in Banach spaces are investigated. Based on an operator-valued
version of de Leeuw’s transference principle, time-periodic Lp estimates of maximal regu-
larity type are carried over from R-bounds of the family of solution operators (R-solvers)
to the corresponding resolvent problems. With this method, existence of time-periodic solu-
tions to the Navier-Stokes equations is shown for two configurations: in a periodically mov-
ing bounded domain and in an exterior domain, subject to prescribed time-periodic forcing
and boundary data.

Keywords Evolution equations · Time-periodic solutions · Lp estimates · Navier-Stokes
equations · Inhomogeneous boundary data

Mathematics Subject Classification (2020) Primary 47J35 · 35K90 · 35B10 · 35B45

1 Introduction

The study of time-periodic solutions to evolution equations is the study of oscillations. In
this article we investigate time-periodic solutions corresponding to time-periodic data, that
is, systems of forced oscillation. A number of different methods, further described below, are
traditionally used to carry out a mathematical investigation of such solutions. In the follow-
ing we introduce a new technique to establish a priori estimates of maximal Lp regularity
type for linearized equations. Such estimates are essential in the study of nonlinear prob-
lems, which we will demonstrate by some examples. For notational simplicity, we consider
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only 2π -periodic problems. By a simple scaling argument, however, all our results extend
to T -periodic problems for any T > 0.

The study of 2π -time-periodic solutions to evolution equations can be carried out in a
framework where the time axis is replaced with a torus T :=R/2πZ. Consider for example
an abstract evolution equation

∂tu + Au = f in T (1.1)

in a Banach space X, where A is a linear operator on X. Since the time domain is a torus,
a solution to (1.1) is intrinsically time-periodic. We refer to estimates of the solution in
Lp(T;X) norms as periodic Lp estimates. Estimates that include all highest-order norms of
the solution are said to be of maximal regularity, which in the case (1.1) above means an
estimate of type

‖∂tu‖Lp(T,X) + ‖Au‖Lp(T,X) + ‖u‖Lp(T,X) ≤ C‖f ‖Lp(T,X). (1.2)

Such estimates lead to a characterization of ∂t +A as a homeomorphism in an Lp(T,X) set-
ting, which is critical to the analysis of non-linear problems. In the following, we study the
case when X is a UMD space and p ∈ (1,∞), and we show how to establish periodic Lp es-
timates of maximal regularity type for a large class of abstract evolution equations based on
their R-solvers, that is, solution operators of the associated resolvent problems that satisfy
specific R-bounds. For the notion of UMD spaces and R-boundedness, we refer to Sect. 2.3.
In particular, we include cases where 0 lies in the spectrum of A, which constitutes a par-
ticular challenge and where traditional methods have shortcomings. As we explain below in
more detail, in this case the classical maximal regularity estimate (1.2) is not available and
∂t + A can only be a realized as a homeomorphism in an adapted framework of function
spaces.

Typically, Lp estimates are established via Fourier multipliers, often via the multiplier
theorem of Mikhlin, which was extended to operator-valued multipliers by WEIS [77]. He
showed that Mikhlin’s theorem remains valid in the operator-valued case if boundedness is
replaced with R-boundedness in the assumptions. On the strength of this result, it is possible
to establish maximal regularity in Lp((0, T ),X) norms for initial-value problems such as

∂tu + Au = f in (0, T ), u(0) = u0 (1.3)

by establishing R-boundedness on the resolvent family

{λR(λ,A) | λ ∈ �θ,λ0}, (1.4)

where R(λ,A) = (λI − A)−1 denotes the resolvent operator of A for a resolvent parameter
λ and

�θ,λ0 := {
λ ∈C | arg(λ) ≤ π − θ, |λ| ≥ λ0

}
(0 ≤ θ <

π

2
)

is a sector, which excludes a ball around the origin if λ0 > 0. Note that for many problems,
in particular in unbounded domains, the inclusion of the origin is not possible since 0 does
not belong to the resolvent set. However, for the derivation of Lp estimates for the initial-
value problem (1.3), the origin can be excluded from the sector unless T = ∞ is required.
Since the appearance of [77], R-bounds for resolvent families of the form (1.4) have been
established for a substantial number of boundary-value problems, which lead to Lp maximal
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regularity estimates in UMD spaces X for the associated initial-value problem, see [15, 68]
for example, and the references therein.

In this article, we develop a technique to obtain periodic Lp estimates of maximal reg-
ularity type from these R-bounds. In particular, we focus on problems where the origin
belongs to the spectrum σ(A) of A, so that R-bounds can at best be established in �θ,λ0 for
some λ0 > 0. In the case that 0 is included in the resolvent set as well as in the R-bounds,
that is, the operator family (1.4) is R-bounded for λ0 = 0, classical maximal Lp regularity
can be established, which was shown by ARENDT and BU [2]. If this is not the case, clas-
sical periodic Lp estimates of maximal regularity type such as (1.2) cannot be established
because invertibility of the linear time-periodic problem would require invertibility of the
associated steady-state problem, that is, that 0 belongs to the resolvent set ρ(A). Therefore,
we introduce an alternative functional setting in order to characterize the parabolic operator
∂t + A as a homeomorphism with respect to data in Lp spaces.

The technique developed in the following is based on the transference principle intro-
duced by DE LEEUW in [14] for scalar-valued multipliers and generalized to the operator-
valued case by HYTÖNEN, VAN NEERVEN, VERAAR, and WEIS [33]. It states that Lp

boundedness of a continuous Fourier multiplier on Lp(R) is retained when the multiplier
is restricted to Z and thus becomes a multiplier in the torus T = R/2πZ setting. Despite the
transference principle seeing little usage outside the field of harmonic analysis, we believe
it to be an effective tool in the analysis of periodic solutions to partial differential equations.
The promotion of this viewpoint is one of the main purposes of this article since it provides
us with an extremely useful tool to derive periodic Lp estimates from known R-bounds on
resolvent families. If for example the resolvent family (1.4) is R-bounded in a sector con-
taining the full imaginary axis iR, that is, for λ0 = 0, then the operator-valued version of the
transference principle combined with the operator-valued version of Mikhlin’s multiplier
theorem by WEIS [77] immediately yields the periodic Lp estimates (1.2). If, however, R-
bounds are only available in a sector excluding the origin, that is, λ0 > 0, a decomposition
technique has to be introduced. Expanding (1.1) into a Fourier series, we introduce the pro-
jection of u into a lower frequency part u	 := ∑

|k|≤λ0
ukeikt corresponding to the finite num-

ber of modes k ∈ Z with |k| ≤ λ0, and a complementary higher frequency part uh = u − u	.
Based on the R-bounds of (1.4), we can combine the transference principle with Mikhlin’s
multiplier theorem to establish periodic Lp estimates for the higher frequency part. Provided
that a (possibly different) framework of Banach spaces can be identified that ensures peri-
odic maximal Lp regularity for the lower frequency part, we can combine the two parts to
establish periodic maximal Lp regularity for the full problem within the resulting function
spaces, where the different Fourier coefficients of the solution and the data might belong to
different function spaces. Due to the bespoke framework introduced for the lower frequency
part, the resulting type of Lp estimates may not be classical in the sense of (1.2). They are,
however, effective in the investigation of time-periodic solutions to corresponding nonlin-
ear problems, which we demonstrate by specific examples. This decomposition technique
was successfully applied before, for example, to treat the time-periodic Oseen problem [29].
While for this exterior-domain problem, the non-zero Fourier modes of a solution can be
shown to belong to classical Sobolev spaces, the zero-order mode, which corresponds to a
time-independent solution, requires a treatment in a framework of homogeneous Sobolev
spaces.

Whereas the study of time-periodic solutions to ordinary differential equations goes back
to the nineteenth century, one of the first investigations of time-periodic partial differential
equations is due to PRODI [55], who examined the (parabolic) 1D heat equation. Although
the work of PRODI is predated by a few other articles [3, 36, 69, 79], it seems that [55] is the
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first rigorous, by contemporary standards, investigation into the matter. Around the same
time, articles also appeared on time-periodic solutions to the (hyperbolic) wave equation
[25, 56]. In the following years, the foundation was laid for the methods that have nowadays
become standard in the study of time-periodic partial differential equations. We shall give a
brief overview of the main ideas. Consider for this purpose a time-periodic abstract evolution
equation

∂tu + Au = F(t, u) in R, u(t + 2π) = u(t) (1.5)

in the classical setting with the whole of R as time axis, but still considered as equation in a
Banach space X for some operator A and for 2π -time-periodic (nonlinear) data F .

By far the most popular method that emerged is based on the identification of solutions
to (1.5) as fixed points of the so-called Poincaré operator.1 The basic idea goes back to
the pioneering work of Poincaré [53, 54] on dynamical systems. The Poincaré operator,
sometimes also referred to as translation operator along trajectories, is the mapping 
 :
X → X that maps an initial value u0 to the value u(2π) of the solution u to the associated
initial-value problem

∂tu + Au = F(t, u) in (0,∞), u(0) = u0. (1.6)

In other words, if t �→ S(t, u0) is the solution operator to (1.6) for the initial value u0,
then the Poincaré operator is given by 
(u0) := S(2π,u0). It is obvious that a fixed point
w0 = 
(w0) of 
 is the initial value of a 2π -periodic solution. In this sense a fixed point
of the Poincaré operator induces a solution to (1.5). The main challenge in the application
of this method is to construct a setting of Banach spaces such that the Poincaré operator
is well defined and admits a fixed point. In some cases, this can be carried out directly for
the nonlinear problem, but often the method is first employed to obtain suitable a priori
estimates of maximal regularity type for the linearization of (1.5), which are subsequently
used to investigate the nonlinear problem by classical nonlinear functional analysis. In the
context of time-periodic partial differential equations, BROWDER introduced the Poincaré
operator approach in [10], and around the same time KRASNOSEL’SKIĬ [43] and his student
KOLESOV [39–41] advanced the method. The investigation of time-periodic solutions as
fixed points of the Poincaré operator depends heavily on the framework in which a solution
operator to the initial-value problem (1.6) can be realized. To illustrate this issue, assume that
A generates a sufficiently regular semi-group and consider the linear case F(t, u) = F(t).
The solution operator S then takes the form

S(t, u0) := e−tAu0 +
∫ t

0
e−(t−τ)AF (τ)dτ,

and a fixed point w0 of the Poincaré operator is therefore given by

w0 = S(2π,w0) ⇐⇒ w0 = (
I − e−2πA

)−1
∫ 2π

0
e−(2π−τ)AF (τ)dτ

provided 0 ∈ ρ(A), so that 1 ∈ ρ(e−2πA) and I − e−2πA is thereby invertible. In this case,
a priori estimates for the time-periodic solution u(t) := S(t,w0) can be established in the

1Not to be confused with the Poincaré mapping, which is a related but different notion from the theory of
dynamical systems.
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setting of Banach spaces in which S is realized. If, on the other hand, 0 ∈ σ(A), the repre-
sentation formula for w0 above is not valid and it becomes much more difficult to establish
a priori estimates for the corresponding time-periodic solution. For this reason, the Poincaré
operator approach is seemingly always carried out in a setting where 0 ∈ ρ(A). General ap-
plications of the method can be found in articles going back to [1, 59, 71, 76] for example,
but also in more recent work such as [4, 13, 38, 47, 52]. More examples can be found in
articles devoted to specific equations; so many that an exhaustive list is beyond the scope of
our exposition here. We shall mention only the work of GEISSERT, HIEBER and NGUYEN

[31] in which the restriction 0 ∈ ρ(A) is circumvented by introducing interpolation spaces.
Provided one is able to establish suitable energy estimates for the problem under consid-

eration, time-periodic solutions can also be obtained via a Galerkin approximation scheme.
The existence of a time-periodic solution then has to be accomplished in a finite-dimensional
setting and is thus reduced to finding periodic solutions to an ordinary differential equation.
In the finite-dimensional setting, the Poincaré operator is compact, and it is therefore much
less critical to establish existence of a fixed point. The time-periodic incompressible Navier-
Stokes problem is a good example of a system that can be treated with energy methods;
see for example [30, 57]. Also the time-periodic wave equation with suitable damping can
be solved in this way [58]. Moreover, time-periodic solutions to the compressible Navier-
Stokes equations can be established, as was first shown for the one-dimensional case by
MATSUMURA and NISHIDA [50] and then extended by several authors, cf. [35, 74] and
the references therein. Since energy estimates typically lead to a priori estimates in Hilbert
space settings, this method is not always suited to establish optimal a priori estimates for lin-
ear parabolic problems though. Nevertheless, it gives a strong tool in the case of hyperbolic
or mixed hyperbolic-parabolic systems.

We also want to mention a very different method, which is due to SEIDMAN [62], who
intentionally avoids using the Poincaré operator and shows existence of weak time-periodic
solutions in Lp(T × �) spaces to a nonlinear evolution equation based on the theory of
monotone operators.

A different approach is based on a representation formula that arises from the principle
that a solution to the initial-value problem (1.6) (at least in the linear case F(t, u) = F(t))
tends to a periodic orbit as t → ∞ regardless of the initial value. Equivalently formulated, a
solution to the initial-value problem with time-periodic right-hand side

∂tu + Au = F(t) in (R,∞), u(R) = u0,

tends to a periodic orbit as R → −∞. Assuming again that A generates a sufficiently regular
semi-group, this principle leads to the formula

u(t) =
∫ t

−∞
e−(t−τ)AF (τ)dτ (1.7)

for the time-periodic solution. Observe that (1.7) constitutes a solution formula for the time-
dependent problem ∂tu + Au = F on the whole real line R. It is easy to verify that this
integral expression indeed leads to a periodic solution of the same period as F . As with the
Poincaré operator approach, the challenge with the method based on (1.7) is to construct
a framework of Banach spaces such that the integral expression is well defined. Since F

is time-periodic and therefore non-decaying, this clearly requires suitable decay properties
of the semi-group, which again leads to 0 /∈ σ(A) as a sufficient assumption. Under this
assumption, however, the representation (1.7) can be very useful, which was demonstrated
already in the paper [55] by PRODI. A similar idea was used by FIFE [26] and in subsequent
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papers [5, 27, 51, 72] as well as a number of articles on specific equations such as the
Navier-Stokes equations [42, 78].

The principle described above gives rise to yet another approach. If namely the solution
u(t) to the initial-value problem (1.6) tends to a periodic orbit as t → ∞, then the sequence
un(t) := u(t + n2π), n ∈ N, will tend to a periodic solution to (1.5) as n → ∞. This idea
was employed in the context of partial differential equations by FICKEN and FLEISHMAN

[25] as early as 1957, and it was later used to investigate time-periodic solutions to the
Navier-Stokes equations in the incompressible case [49, 63] and the compressible case [75].

