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Abstract
Persistence and stability properties are considered for a class of forced positive nonlinear
delay-differential systems which arise in mathematical ecology and other applied contexts.
The inclusion of forcing incorporates the effects of control actions (such as harvesting or
breeding programmes in an ecological setting), disturbances induced by seasonal or en-
vironmental variation, or migration. We provide necessary and sufficient conditions under
which the states of these models are semi-globally persistent, uniformly with respect to the
initial conditions and forcing terms. Under mild assumptions, the model under considera-
tion naturally admits two steady states (equilibria) when unforced: the origin and a unique
non-zero steady state. We present sufficient conditions for the non-zero steady state to be
stable in a sense which is reminiscent of input-to-state stability, a stability notion for forced
systems developed in control theory. In the absence of forcing, our input-to-sate stability
concept is identical to semi-global exponential stability.
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1 Introduction

The present paper considers boundedness, convergence, persistence and stability properties
for a class of forced positive nonlinear delay-differential systems. The forcing arises from
exogenous terms which, depending on the context, are interpreted as a control action or
disturbance. Specifically, we consider the system

ẋ(t) = Ax(t) + bf (u(t), cT x(t − h)) + v(t), (1.1)

where the matrix A is Metzler (all off-diagonal entries are nonnegative) and asymptotically
stable, the vectors b and c are nonnegative, h ≥ 0 is the length of the delay and f is a non-
negative nonlinearity which may depend on a forcing function u and v represents additive
nonnegative forcing.

As is well known, positive dynamical systems, or simply positive systems, are dynamical
systems where the evolution map leaves a positive cone invariant. The archetypal positive
cone is the nonnegative orthant of Euclidean space, equipped with the partial order of com-
ponent wise inequality.1 There are a multitude of scientific and engineering contexts where
positive systems arise, including communications, logistics, economics, biology, chemistry
and ecology, each motivated by the natural requirement that certain system variables (such
as prices, population densities, concentrations) are nonnegative by their very nature. The
study of positive systems described by linear dynamic equations is grounded in the semi-
nal work by Perron and Frobenius in the early 1900s on irreducible and primitive matrices,
and the generalisation to compact operators by Krein and Rutman in 1950. Extensions of
these results to various nonlinear settings can be found in the literature (see, for example,
[26]). For more information, we refer the reader to the numerous monographs and textbooks
devoted to the study of positive systems, including [2, 19, 25, 26].

Delay-differential equations are a class of functional differential equation [21, 28, 37]
in which the derivative of the unknown function x at time t depends not only on x(t), but
also on x(τ) for certain times τ < t . They are known to play an important role in many
application areas, including mathematical ecology [37], where they, for example, arise in
models which feature delayed population density dependence. One famous example is the
so-called Nicholson model, proposed in [18], as a model for Australian blowfly populations,
and based on the experimental work of Nicholson [32]. Naturally, differential-delay models
in population dynamics enjoy certain positivity properties [37].

The model (1.1) has both a linear and a structured nonlinear delayed component and
can be thought of as the feedback interconnection of a linear system with delayed out-
put cT x(t −h) and the nonlinearity f . Differential and difference equations of this structure
(with and without delay) have been analysed in great depth in control theory (where they
are also known as Lur’e systems, after the Soviet scholar A.I. Lur’e), originally in the un-
forced case [23, 29, 47], and more recently in the presence of forcing [17, 22, 35, 36].
Positive systems of the form (1.1) arise also in biology, ecology and chemistry, including
the Nicholson blowfly equation and the Mackey-Glass equation [24, 30]. In the absence of
delays, systems of Lur’e type have been studied in a population dynamics context in the pa-
pers [3, 9, 10, 12–14, 33, 39, 44] which, with the exception of [3], consider the discrete-time
case.

When studying the dynamic behaviour of (1.1), a natural question is whether solutions
are bounded, persistent or stable. In typical cases (though not always), zero is a steady

1Note that the terms “positive” and “nonnegative” are often used interchangeably in this context.
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state (equilibrium) of system (1.1) when unforced (u constant, v = 0). Generally speaking,
persistency, which is now a well-established concept [13–15, 38, 39], captures the extent to
which non-zero solutions are bounded away from 0 which corresponds to the avoidance of
extinction in population models.

Under fairly natural assumptions, the unforced version of (1.1) admits two steady states
— 0 and a unique non-zero non-negative steady state xs. If the system is persistent, then,
obviously, 0 is not stable and the immediate stability question is: do there exist natural and
easily checkable conditions under which the non-zero steady state xs is stable, and attracts
all (non-zero) solutions in the absence of forcing? Furthermore, what are the effects of the
potentially persistent forcing terms? The motivation for including these terms is to study a
framework where disturbances (unintended effects), such as temporal parameter variation,
or control actions (intended effects) can be accommodated.

Our main results relate to persistence and stability of (1.1). For the former, our main
result is Theorem 4.3 which provides sufficient conditions for (1.1) to be semi-globally
persistent, uniformly with respect to time. Here the term “semi-global” refers to initial con-
ditions as well as forcing functions. Furthermore, under mild additional assumptions, we
show that the sufficient persistency conditions of Theorem 4.3 are necessary, see Proposi-
tion 4.4. In relation to stability, our main result is Theorem 5.2, which provides estimates
of x(t) − xs in terms of the initial condition and the forcing functions u and v. The sta-
bility conditions are based on the interplay of the constant −cT A−1b and an associated
sector condition for f . The concept of a sector condition is ubiquitious in the theory of
Lur’e systems [22, 23, 29, 47] and is related to that of an enveloping condition [6, 34] in
the difference equations literature. In the absence of any forcing, our stability results guar-
antee that xs is semi-globally exponentially stable. The theoretical results are illustrated by
detailed discussions of three classes of examples from population dynamics and chemical re-
action networks, namely: delayed recruitment models, dispersal of a population with unique
breeding region (modelled by a so-called Nicholson system) and self-regulated biochemical
reactions.

The feature which distinguishes our work from much of the literature on population dy-
namics is the inclusion of the forcing terms u and v (modelling disturbances, control actions
or certain parameter variations) in the stability analysis to estimate the effects these terms
may have on the unforced dynamics. To do so, we make use of concepts and techniques from
the field of nonlinear control theory, namely the input-to-state stability paradigm [8, 42, 43],
initiated in [40], and one of the major developments in nonlinear control theory over the
last 30 years. To make the paper understandable to readers without any background in con-
trol theory, we explain and state the relevant control theoretic concepts and results in some
detail.

The paper is organised as follows. Sections 2 and 3 gather mathematical preliminaries
and introduce the model we consider, respectively. Sections 4 and 5 comprise the technical
heart of the paper and contain persistence and stability results, respectively. Three classes
of examples are considered in depth in Sect. 6. Some technical aspects are relegated to the
Appendices.

2 Preliminaries

As usual let N, Z, R and C denote the positive integers (natural numbers), integers, real
numbers and complex numbers, respectively. Furthermore,

Z+ := {
m ∈ Z : m ≥ 0

}= N∪ {0} and R+ := {
r ∈ R : r ≥ 0

}
.
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For M = (mij ) ∈ R
n×q , we write M ≥ 0 if M ∈ R

n×q
+ , M > 0 if M ≥ 0 and M �= 0 and

M � 0 if mij > 0 for all i and j . If M � 0, then we also say that M is strictly positive. The
matrix M is said to be Metzler if it is square and mij ≥ 0 for i �= j . We recall that a square
matrix is called Hurwitz if every eigenvalue has negative real part.

The i-th canonical basis vector of R
n is denoted by ei , that is, ei is the vector in R

n

the i-th component of which is equal to 1 and with all other components being equal to
0. Obviously, ei > 0, but ei is not strictly positive. For the purposes of this paper, it is
convenient to endow R

n with the 1-norm ‖ · ‖1, that is, for z = (z1, . . . , zn)
T ∈ R

n, the norm
‖z‖1 is given by ‖z‖1 = ∑n

i=1 |zi |. Since the 1-norm on R
n is used throughout, we will

simply write ‖z‖ := ‖z‖1. Occasionally, the maximum norm ‖z‖∞ = max1≤i≤n |zi | will also
be used.

For r = 1,∞ and h > 0, we define

Mr([−h,0],Rn) :=R
n × Lr([−h,0],Rn) .

An element ζ ∈ Mr([−h,0],Rn) will be written in the form ζ = (ζ 0, ζ 1) with ζ 0 ∈ R
n and

ζ 1 ∈ Lr([−h,0],Rn) and the norm of ζ is defined by

‖ζ‖Mr := ‖ζ 0‖ + ‖ζ 1‖Lr .

For brevity, we will set Mr := Mr([−h,0],Rn). Obviously, M∞ ⊂ M1. A number of other
function spaces will be introduced when needed and, for ease of reference, are listed in
Appendix A.

For a function z : [−h,a] → R
n, where a ≥ 0 and h > 0, we define zt : [−h,0] →R

n by
zt (s) := z(t + s) for all s ∈ [−h,0] and for any t ∈ [0, a]. The space of continuous functions
C([−h,0],Rn) endowed with the supremum norm is continuously embedded in Mr via the
map z �→ (z(0), z0). In the case r = 1, the embedding is dense.

Consider the following linear system with output delay

ẋ(t) = Ax(t) + bvf(t) + v(t), (x(0), x0) = ξ = (ξ 0, ξ 1) ∈ M1,

y(t) = cT x(t − h),

}

(2.1)

where A ∈ R
n×n, b, c ∈ R

n, h ≥ 0, vf and v are forcing (input, control, disturbance) func-
tions and y is the so-called output (measurement, observation). In the rest of this paper, the
input vf will be generated by nonlinear output feedback (see below). The impulse response
associated with the delay-free linear system

ẋ = Ax + bvf, y = cT x , (2.2)

will be denoted by G, that is,

G(t) := cT eAtb ∀ t ≥ 0 .

Note that if x(0) = 0, then the output (or response) of system (2.2) corresponding to a Dirac
delta input vf is given by G, hence the terminology. Denoting the corresponding transfer
function (the Laplace transform of G) by G, we have that

G(s) = cT (sI − A)−1b ,

where s is a complex variable. It is clear that G is a rational function which vanishes at ∞.
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Application of nonlinear output feedback of the form vf(t) = N(t, y(t)) to (2.1) leads to

ẋ(t) = Ax(t) + bN(t, cT x(t − h)) + v(t), (x(0), x0) = ξ = (ξ 0, ξ 1) ∈ M1 , (2.3)

where v ∈ L1
loc(R+,Rn). It is assumed that N : R+ × R → R is locally integrable in its

first variable, that is, for each z ∈ R, the function t �→ N(t, z) is locally integrable, and N

is locally Lipschitz in its second variable, in the sense that, for every z ∈ R, there exist a
locally integrable function λ :R+ →R+ and an open interval J ⊂ R containing z such that

|N(t, z1) − N(t, z2)| ≤ λ(t)|z1 − z2| ∀ z1, z2 ∈ J, ∀ t ∈ R+.

Let 0 < τ ≤ ∞. A function x : [−h, τ) → R
n is said to be a solution of (2.3) on the in-

terval [−h, τ) if (x(0), x0) = ξ , x|[0,τ ) ∈ W
1,1
loc ([0, τ ),Rn) and x satisfies the differential

equation in (2.3) for a.e. t ∈ [0, τ ). Here W
1,1
loc ([0, τ ),Rn) is the local version of the Sobolev

space W 1,1([0, τ ),Rn). It is well known that each equivalence class in W
1,1
loc ([0, τ ),Rn) has a

unique locally absolutely continuous representative x, where we recall that x : [0, τ ) → R
n

is locally absolutely continuous if, and only if, there exists y ∈ L1
loc([0, τ ),Rn) such that

x(t) = x(0) + ∫ t

0 y(s)ds for all t ∈ [0, τ ).
If h = 0 (in which case we may identify M1 with R

n and the initial condition in (2.3)
reduces to x(0) = ξ 0 ∈R

n), then it is well known that (2.3) has a unique maximally defined
solution x : [0, τ ) → R

n, and, if τ < ∞, then ‖x(t)‖ → ∞ as t → τ , see, for example
[41, Appendix C.3] or [48, §10, Supplement II]. Furthermore, if N satisfies an affine-linear
bound in the sense that there exist nonnegative locally integrable functions α and β such
that |N(t, z)| ≤ α(t)+β(t)|z| for all t ≥ 0 and z ∈ R, then the maximal interval of existence
is equal to [−h,∞).

In the next result, we consider the case wherein h > 0. In particular, it turns out that if
the function t �→ N(t, ξ 1(t − h)) is integrable on [0, h], then blow up in finite time is not
possible.

Proposition 2.1 Assume that h > 0 and let ξ = (ξ 0, ξ 1) ∈ M1. Define w : [0, h] → R by
w(t) := N(t, ξ 1(t − h)) for all t ∈ [0, h].

(1) If w ∈ L1([0, h],R), then there exists a unique solution of (2.3) on the inter-
val [−h,∞).

(2) Assume that b �= 0. If w /∈ L1([0, h],R) and h < τ ≤ ∞, then (2.3) does not have a
solution on [−h, τ).

Proposition 2.1 is well known, but it is hard to find a precise reference, and therefore we
provide a proof in Appendix B.

It follows from the assumptions imposed on N that w ∈ L1([0, h],R) if ξ 1 ∈ L∞([−h,0],
R). Consequently, for every ξ ∈ M1 with ξ 1 ∈ L∞([−h,0],R), the initial-value prob-
lem (2.3) has a unique solution on [−h,∞). If there exist α ∈ L∞

loc(R+,R+) and β ∈
L1

loc(R+,R+) such that |N(t, z)| ≤ α(t)|z| + β(t) for all (t, z) ∈ R+ × R, then w ∈
L1([0, h],R) for every ξ 1 ∈ L1([−h,0],R), and thus, in this case, the initial-value prob-
lem (2.3) has a unique solution on [−h,∞) for every ξ ∈ M1.

The following so-called input-to-state stability result will play an important role in the
paper.

Proposition 2.2 Assume that there exists l ≥ 0 such that

|N(t, z)| ≤ l|z| ∀ t ≥ 0, ∀ z ∈R . (2.4)
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For each initial condition ξ ∈ M1 and each v ∈ L∞
loc(R+,Rn) there exists a unique solution

of (2.3) on [−h,∞), and the following statements hold.
(1) Let τ > 0. There exists a constant � ≥ 1 (depending on (A,b, c), l, h and τ ) such

that, for each ξ ∈ M1 and each v ∈ L∞
loc(R+,Rn), the unique solution x : [−h,∞) → R

n

of (2.3) satisfies

‖x(t)‖ ≤ �
(‖ξ‖M1 + ‖v‖L∞(0,t)

) ∀ t ∈ [0, τ ] .

