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Abstract
We study local, analytic solutions for a class of initial value problems for singular ODEs. We
prove existence and uniqueness of such solutions under a certain non-resonance condition.
Our proof translates the singular initial value problem to an equilibrium problem of a regular
ODE. Then, we apply classical invariant manifold theory. We demonstrate that the class of
ODEs under consideration captures models which describe the shape of axially symmetric
surfaces which are closed on one side. Our main result guarantees smoothness at the tip of
the surface.

Keywords Singularities · Ordinary differential equations · Asymptotics · Analyticity ·
Invariant manifolds

1 Introduction

The problem in this paper is motivated by a specific application in which the shape of an
axial symmetric surfaces with a smooth tip is sought. We postpone the details of this model
to Sect. 4, and focus here on a more general setting.

Suppose we are modeling an axially symmetric surface with a smooth tip in cylindri-
cal variables as the solution of an ordinary differential equation. We parametrize the axial
co-ordinate z with respect to the axial distance co-ordinate r ; see Fig. 1. Hence, r is the in-
dependent variable in the ODE and z is the dependent variable. We are interested in deriving
conditions under which solutions z(r) are unique. The requirement that the tip of the surface
is smooth translates to the requirement that z is even and smooth in a neighborhood around 0.
For convenience, we further assume that z is locally analytic. Then, the requirements on z

can be reformulated as the requirement that there exist ε > 0 and g ∈ Cω((−ε, ε),R) with
g(0) = 0 such that

z(r) = g(r2) for all |r| < ε. (1)
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Fig. 1 Axial symmetric surface
with smooth tip: The surface is
described in cylindrical variables
by (φ, r, z(r)). The axial
co-ordinate, z, is parametrised
with respect to the axial
co-ordinate r .

We assume that the governing equations are of the form

dz

dr
= V (z, r2)

r
, z(0) = 0, (2)

where 0 < r < r0 and V ∈ Cω(R2,R) with V (0) = 0. The singularity 1/r arises from the
expression of the gradient in cylindrical coordinates. The argument r2 in V forces evenness
of the solution. In applications the argument r2 arises naturally from surface force terms or
from a cumulative flux. We are interested in finding sufficient conditions on V for which
solutions of (2) satisfying (1) are unique.

Example 1.1 A simple but insightful example of (2) is when V is linear. Then, (2) reads as

z′ = λ
z

r
+ br

with λ,b ∈ R. The general solution is given by

z(r) = C1r
λ + z̃(r),

where C1 a free constant and

z̃(r) :=
{

b
2−λ

r2 if λ �= 2,

br2 log(r) if λ = 2.

If λ �= 2, then the solution z with C1 = 0 satisfies (1). If λ /∈ 2N+, then this is the only
solution which satisfies (1).

The condition λ /∈ 2N+ in Example 1.1 is a type of non-resonance condition. It suggests
that (2) will not have unique solutions for any analytic V , and that in addition a requirement
such as ∂zV (0) /∈ 2N+ is needed. This additional requirement turns out to be exactly the
sufficient condition on V in the main result in this paper.

The biological application in Sect. 4 requires the following generalization of (1)–(2) to
higher dimensions. The solution concept for the unknown x ∈ R

n is that there exists some
g ∈ Cω((−ε, ε),Rn) with g(0) = 0 such that

x(r) = g(r2), for all |r| < ε. (3)
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The ODE for x is

dx

dr
= V (x, r2)

r
, x(0) = 0, (4)

where V ∈ Cω(Rn+1,Rn) with V (0) = 0. To reveal the connection with Example 1.1, we
expand

V (x, r2) = Ax + br2 + f (x, r2), (5)

where A ∈ R
n×n, b ∈ R

n and f (y) = O(|y|2) with y = (x, r2). Our main result, Corol-
lary 4.1, is that a sufficient condition on V for the existence and uniqueness of solutions to
(4) satisfying (3) is that λi /∈ 2N+ for all 1 ≤ i ≤ n, where λi are the eigenvalues of A.