Finally, we mention the perhaps most natural approach to time-periodic partial differ-
ential equations, namely the decomposition of data and solution into a Fourier series with
respect to time. In the linear case, the investigation then reduces to an analysis of the in-
dividual Fourier coefficients, each of which satisfying a resolvent problem in the Banach
space X, that is, a time-independent problem; see for example [9, 12, 32, 56, 60, 61]. This
technique, however, has some limitations since it is difficult to obtain satisfactory estimates
of the Fourier series based only on estimates of the individual coefficients. Typically, this
method only leads to suitable a priori estimates when working in a framework of absolutely
convergent Fourier series, see the recent articles [16, 17, 20] for examples from fluid dy-
namics, or when Parseval’s identity can be invoked, which requires a Hilbert space setting,
that is, an investigation in L2 ((0,2π),H) for some Hilbert space H . Our following analysis
based on Fourier multipliers on the torus T offers one way to overcome these limitations
and to establish a priori estimates in a general Lp ((0,2π),X) Banach space setting. While
there are well-established sufficient conditions for Lp multipliers on the torus, that is, in
the context of Fourier series (see [33, Sect. 5.7.c] for example), in our approach we use a
Fourier multiplier theorem in the continuous setting and combine it with a transference prin-
ciple to obtain results for the time-periodic setting. This allows us to directly make use of
the R-solvers established in the context of initial-value problems as shown in our examples
in Sect. 4 and Sect. 5.

In order to illustrate another significant novelty of our approach, we return to the require-
ment 0 /∈ σ(A) that is needed in both the Poincaré operator approach and in the method
based on the representation formula (1.7). The root cause of this restriction is the necessity
in both techniques that the investigation of (1.5) is carried out in the framework of function
spaces of the corresponding initial-value problem (1.6). Specifically, in both methods the
time-periodic solution is characterized as a special solution to the initial-value problem, and
can therefore only be estimated in the framework in which the initial-value problem is ren-
dered well posed. However, this framework is not suitable for a priori estimates of solutions
to the corresponding stationary problem Au = F when 0 ∈ σ(A). Since a stationary solu-
tion is trivially also time periodic, it is clear why the restriction 0 /∈ σ(A) is imposed. In our
approach, based solely on Fourier multipliers, both the Poincaré operator and the represen-
tation formula (1.7) are avoided, and we are able to construct a bespoke setting of Banach
spaces that enables us to also treat cases where 0 ∈ σ(A).

As an application of the method, we shall consider the time-periodic incompressible
viscous fluid flow inside a bounded container with oscillating boundary. The correspond-
ing Navier-Stokes equations were recently investigated by FARWIG, KOZONO, TSUDA and
WEGMANN [24], who established existence of mild solutions by using an adaption of the so-
lution formula (1.7) to non-autonomous systems. These solutions were later shown to have
more regularity, in particular, to be strong solutions [23]. Their approach was based on a
reformulation of the problem into a time-independent reference domain and on the analysis
of the resulting non-autonomous linearized system. In the present paper, we begin similarly
by reformulating the problem on a time-independent reference frame, but we then focus on
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the autonomous linearized problem, that is, the time-periodic Stokes problem in a bounded
domain. To establish suitable maximal regularity estimates for this problem, we employ the
abstract method developed before and use R-bounds for the associated resolvent problem,
which were derived in [65, 66]. This allows us to treat the non-autonomous linear prob-
lem by perturbation arguments. Using the contraction mapping principle, we can further
establish the existence of strong solutions to the original nonlinear problem under suitable
smallness assumptions on the data, in particular, on the body motion. Note that time-periodic
maximal regularity for the Stokes problem in a bounded domain was established before by
MAEKAWA and SAUER [48] in the case of homogeneous boundary data. However, for the
problem with a moving boundary, homogeneous boundary data mean that fluid particles at
the moving boundary would have zero velocity, which would be rather unphysical. There-
fore, we establish maximal regularity for the case of inhomogeneous Dirichlet boundary
condition.

As another example, we study the time-periodic flow around a (non-moving) rigid body,
for which we establish maximal Lp regularity of the associated linearization, which is the
Stokes problem in an exterior domain. Although we derive the linear theory in the same
way as for the bounded domain, the existence result is different: Existence of time-periodic
solutions in a bounded domain can be shown in a framework of classical Sobolev spaces,
and in the final results the decomposition technique described above is not visible. This is
possible since 0 is not in the spectrum of the underlying linear operator. However, for the
exterior-domain problem the situation is different, and the zero-order mode, which is the
time mean of the periodic function, has to be treated in a separate functional framework of
homogeneous Sobolev spaces. Moreover, in order to treat the full nonlinear problem by a
fixed-point argument, we have to consider solutions with additional pointwise spatial decay,
and a large part of Sect. 5 is concerned with the asymptotic properties of the time-periodic
solutions. Since this analysis of the exterior-domain problem is already quite extensive, the
even more involved case of the Navier-Stokes flow inside a periodically moving exterior
domain is treated in the separate article [21], which is based on the results and methods
presented here.

In previous works, see [18, 29, 44–46] for example, the derivation of a priori estimates
for strong solutions to time-periodic problems in a domain � ⊂ R

N was based on the avail-
ability of a suitable theory on the whole space R

N . There, estimates were established by a
combination of classical (scalar-valued) Fourier multiplier theorems in the Euclidean space
with a subsequent transference to the locally compact Abelian group T × R

N . The a pri-
ori estimates on the domain were then recovered by localization arguments. In contrast, the
approach presented here uses the theory of operator-valued Fourier multipliers to derive a
priori estimates for the time-periodic problem from R-bounds for the associated resolvent
families. The method can be used even if such R-bounds are not available on the whole
imaginary axis, and besides the specific examples presented here, it was recently applied in
the study of other problems from fluid mechanics, see [21, 22].

The article is divided into a more theoretical first part (Sect. 3), where abstract linear and
nonlinear time-periodic problems are investigated, and a second part devoted to applications
(Sects. 4 and 5). The theoretical part focuses on an abstract time-periodic boundary-value
problem, and we show statements in general terms of the periodic maximal Lp regularity.
It is based on a combination of the decomposition technique described above with the ex-
istence of suitable R-solvers; see Theorems 3.1 and 3.2. As examples of the effectiveness
of this approach, we subsequently investigate time-periodic solutions to the N -dimensional
Navier-Stokes equations in a periodically moving bounded domain in Sect. 4, and to the
three-dimensional Navier-Stokes equations in an exterior domain (at rest) in Sect. 5.
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2 Notation and Preliminaries

2.1 General Notation

Let N, Z, R and C denote the set of all natural numbers, integers, and real and complex
numbers, respectively, and set N0 = N∪{0}. To denote generic constants, we use the symbol
C, and Ca,b,... indicates the dependency of the constant on the quantities a, b, . . .. Here, the
constants C and Ca,b,... may change from line to line.

For any domain D ⊂ R
N , N ∈ N, we denote Lebesgue spaces, Sobolev spaces, and Besov

spaces on D by Lq(D), Hm
q (D) and Bs

q,p(D), respectively, while ‖ · ‖Lq (D), ‖ · ‖Hm
q (D), and

‖ ·‖Bs
q,p(D) denote their norms. For partial derivatives, we write ∂t = ∂/∂t and ∂j = ∂/∂xj for

j = 1, . . . ,N . Let ∇f = (∂1f, . . . , ∂Nf ) and ∇2f = (∂i∂jf | i, j = 1, . . . ,N). Let Ĥ1
q(D)

be the homogeneous space defined by

Ĥ1
q(D) = {ϕ ∈ Lq,loc(D) | ∇ϕ ∈ Lq(D)N }.

For a topological vector space V , we let V ′ denote its dual space. In the following, X

and Y will always denote Banach spaces, and L (X,Y ) denotes the space of bounded linear
operators from X to Y , and we simply write L (X) = L (X,X). Sometimes, we do not
distinguish between a space X and its N -fold Cartesian product XN , and we simply write
‖·‖X for the norm of XN . If X is a Banach space over C, the set of all X-valued holomorphic
functions defined on U ⊂ C is denoted by Hol (U,X). For ε ∈ (0,π) and λ0 > 0 we define
the sectors

�ε = {λ ∈C \ {0} | | argλ| ≤ π − ε}, �ε,λ0 = {λ ∈ �ε | |λ| ≥ λ0}.

2.2 Time-Periodic Framework

The study of partial differential equations in a setting where both the data and the corre-
sponding solutions are time periodic can conveniently be carried out in a framework where
the time axis is replaced with a torus group. In the following, we consider only the torus

T :=R/2πZ,

which provides us with a framework to study 2π -periodic solutions. We endow T with the
quotient topology inherited from R via the quotient mapping

πQ :R→ T, πQ(t) := [t] = {t + 2nπ | n ∈ Z}.
Additionally, the quotient mapping induces a differentiable structure on the torus, and we
can therefore investigate equations such as (1.1) as a differential equation on the smooth
manifold T. A solution u in this setting corresponds to a classical time-periodic solution
u ◦ πQ in the Euclidean setting and vice versa. Usually, we tacitly identify functions u on T

with their time-periodic analogue u ◦ πQ on R.
The topology on T turns it into a compact group with a (normalized) Haar measure dτ

such that

∀u ∈ C(T) :
∫

T

u(τ)dτ = 1

2π

∫ 2π

0
u ◦ πQ(t)dt,
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where C(T) is the class of all continuous functions on T. Bochner-Lebesgue spaces
Lp(T,X) for p ∈ [1,∞] are then defined in the usual manner.

The differentiable structure gives rise to the space

C∞(T,X) := {u : T → X | u ◦ πQ ∈ C∞(R,X)}
of vector-valued smooth functions on T for any Banach space X. The simple structure of T
implies that the set of Schwartz-Bruhat functions S (T,X) (see [11, 18]) coincides with the
set of smooth functions, that is,

S (T,X) = C∞(T,X),

which is endowed with the semi-norm topology induced by the family ρ	(u) :=
supτ∈T ‖∂	

t u(τ )‖X , 	 ∈ N0. We refer to the space

S ′(T,X) = L (S (T),X)

as the space of X-valued tempered distributions on T. One may observe that the notion of
classical distributions on T (also known as periodic distributions) coincides with the notion
of tempered distributions on T. Derivatives of distributions u ∈ S ′(T,X) are defined as
distributions ∂	

t u ∈ S ′(T,X) by duality in the usual way.
As a (locally) compact Abelian group, the torus T has a Fourier transform FT associated

to it, see [18] for example. Obviously, this Fourier transform corresponds to the classic
expansion of a function on T into a Fourier series. In this paper, however, it is essential to
treat it as Fourier transform in the same framework as the Fourier transform FR on the real
line, which is defined by

FR : S (R,X) → S (R,X), FR[u](ξ) := 1

2π

∫

R

u(x) e−iξx dx,

F−1
R

: S (R,X) → S (R,X), F−1
R

[v](x) :=
∫

R

v(ξ) eiξx dξ

and extended to mappings FR, F−1
R

: S ′(R,X′) → S ′(R,X′) by duality. To this end, we
recall that Z, endowed with discrete topology and counting measure, can be viewed as the
dual group of T. The X-valued Schwartz-Bruhat space on Z is given by

S (Z,X) = {ψ : Z → X | ∀	 ∈N0 : sup
k∈Z

|k|	‖ψ(k)‖X < ∞}

and is equipped with the locally convex topology induced by the family of semi-norms ρ̂	,
	 ∈N0, where ρ̂	(ψ) := supk∈Z |k|	‖ψ(k)‖X .

In the setting of vector-valued Schwartz-Bruhat spaces, the Fourier transform FT is the
homeomorphism given by

FT : S (T,X) → S (Z,X), FT[u](k) :=
∫

T

u(t)e−ikt dt,

with inverse mapping

F−1
T

: S (Z,X) → S (T,X), F−1
T

[w](t) :=
∑

k∈Z
w(k) eikt .
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As above, by a duality argument, FT extends to a homeomorphism on the space of tempered
distributions FT : S ′(T,X) → S ′(Z,X) in the usual way.

A standard verification shows that Lebesgue spaces Lp(T,X) are embedded into
S ′(T,X), which enables us to define vector-valued Sobolev spaces as

Hm
p (T,X) := {

u ∈ Lp(T,X) | ∂	
t u ∈ Lp(T,X) for 	 = 0, . . . ,m

}
,

‖u‖Hm
p (T,X) :=

( m∑

	=0

‖∂	
t u‖p

Lp(T,X)

) 1
p

for m ∈ N and p ∈ [1,∞). A standard mollification argument shows that S (T,X) =
C∞(T,X) lies dense in Lp(T,X) and Hm

p (T,X). For θ ∈ (0,1) we further define the frac-
tional Sobolev space Hθ

p(T,X) via Fourier transform by

Hθ
p(T,X) := {

u ∈ Lp(T,X) | F−1
T

[|k|θFT[u](k)
] ∈ Lp(T,X)

}
,

‖u‖Hθ
p(T,X) := ∥∥F−1

T

[
(1 + |k|)θFT[u](k)

]∥∥
Lp(T,X)

.

This is an adaption of the vector-valued Bessel potential spaces to the torus; see [33,
Sect. 5.6] for the definition in the Euclidean setting. If X is a UMD space and p ∈ (1,∞),
then they have the same properties as in the scalar-valued case, see also [73, Chap. 9].

2.3 R-Boundedness and Operator-Valued Fourier Multipliers

A family of operators T ⊂ L (X,Y ) is called R-bounded in L (X,Y ) if there exists some
C > 0 such that for all n ∈N, {Tj }n

j=1 ∈ T n, and {fj }n
j=1 ∈ Xn, we have

∥∥
n∑

k=1

rkTkfk

∥∥
L1((0,1),Y )

≤ C
∥∥

n∑

k=1

rkfk

∥∥
L1((0,1),X)

, (2.1)

where rk , k ∈ N, denote the Rademacher functions given by rk : [0,1] → {−1,1}, t �→
sign (sin 2kπt). The smallest constant C such that (2.1) holds is called the R-bound of T and
is denoted by RL (X,Y )T , If S ⊂ L (X,Y ) and U ⊂ L (Y,Z) are further operator families,
we have

RL (X,Y ){S + T | S ∈ S, T ∈ T } ≤ RL (X,Y )S + RL (X,Y )T ,

RL (X,Z){UT | U ∈ U, T ∈ T } ≤ RL (Y,Z)U · RL (X,Y )T ; (2.2)

see [33, Remark 5.3.14] for example. Due to Kahane’s inequality, one may further replace
the spaces L1((0,1),X) and L1((0,1), Y ) in (2.1) with Lp((0,1),X) and Lp((0,1), Y ), re-
spectively, for any p ∈ [1,∞). In what follows, this choice of p makes no difference.

We introduce the notion of operator-valued Fourier multipliers on R and T. For M ∈
L∞(R,L (X,Y )) we define the operator

op
R
[M] : S (R,X) → S ′(R, Y ), op

R
[M]f := F−1

R
[M FR[f ]].