(2) If A is Hurwitz and l‖G‖L1 < 1, then there exist constants � ≥ 1 (depending on
(A,b, c), h and l) and γ > 0 (depending on (A,b, c) and l) such that, for each ξ ∈ M1 and
each v ∈ L∞

loc(R+,Rn), the unique solution x : [−h,∞) →R
n of (2.3) satisfies

‖x(t)‖ ≤ �
(
e−γ t‖ξ‖M1 + ‖v‖L∞(0,t)

) ∀ t ≥ 0 .

(3) If A is Hurwitz and l‖G‖L1 < 1, then, for each ξ ∈ M1 and each v ∈ L∞(R+,Rn)

with limt→∞ ‖v‖L∞(t,∞) = 0, the unique solution x : [−h,∞) → R
n of (2.3) is convergent

to 0, that is, x(t) → 0 as t → ∞.

Corollary 2.3 Assume that A is Hurwitz and there exist constants a ≥ 0 and l > 0 with
l‖G‖L1 < 1 and such that

|N(t, z)| ≤ l|z| + a ∀ t ≥ 0, ∀ z ∈R . (2.5)

Then there exist constants � ≥ 1 (depending on (A,b, c), h and l), γ > 0 (depending on
(A,b, c) and l) and θ ≥ 0 (depending on (A,b, c), a and l) such that, for each initial con-
dition ξ ∈ M1 and each v ∈ L∞

loc(R+,Rn), the unique solution x : [−h,∞) → R
n of (2.3)

satisfies

‖x(t)‖ ≤ �
(
e−γ t‖ξ‖M1 + ‖v‖L∞(0,t) + θ

) ∀ t ≥ 0 .

The proofs of the above proposition and the corollary can be found in Appendix B.

3 A Class of Forced Positive Delay-Differential Systems

In the rest of the paper, we will be interested in non-negative systems of the form (1.1), that
is, A is Metzler and b, c, f and ξ are non-negative. More specifically, we will make the
following assumptions.
(L1) A ∈R

n×n is Metzler and Hurwitz.
(L2) b, c ∈R

n+, b �= 0 and c �= 0.
In the context of (L1), it is interesting to note that a Metzler matrix A is Hurwitz if, and only
if, A is invertible and −A−1 ≥ 0. Furthermore, if A is Metzler and the spectral abscissa a of
A is positive (implying in particular that A is not Hurwitz), then (1.1) (see also (3.2) below)
has exponentially growing solutions. Indeed, as is well-known, there exists non-zero η ∈R

n+
such that Aη = aη, and so, with ξ = (η,0) and non-negative u, v, and f , it is immediate
that the solution x of (3.2) satisfies

x(t) ≥ eAtη = eatη ∀ t ≥ 0.



Persistence and Stability for a Class of Forced Positive Nonlinear. . . Page 7 of 42 1

We mention that if (L1) and (L2) hold, then G(t) = cT eAtb ≥ 0 for all t ≥ 0 and thus

‖G‖L1 =
∫ ∞

0
G(t)dt = G(0) . (3.1)

An application of the feedback law w = f (u, y) to the linear system (2.1) leads to the
following initial-value problem

ẋ(t) = Ax(t) + bf (u(t), cT x(t − h)) + v(t),

(x(0), x0) = ξ = (ξ 0, ξ 1) ∈ M1([−h,0],Rn
+),

(3.2)

where h ≥ 0 and f : U × R+ → R+ is a nonlinearity, where U ⊂ R is compact. The func-
tions v ∈ L∞

loc(R+,Rn+) and u ∈ L(R+,U), where L(R+,U) denotes the space of Lebesgue
measurable functions R+ → U , should be considered as forcing terms (which, depending on
the context, are interpreted as a control, input or disturbance). The nonlinearity is continu-
ous and locally Lipschitz in its second argument uniformly with respect to its first argument,
that is: for all z ∈ R+, there exists a relatively open set Z ⊂ R+ and a constant λ > 0 such
that z ∈ Z and

|f (w, z1) − f (w, z2)| ≤ λ|z1 − z2| ∀ z1, z2 ∈ Z, ∀w ∈ U.

Given ξ ∈ M1([−h,0],Rn+), u ∈ L(R+,U) and v ∈ L∞
loc(R+,Rn+), a function x : [−h, τ) →

R
n, where 0 < τ ≤ ∞, is said to be a solution of the initial-value problem (3.2) on the

interval [−h, τ) if (x(0), x0) = ξ , x|[0,τ ) ∈ W
1,1
loc ([0, τ ),Rn), x(t) ≥ 0 for all t ∈ [0, τ ) and x

satisfies the differential equation in (2.3) for a.e. t ∈ [0, τ ).
For the following, it is convenient to define

M1
+ :=R

n
+ × L1([−h,0],Rn

+) ⊂ M1, and L∞
+ := L∞(R+,Rn

+) .

Lemma 3.1 Assume that

σ := lim sup
z→∞

(
max
w∈U

f (w, z)/z
)
< ∞ .

(1) If A is Metzler and b, c ≥ 0, then, for all ξ = (ξ 0, ξ 1) ∈ M1+, all v ∈ L∞
loc(R+,Rn+)

and all u ∈ L(R+,U), the initial-value problem (3.2) has a unique (non-negative) solution
x on [−h,∞).

(2) Let β > 0. Assume that (L1) and (L2) hold and σG(0) < 1. Then there exists ρ > 0
(depending on β , (A,b, c), f and h) such that, for all v ∈ L∞+ and all ξ = (ξ 0, ξ 1) ∈ M1+
with ‖ξ‖M1 + ‖v‖L∞ ≤ β and all u ∈ L(R+,U), the unique solution x of (3.2) satisfies
‖x(t)‖ ≤ ρ for all t ≥ 0.

Proof (1) Let ξ = (ξ 0, ξ 1) ∈ M1+, v ∈ L∞
loc(R+,Rn+) and u ∈ L(R+,U) be given. Define a

function Nu :R+ ×R→R+ by

Nu(t, z) :=
{

f (u(t), z) ∀ z ≥ 0 ,

f (u(t),0) ∀ z < 0 .

The hypotheses on f imply that Nu satisfies the assumptions imposed on N in Sect. 2.
Furthermore, for l > σ , there exists a ≥ 0 such that

|Nu(t, z)| ≤ l|z| + a ∀ t ≥ 0, ∀ z ∈ R . (3.3)
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Consequently, the function t �→ Nu(t, c
T ξ 1(t − h)) is integrable on [0, h] and statement (1)

of Proposition 2.1 guarantees that the initial-value problem

ẋ(t) = Ax(t) + bNu(t, c
T x(t − h)) + v(t), (x(0), x0) = ξ = (ξ 0, ξ 1) (3.4)

has a unique solution x on [−h,∞). It is sufficient to show that x(t) ≥ 0 for all t ≥ 0,
because in this case x is also a solution of (3.2). By the variation-of-parameters formula,

x(t + kh) = eAtx(kh) +
∫ t

0
eA(t−s)

(
bNu(s + kh, cT xkh(s − h)) + v(s + kh)

)
ds

∀ t ∈ [0, h], ∀k ∈ Z+ .

Consequently, using the Metzler property of A and the non-negativity of b, c, Nu, ξ and
v, an application of the above identity for k = 0 shows that x(t) ≥ 0 for all t ∈ [0, h]. This
argument can now be repeated with k = 1 and (x(h), xh) taking the role of ξ , to obtain that
x(t) ≥ 0 for all t ∈ [h,2h]. Continuing in this way, we obtain that x(t) ≥ 0 for all t ≥ 0.

(2) Assume that σG(0) < 1 and choose l > σ such that lG(0) < 1. By (3.1), l‖G‖L1 <

1. Also note that (3.3) holds for every u ∈ L(R+,U). Therefore, by Corollary 2.3, there
exist constants � ≥ 1, γ > 0 and θ ≥ 0 (depending on (A,b, c), a, l and h) such that, for
each initial condition ξ ∈ M1+, each v ∈ L∞+ and each u ∈ L(R+,U), the unique solution
x : [−h,∞) → R

n of (3.4) satisfies

‖x(t)‖ ≤ �
(
e−γ t‖ξ‖M1 + ‖v‖L∞(0,t) + θ

) ∀ t ≥ 0 .

The claim now follows as every solution of (3.2) is also a solution of (3.4). �

Typical scenarios for f are given by:
• f (w, z) = g(wz)z, where g : (0,∞) → R+ is continuous and such that limz→0 g(z)z

exists and is finite;
• f (w, z) = g(wz), where g :R+ →R+ is continuous;
• f (w, z) = wg(z), where g :R+ →R+ is continuous.

In each of the above cases, U is a compact subset of R+.
We impose a further positivity assumption on the linear system underlying (3.2).

(L3) For every i ∈ {1, . . . , n}, there exists τi > 0 such that cT eAτi ei > 0.
For a good understanding of hypothesis (L3), it is useful to recall some basic facts about

observability, see, for example, also [29, 41]. The observed system

ẋ = Ax, x(0) = x0; y = cT x , (3.5)

is said to be observable if, for all x0 �= 0, the function t �→ y(t) = cT eAtx0 is not identically
equal to 0. In the following, the above observed system will be denoted by (cT ,A). It is
well-known that (cT ,A) is observable if, and only if, rankO(cT ,A) = n, where

O(cT ,A) :=

⎛

⎜⎜⎜⎜⎜
⎝

cT

cT A

cT A2

...

cT An−1

⎞

⎟⎟⎟⎟⎟
⎠

∈ R
n×n ,
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is the so-called observability matrix (see, for example, [29]). Furthermore, we recall that

kerO(cT ,A) = {x0 ∈ R
n : cT eAtx0 = 0 ∀ t ∈ R+}

= {x0 ∈ R
n : cT eAtx0 = 0 ∀ t ∈ R} . (3.6)

Hypothesis (L3) simply means that, for each i ∈ {1, . . . , n}, the observation y of (3.5) cor-
responding to the initial condition x(0) = ei does not vanish identically on R+, or, equiv-
alently, ei /∈ kerO(cT ,A). Conversely, assuming that A is Metzler and c is non-negative,
the condition that ei /∈ kerO(cT ,A) for all i ∈ {1, . . . , n}, implies that (L3) holds. As will be
shown further below (see Corollary 4.5), under natural assumptions, (L3) is equivalent to c∗-
persistency of (3.2). The following result provides a number of important characterizations
of (L3).

Proposition 3.2 Assume that A is Metzler and c ∈ R
n+, c �= 0. Let ν ∈ R be such that

ν > max{Reλ : λ an eigenvalue of A}.

Under these conditions, assumption (L3) is equivalent to each of the following properties.
(1) There exists τ > 0 such that cT eAτ � 0.
(2) There exist d ∈R

n+ and τ > 0 such that cT e(A+dcT )τ � 0.
(3) cT eAt � 0 for all t > 0.
(4) cT (νI − A)−1 � 0.
(5) ker(cT (νI − A)−1) ∩R

n+ = {0}.
(6) kerO(cT ,A) ∩R

n+ = {0}.
(7) There exists d ∈ R

n+ such that A + dcT is irreducible.
(8) A +1cT is irreducible, where 1 := (1,1, . . . ,1)T ∈ R

n+.

It is not difficult to find examples which show that (L3) does not enforce observability.
Indeed, consider

A =
⎛

⎝
−2 1 1
0 −2 1
0 1 −2

⎞

⎠ , c =
⎛

⎝
1
0
0

⎞

⎠ ,

and note that A is Metzler and Hurwitz (the eigenvalues of A are −3, −2 and −1) and

O(cT ,A) =
⎛

⎝
1 0 0

−2 1 1
4 −3 −3

⎞

⎠ .

Since kerO(cT ,A) = {ρ(0,1,−1)T : ρ ∈ R}, we see that (cT ,A) is not observable, but (L3)
holds since kerO(cT ,A) ∩R

3+ = {0}.
As for characterization (7), we point out that (L3) does not imply that A + dcT is irre-

ducible for all non-zero d ∈R
n+. A counterexample is given by

A =
(−1 1

0 −1

)
, c = d =

(
1
0

)
,

for which it is easily shown that (L3) holds and A + dcT is reducible.
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Proof of Proposition 3.2 To prove the characterizations of condition (L3), we proceed in sev-
eral steps, the roles of which are outlined in the diagram below:

(L3)
Step 1⇐==⇒ (1)

Step 2⇐==⇒ (3)
Step 3⇐==⇒ (4)

Step 4⇐==⇒ (5)

� Step 5

(2) ⇐==⇒
Step 6

(6) ⇐==⇒
Step 7

(7) ⇐==⇒
Step 8

(8)

Thus, it suffices to establish Steps 1–8 above.
To this end, set g(t) := cT eAt for all t ≥ 0. Obviously, the i-th component gi of g is given

by gi(t) = cT eAtei and gi(t) ≥ 0 for all t ≥ 0 and all i ∈ {1, . . . , n}.
Step 1: (L3) ⇔ (1). Trivially, (1) implies (L3). Conversely, assume that (L3) holds. Then,

for each i ∈ {1, . . . , n}, the function gi is not identically equal to 0. Since gi is analytic,
for each i ∈ {1, . . . , n}, there exists θi > 0 such that gi(t) �= 0 for all t ∈ (0, θi]. Setting
τ := min(θi), we have that gi(τ ) > 0 for all i ∈ {1, . . . , n}, and thus, g(τ) � 0.

Step 2: (1) ⇔ (3). Obviously, (3) implies (1). Assume that (1) holds. Then, since the
functions gi are analytic, there exists θ > 0 such that gi(t) �= 0 for all t ∈ (0, θ ] and all
i ∈ {1, . . . , n}, and so g(t) � 0 for all t ∈ (0, θ ]. Now let t > θ and let k ∈ N be such that
0 ≤ t − kθ < θ . Then

g(t) = cT eAt = cT eAθ
(
eA(k−1)θ eA(t−kθ)

)
.

As cT eAθ � 0 and eA(k−1)θ eA(t−kθ) is a non-negative invertible matrix, we conclude that
g(t) = cT eAt � 0 for all t > θ .

Step 3: (3) ⇔ (4). Since

∫ ∞

0
e−νt cT eAtdt =

∫ ∞

0
cT e(A−νI)tdt = cT (νI − A)−1,

it is clear that (3) implies (4). Conversely, if (4) holds, then, by the above identity, for every
i ∈ {1, . . . , n}, gi is not the zero function. Hence (L3) holds, and so, invoking Steps 1 and 2,
we see that (3) is satisfied.