To prove Corollary 4.1, we transform (4) into an autonomous system with no singularity
and where the problem of uniqueness of analytic solutions turns into an equilibrium study.
To remove the singularity, we introduce the independent variable t given by r = et , and
obtain from (4) that x̂(t) := x(et ) satisfies

˙̂x := dx̂

dt
= V (x̂, e2t ). (6)

Note that the initial condition in (4) at r = 0 is transformed to the equilibrium point 0 at
t = −∞. To make this system autonomous, we introduce the dependent variable ρ = e2t

and consider { ˙̂x = V (x̂, ρ)

ρ̇ = 2ρ.
(7)

Along this transformation, (3) implies that

x̂(t) = g(ρ(t)) for all t with 0 < ρ(t) < ε̂. (8)

Hence, Corollary 4.1 can be formulated in terms of local properties of the equilibrium of
(7). Theorem 2.3 provides the precise statement. We consider Theorem 2.3 as our main
mathematical result, and Corollary 4.1 as the main statement regarding its application. We
prove Theorem 2.3 by using classical invariant manifold theory [2, 5, 10–14].

To demonstrate the applicability and use of Corollary 4.1, we apply it to the Ballistic
Ageing Thin viscous Sheet (BATS) model [7]. The BATS model describes tip growth for
single fungal cells in terms of a system of ODEs for an axial symmetric surface with a
smooth tip. We show that Corollary 4.1 provides sufficient conditions for the parameters in
the BATS model under which unique solutions with a smooth tip exist. More specifically,
our result implies that if the expansion is of sufficiently high order then it approximates the
smooth solution at the tip. This gives a theoretical motivation for the numerical approach in
[9] in which approximations to solutions to the BATS model are constructed from asymp-
totic expansions.

The paper is organized as follows. In Sect. 2 we formulate (7)–(8) in a general dynamical
systems framework and present Theorem 2.3. We prove it in Sect. 3. In Sect. 4 we formulate
and prove Corollary 4.1 and apply it to the BATS model. In Sect. 5 we give concluding
remarks and suggest future research.
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2 Main Mathematical Result

In this section we present Theorem 2.3, which is our main mathematical result.
We define the phase space

M := {y = (x,ρ) ∈ R
n ×R}.

On M we consider the generalization of (7) given by

{
ẋ = Ax + bρ + f (x,ρ)

ρ̇ = σρ,
(9)

where b ∈R
n, σ > 0, A ∈ R

n×n and f ∈ Cω(Rn+1,Rn) with f (y) = O(|y|2) as y → 0. The
vector field corresponding to (9) has an equilibrium at 0 with linearization

[
A b

01×n σ

]
. (10)

Definition 2.1 (ρ-analytic) A solution (x,ρ) of (9) is called ρ-analytic if there exist R,ε > 0
and g ∈ Cω((−ε, ε),Rn) with g(0) = 0 such that x(t) = g(ρ(t)) for all t ∈ (−∞,−R).

We make three preliminary observations. First, the equilibrium (x,ρ) = 0 is a ρ-analytic
solution. Second, since ρ can be solved directly from (9) (i.e. ρ(t) = c0eσ t for some c0 ∈ R)
the x-component of a ρ-analytic solution can be expressed as an analytic function of eσ t .
Third, the freedom in the choice of c0 corresponds to a translation in time. Hence, ρ-analytic
solutions are invariant in translation in time, and it suffices to consider c0 ∈ {−1,0,1}.

We want to express Definition 2.1 in the language of invariant manifolds. We introduce
Wρ(0) ⊂ M as the set generated by all the orbits of ρ-analytic solutions. Denote by Wu(0)

the unstable manifold corresponding to (9).

Proposition 2.2 Wρ(0) ⊂ Wu(0).