For m ∈ L∞(Z,L (X,Y )) we define the operator

op
T
[m] : S (T,X) → S ′(T, Y ), op

T
[m]f := F−1

T
[mFT[f ]].
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If there exists a continuous extension of op
T
[m] to a bounded operator

op
T
[m] : Lp(T,X) → Lp(T, Y ),

we call m an Lp(T)-multiplier. To identify such Lp(T)-multipliers, we shall make use
of an operator-valued transference principle, which relates Lp(T)-multipliers to Lp(R)-
multipliers, and combine it with an operator-valued multiplier theorem due to WEIS [77].
For its formulation, we need the notion of R-boundedness of operator families introduced
above as well as the notion of UMD spaces. Recall that a Banach space X is called a UMD
space (or a space of class HT ) if the Hilbert transform H defined by

Hf (t) := 1

π
lim
ε→0

∫

|x|≥ε

f (t − s)

s
ds, f ∈ S (R,X),

extends to a bounded linear operator L (Lp(R,X)) for p ∈ (1,∞).
Now we can state the multiplier theorem due to WEIS [77, Theorem 3.4], which is an

operator-valued version of the classical Mikhlin theorem.

Theorem 2.1 (WEIS) Let X and Y be UMD-spaces and p ∈ (1,∞). Let M ∈ L∞(R,

L (X,Y )) be differentiable in R \ {0} and such that

RL (X,Y )

{
M(t) | t ∈R \ {0}} ≤ r0, RL (X,Y )

{
tM ′(t) | t ∈R \ {0}} ≤ r0, (2.3)

for some r0 > 0. Then op
R
[M] extends to a bounded operator op

R
[M] : Lp(R,X) →

Lp(R, Y ), that is, M is an Lp(R)-multiplier, and

‖op
R
[M]‖L (Lp(R,X),Lp(R,Y )) ≤ Cp r0 (2.4)

for some constant Cp > 0 depending only on p but independent of r0.

In order to investigate Lp-boundedness of operators associated with Fourier multipliers
on T, we combine this theorem with the following result that allows an investigation of Lp-
boundedness of a Fourier multiplier m ∈ L∞(Z,L (X,Y )) in the torus setting by extending
it to a multiplier M ∈ L∞(R;L (X,Y )) in the Euclidean setting.

Proposition 2.2 (Operator-valued transference principle) Let X, Y be Banach spaces and
p ∈ (1,∞). If

M ∈ L∞(R,L (X,Y )) ∩ C(R,L (X,Y ))

is an Lp(R)-multiplier, that is, op
T
[M] ∈ L (Lp(R,X),Lp(R, Y )), then M|Z is an Lp(T)-

multiplier, that is, op
T
[M|Z] ∈ L (Lp(T,X),Lp(T, Y )), and

‖op
T
[M|Z]‖L (Lp(T,X),Lp(T,Y )) ≤ ‖op

R
[M]‖L (Lp(R,X),Lp(T,Y )). (2.5)

Proof This is a special version of [33, Prop.5.7.1], which is a generalization of the scalar-
valued case originally due to DE LEEUW [14]. �

Combining the operator-valued transference principle with the Weis multiplier theorem,
we directly obtain the following result, which we employ when studying Fourier multipliers
on the torus T.
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Corollary 2.3 Let X and Y be UMD spaces, and let

M ∈ L∞(R,L (X,Y )) ∩ C(R,L (X,Y )) ∩ C1(R \ {0},L (X,Y ))

satisfy (2.3) for some r0 > 0. Then M|Z is an Lp(T)-multiplier, and

‖op
T
[M|Z]‖L (Lp(T,X),Lp(T,Y )) ≤ Cpr0 (2.6)

for some constant Cp > 0 only depending on p.

Proof By Theorem 2.1, M is an Lp(R)-multiplier, and Proposition 2.2 implies that M|Z is
an Lp(T)-multiplier. Finally, estimate (2.6) follows from (2.5) and (2.4). �

3 Maximal Lp Regularity for Periodic Evolution Equations

We next show how the operator-valued transference principle (Proposition 2.2) can be uti-
lized to establish periodic Lp estimates of the maximal regularity type for a large class of
abstract linear evolution equations based on their R-solvers, that is, the R-bounded family
of solution operators to the associated resolvent problem. We consider the abstract time-
periodic boundary-value problem

{
∂tu + Au = F in T,

Bu = T G in T.
(3.1)

Here, A is an abstract (differential) operator, B is a boundary (differential) operator and T

plays the role of a trace operator. Using this notion, we avoid the introduction of suitable
trace spaces whose identification strongly relies on the underlying function spaces. We show
that the existence of a unique solution to (3.1) can be derived from suitable properties of the
associated generalized resolvent problem

{
iσw + Aw = f,

Bw = T g,
(3.2)

for σ ∈ R. More precisely, while for small k the existence of a priori bounds in a suitable
functional framework is sufficient, for large k we require the existence of R-solvers, that
is, a functional framework such that the solution operator satisfies suitable R-bounds. As
we shall also see in the examples of the subsequent sections, this lack of R-bounds for
the whole line often appears in applications. Moreover, the presented approach allows one
to use different function spaces for different modes, which can be a useful and necessary
modification; see also Theorem 5.2 below, where the zero-order mode requires separate
treatment.

Theorem 3.1 Let X, Y , Z and W be UMD spaces such that X and W are continuously
embedded into Y . Assume that A ∈ L (X,Y ), B ∈ L (X,Z) and T ∈ L (W,Z). Let λ0 ∈R,
β ∈ [0,1], and let

A ∈ C1(R \ (−λ0, λ0),L (Y × Y × W,X))
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be an operator-valued function such that for all σ ∈ R \ (−λ0, λ0) and all (f, g) ∈ Y × W ,
the function w = A(σ )(f,σ βg, g) is the unique solution in X to the generalized resolvent
problem (3.2). Assume the validity of the R-bounds

RL (Y×Y×W,X)({(σ d

dσ
)	A(σ ) | σ ∈R \ (−λ0, λ0)}) ≤ r0, (3.3)

RL (Y×Y×W,Y)({(σ d

dσ
)	(iσ A(σ )) | σ ∈R \ (−λ0, λ0)}) ≤ r0 (3.4)

for 	 = 0,1 and some constant r0 > 0.
Moreover, for k ∈ Z with |k| ≤ k0 := max{k ∈ Z | k ≤ λ0}, let Xk , Yk , Zk and Wk be

Banach spaces such that (ikI + A) ∈ L (Xk,Yk), B ∈ L (Xk,Zk) and T ∈ L (Wk,Zk), and
such that for all (f, g) ∈ Yk ×Wk there exists a unique solution w ∈ Xk to (3.2) with σ = k

such that

‖w‖Xk
≤ Ck(‖f ‖Yk

+ ‖g‖Wk
) (3.5)

for some constant Ck > 0.
Then for any p ∈ (1,∞) and (F,G) defined by

F(t) =
k0∑

k=−k0

Fkeikt + Fh(t), G(t) =
k0∑

k=−k0

Gkeikt + Gh(t), (3.6)

with (Fk,Gk) ∈ Yk × Wk for k ∈ Z, |k| ≤ k0, and (Fh,Gh) ∈ Lp(T;Y ) × (Lp(T,W) ∩
Hβ

p(T, Y )) such that (FT[Fh](k),FT[Gh](k)) = 0 for all |k| ≤ k0, there exists a unique
element

(u−k0 , . . . , uk0 , uh) ∈ X−k0 × · · · ×Xk0 × (Lp(T,X) ∩ H1
p(T, Y )) (3.7)

with FT[uh](k) = 0 for |k| ≤ k0, such that

u(t) :=
k0∑

k=−k0

ukeikt + uh(t) (3.8)

is the unique solution to the time-periodic problem (3.1), and

‖uk‖Xk
≤ Ck(‖Fk‖Yk

+ ‖Gk‖Wk
) (3.9)

‖uh‖Lp(T,X)∩H1
p(T,Y ) ≤ C r0(‖Fh‖Lp(T,Y ) + ‖Gh‖Hβ

p(T,Y )∩Lp(T,W)
), (3.10)

for some constant C > 0. In particular,

‖u‖Xp :=
k0∑

k=−k0

‖uk‖Xk
+ ‖uh‖Lp(T,X)∩H1

p(T,Y )

≤ C r0(‖Fh‖Lp(T,Y ) + ‖Gh‖Hβ
p(T,Y )∩Lp(T,W)

) +
k0∑

k=−k0

Ck‖(Fk,Gk)‖Yk×Wk

=: ‖F‖Yp + ‖G‖Wp .

(3.11)
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Proof Let ϕ = ϕ(σ) be a C∞(R) function which equals 1 for |σ | ≥ (λ0 + k0 + 1)/2, and
equals 0 for |σ | ≤ λ0. We define u as in (3.8), where uk is the unique solution to (3.2) with
σ = k and (f, g) = (Fk,Gk) for |k| ≤ k0, and

uh = F−1
T

[ϕ(k)A(k)(FT[F ](k), kβFT[G](k),FT[G](k))].

One readily verifies that u formally satisfies the time-periodic problem (3.1). Moreover, for
|k| ≤ k0 we directly conclude uk ∈ Xk and estimate (3.9) since (Fk,Gk) ∈ Yk × Wk . To
show that uh also belongs to the claimed function space, first observe that ϕ(σ)A(σ ) = 0
for |σ | ≤ λ0, so that ϕA ∈ C1(R,L (Y × Y × W,X)). In view of [15, Corollary 3.7], from
(3.3) and (3.4) it follows that

RL (Y×Y×W,X)({(σ d

dσ
)	(ϕ(σ )A(σ )) | σ ∈R}) ≤ ‖ϕ‖H1∞(R)r0,

RL (Y×Y×W,Y)({(σ d

dσ
)	(iσϕ(σ )A(σ )) | σ ∈R}) ≤ ‖ϕ‖H1∞(R)r0.

We can thus apply Corollary 2.3 to conclude that k �→ ϕ(k)A(k) ∈ L (Y × Y × W,X)

and k �→ ikϕ(k)A(k) ∈ L (Y × Y × W,Y) are Lp(T)-multipliers. We thus deduce uh ∈
Lp(T,X) ∩ H1

p(T, Y ), and (3.10) follows from the above R-bounds together with (2.6). In
total, we have shown existence of a solution in the asserted function class.

To prove the uniqueness statement, let u be of the form (3.8) and satisfy the homogeneous
equations, that is, (3.1) with (f, g) = 0. For k ∈ Z with |k| > k0, we set uk = FT[uh](k).
Then an application of the Fourier transform to (3.1) gives

{
ikuk + Auk = 0,

Buk = 0.

We have uk ∈ X for |k| > k0 and uk ∈ Xk for |k| ≤ k0, so that uk = 0 follows from the
uniqueness assumption for the respective resolvent problem. We thus conclude u = 0, which
completes the proof. �

The important case of homogeneous boundary conditions can be incorporated in the
above setting in several different manners. Of course, the simplest way is to take boundary
data g = 0, but one may also consider T = 0 as an (abstract) trace operator. Another very
common way is to simply set B = 0 and T = 0, that is, to drop the abstract boundary condi-
tion in (3.1), and to incorporate the boundary condition in the function space X. Then (3.1)
reduces to the time-periodic X-valued ordinary differential equation

∂tu + Au = F in T, (3.12)

and (3.2) becomes a proper resolvent problem

iσw + Aw = f. (3.13)

In this case, the statement of Theorem 3.1 also simplifies significantly, and it can be formu-
lated using the notion of closed linear operators.
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Theorem 3.2 Let Y be a UMD space, and let A : D(A) → Y be a closed operator with
domain D(A) ⊂ Y and resolvent set ρ(A). Let λ0 ∈ R such that {iσ | σ ∈ R \ (−λ0, λ0)} ⊂
ρ(A), and assume the validity of the R-bounds

RL (Y )

({
λ(λI − A)−1 | λ = iσ, σ ∈R \ (−λ0, λ0)

}) ≤ r0 (3.14)

for some constant r0 > 0.
Moreover, for k ∈ Z with |k| ≤ k0 := max{k ∈ Z | k ≤ λ0}, let Xk and Yk be Banach

spaces such that (ikI + A) ∈ L (Xk,Yk) is a linear homeomorphism.
Then for any p ∈ (1,∞) and F defined as in (3.6), the function u defined in (3.8) is a

solution to the time-periodic problem (3.12), where uk = (ikI + A)−1Fk , and

‖uh‖Lp(T,X)∩H1
p(T,Y ) ≤ C r0‖Fh‖Lp(T,Y ) (3.15)

for some constant C > 0. The solution u is unique in the sense that the Fourier coefficients
uk = FT[u](k) are unique in Xk if |k| ≤ k0, and in D(A) if |k| > k0.

Proof We set X = D(A) ⊂ Y , equipped with the usual graph norm, which is a UMD space
since (iλ0I − A) : X → Y is a homeomorphism. We further set A(σ ) = (iσ I + A)−1 for
|σ | ≥ λ0. Then A(σ ) is a solution operator for the resolvent problem (3.13) for |σ | ≥ λ0,
and we have A ∈ C∞(R \ (−λ0, λ0),L (Y,X)) by analyticity of the resolvent mapping.
Moreover, due to the identities

iσA(σ ) = iσ (iσ I + A)−1, σ
d

dσ
(iσA(σ )) = iσ (iσ I + A)−1 + σ 2(iσ I + A)−2,

and the formulas from (2.2), the assumed R-bound (3.14) directly implies (3.4). Since

A(σ ) = A(λ0)A(λ0)
−1A(σ ) = λ0 − σ

σ
A(λ0) iσ (iσ I + A)−1 + I,

σ
d

dσ
A(σ ) = iσ (iσ I + A)−2,

and since A(λ0) is a homeomorphism in L (Y,X), we infer (3.3) from (3.14) in the same
way. Now the statement directly follows from Theorem 3.1 with W = Z = Wk = Zk = {0}
and B = T = 0. �

Next we use the derived linear theory from Theorem 3.1 to obtain a solution to the non-
linear problem

{
∂tu + Au = F(u) in T,

Bu = T G(u) in T,
(3.16)



1 Page 16 of 43 T. Eiter et al.

where F and G are nonlinear functions. To formulate precise assumptions, we introduce the
spaces Xp , Yp and Wp for p ∈ (1,∞) via

Xp := {
u = u	 + uh | u	(t) =

k0∑

k=−k0

ukeikt , uk ∈ Xk for |k| ≤ k0,

uh ∈ Lp(T,X) ∩ H1
p(T, Y )

}
,

Yp := {
F = F	 + Fh | F	(t) =

k0∑

k=−k0

Fkeikt , Fk ∈ Yk for |k| ≤ k0, Fh ∈ Lp(T, Y )
}
,

Wp := {
G = G	 + Gh | G	(t) =

k0∑

k=−k0

Gkeikt , Gk ∈ Wk for |k| ≤ k0,

Gh ∈ Lp(T,W) ∩ Hβ
p(T, Y )

}
,

which are equipped with the norms introduced in (3.11). Note that for each (F,G) ∈ Yp ×
Wp , Theorem 3.1 provides existence of a unique solution u ∈Xp to the linear problem (3.1).
To obtain an existence result for the nonlinear problem (3.16), we assume have to impose
suitable conditions on the nonlinear terms.