Step 4: (4) ⇔ (5). This is clear.
Step 5: (3) ⇔ (6). Trivially, (3) implies (6). Conversely, assuming (6), the identity (3.6)

shows that, for every i ∈ {1, . . . , n}, gi is not the zero function. Therefore (L3) holds, and so
(3) is satisfied by Steps 1 and 2.

Step 6: (2) ⇔ (6). As (1) and (6) are equivalent (by Steps 2 and 5), we conclude that (2)
is equivalent to kerO(cT ,A + dcT ) ∩R

n+ = {0}. Noting that kerO(cT ,A) = kerO(cT ,A +
dcT ), we obtain that (2) is equivalent to (6).

Step 7: (6) ⇔ (7). Assume that (7) holds, that is, there exists d ∈ R
n+ such that A + dcT

is irreducible. Then, as A + dcT is Metzler, we have that e(A+dcT )t � 0 for all t > 0, see,
for example, [46, Theorem 8.2]. Consequently, cT e(A+dcT )t � 0 for all t > 0. It now follows
from Step 5 that (6) holds. Conversely, assume that (6) is satisfied. Seeking a contradiction,
suppose that there does not exist a vector d ∈ R

n+ such that A + dcT is irreducible. Then,
in particular, A + 1cT is reducible, where 1 = (1,1, . . . ,1)T ∈ R

n+. Hence there exist non-
empty disjoint subsets I and J of {1, . . . , n} such that I ∪ J = {1, . . . , n} and

aij + cj = 0 ∀ (i, j) ∈ I × J, (3.7)
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where the aij are the entries of A and the cj are the components of c. For a pair (i, j) ∈ I ×J

we have that i �= j , and so aij ≥ 0. As cj ≥ 0, we conclude from (3.7) that aij = 0 for all
(i, j) ∈ I × J and cj = 0 for all j ∈ J . Writing O(cT ,A) = (oij ), we have that

o1j = cj = 0 ∀ j ∈ J.

Hence,

o2j =
n∑

k=1

o1kakj =
∑

k∈I

o1kakj +
∑

k∈J

o1kakj = 0 ∀ j ∈ J.

By the same argument, with o1j replaced by o2j , we see that o3j = 0 for all j ∈ J . Continu-
ing this line of reasoning, we conclude that, for each j ∈ J , the j -th column of O(cT ,A) is
equal to 0, whence kerO(cT ,A) ∩R

n+ �= {0}, which is impossible.
Step 8: (7) ⇔ (8). It is clear that (8) implies (7). Conversely, suppose that (7) holds, that

is, A + dcT is irreducible for some d ∈ R
n+. Then A + αdcT is irreducible for all α > 0,

and since there exists α > 0 such that A + 1cT ≥ A + αdcT , we conclude that A + 1cT is
irreducible. �

It is worthwhile noting that

kerO(cT ,A) ∩R
n
+ = ker(cT (νI − A)−1) ∩R

n
+ ,

as follows from (3.6) and arguments used in the above proof. If A is not only Metzler, but
also Hurwitz, then the identity is valid for ν = 0, and thus,

kerO(cT ,A) ∩R
n
+ = ker(cT A−1) ∩R

n
+ . (3.8)

For the analysis of the behaviour of the solutions of (3.2), it is useful to consider the follow-
ing linear system of homogeneous delay-differential equations

ẋ(t) = Ax(t) + qbcT x(t − h), (x(0), x0) = ξ = (ξ 0, ξ 1) ∈ M1 , (3.9)

where q ≥ 0. It is well-known that (3.9), a special case of (1.1), induces a strongly con-
tinuous solution semigroup on M1 which we shall denote by

(
Tq(t)

)
t≥0

(see, for example,

[7, Sect. 2.4]), that is, if xξ : [−h,∞) → R
n denotes the unique solution of (3.9), then

Tq(t)ξ = (xξ (t), x
ξ
t ) for all t ≥ 0.

We record some consequences of the assumptions (L1)–(L3) in the proposition below.

Proposition 3.3 Assume that (L1) and (L2) are satisfied, set

p := 1

G(0)
= − 1

cT A−1b
∈ (0,∞], where p := ∞ if cT A−1b = 0 , (3.10)

and define a functional F ∈ L(M1,R) by

F(ζ ) := −cT A−1ζ 0 + cT

∫ 0

−h

ζ 1(s)ds ∀ ζ = (ζ 0, ζ 1) ∈ M1 .

The following statements hold.
(1) −cT A−1b > 0 if, and only if, b /∈ kerO(cT ,A).
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(2) If (L3) holds, then −cT A−1b > 0.
(3) The functional F is non-negative, that is, F(ζ ) ≥ 0 for all ζ ∈ M1+.
(4) If (L3) holds, then infζ∈M1+,‖ζ 0‖=1 F(ζ ) > 0.
(5) If c � 0, then infζ∈M1+,‖ζ‖

M1 =1 F(ζ ) > 0.

(6) If b /∈ kerO(cT ,A), then F(Tp(t)ξ) = F(ξ) for all t ≥ 0 and ξ ∈ M1.

We note that statement (6) says that the functional F is constant along orbits of the
semigroup (Tp(t))t≥0, or, equivalently, F is a first integral of the linear delay-differential
system ẋ(t) = Ax(t) + pbcT x(t − h).

Proof of Proposition 3.3 (1) As A is Hurwitz, (3.8) holds and the claim follows immediately
from the non-negativity of b.

(2) If (L3) holds, then by statement (6) of Proposition 3.2, kerO(cT ,A) ∩R
n+ = {0}. As

b > 0, we see that b /∈ kerO(cT ,A), and so −cT A−1b > 0 by statement (1).
(3) This follows immediately from (L1) and (L2).
(4) By statement (5) of Proposition 3.2, −cT A−1 � 0, and the claim follows from this.
(5) This is immediate.
(6) Since b /∈ kerO(cT ,A), it follows from statement (1) that −cT A−1b > 0 and so p =

1/G(0) = −1/(cT A−1b) < ∞. For ξ ∈ M1, let z : [−h,∞) → R
n be the unique solution of

the initial-value problem (3.9) with q = p. Then Tp(t)ξ = (z(t), zt ) for all t ≥ 0, and so

F(Tp(t)ξ) = F
(
(z(t), zt )

)= −cT A−1z(t) + cT

∫ t

t−h

z(s)ds ∀ t ≥ 0 .

Consequently, (d/dt)F(Tp(t)ξ) = cT A−1ż(t)+ cT
(
z(t)− z(t −h)

)
for almost all t ≥ 0, and

so

d

dt
F(Tp(t)ξ) = −cT z(t) + pG(0)cT z(t − h) + cT

(
z(t) − z(t − h)

)= 0 ∀ t ≥ 0 ,

as pG(0) = 1. This shows that F(Tp(t)ξ) = F(ξ) for all t ≥ 0. �

For the rest of this paper, it will always be assumed that (L1) and (L2) hold, in which
case, by Lemma 3.3, the constant p defined in (3.10) satisfies 0 < p ≤ ∞ (and p < ∞
if (L3) holds).

4 Persistence Results

We consider persistence properties of the initial value problem (3.2). Assume that (L1)
and (L2) hold and that f (w, z) ≥ 0 for all w ∈ U and z ≥ 0. If x : [−h,∞) → R

n is a
solution of (1.1), then we set x̌(t) := (x(t), xt ) for all t ≥ 0.

In the following, let � : M1 → R by a bounded linear functional and let D ⊂ M1+ ×
L(R+,U) × L∞+ . We say that the system (3.2) is uniformly �-persistent with respect to D

if there exist τ ≥ 0 and δ > 0 such that, for all (ξ, u, v) ∈ D, the solution x of (3.2) has the
property that

�(x̌(t)) = �
(
(x(t), xt )

)≥ δ ∀ t ≥ τ. (4.1)
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It is clear that if (3.2) is uniformly �-persistent with respect to D (and thus (4.1) holds),
then for all (ξ, u, v) ∈ D, the solution x of (3.2) satisfies

‖x̌(t)‖M1 ≥ η ∀ t ≥ τ ,

where η := inf{‖ζ‖M1 : �(ζ) ≥ δ} > 0. In the following, we shall associate with a vector
d ∈ R

n+ a corresponding bounded linear functional d∗ which is given by

d∗ : M1 →R, ζ = (ζ 0, ζ 1) �→ dT ζ 0.

Of particular interest will be d∗-persistence when d = c.
We now introduce two assumptions on the nonlinearity f . Recall that p = 1/G(0) =

−1/(cT A−1b).
(N1) U ⊂ R is compact, f (w, z) > 0 for all w ∈ U and z > 0 and

lim sup
z→∞

(
max
w∈U

f (w, z)/z
)
< p .

(N2) (N1) holds, p < ∞ and

lim inf
z↓0

(
min
w∈U

f (w, z)/z
)
> p .

Obviously, the interpretation of (N1) and (N2) depends on the particular context, but we
refer the reader to [14, Sect. 3] for more discussion of these types of conditions for a class
of ecological population models. Briefly, the quantity p acts as a stability threshold for
the linear delay system (3.9). Indeed, if q < p, then solutions of (3.9) converge to zero
exponentially by statement (2) of Proposition 2.2 and (3.1). If p < ∞ (that is, G(0) > 0)
and q ≥ p, then the trivial solution of (3.9) is not exponentially stable. Indeed, in this case,
there exists s∗ ≥ 0 (with s∗ = 0 if, and only if, q = p) such that qG(s∗)e−s∗h = 1 from which
it follows via a routine calculation that

det(s∗I − A − qbcT e−s∗h) = 0.

A well-known result (see, for example, [7, Theorem 5.1.7]) now yields that the trivial solu-
tion of (3.9) is not exponentially stable. We conclude that the “smallest” parameter value for
which an additive perturbation of the form qbcT x(t − h), where q ≥ 0, destabilizes ẋ = Ax

is given by q = p.
We remark that the case p = ∞ (or, equivalently G(0) = 0) is of little interest in the

current context, because, in this case, under reasonable assumptions, persistency cannot be
expected. For example, assuming that (L1) and (L2) hold and f (w,0) = 0 for all w ∈ U , it
is not difficult to show that if p = ∞, then, for all triples (ξ, u, v) ∈ M1+ × L(R+,U) × L∞+
such that v(t) → 0 as t → ∞, the solution of (3.2) approaches 0 as time goes to infinity.

For β > 0 and r = 1,∞, we set

Dr(β) := {(ξ, u, v) ∈ Mr
+ × L(R+,U) × L∞

+ : ‖ξ‖Mr + ‖v‖L∞ ≤ β} .

We note that D∞(β) ⊂ D1(max(1, h)β).
The next result shows that c∗-persistence implies e∗

i -persistence whenever −eT
i A−1b > 0.

Proposition 4.1 Assume that (L1), (L2) and (N1) hold, let β > 0, r = 1,∞ and D ⊂ Dr(β).
If (3.2) is uniformly c∗-persistent with respect to D, then (3.2) is uniformly e∗

i -persistent
with respect to D for each i ∈ {1, . . . , n} such that −eT

i A−1b > 0.
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Proof Assume that (3.2) is uniformly c∗-persistent with respect to D. Together with state-
ment (2) of Lemma 3.1 this implies that there exist δ2 > δ1 > 0 and τ ≥ 0 such that, for all
(ξ, u, v) ∈ D, the solution x of (3.2) satisfies

δ1 ≤ cT x(t) ≤ δ2 ∀ t ≥ τ .

Setting y(t) = cT x(t − h) for all t ≥ 0 and κ := inf{f (w, z) : w ∈ U, δ1 ≤ z ≤ δ2} > 0, it
follows from the variation-of-parameters formula that, for all t ≥ τ + h,

x(t) = eAt ξ 0 +
∫ t

0
eA(t−s)bf (u(s), y(s))ds ≥ κ

∫ t

τ+h

eA(t−s)b ds = κA−1
(
eA(t−τ−h) − I

)
b ,

and thus

eT
i x(t) ≥ −κeT

i A−1b + eT
i A−1eA(t−τ−h)b ∀ t ≥ τ + h .

If i ∈ {1, . . . , n} is such that −eT
i A−1b > 0, then, as eA(t−τ−h) → 0 as t → ∞, there exists

σ ≥ τ + h such that

eT
i x(t) ≥ −κ

2
eT
i A−1b > 0 ∀ t ≥ σ ,

showing that (3.2) is uniformly e∗
i -persistent with respect to D. �

If (L1) holds, then choosing α > 0 such that A + αI ≥ 0, we have that

−A−1b =
∫ ∞

0
e(A+αI)t e−αtb dt ≥

∫ ∞

0
e−αtb dt = 1

α
b .

Therefore, if eT
i b > 0, then −eT

i A−1b > 0. We note that the positivity of −eT
i A−1b does not

imply that of eT
i b: indeed, for the simple example

A =
(−1 1

0 −1

)
, b =

(
0
1

)
,

we have that −A−1b = (1,1)T and so −eT
1 A−1b = 1, whilst eT

1 b = 0.
The following lemma will be a key tool for the persistency analysis of (3.2).

Lemma 4.2 Assume that (L1)–(L3) and (N2) are satisfied and let β > 0. Then there exists
q > 0 such that, for all (ξ, u, v) ∈ D1(β) ∪ D∞(β), the solution x of (3.2) satisfies

cT x(t + h) ≥ cT eAhx(t) + q

∫ h

0
cT eA(h−s)bcT xt (s − h)ds ∀ t ≥ h . (4.2)

Furthermore, the following statements hold.
(1) There exists η > 0 such that, for all (ξ, u, v) ∈ D∞(β), the solution x of (3.2) satisfies

F(x̌(t)) ≥ min
(
F(x̌(t0)), η

) ∀ t ≥ t0 ≥ h . (4.3)

(2) Under the additional assumption that f is bounded, there exists η > 0 such that, for
all (ξ, u, v) ∈ D1(β), the solution x of (3.2) satisfies (4.3).
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Proof Let β > 0. It is clear from statement (2) of Lemma 3.1 that there exists ρ > 0 such
that, for all (ξ, u, v) ∈ D1(β) ∪ D∞(β), the solution x of (3.2) satisfies

‖x(t)‖ ≤ ρ ∀ t ≥ 0 . (4.4)

For the rest of the proof, we set

y(t) := cT x(t − h) ∀ t ≥ h .

Setting y† := ρ‖c‖∞, it follows that

y(t) ≤ y† ∀ t ≥ h .

By (N2), there exists y# ∈ (0, y†) such that

f (w, z) > pz ∀w ∈ U, ∀ z ∈ (0, y#]. (4.5)

Furthermore, by the properties of f ,

p1 := min{f (w, z)/z : w ∈ U,y# ≤ z ≤ y†} > 0.