Proof Let (x,ρ) be a ρ-analytic solution on Wρ(0). By Definition 2.1 (x,ρ)(t) decays
exponentially as t → −∞. Hence, (x,ρ) is contained in Wu(0) (see e.g. [6, Problem 11,
page 347]). �

Theorem 2.3 Let λ1, . . . , λn be the eigenvalues of A. If λi /∈ σN+ for all 1 ≤ i ≤ n, then
Wρ(0) is a one-dimensional smooth manifold and there exist ε > 0 and g ∈ Cω((−ε, ε),Rn)

such that

{(x,ρ) ∈ Wρ(0) : ρ ∈ (−ε, ε)} = {(g(ρ), ρ) : ρ ∈ (−ε, ε)}. (11)

Equation (11) implies that Wρ(0) is the union of three ρ-analytic solution orbits: the
equilibrium 0, Wρ(0) restricted to ρ > 0 and Wρ(0) restricted to ρ < 0. Furthermore, there
exist ρ-analytic solutions, and they are unique modulo translation in time if we include the
constraint ρ = 0, ρ > 0 or ρ < 0. Note that orbits on Wρ(0) cannot have a complicated
geometry in M since (9) is linear in ρ.
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3 Proof Main Theorem

The proof of the main theorem, Theorem 2.3, is given at the end of this section. It relies
on Lemmas 3.1 and 3.2. Lemma 3.1 states that Theorem 2.3 holds under the additional
assumption that Re(λi) < 0. The proof of Lemma 3.1 relies on the analytic version of the
unstable manifold theorem. This gives analyticity of the solution without the need to prove
convergence of power series. Lemma 3.2 introduces a recursive transformation under which
the eigenvalues can be shifted to the left half-plane in C such that Lemma 3.1 can be applied.
At each iteration of this transformation we linearize around the next coefficient in the power
series of the analytic solution.

Lemma 3.1 If Re(λi) < 0 for all 1 ≤ i ≤ n, then Wρ(0) is a one-dimensional smooth mani-
fold satisfying (11).

Proof As preparation, we denote by Es and Eu the stable and unstable subspace of
the eigenspaces of (10), respectively. Since Re(λi) < 0, we observe that dim(Es) = n,
dim(Eu) = 1 and that the eigenvalue corresponding to Eu is σ . Moreover, Eu = 〈v〉 with
v := (v,1) ∈ M for some v ∈ R

n.
First, we prove Lemma 3.1 for Wu(0) instead of Wρ(0). We start with property (11).

With this aim, we prepare for applying the local unstable manifold theorem [1]. We use the
corresponding notation. Let Eu(ε) := Eu ∩ Bε(0) and Es(ε) := Es ∩ Bε(0), where Bε(0) is
the ball in M centred at 0 with radius ε > 0. Denote by Wu

loc,ε(0) the local unstable manifold
induced by Bε(0). Then, the local unstable manifold theorem states that Wu

loc,ε(0) is the
graph of some ĝ ∈ Cω(Eu(ε),Es(ε)) with ĝ(0) = 0 and Dĝ(0) = 0. Using this and recalling
Eu = 〈v〉, we parametrize Wu

loc,ε(0) by g ∈ Cω((−ε, ε),Rn+1) given by g(ρ) = ĝ(ρv)+ρv.
Restricting g to the x-component we obtain that Wu

loc,ε(0) satisfies (11).
Next we extend Wu

loc,ε(0) to the global manifold

Wu(0) =
⋃
t≥0

φt (W
u
loc,ε(0)),

with φ denoting the flow of (9). By this construction, Wu(0) is a one-dimensional smooth
manifold and Wu(0) ⊂ Wρ(0). Hence, Wu(0) satisfies Lemma 3.1, and, by Proposition 2.2,
Wρ(0) = Wu(0). This completes the proof. �

Next we define the recursive transformation mentioned at the start of Sect. 3. Given some
c̃ ∈R

n, let

ψc̃ : Wρ(0) → M, ψc̃(x,ρ) :=

⎧⎪⎨
⎪⎩

(x

ρ
− c̃, ρ

)
if ρ �= 0,

(0,0) if ρ = 0.