Theorem 3.3 In the situation of Theorem 3.1, let p ∈ (1,∞), α > 0 and U ⊂ Xp be such
that F : U → Yp and G : U → Wp satisfy

∃C > 0∀u,v ∈ U : ‖F(u)−F(v)‖Yp +‖G(u)−G(v)‖Wp ≤ C
(‖u‖α

Xp
+‖v‖α

Xp

)‖u−v‖Xp .

(3.17)
Assume that 0 ∈ U . Then there exists ε > 0 such that if

‖F(0)‖Yp + ‖G(0)‖Wp ≤ ε1+α, (3.18)

then problem (3.17) possesses a unique solution u ∈ Xp satisfying ‖u‖Xp ≤ ε.

Proof Due to Theorem 3.1, for any v ∈ U there exists a unique solution u ∈Xp to

{
∂tu + Au = F(v) in T,

Bu = T G(v) in T.
(3.19)

Let � : U → Xp , v �→ u, be the corresponding solution mapping. From estimates (3.11),
(3.17) and (3.18), we obtain

‖u‖Xp = ‖�(v)‖Xp ≤ C
(‖F(v)‖Yp + ‖G(v)‖Wp

)

≤ C
(‖F(v) −F(0)‖Yp + ‖G(v) − G(0)‖Wp + ‖F(0)‖Yp + ‖G(0)‖Wp

)

≤ C‖v‖α+1
Xp

+ εα+1.

Therefore, if we choose ε > 0 so small that (C + 1)εα ≤ 1 and such that

Iε := {v ∈Xp | ‖v‖Xp ≤ ε} ⊂ U,
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then the restriction � : Iε → Iε is a self-mapping. Moreover, using (3.11) and (3.17) again,
we deduce

‖�(v) − �(w)‖Xp ≤ C
(‖F(v) −F(w)‖Yp + ‖G(v) − G(w)‖Wp

)

≤ C
(‖v‖α

Xp
+ ‖w‖α

Xp

)‖v − w‖Xp ≤ 2Cεα‖v − w‖Xp

for v,w ∈ Iε , so that � : Iε → Iε is a contraction if we choose ε > 0 so small that 2Cεα <

1. By Banach’s fixed-point theorem, we thus obtain the existence of a unique fixed point
u = �(u) ∈ Iε , that is, a solution u to (3.16) with the asserted properties. �

4 On the Navier-Stokes Equations in a Bounded Periodically Moving
Domain

Let � be a bounded domain in R
N , N ≥ 2, whose boundary, �, is a compact connected

C2 hypersurface. We assume that for each t ∈ R there exists an injective map φ(·, t) : � →
R

N such that φ(y,0) = 0 and φ(y, t + 2π) = φ(y, t) for t ∈ R and y ∈ �; possessing the
regularity

φ ∈ C0(T;C3(�)N) ∩ C1(T;C1(�)N). (4.1)

Again, we identify 2π -periodic functions on R with functions on T. Let �t be a domain in
R

N given by setting

�t = {x = y + φ(y, t) | y ∈ �} (t ∈R), (4.2)

that is, �t is the image of the transformation


t : � → R
N, 
t (y) = y + φ(y, t),

for t ∈ R. Notice that �t is a given bounded periodically moving domain in R
N such that

�t+2π = �t . Let �t be the boundary of �t , which is given by �t = {x = y +φ(y, t) | y ∈ �}.
We consider the Navier-Stokes equations in �t :

∂tu + u · ∇u − �u + ∇p= F, div u = 0 in �t , u|�t = h|�t (4.3)

for t ∈ (0,2π). Here, u = (u1, . . . , uN)� is an unknown velocity field, M� being the trans-
posed M , p an unknown pressure field, F = (F1, . . . ,FN)� a prescribed external force,
and h = (h1, . . . , hN)� a velocity field that prescribes the boundary velocity. Assume that
F(t + 2π) = F(t) and h(t + 2π) = h(t) for any t ∈ R. Then system (4.3) describes the flow
of an incompressible viscous fluid around a periodically moving body, subject to a time-
periodic external force and with prescribed time-periodic boundary conditions. Note that a
natural choice for h would be the flow velocity associated with the transformation 
t , which
means that the fluid particles adhere to the boundary. This choice corresponds to a no-slip
condition, which we further discuss in Remark 4.6 below.

We transform (4.3) into a system in � by using the change of variables induced by 
t ,
namely x = y + φ(y, t). For this purpose, we assume that

‖φ‖L∞(T,H3∞(�)) + ‖∂tφ‖L∞(T,H1∞(�)) < ε0 (4.4)
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with some small number ε0 > 0. By this smallness assumption, we assure the existence of
the inverse transformation: y = x + ψ(x, t). The associated Jacobi matrix ∂(t, y)/∂(t, x) is
given by the formulas:

∂t

∂t
= 1,

∂t

∂xj

= 0,
∂y	

∂t
= ∂ψ	

∂t
,

∂y	

∂xj

= δ	j + ∂ψ	

∂xj

for j, 	 = 1, . . . ,N . Set a	0(y, t) = (∂ψ	/∂t)(y +φ(y, t), t), and a	j (y, t) = (∂ψ	/∂xj )(y +
φ(y, t), t). Then partial derivatives transform as

∂f

∂t
= ∂g

∂t
+

N∑

	=1

a	0(y, t)
∂g

∂y	

,
∂f

∂xj

= ∂g

∂yj

+
N∑

	=1

a	j (y, t)
∂g

∂y	

(4.5)

for f (x, t) = g(y, t). Let J and J0 be defined by J = det(∂x/∂y) = 1 + J0(y, t), which is the
Jacobian of 
t . By the L∞-bounds in (4.4) and a Neumann-series argument, we obtain

‖ψ‖L∞(T,H2∞(�)) + ‖∂tψ‖L∞(T,L∞(�)) < Cε0,

so that we have

sup
t∈R

‖a	j (·, t)‖H2∞(�) + sup
t∈R

‖∂ta	j (·, t)‖L∞(�) + sup
t∈R

‖a0j (·, t)‖L∞(�)

+ sup
t∈R

‖J0(·, t)‖H2∞(�) + sup
t∈R

‖∂tJ0(·, t)‖L∞(�) ≤ Cε0

(4.6)

with some constant C > 0 for j, 	 = 1, . . . ,N . For notational simplicity, we set

v(y, t) = (v1, . . . , vN)� = u(x, t), q(y, t) = p(x, t).

By (4.5) we have

∂tu = ∂tv +
N∑

	=1

a	0
∂v
∂y	

, u · ∇u = v · (I + A)∇v,

�u = �v +
N∑

	=1

(a	j + aj	)
∂2v

∂y	∂yj

+
N∑

j,	,m=1

a	j amj

∂2v
∂y	∂ym

+
N∑

	,m=1

⎛

⎝∂am	

∂y	

+
N∑

j=1

a	j

∂amj

∂y	

⎞

⎠ ∂v
∂ym

,

div u = J−1{div v + div (J0v) +
N∑

j,	=1

∂

∂y	

(a	j Jvj )}. ∇p= (I + A)∇q, (4.7)

where A is an (N × N)-matrix whose (j, k)-th component is ajk . Setting w	 = v	 + J0v	 +∑N

j=1 a	j Jvj , we have Jdiv u = div w with w = (w1, . . . ,wN)�. Notice that w = (I + J0I +
A�J)v. In view of (4.6), choosing ε > 0, we see that there exists an (N × N)-matrix B−1

such that (I + J0I + A�J)−1 = I + B−1 and

sup
t∈R

‖B−1(·, t)‖H2∞(�) ≤ Cε0, sup
t∈R

‖∂tB−1(·, t)‖L∞(�) ≤ Cε0. (4.8)
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Summing up, we see that (4.3) is transformed to the following equations:

∂tw − �w + ∇q= G + L (w,q) + N (w), div w = 0 in � ×T, w|� = H|�, (4.9)

where G and H are prescribed data and

L (w,q) = −∂t (B−1w) −
N∑

	=1

a	0
∂

∂y	

((I + B−1)w) + �(B−1w)

+
N∑

	=1

(a	j + aj	)
∂2

∂y	∂yj

((I + B−1)w) +
N∑

j,	,m=1

a	j amj

∂2

∂y	∂ym

((I + B−1)w)

+
N∑

	,m=1

⎛

⎝∂am	

∂y	

+
N∑

j=1

a	j

∂amj

∂y	

⎞

⎠ ∂

∂ym

((I + B−1)w) − A∇q,

N (v) = ((I + B−1)w) · (I + A)∇((I + B−1)w).

(4.10)
Observe that, due to div w = 0 and the boundedness of �, for the existence of solutions to
(4.9) it is necessary that the boundary data satisfy

∫

�

H · n dσ = 0 (4.11)

for all t ∈ R, where n denotes the unit outer normal vector at �. The following theorem is
our main result in this section.

Theorem 4.1 Let 2 < p < ∞ and N < q < ∞. Then, there exists numbers ε, ε0 > 0 such
that if the condition (4.4) is valid, and if the prescribed terms G ∈ Lp(T,Lq(�)N) and
H ∈ H1

p(T,Lq(�)N) ∩ Lp(T,H2
q(�)N) satisfy the compatibility condition (4.11) as well as

the smallness condition

‖G‖Lp(T,Lq (�)) + ‖H‖H1
p(T,Lq (�)) + ‖H‖Lp(T,H2

q (�)) ≤ ε2,

then problem (4.9) admits a solution (w,q) with

w ∈ H1
p(T,Lq(�)N) ∩ Lp(T,H2

q(�)N), q ∈ Lp(T, Ĥ1
q(�)),

possessing the estimate

‖∂tw‖Lp(T,Lq (�)) + ‖w‖Lp(T,H2
q (�)) + ‖∇q‖Lp(T,Lq (�)) ≤ ε.

Moreover, w is the unique velocity field with these properties while the pressure q is unique
up to addition by a function only depending on time.

To prove Theorem 4.1, we consider the following linearization of equations (4.9):

∂tu − �u + ∇p= F, div u = 0 in � ×T, u|� = H|�. (4.12)

For a maximal-regularity theorem for problem (4.12), we consider the associated resolvent
problem

λw − �w + ∇p= f, div w = 0 in �, w|� = h|�. (4.13)
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At first, we consider the case of homogeneous boundary conditions h = 0, for which we
have the following lemma, which holds for bounded and exterior domains simultaneously.

Lemma 4.2 Let 1 < q < ∞ and 0 < ε < π/2. Let � be a bounded domain or an exte-
rior domain in R

N (N ≥ 2) with C2 boundary. There exist operator families (S (λ)) ⊂
L (Lq(�)N,H2

q(�)N) and (P(λ)) ⊂ L (Lq(�)N, Ĥ1
q(�))) such that for every λ ∈ �ε \ {0}

and every f ∈ Lq(�)N the pair (w,p) = (S (λ)f,P(λ)f) is a solution to (4.13) with h = 0
and satisfies the estimate

|λ| ‖S (λ)f‖Lq (�) + ‖∇2S (λ)f‖Lq (�) + ‖∇P(λ)f‖Lq (�) ≤ C‖f‖Lq (�) (4.14)

with some constant C > 0 depending on �, q and ε. Moreover, there exist constants λ0, r0 >

0, depending on �, q and ε, such that

S ∈ Hol (�ε,λ0 ,L (Lq(�)N,H2
q(�)N)), P ∈ Hol (�ε,λ0 ,L (Lq(�)N, Ĥ1

q(�))),

and

R
L (Lq (�)N ,H2−j

q (�)N )
({(λ∂λ)

	(λj/2S (λ)) | λ ∈ �ε,λ0}) ≤ r0,

RL (Lq (�)N ,Lq (�)N )({(λ∂λ)
	(∇P(λ)) | λ ∈ �ε,λ0}) ≤ r0

for 	 = 0,1, j = 0,1,2. Additionally, if � is bounded, then there exist S (0) ∈ L (Lq(�)N,

H2
q(�)N) and P(0) ∈ L (Lq(�)N, Ĥ1

q(�)) such that (w,p) = (S (0)f,P(0)f) is a solution
to (4.13) for λ = 0 and satisfies

‖S (0)f‖H2
q (�) + ‖∇P(0)f‖Lq (�) ≤ C‖f‖Lq (�). (4.15)

In all these cases, the velocity field w is unique while the pressure p is unique up to an
additive constant.

Proof Existence of unique solutions to (4.13) satisfying (4.14) with a uniform constant C for
λ ∈ � \{0} was shown in [8]. The analyticity of the associated family of solution operators in
�ε,λ0 for some λ0 > 0 together with the asserted R-bounds was established in [65, Theorem
1.6] and [66, Theorem 9.1.4]. Finally, the statement for λ = 0 follows from Fredholm’s
alternative principle since the embedding H2

q(�) ↪→ Lq(�) is compact if � is bounded, and
the solution to (4.13) is unique. �

As in the results from Sect. 3, in the case of non-zero boundary values, the R-solvers for
the resolvent problem (4.13) are more involved than in the situation of Lemma 4.2. To state
the result, we introduce the space

Xq = {(F1,F2,F3,F4) | F1,F2 ∈ Lq(�)N,F3 ∈ H1
q(�)N,F4 ∈ H2

q(�)N }.
Then we have the following result.

Lemma 4.3 Let 1 < q < ∞ and 0 < ε < π/2. Let � be a bounded domain or an exterior
domain in R

N (N ≥ 2) with C2 boundary. There exist constants λ0, r0 > 0 and operator
families

S ∈ Hol (�ε,λ0 ,L (Xq(�),H2
q(�)N)), P ∈ Hol (�ε,λ0 ,L (Xq(�), Ĥ1

q(�)))
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such that for any f ∈ Lq(�)N and h ∈ H2
q(�)N , satisfying

∫
�

h ·n dσ = 0 if � is bounded, the
pair (w,p) defined by w = S(λ)(f, λh, λ1/2h,h) and p = P(λ)(f, λh, λ1/2h,h) is a solution
to (4.13), and

R
L (Xq (�),H2−j

q (�)N )
({(λ d

dλ
)	(λj/2S(λ)) | λ ∈ �ε,λ0}) ≤ r0,

RL (Xq (�),Lq (�)N )({(λ d

dλ
)	(∇P(λ)) | λ ∈ �ε,λ0}) ≤ r0

for 	 = 0,1, j = 0,1,2. The pair (w,p) is unique in the sense of Lemma 4.2.

Proof See [65, Theorem 1.6]. �

Now we can prove the following result on the time-periodic linear problem (4.12).

Proposition 4.4 Let 1 < p,q < ∞, and let � ⊂ R
N be a bounded domain with C2 bound-

ary. Then, for any F ∈ Lp(T,Lq(�)N) and H ∈ H1
p(T,Lq(�)N)∩Lp(T,H2

q(�)N) satisfying
(4.11), problem (4.12) admits a solution (u,p) with

u ∈ H1
p(T,Lq(�)N) ∩ Lp(T,H2

q(�)N), p ∈ Lp(T, Ĥ1
q(�))

possessing the estimate

‖∂tu‖Lp(T,Lq (�)) + ‖u‖Lp(T,H2
q (�)) + ‖∇p‖Lp(T,Lq (�))

≤ C
(‖F‖Lp(T,Lq (�)) + ‖∂tH‖Lp(T,Lq (�)) + ‖H‖Lp(T,H2

q (�))

)
.