Setting q := min(p,p1) > 0, we have that

f (w, z) ≥ qz ∀w ∈ U, z ∈ [0, y†],
and consequently,

f (u(t), y(t)) ≥ qy(t) ∀ t ≥ h.

Hence, for all (ξ, u, v) ∈ D1(β) ∪ D∞(β), the solution x of (3.2) satisfies

x(t + h) ≥ eAhx(t) +
∫ h

0
eA(h−s)bf (u(t + s), y(t + s))ds

≥ eAhx(t) + q

∫ h

0
eA(h−s)by(t + s)ds ∀ t ≥ h,

and thus

cT x(t + h) ≥ cT eAhx(t) + q

∫ h

0
cT eA(h−s)bcT xt (s − h)ds ∀ t ≥ h,

establishing (4.2).
(1) Let (ξ, u, v) ∈ D∞(β) and let x be the corresponding solution of (3.2). It follows

from (4.4) and the differential equation in (3.2) that there exists λ > 0 such that, for all
(ξ, u, v) ∈ D∞(β),

|ẏ(t)| ≤ λ ∀ t ≥ h. (4.6)

Note that, on the interval [h,2h], the above bound holds because the L∞-norm of ξ 1 is
uniformly bounded for all (ξ, u, v) ∈ D∞(β).

By (4.5), there exists ε ∈ (0, y#) such that

f (w, z) ≥ pz ∀w ∈ U, ∀ z ∈ [0, y# + ε]. (4.7)
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We set I1 := [0, y# + ε] and I2 := [y# − ε, y†]. By (4.6), the family of all y generated by
data (ξ, u, v) ∈ D∞(β) is equi-continuous on [h,∞), and therefore, there exists τ > 0 such
that, for every t ≥ h and every such y,

y(t) ∈ [0, y#] ⇒ y(t + s) ∈ I1 ∀ s ∈ [0,2τ ], (4.8)

and

y(t) ∈ (y#, y†] ⇒ y(t + s) ∈ I2 ∀ s ∈ [0,2τ ]. (4.9)

Let t ≥ h. We distinguish two cases.
CASE 1: y(t) ∈ [0, y#]. By (4.8), y(t + s) ∈ I1 for all s ∈ [0,2τ ] and, invoking (4.7), we

obtain

f (u(t + s), y(t + s)) ≥ py(t + s) ∀ s ∈ [0,2τ ]. (4.10)

Let us first assume that h > 0. Then, without loss of generality, we may further assume that
2τ ≤ h. Let z : [−h,∞) denote the unique solution of the linear initial-value problem

ż(s) = Az(s) + pbcT (s − h), (z(0), z0) = (x(t), xt ).

Note that (z(s), zs) = Tp(s)x̌(t) for all s ≥ 0. Invoking (4.10), we conclude that, for all
s ∈ [0,2τ ],

x(t + s) = eAsx(t) +
∫ s

0
eA(s−θ)

[
pby(t + θ) + b

(
f (u(t + θ), y(t + θ)) − py(t + θ)

)

+ v(t + θ)
]
dθ

≥ eAsx(t) + p

∫ s

0
eA(s−θ)by(t + θ)dθ

= eAsz(0) + p

∫ s

0
eA(s−θ)bcT z(θ − h)dθ,

where, in the last step, we have used that 2τ ≤ h. Now eAsz(0) + p
∫ s

0 eA(s−θ)bcT z(θ −
h)dθ = z(s) for all s ∈ [0,2τ ] and thus,

x(t + s) ≥ z(s) ∀ s ∈ [0,2τ ]. (4.11)

Noting that, for s ∈ [0,2τ ] and θ ∈ [−h,0], x(t + s + θ) ≥ z(s + θ) if s + θ ≥ 0 (as follows
from (4.11)) and x(t + s + θ) = z(s + θ) if s + θ < 0 (by the initial condition for z), we see
that xt+s ≥ zs for all s ∈ [0,2τ ]. Together with (4.11) this yields

x̌(t + s) = (x(t + s), xt+s) ≥ (z(s), zs) = Tp(s)x̌(t) ∀ s ∈ [0,2τ ].
Consequently, an application of statement (6) of Proposition 3.3 yields,

F(x̌(t + s)) ≥ F(x̌(t)) ∀ s ∈ [0,2τ ]. (4.12)

If h = 0, then x̌(t) = x(t), Tp(t) = e(A+pbcT )t and z(s) = e(A+pbcT )sx(t), and (4.11) follows
easily from the variation-of-parameters formula and (4.10). We conclude that (4.12) contin-
ues to hold in the delay-free case.
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CASE 2: y(t) ∈ (y#, y†]. By (4.9), y(t + s) ∈ I2 for all s ∈ [0,2τ ], and so

y(t + s) ≥ y# − ε > 0 ∀ s ∈ [0,2τ ]. (4.13)

Hence,

F(x̌(t + s)) = −cT A−1x(t + s) +
∫ 0

−h

cT xt+s(θ)dθ ≥
∫ 0

−h

y(t + s + θ + h)dθ ∀ s ∈ [0, τ ].

If h > 0, then, without loss of generality, we may assume that τ ≤ h, and so

F(x̌(t + s)) ≥
∫ τ−h

−h

y(t + s + θ + h)dθ ∀ s ∈ [0, τ ].

For s ∈ [0, τ ] and θ ∈ [−h, τ − h], we have that s + θ + h ∈ [0,2τ ]. Combining the last
inequality with (4.13) and setting η := (y# − ε)τ > 0, we arrive at

F(x̌(t + s)) ≥ η ∀ s ∈ [0, τ ]. (4.14)

Furthermore, if h = 0, then, with κ1 := inf{‖z‖ : z ∈ R
n+, cT z ≥ y# − ε}, it follows

from (4.13) that ‖x(t + s)‖ ≥ κ1 for all s ∈ [0,2τ ], and so

F(x(t + s)) = −cT A−1x(t + s) ≥ κ1κ2 ∀ s ∈ [0,2τ ],

where κ2 = min1≤i≤n(−cT A−1ei) > 0. The positivity of κ2 is a consequence of (L3) and
Proposition 3.2. We see that (4.14) continues to hold in the delay-free case (now with η =
κ1κ2).

Combining (4.12) and (4.14) from Cases 1 and 2, respectively, we obtain

F(x̌(t + s)) ≥ min(F(x̌(t)), η) ∀ t ≥ h, ∀ s ∈ [0, τ ]. (4.15)

Consequently, with t = t0 + kτ , where t0 ≥ h and k ∈ Z+, and s = τ , it follows that

F(x̌(t0 + (k + 1)τ ) ≥ min(F(x̌(t0 + kτ)), η) ∀k ∈ Z+,

and thus,

F(x̌(t0 + kτ) ≥ min(F(x̌(t0), η) ∀k ∈ Z+.

For t ≥ t0, let k ∈ Z+ be such that t = t0 + kτ + s, where 0 ≤ s < τ . The last inequality
together with (4.15) leads to

F(x̌(t)) = F(x̌(t0 + kτ + s) ≥ min(F(x̌(t0 + kτ)), η) ≥ min(F(x̌(t0)), η) ∀ t ≥ t0 ≥ h,

establishing (4.3).
(2) Assume now that f is bounded. Then the L∞-norm of the function [0, h] →

R, t �→ f (u(t), cT ξ 1(t − h)) is uniformly bounded for all (ξ, u, v) ∈ D1(β). Combining
this with (4.4), we see that there exists a suitable λ > 0 such that (4.6) is satisfied for all
(ξ, u, v) ∈ D1(β), and the arguments of the proof of statement (1) continue to apply. �



1 Page 18 of 42 D. Franco et al.

An inspection of the above proof shows that (L3) was used only in the delay-free case: if
h > 0, then Lemma 4.2 remains true without assuming (L3).

For β > α > 0 and r = 1,∞, we set

Er(α,β) := {(ξ, u, v) ∈ Dr(β) : ‖ξ‖M1 ≥ α} and

Er,0(α,β) := {(ξ, u, v) ∈ Dr(β) : ‖ξ 0‖ ≥ α},
and note that the following inclusions hold: Er,0(α,β) ⊂ Er(α,β), E∞(α,β) ⊂ E1(α,

max(1, h)β) and E∞,0(α,β) ⊂ E1,0(α,max(1, h)β).
We are now in the position to state and prove our main results on persistence.

Theorem 4.3 Assume that (L1), (L2) and (N2) are satisfied. Let β > α > 0 and τ > 0.
(1) If (L3) holds, then there exists δ > 0 such that, for all (ξ, u, v) ∈ E∞,0(α,β), the

solution x of (3.2) satisfies

cT x(t) ≥ δ ∀ t ≥ 2θ, where θ :=
{

h if h > 0 ,

τ if h = 0 .
(4.16)

(2) If (L3) holds and f is bounded, then there exists δ > 0 such that, for all (ξ, u, v) ∈
E1,0(α,β), the solution x of (3.2) satisfies (4.16).

(3) If c � 0, then there exists δ > 0 such that, for all (ξ, u, v) ∈ E∞(α,β), the solution x

of (3.2) satisfies

cT x(t) ≥ δ ∀ t ≥ 2h .

The following result can be considered as a “converse” of Theorem 4.3.

Proposition 4.4 Assume that (L1) and (L2) are satisfied and that there exists u† ∈ U such
that f (u†,0) = 0. Let β > α > 0.

(1) If the solution x of (3.2) satisfies

lim sup
t→∞

cT x(t) > 0 , (4.17)

for all (ξ, u, v) ∈ E1,0(α,β) ∩ E∞,0(α,β), then (L3) holds.
(2) Assume that hβ ≥ α. If the solution x of (3.2) satisfies (4.17) for all (ξ, u, v) ∈

E∞(α,β), then c � 0.

The next corollary is an immediate consequence of Theorem 4.3 and Proposition 4.4.

Corollary 4.5 Assume that (L1), (L2) and (N2) are satisfied and there exists u† ∈ U such
that f (u†,0) = 0. Let β > α > 0.

(1) (3.2) is uniformly c∗-persistent with respect to E∞,0(α,β) if, and only if, (L3) holds.
(2) If f is bounded, then (3.2) is uniformly c∗-persistent with respect to E1,0(α,β) if, and

only if, (L3) holds.
(3) If hβ > α, then (3.2) is uniformly c∗-persistent with respect to E∞(α,β) if, and only

if, c � 0.

Statements (1) and (2) of Corollary 4.5 provide a considerable improvement of the results
in [3] where, for the undelayed case and under the assumption that A + bcT is irreducible,
persistence-like properties were proved.
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Proof of Theorem 4.3 (1) Assume that (L3) holds. As θ > 0, Proposition 3.2 yields that

κ := min
1≤i≤n

cT eAθei > 0 , (4.18)

and hence cT eAθ ξ 0 ≥ κ‖ξ 0‖. It follows from the variation-of-parameters formula that, for
all (ξ, u, v) ∈ E∞,0(α,β), the solution x of (3.2) satisfies

cT x(θ) ≥ κ‖ξ 0‖ ,

and thus, setting κ1 := (ακ)/‖c‖∞ > 0, we conclude that ‖x(θ)‖ ≥ κ1. Therefore, by state-
ment (4) of Proposition 3.3,

F(x̌(θ)) ≥ κ2, where κ2 := κ1 inf
ζ∈M1+,‖ζ 0‖=1

F(ζ ) > 0 .

Invoking statement (1) of Lemma 4.2, we see that there exists η > 0 such that, for all
(ξ, u, v) ∈ E∞,0(α,β), the solution x of (3.2) satisfies

F(x̌(t)) ≥ min(κ2, η) =: κ3 > 0 ∀ t ≥ θ , (4.19)

showing that (3.2) is uniformly F -persistent with respect to E∞,0(α,β).
Seeking a contradiction, suppose that there does not exist δ > 0 such that (4.16) holds

for all solutions x of (3.2) with data (ξ, u, v) in E∞,0(α,β). Then there exist (ξk, uk, vk) ∈
E∞,0(α,β), k ∈ Z+, such that the corresponding solutions xk satisfy

inf
t≥2θ

cT xk(t) → 0 as k → ∞ ,

and therefore, there exist tk ≥ θ such that cT xk(tk + θ) → 0 as k → ∞. It follows from the
variation-of-parameters formula that

cT eAθxk(tk) → 0 as k → ∞.

Moreover, if h > 0, then an application of (4.2) shows

∫ h

0
cT eA(h−s)bcT xk

tk
(s − h)ds → 0 as k → ∞ .

Consequently,

lim
k→∞

xk(tk) = 0 and lim
k→∞

‖cT xk
tk
‖L1(−h,0) = 0, (4.20)

where we have made use of the strict positivity of cT eAt on (0, θ ] (guaranteed by Proposi-
tion 3.2) and Lemma B.1 in Appendix A. But (4.20) implies that F

(
(xk(tk), x

k
tk
)
) → 0 as

k → ∞, in contradiction to (4.19).
(2) The proof is identical to that of statement (1), we only need to invoke statement (2)

(instead of statement (1)) of Lemma 4.2.
(3) Assume that c � 0. Then, trivially, (L3) holds, and moreover,

min
0≤s≤h

cT eAsb > 0 . (4.21)
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As the L∞-norm of ξ 1 is uniformly bounded for all (ξ, u, v) ∈ E∞(α,β), it follows from
the properties of f that there exists q > 0 such that

f (u(s), ξ 1(s − h)) ≥ qξ 1(s − h) ∀ s ∈ [0, h], ∀ (ξ, u, v) ∈ E∞(α,β) .

Since, by the variation-of-parameters formula,

cT x(t) = cT eAt ξ 0 +
∫ t

0
cT eA(t−s)

(
bf (u(s), cT ξ 1(s − h)) + v(s)

)
ds ∀ t ∈ [0, h] ,

we conclude that

cT x(t) ≥ cT eAtξ 0 + q

∫ t

0
cT eA(t−s)bcT ξ 1(s − h)ds ∀ t ∈ [0, h] .

Consequently, for all (ξ, u, v) ∈ E∞(α,β), the solution x of (3.2) satisfies

cT x(h) ≥ κ‖ξ 0‖ + λ‖cT ξ 1‖L1(−h,0) , (4.22)

with κ given by (4.18) and

λ := q min
0≤s≤h

cT eA(h−s)b > 0 ,

where the positivity of λ follows from (4.21). By the strict positivity of c, there exists λ1 > 0
such that, for all (ξ, u, v) ∈ E∞(α,β), ‖cT ξ 1‖L1(−h,0) ≥ λ1‖ξ 1‖L1(−h,0). Using (4.22), we
may conclude that there exists λ2 > 0 such that, for (ξ, u, v) ∈ E∞(α,β), the solution x

of (3.2) satisfies,

‖x(h)‖ ≥ λ2

(‖ξ 0‖ + ‖ξ 1‖L1(−h,0)

)= λ2‖ξ‖M1 ≥ αλ2 .