(12)

Lemma 3.2 shows that under this transformation for a specific c̃ the transformed orbit
ψc̃(x,ρ) satisfies a system similar to (9) in which the eigenvalues of the corresponding A

are shifted by distance σ to the left. Moreover, if the set of solutions of the resulting system
satisfies the properties stated in Theorem 2.3, then Wρ(0) satisfies these properties too.
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Lemma 3.2 Let λi �= σ for all 1 ≤ i ≤ n. Take c̃ = −(A − σI)−1b and let (x,ρ) be a ρ-
analytic solution on Wρ(0). Then, (x̃, ρ) := ψc̃(x,ρ) is a ρ-analytic solution of

{ ˙̃x = (A − σI)x̃ + b̃ρ + f̃ (x̃, ρ)

ρ̇ = σρ
(13)

for some b̃ ∈ R
n and some f̃ ∈ Cω(Rn+1,Rn) with f̃ (y) = O(|y|2) as y → 0. Moreover,

ψc̃ : Wρ(0) → W̃ ρ(0) is invertible, where W̃ ρ(0) is the set of ρ-analytic solutions of (13).
Finally, if W̃ ρ(0) is a smooth 1-dimensional manifold which satisfies (11), then Wρ(0) is
also a smooth 1-dimensional manifold which satisfies (11).

We note that at this stage it is not clear yet whether ψc̃ : Wρ(0) → W̃ ρ(0) is a diffeomor-
phism because a priori Wρ(0) need not be a smooth manifold.

Proof of Lemma 3.2 First we show that (x̃, ρ) satisfies (13). Using (9) we compute

˙̃x = ẋ/ρ − xρ̇/ρ2

= (A − σI)x/ρ + b + f (x,ρ)/ρ

= (A − σI)(x̃ + c̃) + b + f (ρ(x̃ + c̃), ρ)/ρ

= (A − σI)x̃ + f (ρ(x̃ + c̃), ρ)/ρ.

(14)

Since f is analytic with f (y) = O(|y|2) as y → 0, we can write it as f (y) = B(y, y) +
f̂ (y) for some bilinear map B : (Rn+1)2 →R

n and some analytic f̂ with f̂ (y) = O(|y|3) as
y → 0. Then,

f (ρ(x̃ + c̃), ρ)/ρ = ρB((x̃ + c̃,1), (x̃ + c̃,1)) + f̂ (ρ(x̃ + c̃), ρ)/ρ.

Thus, taking

b̃ := B((c̃,1), (c̃,1)), (15)

f̃ (x̃, ρ) := f̂ (ρ(x̃ + c̃), ρ)/ρ + ρB
(
(x̃,0) + 2(c̃,1), (x̃,0)

)
. (16)

Equation (13) follows. Furthermore, as required, f̃ is analytic and f̃ (x̃, ρ) = O(ρ2 +
|ρx̃|) = O(|x̃|2 + ρ2) as (x̃, ρ) → 0.

Next we show that (x̃, ρ) is ρ-analytic. This is obvious for the stationary orbit (x,ρ) = 0;
we assume in the following that (x,ρ) �= 0. With g as in Definition 2.1, we have

x̃ = x

ρ
− c̃ = g(ρ)

ρ
− c̃ =: g̃(ρ).

Since g(0) = 0, we obtain that g̃ is smooth in a neighborhood of 0. Then, since x̃(t) → g̃(0)

as t → −∞, it follows from (13), A − σI being regular and f̃ (x̃, ρ) = O(ρ(ρ + |x̃|)) that
g̃(0) = 0. Hence, (x̃, ρ) is ρ-analytic.

Next we show that ψc̃ : Wρ(0) → W̃ ρ(0) is invertible. Injectivity is easy to verify; we
omit the details. To show that ψc̃ is surjective, let (x̃, ρ) ∈ W̃ ρ(0). It is easy to see that with
x = (x̃ + c̃)ρ it holds that ψc̃(x,ρ) = (x̃, ρ) and that (x,ρ) is ρ-analytic. To conclude that
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(x,ρ) ∈ Wρ(0), it is left to show that x satisfies the ODE in (9). We obtain this as follows
by reversing (14) and recalling the construction of (15) and (16):

ẋ = ˙̃xρ + (x̃ + c̃)ρ̇

= (A − σI)x̃ρ + b̃ρ2 + f̃ (x̃, ρ)ρ + σ(x̃ + c̃)ρ

= (A − σI)(x − c̃ρ) + B((c̃,1), (c̃,1))ρ2

+ f̂ (x, ρ) + B
(
(x̃,0) + 2(c̃,1), (x̃,0)

)
ρ2 + σx

= Ax + bρ + f (x,ρ).