(4.16)

Here, u is unique in the described function class, while p is unique up to addition by a
function only depending on time.

Proof We first consider the case H = 0, for which proceed analogously to the proof of
Theorem 3.1. Let ϕ = ϕ(σ) be a C∞(R) function that equals 1 for |σ | ≥ λ0 + 1/2 and 0
for |σ | ≤ λ0 + 1/4. Set

uh = F−1
T

[S (ik)ϕ(k)FT[F](k)], ph = F−1
T

[P(ik)ϕ(k)FT[F](k)].
Then uh and ph satisfy the equations

∂tuh − μ�uh + ∇ph = Fh, div uh = 0 in � ×T, uh|� = 0,

where we have set Fh = F−1
T

[ϕ(k)FT[F](k)]. Moreover, arguing as for the proof of Theo-
rem 3.1, we can use the R-bounds from Lemma 4.2 and invoke Corollary 2.3 to deduce

‖∂tuh‖Lp(T,Lq (�)) + ‖uh‖Lp(T,H2
q (�)) + ‖∇ph‖Lp(T,Lq (�)) ≤ C‖Fh‖Lp(T,Lq (�))

≤ C‖F‖Lp(T,Lq (�)).
(4.17)

Now, in view of Lemma 4.2, we set

u(t) = uh(t)+
∑

|k|≤λ0

eiktS (ik)FT[f](k), p(t) = ph(t)+
∑

|k|≤λ0

eiktP(ik)FT[f](k). (4.18)
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Then, u and p satisfy (4.12) with H = 0, and from (4.14), (4.15) and (4.17) we conclude the
estimate

‖∂tu‖Lp(T,Lq (�)) + ‖u‖Lp(T,H2
q (�)) + ‖∇p‖Lp(T,Lq (�)) ≤ C‖F‖Lp(T,Lq (�)). (4.19)

Thus, we have shown existence for H = 0.
Now consider arbitrary H ∈ H1

p(T,Lq(�)N) ∩ Lp(T,H2
q(�)N) satisfying (4.11). Fix

λ1 > λ0 with λ0 from Lemma 4.3. We use the R-bounded solution operators S and P from
Lemma 4.3 to define

u1 = F−1
T

[S(ik + λ1)
(
0, (ik + λ1)H̃k, (ik + λ1)

1/2H̃k, H̃k

)],
p1 = F−1

T
[P(ik + λ1)

(
0, (ik + λ1)H̃k, (ik + λ1)

1/2H̃k, H̃k

)],

where H̃k = F [H](k). Then (u1,p1) is a solution to the auxiliary problem

∂tu1 + λ1u1 − μ�u1 + ∇p1 = 0, div u1 = 0 in � ×T, u1|� = H,

and by the multiplier theorem from Corollary 2.3, we have

u1 ∈ H1
p(T,Lq(�)N) ∩ Lp(T,H2

q(�)N), p1 ∈ Lp(T, Ĥ1
q(�))

and the estimate

‖∂tu1‖Lp(T,Lq (�)) + ‖u1‖Lp(T,H2
q (�)) + ‖∇p1‖Lp(T,Lq (�))

≤ C(‖∂tH‖Lp(T,Lq (�)) + ‖H‖Lp(T,H2
q (�))).

Here, we have used the interpolation inequality

‖H‖
H1/2

p (T,H1
q (�))

≤ C(‖∂tH‖Lp(T,Lq (�)) + ‖H‖Lp(T,H2
q (�))).

as well as the trivial estimate

‖F−1
T

[(ik + λ1)H̃k]‖Lp(T,Lq (�)) ≤ ‖F−1
T

[ikH̃k]‖Lp(T,Lq (�)) + λ1‖F−1
T

[H̃k]‖Lp(T,Lq (�))

= ‖∂tH‖Lp(T,Lq (�)) + λ1‖H‖Lp(T,Lq (�)).

Now consider the problem

∂tu2 − μ�u2 + ∇p2 = F + λ1u1, div u2 = 0 in � ×T, u2|� = 0.

As shown in the first part of the proof, there exists a solution (u2,q2) in the claimed function
class and satisfying (4.19) with F replaced with F + λ1u1. Then (u,q) = (u1 + u2,q1 + q2)

is a solution to (4.12), belongs to the correct function class, and satisfies estimate (4.16).
For the uniqueness statement, let (u,p) be in the considered function class and sat-

isfy (4.12) with F = 0 and H = 0. Then, for each k ∈ Z, setting ũk = F [u](k) and
p̃k = FT[p](k), we see that ũk ∈ H2

q(�)3 and p̃k ∈ Ĥ1
q(�) satisfy the homogeneous equa-

tions

ikũk − μ�ũk + ∇p̃k = 0, div ũk = 0 in �, ũk|� = 0.

Thus, the uniqueness statement from Lemma 4.2 yields that ũk = ∇p̃k = 0, which shows
that u = ∇p= 0. This completes the proof of Proposition 4.4. �
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To conclude the proof of Theorem 4.1, we next derive an estimate of the nonlinear term
N in the spirit of the assumptions of the abstract theory from Theorem 3.3. Moreover, we
identify L as a small perturbation. For this purpose, we introduce the quantity

E(u,p) := ‖∂tu‖Lp(T,Lq (�)) + ‖u‖Lp(T,H2
q (�)) + ‖∇p‖Lp(T,Lq (�)).

Lemma 4.5 Let p ∈ (2,∞) and q ∈ (N,∞), and let ε0 > 0 such that (4.4) is satisfied. Then
there exists C > 0 such that

‖L (u1,p1)‖Lp(T,Lq (�)) ≤ Cε0E(u1,p1), (4.20)

‖L (u1 − u2,p1 − p2)‖Lp(T,Lq (�)) ≤ Cε0E(u1 − u2,p1 − p2), (4.21)

‖N (u1)‖Lp(T,Lq (�)) ≤ C(1 + ε0)E(u1,p1)
2, (4.22)

‖N (u1) −N (u2)‖Lp(T,Lq (�)) ≤ C(1 + ε0)
(
E(u1,p1) + E(u2,p2)

)
E(u1 − u2,p1 − p2)

(4.23)

for all u1,u2 ∈ H1
p(T,Lq(�)N) ∩ Lp(T,H2

q(�)N) and p1,p2 ∈ Lp(T, Ĥ1
q(�)).

Proof Firstly, by (4.4), (4.6) and (4.8) we directly conclude (4.20), and (4.21) follows
from (4.20) since L is a linear operation. In a similar way, noting that N < q < ∞, by
Sobolev’s imbedding theorem we have

‖N (u1(·, t))‖Lq (�) ≤ C(1 + ε0)‖u1(·, t)‖Lq (�)‖u1(·, t)‖H2
q (�). (4.24)

By real interpolation theorem, we know that

H1
p(T,Lq(�)) ∩ Lp(T,H2

q(�)) ↪→ C0(T,B2(1−1/p)
q,p (�)),

sup
t∈T

‖f (·, t)‖
B

2(1−1/p)
q,p (�)

≤ C(‖f ‖H1
p(T,Lq (�)) + ‖f ‖Lp(T,H2

q (�)))
(4.25)

since we have p > 2, and we obtain

‖f ‖L∞(T,Lq (�)) ≤ C‖f ‖
L∞(T,B2(1−1/p)

q,p (�))
≤ C(‖f ‖H1

p(T,Lq (�)) + ‖f ‖Lp(T,H2
q (�))). (4.26)

Therefore, we conclude (4.22). In a similar way, since

N (u1) −N (u2)

= ((I + B−1)(u1 − u2)) · (I + A)∇((I + B−1)u1) + ((I + B−1)u2)

· (I + A)∇((I + B−1)(u1 − u2)),

by Sobolev’s inequality and the assumption N < q < ∞, we have

‖N (u1) −N (u2)‖Lq (�) ≤ C(‖u1 − u2‖Lq (�)‖u1‖H2
q (�) + ‖u2‖Lq (�)‖u1 − u2‖H2

q (�)).

Thus, from (4.26) we finally deduce (4.23). �

Proof of Theorem 4.1 We conclude the proof using the contraction mapping principle in the
very same fashion as in Theorem 3.3. We introduce the underlying space Iε defined by

Iε = {(u,p) |u ∈ H1
p(T,Lq(�)) ∩ Lp(T,H2

q(�)N), p ∈ Lp(T, Ĥ1
q(�)), E(u,p) ≤ ε}.



1 Page 24 of 43 T. Eiter et al.

Given (u,p) ∈ Iε , let v and q satisfy

∂tv − �v + ∇q = G + L (u,p) + N (u), div v = 0 in � ×T, v|� = H|�. (4.27)

The existence of (v,q) follows from Proposition 4.4 since by Lemma 4.5, the forcing term
in (4.27) belongs to Lp(T,Lq(�)N). More precisely, combining estimates (4.20) and (4.22)
with the smallness assumption on G and H, choosing ε0 ≤ Cε and applying Proposition 4.4
gives the unique existence of a solution (v,q) of (4.27) with

v ∈ H1
p(T,Lq(�)N) ∩ Lp(T,H2

q(�)N), q ∈ Lp(T, Ĥ1
q(�)),

possessing the estimate

E(v,q) ≤ C(ε2 + εE(u,p) + E(u,p)2). (4.28)

Since we assume that E(u,p) ≤ ε, by (4.28) we have E(v,q) ≤ 3Cε2. Therefore, choosing
ε > 0 so small that 3Cε ≤ 1, we have E(v,q) ≤ ε, so that (v,q) ∈ Iε . Thus, the map �

acting on (u,p) ∈ Iε by setting �(u,p) = (v,q) is a map from Iε into Iε .
We next prove that � is a contraction map. Let (ui ,pi ) (i = 1.2) be any two elements of

Iε and set (vi ,qi ) = �(ui ,pi ). Then, v = v1 − v2 and q = q1 − q2 satisfy the equations

∂tv − �v + ∇q= L (u1 − u2,p1 − p2) + (N (u1) − N (u2))

div v = 0 in � ×T, v|� = 0.

Applying Proposition 4.4 and using (4.21) and (4.23) now gives that

E(v1 − v2,q1 − q2) ≤ CεE(u1 − u2,p1 − p2).

Choosing ε > 0 smaller if necessary, we may assume that Cε < 1, and so � is a contraction
map on Iε , which yields the unique existence of (u,p) ∈ Iε such that (u,p) = �(u,p).
Obviously, (u,p) is the required solution of (4.9). This completes the proof of Theorem
4.1. �

Remark 4.6 In the case of no-slip boundary conditions, the fluid particles at the boundary
are attached to the body, so that the fluid velocity coincides with the velocity of boundary
particles. Then, the boundary data h in (4.3) are given by

h(x, t) = ∂t
t (y) = ∂tφ(t, y),

where x = 
t(y) = y +φ(y, t), and in the formulation (4.9) on a time-independent domain,
this corresponds to boundary data

H = (I + J0I + A�J)∂tφ.

Therefore, the assumptions on H in Theorem 4.1 are additional regularity and smallness
assumptions on φ in this case. Moreover, the compatibility condition (4.11) is satisfied if
and only if 
t preserves the volume of �.
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5 On Periodic Navier-Stokes Flow Around a Body at Rest

5.1 Problem and Main Results

Let � be an exterior domain in R
3, that is, a domain that is the complement of a compact set.

We assume that its boundary � is a connected C2 hypersurface. Let b > 0 be a suffciently
large number such that �c ⊂ Bb , where �c = R

3 \ � and Bb = {x ∈ R
N | |x| < b}. We

further set Sb = {x ∈R
N | |x| = b}. We consider the Navier-Stokes equations in �:

∂tu + u · ∇u − μ�u + ∇p= F, div u = 0 in �, u|� = h|�. (5.1)

Here, ∂j = ∂/∂xj , x = (x1, x2, x3) ∈ R
3, u = (u1, u2, u3)

� is an unknown velocity field,
p an unknown pressure field, F = (F1, . . . ,FN)� a prescribed external force, and h =
(h1, . . . , hN)� are prescribed boundary data. Assume that F(t +2π) = F(t) and h(t +2π) =
h(t) for any t ∈R. Then (5.1) describes the fluid flow around a body, subject to time-periodic
external forcing F and with boundary data h.

Given any time-periodic function f = f (x, t), with period 2π , we write

fS(x) =
∫

T

f (x, t) dt = 1

2π

∫ 2π

0
f (x, t) dt, f⊥(x, t) = f (x, t) − fS(x), (5.2)

and fS and f⊥ are called the stationary part of f and the oscillatory part of f , respectively.
By means of this decomposition, we divide the data and the solution into two parts, which
have different asymptotic properties as |x| → ∞. To quantify this spatial decay, we set

< fS >	= sup
x∈�

|fS(x)|(1 + |x|)	, < f⊥ >p,	= sup
x∈�

‖f⊥(x, ·)‖Lp(T)(1 + |x|)	

for 	 ∈R and p ∈ (1,∞). We shall prove the following theorem.

Theorem 5.1 Let 2 < p < ∞ and 3 < q < ∞. Assume that F = FS + F⊥ with FS = div GS

and F⊥ = div G⊥. Then there exists a small constant ε > 0 depending on p and q such that
if F and h ∈ H1

p(T,Lq(�)3) ∩ Lp(T,H2
q(�)3) satisfy the smallness condition

< FS >3 + < GS >2 + < F⊥ >p,2 + < G⊥ >p,1 +‖h‖H1
p(T,Lq (�)) + ‖h‖Lp(T,H2

q (�)) < ε2,

(5.3)
then problem (5.1) admits a solution (u,p) such that u = uS + u⊥ and p = pS + p⊥ with

uS ∈ H2
q(�)3, u⊥ ∈ H1

p(T,Lq(�))∩Lp(T,H2
q(�)), pS ∈ H1

q(�), p⊥ ∈ Lp(T, Ĥ1
q(�))

satisfying the estimate

< uS >1 + < ∇uS >2 +‖uS‖H2
q (�) + ‖pS‖H1

q (�)

+ < u⊥ >p,1 + < ∇u⊥ >p,2 +‖u⊥‖Lp(T,H2
q (�)) + ‖∂tu⊥‖Lp(T,Lq (�)) + ‖∇p⊥‖Lp(T,Lq (�))

≤ ε.