Therefore, by statement (5) of Proposition 3.3,

F(x̌(h)) ≥ λ3, where λ3 := αλ2 inf
ζ∈M1+,‖ζ‖

M1 =1
F(ζ ) > 0 .

Appealing to statement (1) of Lemma 4.2, we see that there exists η > 0 such that, for all
(ξ, u, v) ∈ E∞(α,β), the solution x of (3.2) satisfies

F(x̌(t)) ≥ min(λ3, η) =: λ4 > 0 ∀ t ≥ h ,

showing that (3.2) is uniformly F -persistent with respect to E∞(α,β). The proof can now
be completed by invoking a contradiction argument identical to that used in the proof of
statement (1). �

Proof of Proposition 4.4 (1) We prove this by contraposition. To this end, assume that (L3)
does not hold. Then, by statement (6) of Proposition 3.2 and (3.6), there exists z > 0 such
that cT eAtz = 0 for all t ≥ 0. Setting ξ 0 := (α/‖z‖)z, we have that ‖ξ 0‖ = α and cT eAt ξ 0 =
0 for all t ≥ 0. Defining x : [−h,∞) → R

n by x(t) = 0 for t ∈ [−h,0) and x(t) = eAt ξ 0 for
t ≥ 0, we have that f (u†, cT x(t −h)) = 0 for all t ≥ 0, and so, ẋ(t) = Ax(t)+f (u†, cT x(t −
h)) for all t ≥ 0, showing that x solves (3.2) with ξ = (ξ 0,0), u(t) ≡ u† and v(t) ≡ 0.
Moreover, x(t) → 0 as t → ∞, by the Hurwitz property of A, and, as ‖ξ‖M1 = ‖ξ‖M∞ =
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‖ξ 0‖ = α, we see that (ξ, u†,0) ∈ E1,0(α,β) ∩ E∞,0(α,β). We conclude that there exists a
data triple in E1,0(α,β) ∩ E∞,0(α,β) for which (4.17) does not hold.

(2) Assume that hβ ≥ α. Again we prove the claim by contraposition. To this end, let
us assume that c is not strictly positive. Then there exists z > 0 such that cT z = 0. Define
a function ξ 1(t) = (β/‖z‖)z for all t ∈ [−h,0]. Obviously, cT ξ 1(t) = 0 for all t ∈ [−h,0].
Let x be the solution of (3.2) with ξ = (0, ξ 1), u(t) ≡ u† and v(t) ≡ 0. By the variation-of-
parameters formula, we have that

x(t) =
∫ t

0
eA(t−s)bf (u†, cT ξ 1(s − h))ds = 0 ∀ t ∈ [0, h] .

Consequently, xh is the zero function and therefore x(t) = 0 for all t ≥ 0. Now ‖ξ‖M∞ = β

and ‖ξ‖M1 = hβ ≥ α, showing that (ξ, u†,0) ∈ E∞(α,β). We have now shown that there
exists a data triple in E∞(α,β) for which (4.17) does not hold. �

5 Stability Results

We consider stability properties of the initial value problem (3.2). Particularly, we formulate
conditions under which (3.2) (in the absence of forcing) admits a unique, constant non-
zero solution. We then provide conditions under which this solution is stable in a sense we
describe.

In the following, let p be the constant given by (3.10) and let us ∈ U , where U ⊂ R

is compact. The number us plays the role of a target or nominal value for the variable u.
Further below, we will be interested in the steady states (equilibria) of (1.1) when u = us

and v = 0 and that is the motivation for the superscript “s”.
The nonlinearity f appearing in (1.1) is assumed to satisfy the following conditions.

(N3) Condition (N2) holds,

|f (us, z) − f (us, ys)| = |f (us, z) − pys| < p|z − ys| ∀ z > 0, z �= ys , (5.1)

where ys is the unique positive number such that f (us, ys) = pys, and

lim sup
z→ys

|f (us, z) − f (us, ys)|
|z − ys| = lim sup

z→ys

|f (us, z) − pys|
|z − ys| < p . (5.2)

The existence of ys > 0 such that f (us, ys) = pys follows from the continuity of f and (N2),
whilst uniqueness of ys is a consequence of (5.1).

Note that (5.1) is a sector condition and means that the graph F of y �→ f (us, z) is
“sandwiched” between the lines L+ = {(z,pz) : z ≥ 0} and L− = {(z,−pz+2pys) : z ≥ 0},
see Fig. 1 for an illustration.

Obviously, the only points the graph F has in common with L+ or L− are (ys,pys) and,
the origin (0,0) if f (us,0) = 0. Condition (5.2) implies that the intersections of F with
L+ and L− at the point (ys,pys) are non-tangential, whilst (N2) ensures that if f (us,0) =
0, then F is non-tangential to L+ at (0,0). Finally, it follows from the continuity of f ,
assumption (N2), (5.1) and (5.2) that, for every δ > 0, there exists q ∈ (0,p) such that

|f (us, z) − f (us, ys)| = |f (us, z) − pys| ≤ q|z − ys| ∀ z ≥ δ . (5.3)

In the following lemma we will consider the delay-differential equation

ẋ(t) = Ax(t) + bf (us, cT x(t − h)) , (5.4)



1 Page 22 of 42 D. Franco et al.

Fig. 1 Illustration of the sector
condition (5.1). The dashed lines
have gradient ±p
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that is, (1.1) with u = us and v = 0. We say that xs ∈ R
n+ is a steady state (or equilibrium)

of (5.4) if Axs + bf (us, cT xs) = 0. Obviously, xs is an steady state if, and only if, the
constant function t �→ xs is a solution of (5.4).

Lemma 5.1 Assume that (L1)–(L3) and (N3) hold, and set

xs := −A−1bpys , (5.5)

where p is given by (3.10), and ys is as in (N3). Then xs > 0, cT xs = ys, and xs is the unique
non-zero steady state of (5.4). Furthermore, if A + bcT is irreducible, then xs � 0.

Proof Assumptions (L1)–(L3) ensure that p < ∞ and

xs = −A−1bpys =
(∫ ∞

0
e(A+κI)t e−κt dt

)
bpys ≥ 0 .

where κ > 0 is such that A + κI ≥ 0. It follows immediately from the definitions of xs and
p that cT xs = ys. Consequently, since ys > 0, we conclude that xs �= 0, and so xs > 0. To
show that xs is a steady state, we invoke (N3) to note that

Axs + bf (us, cT xs) = Axs + bf (us, ys) = Axs + bpys = 0 .

As for uniqueness, let x† be an another non-zero vector in R
n+ satisfying

0 = Ax† + bf (us, cT x†) . (5.6)

Then cT x† = G(0)f (us, cT x†), and thus, f (us, cT x†) = pcT x†. Now cT x† �= 0 (otherwise,
due to (5.6), 0 would be an eigenvalue of A which is not possible by (L1)), and so, since ys

is the unique positive solution of the equation f (us, y) = py, we see that cT x† = ys = cT xs,
whence

x† = −A−1bf (us, cT x†) = −A−1bpys = xs .

Let us now additionally assume that A + bcT is irreducible. As

(A + pbcT )xs = Axs + bf (us, cT xs) = 0 ,

we see that

xs = e(A+pbcT )t xs ∀ t ∈R . (5.7)
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Since A + pbcT is Metzler and irreducible, e(A+pbcT )t � 0 for all t > 0 (see, for example,
[46, Theorem 8.2]), and as xs > 0, it now follows from (5.7) that xs � 0. �

It is convenient to define, for given us ∈ U and ρ > 0, the following function ϕρ : U →
R+,

ϕρ(w) := max{|f (w, z) − f (us, z)| : 0 ≤ z ≤ ρ} ∀w ∈ U.

We are now in the position to state a stability theorem relating to the non-zero steady state
associated with the system (3.2).

Theorem 5.2 Let us ∈ U and let β > α > 0. Assume that (L1), (L2) and (N3) are satisfied.
(1) If (L3) holds, then there exist M ≥ 1, μ,ρ > 0 (depending on (A,b, c), f , h, α and

β) such that, for every (ξ, u, v) ∈ E∞,0(α,β), the unique solution x of (3.2) satisfies

‖x(t) − xs‖ ≤ M
(
e−μt‖(ξ 0 − xs, ξ 1 − xs)‖M1 + ‖ϕρ ◦ u‖L∞(0,t) + ‖v‖L∞(0,t)

) ∀ t ≥ 0.

(5.8)
(2) If c � 0, then there exist M ≥ 1, μ,ρ > 0 (depending on (A,b, c), f , h, α and β)

such that, for every (ξ, u, v) ∈ E∞(α,β), the unique solution x of (3.2) satisfies (5.8).

Note that whilst the above criterion guarantees stability independent of the delay param-
eter h, the “quality” of the stability will in general depend on h because of the h-dependence
of the constants M , μ and ρ > 0.

Proof of Theorem 5.2 (1) Let (ξ, u, v) ∈ E∞,0(α,β) and let x be the corresponding so-
lution of (3.2). By statement (2) of Lemma 3.1, it follows that ‖x(t)‖ is bounded on
[0,∞), uniformly with respect to (ξ, u, v) ∈ E∞,0(α,β). As for all (ξ, u, v) ∈ E∞,0(α,β),
‖ξ‖M∞ + ‖v‖L∞ ≤ β , we conclude that ‖x(t)‖ is bounded on [−h,∞), uniformly with re-
spect to (ξ, u, v) ∈ E∞,0(α,β). Therefore, there exists ρ > 0 such that, for all (ξ, u, v) ∈
E∞,0(α,β),

cT x(t − h) ≤ ρ ∀ t ∈ [0,∞) . (5.9)

Furthermore, by statement (1) of Theorem 4.3, there exists δ > 0 such that, for all (ξ, u, v) ∈
E∞,0(α,β),

cT x(t − h) ≥ δ ∀ t ≥ 3h . (5.10)

We rewrite the delay-differential equation (1.1) as follows

ẋ(t) = Ax(t) + bf (us, cT x(t − h)) + bd(t) + v(t) ,

where

d(t) := f (u(t), cT x(t − h)) − f (us, cT x(t − h)) . (5.11)

Observe that, by construction and (5.9),

‖d‖L∞(0,t) ≤ ‖ϕρ ◦ u‖L∞(0,t) ∀ t ≥ 0 . (5.12)
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As was already pointed out, there exists q ∈ (0,p) such that (5.3) holds. Let η ∈ {0, δ} and
define a function Nη :R→R by

Nη(z) :=
{

f (us, z + ys) − f (us, ys) ∀ z ≥ η − ys,

lη(z + ys − η) + f (us, η) − f (us, ys) ∀ z < η − ys,

where l0 = p and lδ = q . By (N3) and construction of Nη ,

|N0(z)| ≤ p|z| ∀ z ∈ R .

Furthermore, assuming without loss of generality that δ ≤ ys and invoking the estimate (5.3)
yields that

|Nδ(z)| ≤ q|z| ∀ z ∈R . (5.13)

Setting θ(t) := x(t) − xs for all t ≥ 0, it is straightforward to show that

θ̇ (t) = Aθ(t) + bN0(c
T θ(t − h)) + (

bd(t) + v(t)
)

a.e. t ≥ 0 . (5.14)

An application of statement (1) of Proposition 2.2 to (5.14) shows that there exists �0 ≥ 1
such that

‖θ(t)‖ ≤ �0
(‖(ξ 0 − xs, ξ 1 − xs)‖M1 + ∥∥bd + v

∥∥
L∞(0,t)

) ∀ t ∈ [0,3h] . (5.15)

Noting that, by (5.10), cT θ(t + 2h) ≥ δ − ys for all t ≥ 0, it is routine to verify that the
left-translated function θ� defined by θ�(t) := θ(t + 3h) satisfies

θ̇ �(t) = Aθ�(t) + bNδ(c
T θ�(t − h)) + (

bd(t + 3h) + v(t + 3h)
)

a.e. t ≥ 0 . (5.16)

Note that (5.16) is a special case of (2.3). As q < p = 1/‖G‖L1 , statement (2) of Proposi-
tion 2.2 together with (5.13) guarantee the existence of � ≥ 1 and γ > 0 such that

‖θ�(t)‖ ≤ �
(
e−γ t‖(θ�(0), θ�

0 )‖M1 + ∥∥bd + v
∥∥

L∞(3h,3h+t)

) ∀ t ≥ 0 .

Consequently,

‖θ(t)‖ ≤ �
(
e−γ (t−3h)‖(θ(3h), θ3h)‖M1 + ∥∥bd + v

∥∥
L∞(3h,t)

) ∀ t ≥ 3h . (5.17)

The conjunction of (5.12), (5.15) and (5.17) establishes (5.8) with μ := γ and M :=
��0e

3γ h(1 + h).
(2) The existence of a positive constant δ such that, for all (ξ, u, v) ∈ E∞(α,β), (5.10)

holds is guaranteed by statement (3) of Theorem 4.3. Otherwise, the proof is identical to that
of statement (1). �

In the following corollary of Theorem 5.2, we consider the situation wherein the forcing
terms u and v in (3.2) are convergent.

Corollary 5.3 Let us ∈ U and assume that (L1), (L2) and (N3) are satisfied.
(1) If (L3) holds, then, for every (ξ, u, v) ∈ M∞+ × L(R+,U) × L∞+ such that ‖ξ 0‖ > 0,

limt→∞ ‖u − us‖L∞(t,∞) = 0 and limt→∞ ‖v‖L∞(t,∞) = 0, the unique solution x of (3.2)
satisfies x(t) → xs as t → ∞.
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(2) If c � 0, then, for every (ξ, u, v) ∈ M∞+ × L(R+,U) × L∞+ such that ‖ξ‖M1 > 0,
limt→∞ ‖u − us‖L∞(t,∞) = 0 and limt→∞ ‖v‖L∞(t,∞) = 0, the unique solution x of (3.2)
satisfies x(t) → xs as t → ∞.