Finally, we prove the final statement in Lemma 3.2. Note from (11) that W̃ ρ(0) is the
union of three orbits (x̃, ρ): 0, the orbit where ρ > 0 and the orbit where ρ < 0. Then,
the final statement in Lemma 3.2 follows from the construction of ψ−1

c̃
in the proof of the

surjectivity above. �

Proof of Theorem 2.3 Let 
 := max1≤i≤n Re(λi) and set K = 
/σ� + 1. Applying the
transformation in (12) K times recursively (see Lemma 3.2 for details; because of λi /∈ σN+
we may apply this lemma recursively) we obtain that the eigenvalues of the matrix in the
resulting system (13) are in the negative half-plane. Consequently, Lemma 3.1 guarantees
that Theorem 2.3 holds for the resulting system (13). Then, reversing the transformation in
(12) K times, it follows from Lemma 3.2 that Theorem 2.3 also holds for the original system
(9). �

4 Application

We first reformulate Theorem 2.3 in the setting of the singular ODE (3)–(4) and then apply
it to the Ballistic Ageing Thin viscous Sheet (BATS) model for fungal tip growth [7].

4.1 Uniqueness of Solutions of Singular ODEs

Recall (3), (4), (5). We obtain the following corollary from Theorem 2.3.

Corollary 4.1 Let λ1, . . . , λn be the eigenvalues of A. If λi /∈ 2N+ for all 1 ≤ i ≤ n, then
there exists a unique solution x of (4) satisfying (3).

Proof Take σ = 2 in (9). Theorem 2.3 implies that there exists a unique solution (x,ρ) to (9)
up to translation in time with ρ > 0 and x(t) = g(ρ(t)) for some g ∈ Cω((−ε, ε),Rn) and
all t negative enough. Since the transformation introduced in Sect. 1 to transform (3)–(4)
into (9) is invertible, Corollary 4.1 follows. �

4.2 The BATS Model

The BATS model [7–9] describes the shape of a single axially symmetric fungal cell wall
during growth. It assumes a constant speed of growth and an equilibrium shape of the cell tip
in the co-ordinate frame which moves along the cell tip. The independent variable describing
the cell wall is the arclength s. Specifically, we have that s → 0 describes the tip of the cell,
see Fig. 2.
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Fig. 2 Fungal tip growth shape:
The surface is parametrised with
respect to the arclength s to the
cell’s tip and azimuth variable φ.
In terms of the (r, z)-variables
the tip is located at (0, z0).

In [9] the shape of the cell tip is computed numerically with asymptotic expansions. The
authors observed that for certain special choices of the parameters in the BATS model the
coefficients in these expansions blow up and the expansions fail to capture the shape of the
cell tip. Yet, no theoretical explanation was found for this observation.

Our aim is to seek such theoretical explanation. We will cast the system of ODEs of the
BATS model in a form to which Corollary 4.1 can be applied. The non-resonance condition
on the eigenvalues translates to a condition on the parameters of the BATS model. If the
BATS model has a unique, local, analytic solution, then we expected that the numerically
computed solutions constructed from asymptotic expansions converge to the correspond-
ing coefficients in the power series of the exact solution. Furthermore, it will turn out that
the non-resonance condition in Corollary 4.1 precisely characterizes all cases in [9] where
the coefficients blow up. This demonstrates in a specific setting the necessity of the non-
resonance condition in Corollary 4.1 and Theorem 2.3.