Moreover, u and pS are the unique functions with these properties while the purely periodic
pressure p⊥ is unique up to addition by a function only depending on time.
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Our proof of Theorem 5.1 is based on the study of the associated linearized system, the
time-periodic Stokes problem

∂tv − μ�v + ∇p= f, div v = 0 in � ×T, v|� = h. (5.4)

We shall derive the following theorem, which ensures existence of a unique solution to (5.4)
in a framework of spatially weighted spaces. For shorter notation, we set Lq,3b(�) = {f ∈
Lq(�) | suppf ⊂ B3b}.
Theorem 5.2 Let 1 < p < ∞, 3 < q < ∞ and 	 ∈ (0,3]. For all f = fS +f⊥ ∈ Lp(T,Lq(�)3)

such that fS = div GS + gS and f⊥ = div G⊥ + g⊥ with g = gS + g⊥ ∈ Lp(T,Lq,3b(�)3) and

< GS >2 + < div GS >3 + < G⊥ >p,	 + < div G⊥ >p,	+1< ∞,

problem (5.4) admits a solution (v,p) with

v ∈ H1
p(T,Lq(�)3) ∩ Lp(T,H2

q(�)3), p ∈ Lp(T, Ĥ1
q(�)),

possessing the estimate

‖vS‖H2
q (�)+ < vS >1 + < ∇vS >2 +‖pS‖H1

q (�)+ < pS >2

+ ‖∂tv⊥‖Lp(T,Lq (�)) + ‖v⊥‖Lp(T,H2
q (�))+ < v⊥ >p,	 + < ∇v⊥ >p,	+1 +‖∇p⊥‖Lp(T,Lq (�))

≤ C(< div GS >3 + < GS >2 + < div G⊥ >p,1+	 + < G⊥ >p,	

+ ‖g‖Lp(T,Lq (�)) + ‖h‖H1
p(T,Lq (�)) + ‖h‖Lp(T,H2

q (�))).

(5.5)

Here, v and pS are the unique functions with these properties while the purely periodic
pressure p⊥ is unique up to addition by a function only depending on time.

For the proof of this theorem, we split (5.4) into two separate problems by means of
the decomposition (5.2). In the following subsections these problems are analyzed indepen-
dently of each other in the case of vanishing boundary data. In Sect. 5.4 we return to the
original linear and nonlinear problems (5.4) and (5.1) and complete the proofs of Theorems
5.1 and 5.2.

5.2 Stationary Solutions to the Stokes Problem

Here we examine time-independent solutions to (5.4) with vanishing boundary data h = 0,
that is, solutions (u,p) to the stationary problem

−μ�u + ∇p= div F + g, div u = 0 in �, u|� = 0. (5.6)

We shall derive the following result.

Proposition 5.3 Let 3 < q < ∞. If F satisfies the condition < div F >3 + < F >2< ∞ and
g ∈ Lq,3b(�)3, then problem (5.6) admits a unique solution (u,p) ∈ H2

q(�)3 × H1
q(�) pos-

sessing the estimate:

‖u‖H2
q (�)+ < u >1 + < ∇u >2 +‖p‖H1

q (�)+ < p>2≤ C(< div F >3 + < F >2 +‖g‖Lq (�))

(5.7)
with some constant C > 0.
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For the proof, we first consider the Stokes equations in R
3:

−μ�u + ∇p= f, div u = 0 in R
3. (5.8)

As is well-known (cf. Galdi [28, pp.239-240]), there exist fundamental solutions U =
(Uij (x)) and q = (q1(x), q2(x), q3(x))� of equations (5.8) with

Uij (x) = − 1

8πμ

( δij

|x| + xixj

|x|3
)
, qj (x) = 1

4π

xj

|x|3 . (5.9)

If we set

u(x) = U ∗ f(x) :=
∫

R3
U(y)f(x − y)dy, p(x) = q ∗ f :=

∫

R3
q(y) · f(x − y)dy, (5.10)

then, u and p formally satisfy equations (5.8). We prove the following lemma.

Lemma 5.4 Let 3 < q < ∞.
(1) Let F be a function satisfying < div F >3 + < F >2< ∞ and set u = U ∗ (div F) and

p = q ∗ (div F). Then, we have

‖u‖H2
q (R3) + ‖p‖H1

q (R3)+ < u >1 + < ∇u >2 + < p>2 ≤ C(< F >2 + < div F >3)

with some constant C > 0.
(2) Let g ∈ Lq(R

3) such that g vanishes for |x| > b with some constant b > 0. Let v =
U ∗ g and q = q ∗ g. Then, we have

‖v‖H2
q (R3) + ‖q‖H1

q (R3)+ < v >1 + < ∇v >2 + < q>2 ≤ C‖g‖Lq (R3)

for some constant C.

Proof (1) The theory of singular integrals (see [70, Ch. 2, Thm. 3] for example) yields that

‖∇2u‖Lq (R3) + ‖∇p‖Lq (R3) ≤ C‖div F‖Lq (R3) ≤ Cq < div F >3;
‖∇u‖Lq (R3) + ‖p‖Lq (R3) ≤ C‖F‖Lq (R3) ≤ Cq < F >2 .

For notational simplicity, set γ =< div F >3 + < F >2. By the Gaussian divergence theo-
rem, we write

u(x) =
∫

|y|≤|x|/2
U(y)(div F)(x − y)dy −

∫

|y|=|x|/2
U(y)

y

|y| · F(x − y)dω

+
∫

|x|/2≤|y|≤2|x|
∇U(y)F(x − y)dy +

∫

|y|≥2|x|
∇U(y)F(x − y)dy.

Noting that |x − y| ≥ |x|/2 for |y| ≤ |x|/2, |x − y| ≤ 3|x| for |x|/2 ≤ |y| ≤ 2|x|, and |x −
y| ≥ |y|/2 for |y| ≥ 2|x|, by (5.9) we have

|u(x)| ≤ Cγ
{
(1 + |x|)−3

∫

|y|≤|x|/2
|y|−1 dy + |x|−1(1 + |x|)−2

∫

|y|=|x|/2
dω

+ |x|−2
∫

|z|≤3|x|
|z|−2 dz +

∫

|y|≥2|x|
|y|−4 dy

}
≤ Cγ |x|−1
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for x �= 0. When |x| ≤ 1, noting that |(div F)(x − y)| ≤ γ for |y| ≤ 2 and |(div F)(x − y)| ≤
Cγ |y|−3 for |y| ≥ 2, we have

|u(x)| ≤
∫

|y|≤2
|U(y)(div F)(x − y)|dy +

∫

|y|≥2
|U(y)(div F)(x − y)|dy

≤ Cγ
{∫

|y|≤2
|y|−1 dy +

∫

|y|≥2
|y|−4 dy

}
≤ Cγ.

In total, we thus have < u >1≤ Cγ . In particular, noting that 3 < q < ∞, we obtain

‖u‖Lq (R3) ≤ Cq < u >1≤ Cqγ.

Similarly to before, we proceed with the estimate of ∇u and write

∇u(x) =
∫

|y|≤|x|/2
∇U(y)(div F)(x − y)dy −

∫

|y|=|x|/2
∇U(y)

y

|y| · F(x − y)dω

+
∫

|x|/2≤|y|≤2|x|
∇2U(y)F(x − y)dy +

∫

|y|≥2|x|
∇2U(y)F(x − y)dy.

Then, we have

|∇u(x)| ≤ Cγ
{
(1 + |x|)−3

∫

|y|≤|x|/2
|y|−2 dy + |x|−2(1 + |x|)−2

∫

|y|=|x|/2
dω

+ |x|−3
∫

|z|≤3|x|
|z|−2 dz +

∫

|y|≥2|x|
|y|−5 dy

}
≤ Cγ |x|−2

for x �= 0. When |x| ≤ 1, arguing as above, we have

|∇u(x)| ≤
∫

|y|≤2
|∇U(y)(div F)(x − y)|dy +

∫

|y|≥2
|∇U(y)(div F)(x − y)|dy

≤ Cγ
{∫

|y|≤2
|y|−2 dy +

∫

|y|≥2
|y|−5 dy

}
≤ Cγ.

Summing up, we have < ∇u >2≤ Cγ .
In the very same way, we can use |q(y)| ≤ C|y|−2 and |∇q(y)| ≤ C|y|−3 for y �= 0 to

deduce < p >2≤ Cγ . In particular, ‖p‖Lq (R3) ≤ Cq < p>2≤ Cqγ , because 3 < q < ∞. This
completes the proof of the first part of Lemma 5.4.

(2) As before, the theory of singular integral operators yields that

‖∇2v‖Lq (R3) + ‖∇q‖Lq (R3) ≤ C‖g‖Lq (R3). (5.11)

By estimates for weak singular integral operators (cf. [28, II.11]), we further have

‖∇v‖Lq (B2b) + ‖v‖Lq (B2b) + ‖q‖Lq (B2b) ≤ Cb,q‖g‖Lq (R3). (5.12)
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Since |U(x)| ≤ C|x|−1, |∇U(x)| ≤ C|x|−2 and |q(x)| ≤ C|x|−2, noting that g(y) = 0 for
|y| > b, for |x| > 2b we have

|v(x)| ≤ C

∫

|y|<b

|g(y)|
|x − y| dy ≤ Cb|x|−1

∫

|y|<b

|g(y)|dy ≤ Cb|x|−1‖g‖Lq (R3);

|∇v(x)| ≤ C

∫

|y|<b

|g(y)|
|x − y|2 dy ≤ Cb|x|−2

∫

|y|<b

|g(y)|dy ≤ Cb|x|−2‖g‖Lq (R3);

|q(x)| ≤ C

∫

|y|<b

|g(y)|
|x − y|2 dy ≤ Cb|x|−2

∫

|y|<b

|g(y)|dy ≤ Cb|x|−2‖g‖Lq (R3).

(5.13)

In particular, setting (B2b)
c = R

3 \ B2b , we conclude

‖v‖Lq ((B2b)c) + ‖∇v‖Lq ((B2b)c) + ‖q‖Lq ((B2b)c) ≤ Cb,q‖g‖Lq (R3),

because 3 < q < ∞, which, combined with (5.11) and (5.12), yields that

‖v‖H2
q (R3) + ‖q‖H1

q (R3) ≤ Cq,b‖g‖Lq (R3).

By Sobolev’s inequality, we have

sup
|x|≤2b

(1 + |x|)|v(x)| + sup
|x|≤2b

(1 + |x|)2|∇v(x)| + sup
|x|≤2b

(1 + |x|)2|q(x)|

≤ C(‖v‖H2
q (R3) + ‖q‖H1

q (R3))

≤ Cq,b‖g‖Lq (R3),

which, combined with (5.13), yields that

< v >1 + < ∇v >2 + < q>2≤ Cq,b‖g‖Lq (R3).

This completes the proof of the second part of Lemma 5.4. �

Proof of Proposition 5.3 To construct a solution operator for problem (5.6), we follow the
method from [64] and first consider the case where f ∈ Lq,3b(�)3. Firstly, let f0 be the zero
extension of f to the complement of �, that is, we set f0(x) = f(x) for x ∈ � and f0(x) = 0
for x /∈ �. Let T0f0 = U ∗ f0 and P0f0 = q ∗ f0. Secondly, let fb be the restriction of f ∈
Lq,3b(�)3 to �4b , and let A0 and B0 be the operators acting on fb ∈ Lq(�4b)

3 such that
A0fb ∈ H2

q(�4b)
3, B0fb ∈ Ĥ1

q(�4b) satisfy the equations

−μ�A0fb + ∇B0fb = fb, divA0f = 0 in �4b, A0fb|� = A0fb|S4b
= 0, (5.14)

and possess the estimate

‖A0fb‖H2
q (�4b) + ‖B0fb‖Ĥ1

q (�4b) ≤ C‖fb‖Lq (�4b). (5.15)

Since B0fb is only defined up to a constant, choosing a constant suitably, we may assume
that

∫

�4b

(P0f0 − B0fb) dx = 0. (5.16)
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In what follows, let ϕ be a function in C∞(R3) that equals 1 for x ∈ B2b and 0 for x /∈ B3b ,
and let B be the Bogovskiı̆ operator [6, 7]. For f ∈ Lq,3b(�)3, let

V0f = (1−ϕ)T0f0 +ϕA0fb +B[(∇ϕ)(T0f0 −A0fb)], W0f = (1−ϕ)P0f0 +ϕB0fb. (5.17)

Inserting these formulas into equations (5.6), we have

−μ�V0f + ∇W0f = f +R1f, divV0f = 0 in �, V0f|� = 0, (5.18)

where

R1f = 2μ(∇ϕ) · (∇T0f0 − ∇A0fb) + μ(�ϕ)(T0f0 −A0fb)

− μ�B[(∇ϕ) · (T0f0 −A0fb)] − (∇ϕ)(P0f0 − B0fb).

Employing the same arguments as in [34] and [37], we shall show in Lemma 5.5 below that
the inverse operator (I +R1)

−1 ∈ L (Lq,3b(�)3) exists and

‖(I +R1)
−1f‖Lq (�) ≤ C‖f‖Lq (�) (5.19)

for any f ∈ Lq,3b(�)3. Postponing proving (5.19), we continue the proof of Proposition 5.3.
Setting

U0f := V0(I +R1)
−1f

= (1 − ϕ)T0((I +R1)
−1f)0 + ϕA0((I +R1)

−1f)b

+B[(∇ϕ)(T0((I +R1)
−1f)0 −A0((I +R1)

−1f))b],
Q0f := W0(I +R1)

−1f = (1 − ϕ)P ((I +R1)
−1f)0 + ϕB0((I +R1)

−1f)b,

we see that (u,p) = (U0f,Q0f) is a solution to problem (5.6). Moreover, by (5.19), Lemma
5.4 (2) and (5.15), we have

sup
x∈�

(1 + |x|)|U0f(x)| ≤ C‖f‖Lq (�), sup
x∈�

(1 + |x|)2|∇U0f(x)| ≤ C‖f‖Lq (�),

sup
x∈�

(1 + |x|)2|Q0f(x)| ≤ C‖f‖Lq (�), ‖U0f‖H2
q (�) + ‖Q0f‖H1

q (�) ≤ C‖f‖Lq (�).
(5.20)

We now consider the case where f = div F + g with < div F >3 + < F >2< ∞ and
g ∈ Lq,3b(�). We write f = div ((1 − ϕ)F) + h with h = ϕ div F + (∇ϕ) · F + g. Let

u = (1 − ϕ)T0f0 +B[(∇ϕ)T0f0], p = (1 − ϕ)P0f0.

Notice that f0 = div ((1 − ϕ)F) + h0. We see that u and p satisfy the equations:

−μ�u + ∇p= (1 − ϕ)f0 +R2f, div u = 0 in �, u|� = 0,

where we have set

R2f = 2μ(∇ϕ) · ∇T0f0 + μ(�ϕ)T0f0 − μ�B[(∇ϕ) · T0f0] − (∇ϕ)P0f0.
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Moreover, by Lemma 5.4, we have

sup
x∈�

(1 + |x|)|u(x)| + sup
x∈�

(1 + |x|)2|∇u(x)| + sup
x∈�

(1 + |x|)2|p(x)| + ‖u‖H2
q (�) + ‖p‖H1

q (�)

≤ C(< div F >3 + < F >2 +‖g‖Lq (�)).