Proof We prove only statement (1), as the proof of statement (2) is very similar to that
of statement (1). To this end, assume that (L3) holds, let (ξ, u, v) ∈ M∞+ × L(R+,U) ×
L∞+ such that ‖ξ 0‖ > 0, limt→∞ ‖u − us‖L∞(t,∞) = 0 and limt→∞ ‖v‖L∞(t,∞) = 0 and let
x be the solution of (3.2). By statement (1) of Theorem 4.3, there exist δ, θ > 0 such that
cT x(t) ≥ δ for all t ≥ θ and hence ‖x(t)‖ ≥ δ/‖c‖∞ := α for all t ≥ θ . Furthermore, it
follows from statement (2) of Lemma 3.1, that σ := supt≥0 ‖(x(t), xt )‖M∞ < ∞. Let τ ≥ 0
and set xτ (t) := x(t + τ), uτ (t) := u(t + τ) and vτ (t) := v(t + τ) for all t ≥ 0. It is clear
that xτ is a solution of (3.2) with ξ , u and v replaced by (x(τ ), xτ ), uτ and vτ , respectively.
Choosing β ≥ 2 max(α,σ,‖v‖L∞), we have that

(
(x(τ ), xτ ), u

τ , vτ
) ∈ E∞,0(α,β) for every

τ ≥ θ . Consequently, by statement (1) of Theorem 5.2, there exist M ≥ 1 and μ,ρ > 0 such
that, for all t ≥ 0 and all τ ≥ θ ,

‖xτ (t) − xs‖ ≤ M
(
e−μt‖(x(τ ) − xs, xτ − xs)‖M1 + ‖ϕρ ◦ uτ‖L∞(0,t) + ‖vτ‖L∞(0,t)

)
.

Hence, for all t ≥ 0 and all τ ≥ θ ,

‖x(t + τ) − xs‖ ≤ M
(
e−μt‖(x(τ ) − xs, xτ − xs)‖M1 + ‖ϕρ ◦ u‖L∞(τ,∞) + ‖v‖L∞(τ,∞)

)
.

As

sup
τ≥θ

‖(x(τ ) − xs, xτ − xs)‖M1 < ∞, lim
τ→∞‖ϕρ ◦ u‖L∞(τ,∞) = 0 and

lim
τ→∞‖v‖L∞(τ,∞) = 0,

it follows that x(t) → xs as t → ∞. �

The estimate (5.8) in Theorem 5.2 can be simplified in the case that f is Lipschitz in its
first variable, which is recorded as the following theorem.

Theorem 5.4 Let us ∈ U , let β > α > 0 and assume that f is Lipschitz in its first variable,
uniformly with respect to the second variable, that is, there exists λ > 0 such that

|f (w1, z) − f (w2, z)| ≤ λ|w1 − w2| ∀w1,w2 ∈ U, ∀ z ≥ 0, (5.18)

Furthermore assume that (L1), (L2) and (N3) are satisfied.
(1) If (L3) holds, then there exist M ≥ 1 and μ > 0 (depending on (A,b, c), f , h, α and

β) such that, for every (ξ, u, v) ∈ E∞,0(α,β), the unique solution x of (3.2) satisfies

‖x(t) − xs‖ ≤ M
(
e−μt‖(ξ 0 − xs, ξ 1 − xs)‖M1 + ‖u − us‖L∞(0,t) + ‖v‖L∞(0,t)

) ∀ t ≥ 0.

(5.19)
(2) If (L3) holds and f is bounded, then there exist M ≥ 1 and μ > 0 (depending on

(A,b, c), f , h, α and β) such that, for every (ξ, u, v) ∈ E1,0(α,β), the unique solution x

of (3.2) satisfies (5.19).
(3) If c � 0, then there exist M ≥ 1 and μ > 0 (depending on (A,b, c), f , h, α and β)

such that, for every (ξ, u, v) ∈ E∞(α,β), the unique solution x of (3.2) satisfies (5.19).
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Proof By invoking (5.18), we obtain the following estimate for the function d defined
in (5.11)

‖d‖L∞(0,t) ≤ λ‖u(t) − us‖L∞(0,t) ∀ t ≥ 0,

which replaces (5.12). Otherwise the proof is very similar to that of Theorem 5.2 and we
omit the details. �

Statement (2) considers data triple (ξ, u, v) ∈ E1,0(α,β) and so allows for unbounded
ξ 1. Note that there is no counterpart to statement (2) in Theorem 5.2: the reason is that in
general there does not exist a finite ρ such that (5.9) holds if ξ 1 is not essentially bounded
(see proof of Theorem 5.2).

Nonlinearities which satisfy (N3) and (5.18) are quite common in mathematical ecology
as the following example shows.

Example 5.5 (1) Consider the so-called Beverton-Holt2 nonlinearity g(z) = az/(1 + kz) for
z ≥ 0, where a, k > 0 are parameters, and let p ∈ (0,∞) be given. We assume that U is
of the form U := [u−, u+] ⊂ (0,∞) with us ∈ [u−, u+] and define f1(w, z) := g(wz) and
f2(w, z) = wg(z) for w ∈ [u−, u+] and z ≥ 0. It follows from [13, Table 5.1] that if au− >

p, then (N3) holds for f1 and f2 with ys = (aus − p)/(pkus) and ys = (aus − p)/(pk),
respectively.

Furthermore, f1 and f2 are obviously bounded and so are

∂f1

∂w
(w, z) = az

(1 + kwz)2
and

∂f2

∂w
(w, z) = az

(1 + kz)
∀ w ∈ [u−, u+], ∀ z ≥ 0 .

Setting λi := sup{|(∂fi/∂w)(w, z)| : w ∈ [u−, u+], z ≥ 0} < ∞, i = 1,2, it follows from the
mean-value theorem for differentiation that (5.18) holds.

(2) This example focuses on the nonlinearities f1 and f2 induced by the Ricker-type
function g(z) = aze−z via f1(w, z) = g(wz) and f2(w, z) = wg(z) for w ∈ [u−, u+] and
z ≥ 0, where u+ > u− > 0. Under the assumption

au+

e2
< p < au− , (5.20)

it is well-known that, for every us ∈ [u−, u+], (N3) is satisfied for f1 and f2 with ys =
ln(aus/p)/us and ys = ln(aus/p), respectively, see [13, Table 5.1]. As in the Beverton-Holt
example, a mean-value argument can be used to show that (5.18) holds. ♦

If the nonlinearity f does not satisfy the sector condition (N3), then it may still satisfy
some sector condition and we will now explore this in some more detail. For which purpose,
assume, for simplicity, that f (w, z) = f (z) does not depend on w. For q > 0, we denote by
Sq the set of all locally Lipschitz functions f : R+ → R+ for which there exist affine-linear
functions l+, l− : R → R with slopes q and −q , respectively, and y� > 0 (all depending on
f ) such that

l+(z) < f (z) < l−(z) ∀ z ∈ [0, y�) and l−(z) < f (z) < l+(z) ∀ z > y�, (5.21)

2Also called a Hollings type II or Michaelis-Menten nonlinearity.
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and, furthermore,

lim sup
z→y�

∣
∣∣
∣
f (z) − f (y�)

z − y�

∣
∣∣
∣< q and lim sup

z→∞

∣
∣∣
∣
f (z)

z

∣
∣∣
∣< q .

Note that l+(y�) = l−(y�) = f (y�), l+(0) = f (y�) − qy�, l−(0) = f (y�) + qy�, and,
by (5.21),

|f (z) − f (y�)| < q|z − y�| ∀ z ≥ 0, z �= y� .

Obviously, this looks similar to (5.1), but here z = 0 is included, and, in general, f (y�) �=
qy�. If f ∈ Sq , then we say that f satisfies a sector condition with abscissa y� and slope q .

The set Sq constitutes a rich class of functions. For example:
• any bounded differentiable function f : R+ → R+ such that lim supz→∞ |f ′(z)| < q is

an element in Sq ;
• any locally Lipschitz function f : R+ → R+ such that f (z) converges to a finite limit

as z → ∞ and for which there exist q̃ ∈ (0, q) and a sequence of intervals [yk, zk] ⊂
(0,∞) such that yk → ∞ as k → ∞, infk∈N(zk − yk) > 0 and

lim sup
h→0

∣∣∣∣
f (z + h) − f (z)

h

∣∣∣∣≤ q̃ ∀ z ∈
⋃

k∈N
[yk, zk] ,

is in Sq .

Example 5.6 Consider the functions f1, f2 :R+ →R+ given by

f1(z) := 5z3

1 + z5
and f2(z) := 1 + 8z4

4(1 + z4)
∀ z ≥ 0 , (5.22)

which are plotted in Fig. 2. Since

lim
z↓0

f1(z)

z
= 0 ,

the function f1 does not even satisfy (N2), for any p > 0, and so (N3) cannot hold. The
function f2 does not satisfy (N3) when p = 1, see Fig. 2(b).

However, the functions f1 and f2 are clearly bounded and differentiable, with

lim
z→∞|f ′

i (z)| = 0 i ∈ {1,2} ,

and so belong to Sq for all q > 0. Figure 2 illustrates graphically that f1, f2 ∈ S1. ♦

The next result shows that if f ∈ Sp , then there exists a constant forcing function v such
that the resulting forced system has nice stability and convergence properties

Proposition 5.7 Assume that (L1) and (L2) are satisfied and G(0) > 0. Consider (3.2) with
f ∈ Sp (where p = 1/G(0)). Let y� be a sector abscissa of f , set x� := −A−1bpy� and
assume that ψ := py� − f (y�) ≥ 0. Under these conditions, there exist constants � ≥ 1
(depending on (A,b, c), f , h and y�) and γ > 0 (depending on (A,b, c), f and y�) such
that, for all (ξ, v) ∈ M1+ × L∞+ , the unique solution x : [−h,∞) →R

n of (2.3) satisfies

‖x(t) − x�‖ ≤ �
(
e−γ t‖(ξ 0 − x�, ξ 1 − x�)‖M1 + ‖v − ψb‖L∞(0,t)

) ∀ t ≥ 0 . (5.23)

Furthermore, if limt→∞ ‖v − ψb‖L∞(t,∞) = 0, then x(t) → x� as t → ∞.
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Fig. 2 Panel (a): graph of f1 from (5.22). Panel (b): graph of f2 from (5.22). In both cases, the functions
f1 and f2 do not satisfy the sector condition (N3) with p = 1 (dashed lines and grey filled regions), but do
belong to S1 (dashed-dotted lines).

We emphasize here that x� is not a steady state of the unforced system ẋ(t) = Ax(t) +
bf (cT x(t − h)), but of the modified equation ẋ(t) = Ax(t) + b

(
f (cT x(t − h)) + ψ

)
.

In the context of scalar (n = 1) instances of (3.2), in the absence of the forcing term u, it
has been shown in the chaos control literature (see, for example, [24]) that constant additive
control may enforce convergence in systems which show chaotic behaviour when unforced.
Proposition 5.7 identifies a general scenario in which the application of such control action
results in dynamics which are stable in the sense of (5.23).

Proof of Proposition 5.7 As f ∈ Sp , the function N :R→ R defined by

N(z) :=
{

f (z + y�) − f (y�) ∀ z ≥ −y� ,

f (0) − f (y�) ∀ z < −y� ,

satisfies

sup
z �=0

|N(z)|
|z| < p . (5.24)

Let (ξ, v) ∈ M1+ × L∞+ and let x be the unique solution x of (3.2). Setting e(t) := x(t) − x�,
it follows that

ė(t) = Ae(t) + b
(
f (cT e(t − h) + y�) − f (y�)

)+ v(t) − ψb a.e. t ≥ 0.

Since cT e(t − h) = cT x(t − h) − y� ≥ −y� for all t ≥ 0, the above equation can re-written
as

ė(t) = Ae(t) + bN(cT e(t − h)) + v(t) − ψb a.e. t ≥ 0.

The claim now follows from (5.24), the fact that p = 1/G(0) = 1/‖G‖L1 and statements (2)
and (3) of Proposition 2.2. �

We conclude the section by mentioning that Proposition 5.7 may be extended to the case
wherein f = f (u, z) does depend on two arguments, provided that f (u�, ·) ∈ Sp for some
u� ∈ U . For the sake of brevity, we do not give a formal statement.
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6 Examples

The results presented in the previous sections allow the analysis of mathematical models
arising in a great variety of contexts. To demonstrate this, we consider three different models
in this section. The first two are related to population dynamics and the last one to self-
regulated biochemical reactions.

6.1 Delayed Recruitment Models

Recruitment models typically assume that the dynamics of sexually mature individuals of a
population are driven by the difference between the rate at which new members are recruited
and the mortality rate. If the maturation process takes a constant time h > 0, competition
occurs only in a specific age cohort and the mortality rate is constant, then the following
population model is obtained

ẋ(t) = −μx(t) + f (u(t), x(t − h)) + v(t) . (6.1)

Here x(t) denotes the number of mature individuals at time t , μ > 0 is the mortality rate,
the production function f depends on the competition between individuals, u(t) ∈ U :=
[u−, u+] ⊆ (0,∞) and v(t) ≥ 0 are forcing terms which model the effect of environmental
fluctuations affecting recruitment. A derivation of (6.1) without forcing may be found in, for
example, [4] and we refer the reader to [20, Sect. 1] for an interesting discussion on delays
in population models.

Example 6.1 Consider (6.1) with f : U ×R+ →R+ given by

f (w, z) = wz

1 + kwz
, ∀w ∈ U, ∀ z ≥ 0, (6.2)

where k > 0, see part (1) of Example 5.5. This corresponds to a so-called contest compe-
tition setting, in which resources available are monopolized by some individuals. In this
situation the production function f tends to the maximum a/k as z → ∞, uniformly in w.
Model (6.1) with f given by (6.2) is a special case of (1.1) with n = 1, A = −μ, b = 1 and
c = 1. It is straightforward to verify that assumptions (L1), (L2) and (L3) are satisfied and,
trivially, p = 1/G(0) = μ. We have shown in Example 5.5 that, for every ue ∈ [u−, u+],
condition (N3) holds, provided that u− > μ. Thus, we can use Theorem 4.3, Corollary 5.3
and Theorem 5.4 to obtain persistence, convergence and stability results, respectively, for
the forced equation (6.1) with f given by (6.2). For instance, Theorem 5.4 implies that
the deviation of x(t) from xs is bounded in the uniform manner (5.19), whereas Corol-
lary 5.3 shows that the equation satisfies a converging-input converging-state property —
namely, that if limt→∞ ‖u − us‖L∞(t,∞) = 0 and limt→∞ ‖v‖L∞(t,∞) = 0, then x(t) → xs as
t → ∞. ♦

The above example shows that, under contest competition, the mature population tends to
a constant value, provided that the forcing functions u(t) and v(t) converge as t → ∞. How-
ever, it is known that this is not the case if resources are equally allocated among individuals,
that is, under so-called scramble competition (characterized by a unimodal production func-
tion which tends to zero at high population sizes, see [4, 5]). In this case, even in the absence
of fluctuating external forcing, the solutions of model (6.1) might show persistent fluctua-
tions which, in many practical situations, are undesirable. Interestingly, a constant control,
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which adds a constant amount of mature individuals to the population per unit time, can have
a stabilizing effect. This was shown in the context of (6.1) with a specific f (Mackey-Glass
equation) in [24]. In the example below, we obtain the stabilizing effect of constant control
action as a consequence of Proposition 5.7.