First, we introduce the BATS model. We consider the phase space given by

M = {(ς,h,�, z, r) ∈ (−1,1) ×R×R×R×R+}.
The h variable represents the cell wall thickness, � is the age of the cell wall material, z is
the axial co-ordinate variable, r is the radial distance variable and ς = dr/ds. We note that
ς ∈ (−1,1) since parametrization of z, r by s gives the equality (dr/ds)2 + (dz/ds)2 = 1.
The governing equations are given by [7]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dς

ds
= 3

2

1 − ς2

r

(
−1 + (z, r)μ(�)ς

√
1 − ς2

r3

)

dh

ds
=

(
rγ (ς, z, r)

(z, r)
− ς

2r
− r2

2(z, r)μ(�)
√

1 − ς2

)
h

d�

ds
= rh

(z, r)
− rγ (ς, z, r)

(z, r)
�

dz

ds
=

√
1 − ς2

dr

ds
= ς,

(17)
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where

γ (ς, z, r) = r
√

1 − ς2 − zς

(z2 + r2)3/2
, (z, r) = 1 + z√

r2 + z2
,

and μ ∈ Cω(R+,R+) satisfies

μ is increasing and lim
�→∞ μ(�) = ∞.

The function μ corresponds to viscosity. The viscosity of the cell wall increases with age
which corresponds to hardening of the cell wall.

For the tip shape to be smooth we require two conditions on (ς,h,�, z, r) as s → 0:

T1 Tip limits: there exist h0 > 0 and z0 < 0 such that

lim
s→0

(ς,h,�, z, r)(s) = (1, h0, h0z
2
0, z0,0); (18)

T2 Analyticity: there exist s1 > 0 and g ∈ Cω
(
(−ε, ε),R4

)
with ε = r(s1)

2 such that

(ς,h,�, z)(s) = g(r(s)2) ∀s ∈ (0, s1).

Condition T1 follows from local analysis of solutions with a tip [7]. Specifically, z0 corre-
sponds to the distance of the tip to the cell wall producing organelle. Condition T2 is a result
of requiring a smooth shape at the tip as in Fig. 2. It allows for expressing the solutions as
(ς,h,�, z) as an even analytic function of r on a neighborhood around 0.

Next we write the BATS model and its desired solution in the form (3)–(4). Since z and r

are dependent variables, we can reduce the number of equations from five to four. We do so
by considering r as the variable which replaces s. Simultaneously, we change the unknown
ς to

η =
√

1 − ς2

r

(
note that ς =

√
1 − η2r2

)
to avoid a removable singularity. Denoting by ′ the derivative with respect to r , we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η′ = η

2r

(
1 − 3

μ(�)η
√

1 − η2r2

�(z, r2)

)

h′ =
(

ξ(η, z, r2)�(z, r2)√
1 − η2r2

− �(z, r2)

2μ(�)η
√

1 − η2r2
− 1

2

)
h

r

� ′ = �(z, r2)
h − ξ(η, z, r2)�

r
√

1 − η2r2

z′ = rη√
1 − η2r2

,

(19)

with

ξ(η, z, r2) := γ
(√

1 − ς2

r
, z, r

)
= r2η − z

√
1 − η2r2

(r2 + z2)3/2
,
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�(z, r2) := r2

(z, r)
= r2 + z2 − z

√
r2 + z2.

Next we compute the initial condition. From (18) this is trivial for h,�, z. The initial
condition for η requires some computation. Indeed, while

lim
r→0

η(r) = lim
s→0

z′(s)
r(s)

,

the numerator and denominator vanish as s → 0. Using l’Hopital and noting from z′ =√
1 − ς2 = √

1 − (r ′)2 that z′′ = −r ′′r ′/z′ = −ς ′r ′/z′ we obtain

lim
r→0

η(r) = lim
s→0

z′′(s)
r ′(s)

= lim
s→0

−ς ′(s)
z′(s)

= lim
s→0

3

2

√
1 − ς(s)2

r(s)

(
1 − (z(s), r(s))

r(s)2

√
1 − ς(s)2

r(s)
μ(�(s))ς(s)

)

= 3

2
lim
r→0

η(r)

(
1 − η(r)

�(z(r), r2)
μ(�(r))

√
1 − η(r)2r4

)

= 3

2
lim
r→0

η(r)

(
1 − η(r)

2z2
0

μ(h0z
2
0)

)
.