Notice that

‖R2f‖Lq (�) ≤ C(< div F >3 + < F >2 +‖g‖Lq (�))

and suppR2f ⊂ B3b . Thus, if we define operators S0 and P0 acting on f by setting

S0f = (1 − ϕ)T0f0 +B[(∇ϕ) · T0f0] + U0(ϕf +R2f),

P0f = (1 − ϕ)P0f0 +Q0(ϕf +R2f),

then, u = S0f and p= P0f satisfy (5.6), and combining the estimates above gives that

sup
x∈�

(1 + |x|)|(S0f)(x)| + sup
x∈�

(1 + |x|)2|(∇S0f)(x)| + sup
x∈�

(1 + |x|)2|(P0f)(x)|

+ ‖S0f‖H2
q (�) + ‖P0f‖H1

q (�) ≤ C(< div F >3 + < F >2 +‖g‖Lq (�)),

which completes the proof of Proposition 5.3. �

Lemma 5.5 The operator I +R1 : Lq,3b(�)3 → Lq,3b(�)3 is invertible and there exists C >

0 such that (5.19) holds for any f ∈ Lq,3b(�)3.

Proof In view of (5.16) and ∇(P0f0 − B0fb) ∈ Lq(�4b)
3, we have (P0f0 − B0fb) ∈ H1

q(�4b).
Thus, R1f ∈ H1

q(�)3 and suppR1f ⊂ D2b,3b , where D2b,3b = {x ∈R
3 | 2b ≤ |x| ≤ 3b}. Thus,

by Rellich’s compactness theorem, R1 is a compact operator on Lq,3b(�)3. Let Ker (I +
R1) = {f ∈ Lq,3b(�)3 | (I+R1)f = 0}. By Fredholm’s alternative principle, if Ker (I+R1) =
{0}, then I + R1 is invertible, and therefore we have (5.19). To verify this, we choose f ∈
Ker(I + R1) arbitrarily, and we shall show that f = 0. Since (I + R1)f = 0, we have f =
−R1f ∈ H1

q(�) and supp f ⊂ D2b,3b . Let u = V0f and p= W0f. Then by (5.18) we see that

−μ�u + ∇p= 0, div u = 0 in �, u|� = 0. (5.21)

Since 3 < q < ∞ and u ∈ H2
q(�)3 and p ∈ Ĥ1

q(�), we have u ∈ H2
2,loc(�) and p ∈ H1

2,loc(�).
Let ψ be a C∞(R3) function which equals 1 for |x| < 1 and 0 for |x| > 2 and set ψR(x) =
ψ(x/R) for R > 4b. From (5.21) it follows that

0 = (−μ�u + ∇p,ψRu) = μ(∇u,ψR∇u) + μ(∇u, (∇ψR)u) − (p, (∇ψR) · u). (5.22)

Using Lemma 5.4 (2), we obtain

|u(x)| ≤ C|x|−1, |∇u(x)| ≤ C|x|−2, |p| ≤ C|x|−2

for |x| > 4b, and so we have

|(∇u, (∇ψR)u)| ≤ C‖∇ψ‖L∞(R3)R
−1

∫

2R≤|x|≤3R

|x|−3 dx = O(R−1) → 0,
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|(p, (∇ψR)u)| ≤ C‖∇ψ‖L∞(R3)R
−1

∫

2R≤|x|≤3R

|x|−3 dx = O(R−1) → 0

as R → ∞, and so taking R → ∞ in (5.22), we have ‖∇u‖L2(�) = 0, which implies that
u is a constant vector. But, u|� = 0, and so u = 0. Thus, by the first equation of (5.21),
∇p = 0, which shows that p is a constant. But, p(x) = O(|x|−2) as |x| → ∞, and so p = 0.
Therefore, by (5.17) we have

(1 − ϕ)T0f0 + ϕA0fb +B[(∇ϕ) · (T0f0 −A0fb)] = 0,

(1 − ϕ)P0f0 + ϕB0fb = 0
(5.23)

in �4b . Since B[(∇ϕ) · (T0f0 −A0fb)] vanishes for x /∈ D2b,3b and ϕ(x) = 0 for |x| > 3b and
1 − ϕ(x) = 0 for |x| < 2b, we have

A0fb = 0, B0fb = 0 for |x| < 2b, T0f0 = 0, P0f0 = 0 for |x| > 3b. (5.24)

Let

w(x) =
{

(A0fb)(x) for x ∈ �4b,

0 for x /∈ �,
q(x) =

{
(B0fb)(x) for x ∈ �4b,

0 for x /∈ �,

and then, by (5.15) and (5.24) w ∈ H2
q(B4b)

3 and q ∈ H1
q(B4b), and w and q satisfy equations:

−μ�w + ∇q= f0, div w = 0 in B4b, w|S4b
= 0. (5.25)

On the other hand, by (5.24), we know that T0f0 and P0f0 also satisfy equations (5.25), and
so the uniqueness of solutions yields that w = T0f0 and ∇(q− P0f0) = 0 in B4b . Noting that
q = B0fb , by (5.16) we have q = P0f0. In particular, (∇ϕ) · (T0f0 − A0fb) = 0. Thus, from
(5.23) we even have

0 = T0f0 − ϕ(T0f0 −A0fb) = T0f0,

0 = P0f0 − ϕ(P0f0 − B0fb) = P0f0,

which gives that f = −μ�T0f0 + ∇P0f0 = 0 in �4b . Thus, we have f = 0. This completes
the proof of existence of (I +R1)

−1. �

5.3 Purely Oscillatory Solutions to the Stokes Problem

In this section we consider the oscillatory part of the linearization (5.4) for h = 0, which is
given by

∂tv⊥ − μ�v⊥ + ∇p⊥ = f⊥, div v⊥ = 0 in � ×T, v⊥|� = 0, (5.26)

where the subscript ⊥ indicates that all functions have vanishing time mean. We shall prove
the following result.

Proposition 5.6 Let 1 < p,q < ∞. Then, for any f⊥ ∈ Lp(T,Lq(�)) with
∫
T

f⊥(·, s)ds = 0,
problem (5.26) admits a solution (v⊥,p⊥) with

v⊥ ∈ H1
p(T,Lq(�)3) ∩ Lp(T,H2

q(�)3), p⊥ ∈ Lp(T, Ĥ1
q(�)),

∫

T

v⊥(·, s)ds = 0,

∫

T

p⊥(·, s)ds = 0,
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possessing the estimate

‖∂tv⊥‖Lp(T,Lq (�)) + ‖v⊥‖Lp(T,H2
q (�)) + ‖∇p⊥‖Lp(T,Lq (�)) ≤ C‖f⊥‖Lp(T,Lq (�)). (5.27)

Here, v⊥ is unique in the above function class while p⊥ is unique up to addition by a function
only depending on time.

In order to prove Proposition 5.6, we first consider the corresponding resolvent problem

λw − μ�w + ∇r= f, div w = 0 in �, w|� = 0, (5.28)

for which we have the results from Lemma 4.2. Observe that, with regard to the time-
periodic problem (5.4), we are mainly interested in the resolvent problem (5.28) with λ = ik

for k ∈ Z, and Lemma 4.2 gives a framework where this problem is uniquely solvable, but
merely for k ∈ Z \ {0}. This is the main reason why we only consider the purely oscillatory
problem (5.26) in Proposition 5.6. Apart from this, Proposition 5.6 can be proved in the
same way as Proposition 4.4.

Proof of Proposition 5.6 Let λ0 be as in Lemma 4.2, and let ϕ = ϕ(σ) be a C∞(R) function
that equals 1 for |σ | ≥ λ0 + 1/2 and 0 for |σ | ≤ λ0 + 1/4. Using the operator families S
and P from Lemma 4.2, we set

vh = F−1
T

[S (ik)ϕ(k)FT[H⊥](k)], ph = F−1
T

[P(ik)ϕ(k)FT[H⊥](k)].
Then vh and ph satisfy the equations

∂tvh − μ�vh + ∇ph = Hh, div vh = 0 in � ×T, vh|� = 0,

where we have set Hh = F−1
T

[ϕ(k)FT[H⊥](k)]. Moreover, arguing as in the proof of The-
orem 3.1, we can use the R-bounds from Lemma 4.2 and employ Corollary 2.3 to deduce

‖∂tvh‖Lp(T,Lq (�)) + ‖vh‖Lp(T,H2
q (�)) + ‖∇ph‖Lp(T,Lq (�)) ≤ C‖Hh‖Lp(T,Lq (�))

≤ C‖H⊥‖Lp(T,Lq (�)).
(5.29)

Now, in view of Lemma 4.2, we set

v⊥(t) = vh(t) +
∑

0<|k|≤λ0

eiktS (ik)FT[H⊥](k),

p⊥(t) = ph(t) +
∑

0<|k|≤λ0

eiktP(ik)FT[H⊥](k).

Then, v⊥ and p⊥ satisfy equations (5.26), and from (4.14) and (5.29) we conclude esti-
mate (5.27). Thus, we have shown the existence part of Proposition 5.6. The uniqueness
statement follows exactly as in the proof of Proposition 4.4 noting that FT[v⊥](0) = 0 and
FT[p⊥](0) = 0 by assumption. �

Next we examine the pointwise decay of the solution (v⊥,p⊥). More precisely, we show
decay properties of ‖v⊥(x, ·)‖Lp(T) with respect to the x-variable, as stated in the following
lemma.
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Lemma 5.7 In the situation of Proposition 5.6, let 3 < q < ∞ and 	 ∈ (0,3] such that f⊥ =
div F⊥ + g⊥ with

∫

T

F⊥(x, t)dt = 0, < F⊥ >p,	 + < div F⊥ >p,	+1< ∞,

∫

T

g⊥(x, t)dt = 0, g⊥ ∈ Lp(T,Lq,3b(�)).

(5.30)

Then, v⊥ has the following asymptotics:

< v⊥ >p,	 + < ∇v⊥ >p,	+1≤ C(< div F⊥ >p,	+1 + < F⊥ >p,	 +‖g⊥‖Lp(T,Lq (�))) (5.31)

with some constant C > 0.

Remark 5.8 Since 3 < q < ∞, we have ‖div F⊥‖Lp(T,Lq (�)) ≤ Cq < div F⊥ >p,	+1 and so

‖f⊥‖Lp(T,Lq (�)) ≤ Cq(< div F⊥ >p,	+1 +‖g⊥‖Lp(T,Lq (�))). (5.32)

Therefore, Proposition 5.6 really shows existence for f⊥ as in Lemma 5.7.

To prove (5.31), we use the following theorem due to EITER and KYED [19], which
collects properties of the velocity fundamental solution �⊥ to (5.26), which is a tensor field
�⊥ such that v⊥ := �⊥ ∗ H⊥ is formally a solution to (5.26) for � = R

3.

Theorem 5.9 Let

�⊥ = F−1
R3×T

[ 1 − δZ

μ|ξ |2 + ik

(
I − ξ ⊗ ξ

|ξ |2
)]

. (5.33)

Then, it holds �⊥ ∈ Lq(R
3 ×T)3×3 for q ∈ (1,5/3), and ∂j�⊥ ∈ Lq(R

3 ×T) for q ∈ (1,5/4),
j = 1,2,3. Moreover, for any α ∈ N

3
0, δ > 0 and r ∈ [1,∞), there exists a constant Cα,δ > 0

such that

∀|x| ≥ δ : ‖∂α
x �⊥(x, ·)‖Lr (T) ≤ Cα,δ

|x|3+|α| .

Remark 5.10 This theorem holds for any dimension N ≥ 2 replacing 5/3, 5/4 and 3 + |α|
with (N + 2)/N , (N + 2)/(N + 1) and N + |α|, respectively.

Proof of Lemma 5.7 Since we assume that 3 < q < ∞, by Sobolev’s inequality, we have

sup
|x|≤4b

‖v⊥(·, x)‖Lp(T) + sup
|x|≤4b

‖(∇v⊥)(·, x)‖Lp(T) ≤ C‖v⊥‖Lp(T,H2
q (�)) ≤ C‖H⊥‖Lp(T,Lq (�)).

It thus remains to estimate v⊥ for |x| > 4b. To this end, recall the operator families S
and P given in Lemma 4.2. As seen in the proof of Proposition 5.6, we have v⊥ =
F−1

T
[S (ik)FT[H⊥](k)] and p⊥ = F−1

T
[P(ik)FT[H⊥](k)]. We shall first give a represen-

tation formula of S (ik) for k ∈ Z \ {0} for |x| > 3b, which will be used to investigate
the asymptotic behavior of v⊥ for |x| > 3b. Notice that S (ik) ∈ L (Lq(�)3,H2

q(�)3) and

P(ik) ∈ L (Lq(�)3, Ĥ1
q(�)) satisfy the estimate

‖S (ik)f‖H2
q (�) + ‖∇P(ik)f‖Lq (�) ≤ C‖f‖Lq (�) (5.34)
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for f ∈ Lq(�)3, where C depends solely on q and �. Moreover, u = FT[v⊥](k) =
S (ik)FT[H⊥](k) and q= FT[p⊥](k) = P(ik)FT[H⊥](k) satisfy the equations

iku − μ�u + ∇q= fk, div u = 0 in �, u|� = 0, (5.35)

where fk = FT[f⊥](k). Let ϕ be a function in C∞
0 (R3) that equals 1 for |x| < 2b and 0 for

|x| > 3b. Let

w = (1 − ϕ)S (ik)fk +B[(∇ϕ) · S (ik)fk], r = (1 − ϕ)P(ik)fk. (5.36)

Then w ∈ H2
q(R

3)3 and r ∈ Ĥ1
q(R

3). Moreover, by (5.35) w and r satisfy the equations

ikw − μ�w + ∇r= (1 − ϕ)fk +R3(ik)fk, div w = 0 in R
3,

where we have set

R3(λ)f = 2μ(∇ϕ) · ∇S (λ)f + μ(�ϕ)S (λ)f − (∇ϕ)P(λ)f

+ (λ − μ�)B[(∇ϕ) · S (λ)f]. (5.37)

By the uniqueness of solutions to the Stokes resolvent problem in R
3, we have w =

T (ik)((1 − ϕ)fk +R3(ik)fk), where

T (λ)f = F−1
R3

[ 1

μ|ξ |2 + λ

(
I − ξ ⊗ ξ

|ξ |2
)
FR3 [f]

]
. (5.38)

Since 1 − ϕ = 1 and B[(∇ϕ) · S(ik)fk] = 0 for |x| > 4b, by (5.36) we thus have

S (ik)fk = T (ik)((1 − ϕ)fk) + T (ik)(R3(ik)fk) (|x| > 4b) (5.39)

for any k ∈ Z \ {0}. Thus, we have

v⊥ = F−1
T

[(1 − δZ(k))S (ik)FT[H⊥](k)]
= F−1

T
[(1 − δZ(k))T (ik)FT[(1 − ϕ)H⊥](k))]

+ F−1
T

[(1 − δZ(k))T (ik)(R3(ik)FT[H⊥](k))]
(5.40)

for |x| > 4b. Moreover, from Lemma 4.2 we conclude

RL (Lq (�)3,H1
q (R3)3)({(λ∂λ)

	R3(λ) | λ ∈ R \ [−λ0, λ0]}) ≤ r0 (	 = 0,1), (5.41)

‖R3(ik)fk‖H1
q (R3) ≤ r0‖fk‖Lq (�) (5.42)

for any k ∈ Z\ {0} with some constant r0. In particular, we define R4H⊥ by setting R4H⊥ =
F−1

T
[(1 − δZ(k))R3(ik)fk]. Then, employing Corollary 2.3 in the same way as in the proof

of Proposition 5.6, we see that

suppR4H⊥ ⊂ D2b,3b := {(x, t) ∈R
3 ×R | 2b < |x| < 3b},

‖R4H⊥‖Lp(T,Lq (�)) ≤ C‖H⊥‖Lp(T,Lq (�)).
(5.43)
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Recalling that H⊥ = div F⊥ + g⊥, we set G = (1 − ϕ)F⊥ and h = (∇ϕ)F⊥ + (1 − ϕ)g⊥ +
R4H⊥. In virtue of (5.33), (5.38) and (5.40), we then have

v⊥ = �⊥ ∗ (div G) + �⊥ ∗ h

=
∫

T

∫

R3
�⊥(y, s)(div G)(x − y, t − s)dyds +

∫

T

∫

R3
�⊥(y, s)h(x − y, t − s)dyds.