Example 6.2 Consider model (6.1) with μ = 1, so that p = 1, and where the production
function f , assumed to be independent of its first variable, is given by

f (z) = az

k + zs
∀ z ≥ 0 , (6.3)

for fixed parameters a, k > 0 and s > 0. Whilst f trivially satisfies (N2) whenever a > k,
Fig. 3(a) illustrates that condition (N3) does not hold for f with

k = 2, s = 3 and a = 7 , (6.4)

and, consequently, Corollary 5.3 does not apply for these values. Nevertheless, for any fixed
a > 0 and k > 0, the bounded and differentiable function f belongs to Sq for any q > 0,
since |f ′(z)| → 0 as z → ∞. In particular, f ∈ S1 and y� = 2.65 is a sector abscissa, see
Fig. 3(b). As ψ = y� − f (y�) ≈ 1.75 > 0, Proposition 5.7 applies. In this scalar example
where A = −1, b = 1 and p = 1, we simply have that x� := −A−1bpy� = y�.
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Fig. 3 Graph of the function f (z) = 7z/(2 + z3) (a) Sector condition (N3) fails. (b) Sector condition with
abscissa y� = 2.65 and slope 1 is satisfied.

Consider (6.1) with f given by (6.3), (6.4) and

μ = 1, h = 25, ξ1 := (ξ 0
1 , ξ 1

1 ) = (ζ, ζ(0)), ξ2 := (ξ 0
2 , ξ 1

2 ) = (4 − ζ,4 − ζ(0)), (6.5)

where ζ : [−25,0] →R+ is defined by

ζ(t) =
{

1, t ∈ [−25,−12.5) ,

3, t ∈ [−12.5,0] .
Numerical results are provided in Fig. 4: for the model data (6.3)–(6.5), solutions were
computed numerically using the delay-differential equation solver dde23 in MATLAB. Fig-
ure 4(a) shows plots of two solutions x1 and x2 of (6.1) corresponding to the initial condi-
tions ξ1 and ξ2, respectively, and forcing term v(t) ≡ 0. In both cases persistent fluctuations
are observed.
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Figure 4(b) shows simulations of (6.1) with two oscillatory forcing terms

vk(t) = (1 − 0.2k sin(0.5t))ψ ∀ t ≥ 0, k ∈ {1,2} . (6.6)

In this simulation, only one initial condition is used from (6.5), namely ξ1. As ensured by
Proposition 5.7, bounded oscillations around x� are observed which, as expected, increase
with increasing k.

Figure 4(c) shows simulations of (6.1) with constant forcing term v(t) ≡ ψ . As ensured
by Proposition 5.7, we observe that the addition of sufficiently large constant forcing has the
effect of making solutions converge to a positive limit. ♦

6.2 Dispersal of a Population with a Unique Breeding Region

Consider the following model of a population spatially structured over n discrete patches

ẋ1(t) = −d1x1(t) +
n∑

j=1

a1j xj (t) + f
(
u(t),

n∑

j=1

cjxj (t − h)
)

+ v1(t),

ẋi(t) = −dixi(t) +
n∑

j=1

aij xj (t) + vi(t), i ∈ {2, . . . , n},

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

t ∈R+ . (6.7)

Here xi(t) is the density of the population in patch i ∈ {1, . . . , n} at time t ≥ 0, di > 0 is
the mortality rate in patch i ∈ {1, . . . , n}, aij ≥ 0 are the dispersal or migration rates of the
population from patch j to patch i, where aii := 0 for i ∈ {1, . . . , n}. Furthermore, h > 0 is
the maturation time, the birth function f : [u−, u+] ×R+ → R+ is given by

f (w, z) = awze−z ∀w ∈ [u−, u+], ∀ z ≥ 0, where a > 0,

the constant ci ≥ 0 measures the contribution of the population in patch i to the number of
births in patch 1 and it is natural to assume that there exists j ∈ {1, . . . , n} such that cj > 0;
finally, u(t) ∈ [u−, u+] ⊂ (0,∞) and vi(t) ≥ 0 model disturbances.

The model (6.7) is a so-called Nicholson system, as the case n = 1 reduces to the well-
known Nicholson’s blowfly equation [18]. A related Nicholson system is studied in [11].
However, the results in [11] focus on the case wherein the birth of new individuals occurs
in every patch. Here, we consider a different situation commonly seen in nature, in which
there is a single breeding patch.

System (6.7) is a special case of (1.1) with

A :=

⎛

⎜⎜⎜⎜
⎝

−d1 a12 . . . a1n

a21 −d2
. . .

...

...
. . .

. . . an−1n

an1 . . . ann−1 −dn

⎞

⎟⎟⎟⎟
⎠

, b :=

⎛

⎜⎜⎜
⎝

1
0
...

0

⎞

⎟⎟⎟
⎠

, c :=

⎛

⎜⎜⎜
⎝

c1
c2
...

cn

⎞

⎟⎟⎟
⎠

, v :=

⎛

⎜⎜⎜
⎝

v1
v2
...

vn

⎞

⎟⎟⎟
⎠

, (6.8)

The matrix A is Metzler by construction and, since, without newborns, the population
should become extinct, it is natural to assume that A is Hurwitz. Under this assumption, (L1)
and (L2) hold. Verifying condition (L3) in general without further assumptions on A and c

seems analytically cumbersome. Proposition 3.2 provides characterisations of (L3) which
may be used in specific situations. The Ricker nonlinearity f satisfies (N3) provided (5.20)
holds, see Example 5.5.
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Fig. 4 Numerical solutions of the delay-differential equation (6.1) from Example 6.2, with model
data (6.3)–(6.5). The dotted line corresponds to x� . In panels (a) and (c) the solid and dashed-dotted lines
correspond to initial conditions ξ1 and ξ2, respectively. In panel (b), the solid and dashed-dotted lines corre-
spond to forcing terms v1 and v2, respectively. Only initial condition ξ1 is used. (a) Persistent fluctuations
are observed with v = 0. (b) Bounded oscillations around x� are observed with v1 and v2 as in (6.6). (c)
Convergence is observed with constant v = ψ
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Example 6.3 Consider (6.7) with n = 3, d1 = d2 = d3 = 2, a12 = a21 = a31 = 1 and a13 =
a23 = a32 = 0, so that

A :=
⎛

⎝
−2 1 0
1 −2 0
1 0 −2

⎞

⎠ , b =
⎛

⎝
1
0
0

⎞

⎠ , c =
⎛

⎝
c1

c2

c3

⎞

⎠ .

We note that A is Metzler and Hurwitz and

G(0) = 1

3
(2c1 + c3 + c2) = 1

p
> 0 ,

since c = (c1, c2, c3)
T > 0 by assumption. From the block-structure of A it is immediate

that property (7) of Proposition 3.2 holds if, and only if, c3 > 0. In other words, (L3) is
satisfied if, and only if, c3 > 0. Consequently, if c3 > 0 and (5.20) holds then the stability
results Theorems 5.2 and 5.4 are applicable. Moreover, we note that −A−1b � 0, and so, if
c3 > 0, then, for every i ∈ {1,2,3}, (6.7) is uniformly e∗

i -persistent with respect to Er,0(α,β)

(r = 1,∞ and β > α > 0) as follows from Proposition 4.1.
We now explore the case wherein c3 = 0, that is, (L3) does not hold. Then, by Corol-

lary 4.5, the population is not uniformly c∗-persistent with respect to E∞,0(α,β), E1,0(α,β)

or E∞(α,β) for any β > α > 0. Indeed, by inspection of the model structure, for all initial
conditions ξ with ξ 0

i = 0 and ξ 1
i = 0 for i ∈ {1,2}, all functions u : R+ → [u−, u+] and for

v = 0, the first two components of the solution x are equal to 0, showing that the system
fails to be c∗-persistent. Interestingly, if we consider the dynamics of just the first two states,
which decouple from the third, then we obtain the subsystem

(
ẋ1(t)

ẋ2(t)

)
=
(−2 1

1 −2

)(
ẋ1(t)

ẋ2(t)

)
+
(

1
0

)
f

(
u(t),

(
c1 c2

)(x1(t − h)

x2(t − h)

))
+
(

v1(t)

v2(t)

)
,

(6.9)
which is another special case of (6.7) and (6.8) with

As :=
(−2 1

1 −2

)
, bs :=

(
1
0

)
, cs :=

(
c1

c2

)
.

Since c1 + c2 > 0 as c > 0, it is straightforward to show that (L3) always holds for the
subsystem (6.9). It is routine to calculate that

− 1

cT
s A−1

s bs
= 3

(2c1 + c2)
= p .

Consequently, if (5.20) holds, then subsystem (6.9) is ultimately c∗
s -persistent and Theo-

rems 5.2 and 5.4 are applicable to (6.9). Finally, Proposition 4.1 guarantees that (6.9) is also
ultimately e∗

1- and e∗
2-persistent. ♦

6.3 Self-Regulated Biochemical Reactions

Consider a chain of chemical reactions which converts a (first) substance with concentra-
tion s1 into an end-product with concentration sn via several intermediate substances with
concentrations s2, . . . , sn−1. Let τi ≥ 0 be the time needed for a substance si to affect the
production of the next substance in the chain si+1. The existence of delays is common in
biochemical reactions of gene expression and are related to transcriptional and translational
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processes [31]. We assume that the reaction is self-regulated in the sense that an increase
of concentration of substance n in the chain induces or represses the production of the first
substance. More specifically, we consider the following model

ṡ1(t) = −d1s1(t) + f (u(t), sn(t − τn)) + ω1(t),

ṡi (t) = ai−1si−1(t − τi−1) − disi(t) + ωi(t), i ∈ {2, . . . , n}

}

t ∈ R+ , (6.10)

where di > 0, i = 1, . . . , n is the decay rate of substance i and ai−1 > 0, i = 2, . . . , n, is
the production rate of substance i from substance i − 1. The nonlinearity f : U × R+ →
R+ is the self-regulation function for the reaction, where U = [u−, u+] ⊂ (0,∞) and the
functions u and ωi model external disturbances. Without delays and external disturbances,
model (6.10) was proposed in [16] and further studied in [45]. The authors of [3] also studied
a version of (6.10) with additive forcing, but without delays and for f not depending on u.
With delays, model (6.10) was first considered in [27], although without considering forcing
terms.

System (6.10) is not in the form of (1.1) but, by setting h :=∑n

j=1 τj ,

x1 := s1, v1 := ω1, xi(t) := si

(
t +

i−1∑

j=1

τj

)
and vi(t) := ωi

(
t +

i−1∑

j=1

τj

)
∀ i ∈ {2, . . . , n} ,

it is routine to check that

ẋ1(t) = −d1x1(t) + f (u(t), xn(t − h)) + v1(t),

ẋi(t) = ai−1xi−1(t) − dixi(t) + vi(t), i ∈ {2, . . . , n}

}

t ∈ R+ , (6.11)

which is a special case of system (1.1), with

A :=

⎛

⎜⎜⎜⎜
⎝

−d1 0 . . . 0

a1 −d2
. . .

...
...

. . .
. . . 0

0 . . . an−1 −dn

⎞

⎟⎟⎟⎟
⎠

, b :=

⎛

⎜⎜⎜
⎝

1
0
...

0

⎞

⎟⎟⎟
⎠

, c :=

⎛

⎜⎜⎜
⎝

0
...

0
1

⎞

⎟⎟⎟
⎠

, v :=

⎛

⎜⎜⎜
⎝

v1
...

vn−1

vn

⎞

⎟⎟⎟
⎠

.

We see immediately that assumptions (L1) and (L2) are satisfied. Assumption (L3) also
holds, as follows from Proposition 3.2 by noting that A + bcT is irreducible. Hence, Propo-
sition 3.3 implies that G(0) > 0. Owing to the particular structure of A, b and c, the latter
can also be seen directly by noting that

1

p
= G(0) =

∏n−1
i=1 ai∏n

i=1 di

> 0 .

Depending on whether an increase of the concentration xn of substance n inhibits or activates
the production of the first substance, the function f is assumed to be decreasing or increasing
in its second variable, respectively, see [1]. We illustrate the stability theory developed in
Sect. 5 in the case of an increasing f , namely,

f (w, z) = w(1 + αzγ )

1 + zγ
, γ ≥ 1, α > 1. (6.12)

Before we do this, we state a simple lemma which provides a sufficient condition for (N3)
to hold. The proof is straightforward and is left to the reader.
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Lemma 6.4 Assume that f : [u−, u+] × R+ → R+ is of the form f (w, z) = wg(z), where
g : R+ →R+ is bounded and g(0) > 0. Let us ∈ [u−, u+]. The following statements hold.

(1) The nonlinearity f satisfies (N2).
(2) If, additionally, g is differentiable and supz≥0 |g′(z)| < p/us, then the function z �→

f (us, z) is globally Lipschitz with Lipschitz constant smaller than p and f satisfies (N3).

Writing f given by (6.12) as f (w, z) = wg(z) with

g(z) = 1 + αzγ

1 + zγ
,

elementary calculations show that

sup
z≥0

|g′(z)| = max
z≥0

g′(z) = γ (α − 1)
θ (γ−1)/γ

(1 + θ)2
, where θ = γ − 1

γ + 1
,

and thus, by Lemma 6.4, f satisfies (N3) if

usγ (α − 1)
θ (γ−1)/γ

(1 + θ)2
< p.

Example 6.5 Consider system (6.11) with nonlinearity (6.12), [u−, u+] = [0.2,1.5], us =
0.25 and parameter values

n = 2, d2 = 1, a1 = 1, h = 5, α = 8, γ = 4. (6.13)

If d1 = 2, then

usγ (α − 1)
θ (γ−1)/γ

(1 + θ)2
≈ 1.864 < 2 = p,

and so, by Lemma 6.4, (N3) holds. Consequently, the stability theory developed in Sect. 5
is applicable to this example.