Solving for η(0) yields η(0) = 0 or η(0) = 2z2
0/(3μ(h0z

2
0)). If η(0) = 0, then (19) and

T1 imply limr→0 rh′(r) = −∞, which contradicts with T2. Therefore, we only consider
η(0) = 2z2

0/(3μ(h0z
2
0)). In conclusion, we obtain

lim
r→0

(η,h,�, z)(r) =
(

2z2
0

3μ(h0z
2
0)

, h0, h0z
2
0, z0

)
=: p0(h0, z0). (20)

Finally, T2 implies directly local analyticity of h,�, z and ensures that the odd coeffi-
cients of the expansions for h,�, z are zero. Then, writing η(r) = z′(r)ς(r)

r
and using that

all even coefficients of z′(r) are zero, we conclude that η satisfies the same property. In
conclusion, there exist ε > 0 and g̃ ∈ Cω

(
(−ε, ε),R4

)
such that

(η,h,�, z)(r) = g̃(r2) ∀r ∈ (0, ε). (21)

Next we cast (19) in the form (4). Suppose there exists a local solution x :=
(η,h,�, z) to (19). Let r0 be small enough such that x exists on [0, r0], sup(0,r0) z < 0

and inf(0,r0) min{�,η} > 0. Then, the right-hand side in (19) can be written as V (x, r2)/r ,
where V : R5 → R

4 is analytic in a neighborhood around p0(h0, z0). To obtain the initial
condition in (4), we shift variables to x := x −p0(h0, z0) and set V (x, r2) := V (x +p0, r

2).
We observe from (21) that x satisfies (3).

Finally, we note that this transformation can easily be inverted, i.e. if (19)–(20) has
a solution satisfying (21), then (17)–(18) has a solution satisfying T2. Indeed, ς(r) =√

1 − η(r)2r2 satisfies the condition in T2. Introducing s(r) as the solution of ds
dr

(r) =
1/ς(r), s(0) = 0, we apply the inverse function theorem (relying on ds

dr
(0) = 1 �= 0) to

parametrize ς,h,�, z,h in s around s = 0. Then, (17)–(18) follows.
To summarize the above, (17)–(18) has a solution satisfying T2 if and only if (4) has a

solution satisfying (3), where V is as constructed above. Hence, we may work with (3)–(4) in
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the remainder. Corollary 4.1 provides a sufficient condition for the existence and uniqueness
of solutions to (4) which satisfy (3). To make this condition explicit, we need to compute
the eigenvalues of A := ∇xV (0) (see (5)). From (19) we compute

A = ∇xV (0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1
2 0 − z2

0μ′(h0z2
0

)
3μ

(
h0z2

0

)
2

2z0

3μ
(
h0z2

0

)
9h0μ

(
h0z2

0

)
4z2

0
0

3h0μ′(h0z2
0

)
2μ

(
h0z2

0

) − 3h0
z0

0 2z2
0 −2 4h0z0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The eigenvalues corresponding to A are given by

λ1(h0, z0) = 0, λ2(h0, z0) = 0,

λ3(h0, z0) = 1

4

(
−5 −

√
48h0z

2
0μ

′ (h0z
2
0

)
μ

(
h0z

2
0

) + 9

)
,

λ4(h0, z0) = 1

4

(
−5 +

√
48h0z

2
0μ

′ (h0z
2
0

)
μ

(
h0z

2
0

) + 9

)
.

(22)

Since λ3(h0, z0) < 0 for all h0 > 0 > z0, the condition in Corollary 4.1 translates to

1

2
λ4(h0, z0) = 1

8

(
−5 +

√
48h0z

2
0μ

′ (h0z
2
0

)
μ

(
h0z

2
0

) + 9

)
/∈N. (23)

In conclusion, (23) gives a sufficient conditions on the parameters h0 > 0 > z0 of the
BATS model (see (18)) under which the BATS model describes a unique shape for the cell
tip in the class of local analytic functions. Since this condition is a new result, we compare
it with the findings in [9] mentioned at the start of Sect. 4.2. In the Appendix we show
that there is a one-to-one connection between (23) and the values of h0, z0 for which the
asymptotic expansions for the solution in [9] fail. This demonstrates that non-resonance
conditions are indeed required in practice, and that the condition in Corollary 4.1 is in fact
minimal at least in the particular case of the BATS model investigated in [9].