(5.44)
for |x| > 4b. Set v1 = �⊥ ∗ (div G) and v2 = �⊥ ∗ h. By the divergence theorem of Gauß,
we write

v1(x, t) = ∇�⊥ ∗ G(x, t)

=
∫

T

∫

|y|≤1
∇�⊥(y, s)G(x − y, t − s)dyds

+
∫

T

∫

1≤|y|≤|x|/2
∇�⊥(y, s)G(x − y, t − s)dyds

+
∫

T

∫

|x|/2≤|y|≤2|x|
∇�⊥(y, s)G(x − y, t − s)dyds

+
∫

T

∫

|y|≥2|x|
∇�⊥(y, s)G(x − y, t − s)dyds.

Let r0 and r1 be exponents such that p < r0 < ∞, r1 ∈ (1,5/4) and 1 + 1/r0 = 1/r1 + 1/p.
Then, we have Young’s inequality

‖f ∗ g‖Lr0 (T) ≤ ‖f ‖Lr1 (T)‖g‖Lp(T) (5.45)

for f ∗ g(t) = ∫
T
f (s)g(t − s)ds. Setting γ	 =< G >p,	, from Theorem 5.9 we thus con-

clude

‖v1(x, ·)‖Lr0 (T) ≤ γ	‖∇�⊥‖Lr1 (B1×T)(1 + |x|)−	 + C1γ	

∫

1≤|y|≤|x|/2
|y|−4 dy(1 + |x|)−	

+ C1γ	(|x|/2)−4
∫

|z|≤3|x|
(1 + |z|)−	 dz + C1γ	

∫

|y|≥2|x|
|y|−4−	 dy.

Noting that p ≤ r0 and γ	 ≤ < F⊥ >p,	, we infer

‖v1(x, ·)‖Lp(T) ≤ Cb|x|−min{	,4} < F⊥ >p,	 for |x| ≥ 4b.

Analogously, we write

∇v1(x, t) =
∫

T

∫

|y|≤1
∇�⊥(y, s)(div G)(x − y, t − s) dyds

+
∫

T

∫

1≤|y|≤|x|/2
∇�⊥(y, s)(div G)(x − y, t − s) dyds

+
∫

T

∫

|x|/2≤|y|≤2|x|
∇�⊥(y, s)(div G)(x − y, t − s) dyds

+
∫

T

∫

|y|≥2|x|
∇	�⊥(y, s)(div G)(x − y, t − s) dyds.
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Setting γ	+1 =< div G >p,	+1, by Theorem 5.9 and (5.45) we have

‖∇v1(x, ·)‖Lr0 (T) ≤ γ	+1‖∇�	‖Lr1 (B1×T)(1 + |x|)−	−1

+ C1γ	+1

∫

1≤|y|≤|x|/2
|y|−4 dy(1 + |x|)−	−1

+ C1γ	+1(|x|/2)−4
∫

|z|≤3|x|
(1 + |z|)−	−1 dz

+ C1γ	+1

∫

|y|≥2|x|
|y|−5−	 dy.

Since we have

< div G >p,	+1≤ < div F⊥ >p,	+1 + < (∇ϕ)F⊥ >p,	+1

≤ < div F >p,	+1 +‖∇ϕ‖L∞(R3)3b < F >p,	

and p ≤ r0, we thus obtain

‖∇v1(x, ·)‖Lp(T) ≤ Cb|x|−min{	+1,4}(< div F⊥ >p,	+1 + < F⊥ >p,	) for |x| ≥ 4b.

Finally, we use that h(y, s) vanishes for |y| ≥ 3b. For m = 0,1 we thus have

∇mv2(x, t) =
∫

T

∫

|x−y|≤3b

∇m�⊥(y, s)h(x − y, t − s) dyds

Since |x| ≥ 4b and |x − y| ≤ 3b implies |y| ≥ |x|/4 ≥ b, by Theorem 5.9 and (5.45), we
deduce

‖∇mv2(x, ·)‖Lp(T) ≤
∫

|x−y|≤3b

‖∇m�⊥(y, ·)‖Lp(T)‖h(x − y, ·)‖L1(T) dy

≤ Cm|x|−3−m‖h‖L1(B3b×T).

Noting (5.43), we can estimate the last term as

‖h‖L1(B3b×T) ≤ C‖h‖Lp(T,Lq (B3b)) ≤ C
(
< F⊥ >p,	 +‖g⊥‖Lp(T,Lq (�)) + ‖R4H⊥‖Lp(T,Lq (�))

)

≤ C
(
< F⊥ >p,	 +‖g⊥‖Lp(T,Lq (�)) + ‖H⊥‖Lp(T,Lq (�))

)
,

For |x| ≥ 4b we now conclude

‖∇mv2(x, ·)‖Lp(T) ≤ C|x|−3−m
(
< F⊥ >p,	 +‖g⊥‖Lp(T,Lq (�))+ < div F⊥ >p,	+1

)

in virtue of estimate (5.32). Since v = v1 + v2 for |x| ≥ 4b, this completes the proof of
Lemma 5.7. �

5.4 Existence of Periodic Solutions

The linear theory from Theorem 5.2 is now a direct consequence of Proposition 5.3 and
Lemma 5.7 if h = 0. For the case of non-zero boundary data h we proceed similarly to the
proof of Proposition 4.4.
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Proof of Theorem 5.2 At first consider the case h = 0. Let (vS,pS) = (u,p) be the unique
solution to (5.6) with F = GS and g = gS , which exists due to Proposition 5.3, and let
(v⊥,p⊥) be the unique solution to (5.26), which exists due to Proposition 5.6 and Lemma
5.7. Then v = vS + v⊥ and p = pS + p⊥ defines a solution (v,p) to (5.4) with h = 0, and
(5.5) follows from (5.7), (5.27), (5.31) and (5.32).

To show existence for arbitrary h ∈ H1
p(T,Lq(�)N) ∩ Lp(T,H2

q(�)N), we fix λ1 > λ0

with λ0 from Lemma 4.3 and define

v1 = F−1
T

[S(ik + λ1)
(
0, (ik + λ1)h̃k, (ik + λ1)

1/2h̃k, h̃k

)],
p1 = F−1

T
[P(ik + λ1)

(
0, (ik + λ1)h̃k, (ik + λ1)

1/2h̃k, h̃k

)],

where S and P are the R-bounded solution operators from Lemma 4.3, and h̃k = F [h](k).
Then (v1,p1) is a solution to the auxiliary problem

∂tv1 + λ1v1 − μ�v1 + ∇p1 = 0, div v1 = 0 in � ×T, v1|� = h|�.

Following the proof of Proposition 4.4 and invoking Corollary 2.3, we further conclude

v1 ∈ H1
p(T,Lq(�)N) ∩ Lp(T,H2

q(�)N), p1 ∈ Lp(T, Ĥ1
q(�))

and the estimate

‖∂tv1‖Lp(T,Lq (�)) + ‖v1‖Lp(T,H2
q (�)) + ‖∇p1‖Lp(T,Lq (�))

≤ C(‖∂th‖Lp(T,Lq (�)) + ‖h‖Lp(T,H2
q (�))).

Now let ϕ ∈ C∞
0 (�) such that ϕ ≡ 1 in B2b and ϕ ≡ 0 in R

3 \ B3b . Let D2b,3b = {x ∈ R
N |

2b < |x| < 3b} and

H2
q,0,a(D2b,3b) = {f ∈ H2

q(D2b,3b) | ∂α
x f |SL

= 0 for L = 2b, 3b and |α| ≤ 1,

∫

D2b,3b

f (x)dx = 0}.

According to [67, Lemma 5], we know that (∇ϕ) · v1(t) ∈ H2
q,0,a(D2b,3b) for a.a. t ∈ R, and

setting w1 = ϕv1 −B[(∇ϕ) · v1], we see that

w1 ∈ H1
p(T,Lq(�)3) ∩ Lp(T,H2

q(�)3), supp w1 ⊂ B3b ∩ �, div w1 = 0, w1|� = h,

‖∂tw1‖Lp(T,Lq (�)) + ‖w1‖Lp(T,H2
q (�)) ≤ C(‖∂th‖Lp(T,Lq (�)) + ‖h‖Lp(T,H2

q (�))).

(5.46)
Now let (w2,q2) be the unique solution to

∂tw2 − �w2 + ∇q2 = f − ∂tw1 − �w1, div w2 = 0 in � ×T, w2|� = 0,

which exists due to the first part of the proof. Note that w1 vanishes in R
3 \ B3b , so that

(v,p) = (w1 + w2,q2) is a solution to (5.4), and estimate (5.5) follows from the correspond-
ing estimate for w2 and the properties listed in (5.46).

The uniqueness assertion follows by decomposing a solution (v,p) into a stationary and
an oscillatory part by means of (5.2) and employing the uniqueness statements from Propo-
sition 5.3 and Proposition 5.6. �
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Finally, we complete the proof of Theorem 5.1 on the existence of time-periodic solutions
to the nonlinear problem (5.1) in an exterior domain. Observe that the abstract result from
Theorem 3.3 cannot be applied directly since we use spaces of pointwise decaying functions
that allow for an appropriate treatment of the nonlinear convection term.

Proof of Theorem 5.1 We employ Banach’s contraction mapping principle. Define

Iε = {(v,q) | v = v⊥ + vS, q = q⊥ + qS, v⊥ ∈ H1
p(T,Lq(�)3) ∩ Lp(T,H2

q(�)3),

vS ∈ H2
q(�)3, div v = 0, q⊥ ∈ Lp(T, Ĥ1

q(�)), qS ∈ H1
q(�),

‖(v,q)‖Iε ≤ ε},

where we set

‖(v,q)‖Iε = ‖∂tv⊥‖Lp(T,Lq (�)) + ‖v⊥‖Lp(T,H2
q (�)) + ‖vS‖H2

q (�) + ‖∇q⊥‖Lp(T,Lq (�))

+ ‖qS‖H1
q (�)+ < v⊥ >p,1 + < ∇v⊥ >p,2 + < vS >1 + < ∇vS >2 .

For (v,q) ∈ Iε , let (u,p) be the solution of the linear system of equations

∂tu − μ�u + ∇p= F +N (v), div u = 0 in � ×T, u|� = h|�, (5.47)

where N (v) = v · ∇v. Theorem 5.2 yields that

‖(u,p)‖Iε ≤ C(< GS >3 + < HS >2 + < N (v)S >3 + < Ñ (v)S >2 + < G⊥ >p,2

+ < H⊥ >p,1 + < N (v)⊥ >p,2 + < Ñ (v)⊥ >p,1

+ ‖h‖H1
p(T,Lq (�)) + ‖h‖Lp(T,H2

q (�)))

(5.48)

provided that the right-hand side of (5.48) is finite. Here, we write Ñ (v) = v ⊗ v, so that
div Ñ (v) = N (v) since div v = 0. We further have

N (v)S = vS · ∇vS +
∫

T

v⊥ · ∇v⊥ dt

Ñ (v)S = vS ⊗ vS +
∫

T

v⊥ ⊗ v⊥ dt;

N (v)⊥ = vS · ∇v⊥ + v⊥ · ∇vS + v⊥ · ∇v⊥ −
∫

T

v⊥ · ∇v⊥ dt

Ñ (v)⊥ = vS ⊗ v⊥ + v⊥ ⊗ vS + v⊥ ⊗ v⊥ −
∫

T

v⊥ ⊗ v⊥ dt.

(5.49)

Notice that div Ñ (v)S = N (v)S and div Ñ (v)⊥ = N (v)⊥. To estimate these nonlinear terms,
we choose σ > 0 so small that σ +3/q < 2(1−1/p), which is possible since 2/p+3/q < 2
by assumption. By Sobolev inequality and real interpolation, we then have

‖v⊥‖L∞(T,L∞(�)) ≤ C‖v⊥‖
L∞(T,Wσ+3/q

q (�))
≤ C‖v⊥‖

L∞(T,B2(1−1/p)
q,p (�))

≤ C(‖∂tv⊥‖Lp(T,Lq (�)) + ‖v⊥‖Lp(T,H2
q (�))),

(5.50)
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Using Hölder’s inequality with p > 2, we further obtain

< N (v)S >3 ≤ C(< vS >1< ∇vS >2 + < v⊥ >p,1< ∇v⊥ >p,2);
< Ñ (v)S >2 ≤ C(< vS >2

1 + < v⊥ >2
p,1);

< N (v)⊥ >p,2 ≤ C(< vS >1< ∇v⊥ >p,2 + < v⊥ >p,1< ∇vS >2

+ ‖v⊥‖L∞(T,L∞(�)) < ∇v⊥ >p,2 + < v⊥ >p,1< ∇v⊥ >p,2);
< Ñ (v)⊥ >p,1 ≤ C(< vS >1< v⊥ >p,1 +‖v⊥‖L∞(T,L∞(�)) < v⊥ >p,1 + < v⊥ >2

p,1).

(5.51)
Combining (5.48) with (5.51) and (5.50) yields that

‖(u,p)‖Iε ≤ C(< GS >3+ < HS >2 + < G⊥ >p,2 + < H⊥ >p,1

+ ‖h‖H1
p(T,Lq (�)) + ‖h‖Lp(T,H2

q (�)) + ‖(v,q)‖2
Iε

).

Recalling the smallness assumption (5.3) and that (v,q) ∈ Iε , we have ‖(u,p)‖Iε ≤ C0ε
2

for some constant C0. Thus, choosing ε > 0 so small that C0ε ≤ 1, we have ‖(u,p)‖Iε ≤ ε,
which implies that (u,p) ∈ Iε . Therefore, if we define a map � acting on (v,q) ∈ Iε by
setting �(v,q) = (u,p), then � is a map from Iε into itself.

In an analogous way, we see that for any (vi ,qi ) ∈ Iε (i = 1,2),

‖�(v1,q1) − �(v2,q2)‖Iε ≤ C1ε‖(v1,q1) − (v2,q2)‖Iε

for some constant C1. Thus, choosing ε > 0 smaller if necessary, we have C1ε < 1, which
shows that � is a contraction map on Iε . Therefore, there exists a unique (u,p) ∈ Iε such
that �(u,p) = (u,p), which is the required unique solution to (4.9). This completes the proof
of Theorem 5.1. �
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