5 Concluding Remarks and Future Work

Corollary 4.1 provides a new tool for obtaining existence and uniqueness for solutions in
the sense of (3) to singular ODEs of type (4). Such ODEs appear for instance in models
for the shape of axially symmetric surfaces. In Sect. 4.2 we have demonstrated that Corol-
lary 4.1 provides new properties for the BATS model, and that the sufficient conditions in
Corollary 4.1 can be minimal in practice. The tangent space at the equilibrium uniquely
determines the one dimensional unstable manifold in Lemma 3.1. Then, it follows from
Lemma 3.2 that an expansion of sufficiently high order approximates the desired analytic
solution.

Our results open up four interesting problems. First, we expect that Theorem 2.3 also ap-
plies if in the equation for ρ in (9) a nonlinear term is included. Indeed, this does not alter the
linearized equation and thus the proof of Lemma 3.1 will remain identical. While Lemma 3.2
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requires modifications since additional nonlinear terms appear when transforming the ODE,
these terms can be absorbed in the nonlinearities corresponding to the x-component. We left
out this generalization because the applications which we have in mind are captured by the
linear setting.

Second, from a proof perspective we expect that a more direct approach would work
which only relies on a contraction-type argument. Specifically, we could rewrite (9) as the
non-autonomous ODE as in (6). For (6) we can write a Duhamel-formula and proceed with
an application of Banach’s fixed point theorem. Such a proof would be somewhat technical.
In our approach the technicalities of a fixed point argument are hidden in the application of
the unstable manifold theorem. We note that an approach by applying Poincaré-Dulac to (9)
does not work if we only assume that λi /∈ σN+, because there might exists a λi = (λ,σ ) · k
with k ∈N

n+1
+ , |k| ≥ 2 and kn+1 ≥ 1 [3, 4]. Furthermore, Poincaré-Dulac would only yield a

formal transformation which is not necessarily analytic.
Third, one can try to generalize Theorem 2.3 to system (9) in which the nonlinear term f

is merely Lipschitz. Then, our argument by applying Lemma 3.2 recursively does not work.
Instead, it seems that one is forced to apply a Banach’s fixed point type argument.

Fourth, in the setting of the BATS application in Sect. 4.2 it is desirable to know whether
solutions depend continuously on the parameters h0, z0. This translates to the question on
whether solutions to (4) of type (3) are continuous with respect to perturbations of V . To
answer this question, the procedure of Sect. 3 can be repeated. However, in addition it needs
to be shown that Wρ(0) and the coefficients obtained in Lemma 3.2 are continuous with
respect to the perturbation of V . We expect that center manifold theory [5] may provide
tools to prove this.

Appendix: The BATS Model for Specific μ

In [9] the BATS model from Sect. 4.2 is considered for the following choices of the viscosity
function:

μm(�) = 1 + �m for m = 2,3,4,5.

They construct expansions for the solutions to the BATS model. They observed that for m =
2,3 the coefficients in their expansions were well-defined for any choice of the parameters
h0 > 0 > z0, but that for m = 4,5 the coefficients were singular if and only if

(h0z
2
0)

4 = 5 for m = 4

(h0z
2
0)

5 = 2 for m = 5.
(24)

Here we investigate to which extend these observations match with the condition (23).
From (22) we observe that

λ4(h0, z0;μm) = 1

4

(
−5 +

√
48m

1 + (h0z
2
0)

−m
+ 9

)
≤ 1

4

(
−5 + √

48m + 9
)

,

where we have added the dependence of μm in the arguments of λ4. In particular,

λ4(h0, z0;μm) <

{
2 if m = 2,3

3 if m = 4,5.
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Consequently, for μ2,μ3 the condition in (23) imposes no restrictions on (h0, z0), and for
μ4,μ5 this condition translates to λ4(h0, z0;μm) �= 2. Since λ4 is increasing in h0z

2
0 (see the

display above), this corresponds to a single value for h0z
2
0, and it is readily verified that this

value is given by (24). Hence, for each case examined in [9], condition (23) characterizes
precisely those values of h0, z0 for which the expansions in [9] are not singular.
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