If we reduce d1 to d1 = 1, but keep the other parameter values as in (6.13), then p = 1,
and statement (2) of Lemma 6.4 does not apply. In fact, condition (N3) does not hold in
this case as Fig. 2(b) shows. Furthermore, in this case, the system with u(t) ≡ us and v = 0
seems to be bi-stable, see the simulations in Fig. 5(a) with initial conditions given by

ξi = (ξ 0
i , ξ 1

i ) = (ζi(0), ζi) i = 1,2 , (6.14a)

where

ζ1(t) :=
(

2 + cos(2t)

2(3 − sin(4t))

)
, ζ2(t) :=

(
0.3(1 + sin(1.2t))

0.6(1 − sin(3t))

)
∀ t ∈ [−5,0] . (6.14b)

All numerical solutions in this example were computed using the dde23 command in MAT-
LAB.

Nevertheless, the function z �→ f (us, z) was considered in Example 5.6, and shown
to belong to S1. Furthermore, y� = 2.453 is a sector abscissa of f (us, ·) with ψ =
y� − f (us, y�) ≈ 0.5 > 0, see Fig. 2(b). Consequently, Proposition 5.7 guarantees that
x� = −A−1by�, in this case given by

x� = −A−1by� =
(

1
1

)
y� = 2.4530

(
1
1

)
,
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Fig. 5 Numerical solutions of the
system of delay-differential
equations (6.11) for parameter
values given by (6.13), with
d1 = 1 and u(t) ≡ us = 0.25.
Each solid and dashed-dotted line
corresponds to a component of x.
Dotted lines correspond to (the
equal) components of x� . (a)
Bi-stability of (6.11) with forcing
v = 0. (b) Bounded oscillations
around x� with almost periodic
forcing v as in (6.15). (c)
Convergence of states to x� with
convergent forcing term v as
in (6.16)

is “stable” in the sense of (5.23). To illustrate this result numerically, Fig. 5(b) plots a numer-
ical simulation of (6.11) with parameter values given by (6.13) and d1 = 1, u(t) ≡ us = 0.25,
and with oscillatory forcing term v given by

v(t) = bψ(1 − 0.3(cos(t) + cos(
√

2t))) ∀ t ∈ R+ . (6.15)

The initial conditions are given by (6.14a), (6.14b). Bounded oscillations around x� are
observed.
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Moreover, Proposition 5.7 ensures that, for every (ξ, v) ∈ M1+ × L∞+ such that
limt→∞ ‖v − ψb‖L∞(t,∞) = 0, the unique solution x of system (6.11) satisfies x(t) → x�

as t → ∞. Thus, Fig. 5(c) plots a numerical simulation of the same model, only now with a
convergent forcing term v given by

v(t) = bψ(1 − 0.3e−0.5t cos(0.5t)) ∀ t ∈ R+ . (6.16)

Convergence x(t) → x� as t → ∞ is observed. Hence, the inclusion of such a convergent
additive control removes the bi-stability and forces the solutions to converge to a limit x�

independently of the initial condition in M1+ and delay h ≥ 0. ♦

Appendix A: List of Function Spaces Used

For ease of reference, we provide a list of the function spaces introduced in the paper.
• C([−h,0],Rn) = space of continuous functions [−h,0] → R

n equipped with supre-
mum norm, where h > 0.

• L(R+,U) = space of Lebesgue measurable functions R+ → U , where U ⊂ R is com-
pact.

• Lr(J,Rn) = space of Lebesgue measurable functions J → R
n which are integrable

(r = 1) or essentially bounded (r = ∞), where J ⊂ R is an interval.
• Lr

loc(J,Rn) = local version of Lr(J,Rn).
• W

1,1
loc ([0, τ ),Rn) = local version of the usual Sobolev space W 1,1([0, τ ),Rn), where

0 < τ ≤ ∞.
• Mr = Mr([−h,0],Rn) = R

n × Lr([−h,0],Rn), where r = 1,∞ and h > 0.
• M1+ = R

n+ × L1([−h,0],Rn+), L∞+ = L∞(R+,Rn+).
• Dr(β) = {(ξ, u, v) ∈ Mr+ × L(R+,U) × L∞+ : ‖ξ‖Mr + ‖v‖L∞ ≤ β}, where r = 1,∞

and β > 0.
• Er(α,β) = {(ξ, u, v) ∈ Dr(β) : ‖ξ‖M1 ≥ α}, where r = 1,∞ and β > α > 0.
• Er,0(α,β) = {(ξ, u, v) ∈ Dr(β) : ‖ξ 0‖ ≥ α}, where r = 1,∞ and β > α > 0.

Appendix B: Proofs of Results Not Given in the Main Text

Proof of Proposition 2.1 (1) We recursively define a function x : [−h,∞) → R
n by defining

it on the intervals [(k − 1)h, kh] for all k ∈ Z+ as follows: set x(t) := ξ 1(t) for all t ∈
[−h,0), x(0) := ξ 0, and, for every k ∈ Z+ and all t ∈ [0, h],

x(t + kh) = eAtx(kh)+
∫ t

0
eA(t−s)

(
bN(s + kh, cT x(s + (k − 1)h))+ v(s + kh)

)
ds . (B.1)

Note that, for k = 0, the integral on the right-hand side of (B.1) is well-defined because,
by assumption, the function t �→ N(t, cT ξ 1(t − h)) is integrable on [0, h]. For k ≥ 1, the
integral is also well-defined because x is continuous on [(k − 1)h, kh] and hence, invoking
the Lipschitz property of N , we see that t �→ N(t + kh, cT x(t + (k − 1)h)) is integrable on
[0, h]. Consequently, the recursive definition of x via (B.1) results in a well-defined function
on [−h,∞). It is clear that x|[0,∞) ∈ W

1,1
loc (R+,Rn) and x is a solution of (2.3) on [−h,∞).

This solution is unique, because if x̃ is a solution of (2.3) on [−h,∞), then, for every
k ∈ Z+, (B.1) holds with x replaced by x̃, and, since x̃(t) = ξ 1(t) = x(t) for all t ∈ [−h,0)

and x̃(0) = ξ 0 = x(0), we conclude that x̃ = x.
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(2) If x is a solution of (2.3) on [−h, τ) for some τ > h, then bw = ẋ − Ax − v ∈
L1([0, h],Rn), and, as b �= 0, it follows that w ∈ L1([0, h],R), establishing the claim. �

We note that in the above proof the Lipschitz property has not been used in the argument
establishing uniqueness. In fact, an inspection of the proof shows that Proposition 2.1 holds
if N is measurable in its first argument and continuous in its second and, for every z ∈ R,
there exist a locally integrable function ν :R+ →R+ and an open interval J ⊂R containing
z such that |N(t, z)| ≤ ν(t)|z| for all z ∈ J and t ≥ 0. These conditions are weaker than the
assumptions imposed on N in Sect. 2. However, the latter are required in the delay-free case.

Proof of Proposition 2.2 Let ξ ∈ M1 and v ∈ L∞
loc(R+,Rn). Invoking (2.4), we see that

t �→ N(t, cT ξ 1(t − h)) is integrable on [0, h], and thus, by Proposition 2.1, the initial-value
problem (2.3) has a unique solution x defined on [−h,∞). It is clear that x satisfies the
variation-of-parameters formula

x(t + t0) = eAtx(t0) +
∫ t+t0

t0

eA(t+t0−s)
(
bN(s, cT x(s − h)) + v(s)

)
ds ∀ t, t0 ≥ 0. (B.2)

(1) It follows easily from (2.4) and (B.2) with t0 = kh, where k ∈ Z+, that there exists �0 ≥ 1
(depending only on (A,b, c), l and h)

‖x(t + kh)‖ ≤ �0

(‖(x(kh), xkh)‖M1 + ‖v‖L∞(kh,t+kh)

) ∀ t ∈ [0, h], ∀k ∈ Z+.

The claim can now follows by a routine argument which is based on the repeated application
of the above estimate, starting with k = 0 and stopping with the smallest k such that kh ≥ τ .

(2) By the Hurwitz property of A and the assumption that l‖G‖L1 < 1, there exists μ > 0
such that A + μI is Hurwitz and

l

∫ ∞

0
eμt |G(t)|dt = l

∫ ∞

0
eμtG(t)dt < 1. (B.3)

We define a function g : R+ → R
n by

g(t) :=
{

eAT (t−h)c ∀ t ≥ h,

0 ∀ t ∈ [0, h),

and note that gT (t)b = G(t −h) for all t ≥ h. Setting y(t) := cT x(t −h) for t ≥ 0, it follows
from (B.2) that

y(t) = gT (t)ξ 0 +
∫ t

0
gT (t − s)

(
bN(s, y(s)) + v(s)

)
ds ∀ t ≥ h.

Consequently, setting ỹ(t) := eμty(t), ṽ(t) := eμtv(t) and g̃(t) := eμtg(t) for all t ≥ 0,

ỹ(t) = g̃T (t)ξ 0 +
∫ t

0
g̃T (t − s)

(
bÑ(s, ỹ(s)) + ṽ(s)

)
ds ∀ t ≥ h, (B.4)

where Ñ(t, z) := eμtN(t, e−μtz) for all t ≥ 0 and all z ∈R. We note that

|Ñ(t, z)| ≤ l|z| ∀ t ≥ 0, ∀ z ∈R. (B.5)
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It follows from (B.4) and (B.5) that

‖ỹ‖L1(h,t) ≤ κ0‖ξ 0‖ +
∫ t

0
|(g̃T ∗ ṽ)(s)|ds + l

∫ t

0

∣
∣((g̃T b) ∗ ỹ

)
(s)
∣
∣ds ∀ t ≥ h,

where κ0 := ∫∞
0 ‖g̃(t)‖∞dt . Hence,

‖ỹ‖L1(h,t) ≤ κ0
(‖ξ 0‖ + ‖ṽ‖L1(0,t)

)+ l‖G̃‖L1

(‖ỹ‖L1(h,t) + eμh‖cT ξ 1‖L1(−h,0)

) ∀ t ≥ h,

where G̃(t) = eμtG(t) for all t ≥ 0. By (B.3), l‖G̃‖L1 < 1, and so

‖ỹ‖L1(h,t) ≤ κ1

(‖ξ 0‖ + ‖ṽ‖L1(0,t)

)+ κ2‖ξ 1‖L1(−h,0) ∀ t ≥ h,

where

κ1 := κ0

1 − l‖G̃‖L1

and κ2 := leμh‖c‖∞‖G̃‖L1

1 − l‖G̃‖L1

.

As ‖ỹ‖L1(0,t) ≤ ‖c‖∞eμh‖ξ 1‖L1(−h,0) for all t ∈ [0, h], we arrive at

‖ỹ‖L1(0,t) ≤ κ
(‖ξ‖M1 + ‖ṽ‖L1(0,t)

) ∀ t ≥ 0, (B.6)

where κ := κ1 + (1 + ‖c‖∞eμh)κ2.
Finally, to derive an estimate for x(t), we use again (B.2) to obtain

eμtx(t) = e(A+μI)t ξ 0 +
∫ t

0
e(A+μI)(t−s)

(
bÑ(s, ỹ(s)) + ṽ(s)

)
ds ∀ t ≥ 0. (B.7)

The claim now follows with γ = μ from a straightforward argument based on (B.5)–(B.7)
and the fact that ‖ṽ‖L1(0,t) ≤ μ−1eμt‖v‖L∞(0,t).

(3) Assume that A is Hurwitz and l‖G‖L1 < 1. Let ξ ∈ M1, let v ∈ L∞(R+,Rn) be such
that ‖v‖L∞(t,∞) → 0 as t → ∞ and let x be the unique solution of (2.3). For τ ≥ 0 we set
xτ (t) = x(t + τ), vτ (t) = v(t + τ) and Nτ(t, z) = N(t + τ, z) for all t ≥ 0. By (2.4), for
every τ ≥ 0,

|Nτ(t, z)| ≤ l|z| ∀ t ≥ 0.

It is clear that xτ solves the initial-value problem (2.3) with N , ξ and v replaced by Nτ ,
(x(τ ), xτ ) and vτ , respectively. Hence, invoking statement (2), there exist � ≥ 1 and γ > 0
such that, for all τ ≥ 0,

‖xτ (t)‖ ≤ �
(
e−γ t‖(x(τ ), xτ )‖M1 + ‖vτ‖L∞(0,∞)

) ∀ t ≥ 0.

As x is bounded on [0,∞), we have that σ := supt≥0 ‖(x(t), xt )‖M1 < ∞, and so, for τ ≥ 0,

‖x(t + τ)‖ ≤ �
(
e−γ tσ + ‖v‖L∞(τ,∞)

) ∀ t ≥ 0.

Since ‖v‖L∞(τ,∞) → 0 as τ → ∞, we conclude that x(t) → 0 as t → ∞. �

Proof of Corollary 2.3 Let l̃ > l and such that l̃‖G‖L1 < 1. Then, by (2.5), there exists r > 0
such that

N(t, z) ≤ l̃|z| ∀ t ≥ 0, ∀ z ∈R s.t. |z| ≥ r .
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We introduce a modified nonlinearity Ñ by setting

Ñ(t, z) :=

⎧
⎪⎪⎨

⎪⎪⎩

N(t, z) ∀ t ≥ 0, ∀ z ∈R s.t. |z| ≥ r ,

(N(t, r)/r)z ∀ t ≥ 0, ∀ z ∈ [0, r),

− (N(t,−r)/r)z ∀ t ≥ 0, ∀ z ∈ (−r,0).

This nonlinearity satisfies

Ñ(t, z) ≤ l̃|z| ∀ t ≥ 0, ∀ z ∈R,

and we have that

|N(t, z) − Ñ(t, z)| ≤ (l + l̃)r + a =: θ ∀ t ≥ 0, ∀ z ∈ R.

Let ξ ∈ M1 and v ∈ L∞
loc(R+,Rn) and let x be the corresponding solution of (2.3). Setting

d(t) := N(t, cT x(t −h))− Ñ(t, cT x(t −h)) for all t ≥ 0, then we have that ‖d‖L∞ ≤ θ and

ẋ(t) = Ax(t) + bÑ(t, cT x(t − h)) + v(t) + d(t), (x(0), x0) = ξ.

An application of statement (2) of Proposition 2.2 to the above system yields the claim. �

The following simple lemma was used in the proof of Theorem 4.3.

Lemma B.1 Let a > 0, β > 0 and k ∈ C([0, a],R+) such that k(s) > 0 for all s ∈ [0, a).
Consider the functional

K : L∞([0, a],R+) →R+, w �→
∫ a

0
k(s)w(s)ds.

For every ε > 0, there exists γ > 0, such that, for all w ∈ L∞([0, a],R+) with ‖w‖L∞ ≤ β ,
we have

Kw ≤ γ ⇒ ‖w‖L1 ≤ ε.

Proof Let ε > 0 and w ∈ L∞([0, a],R+) with ‖w‖L∞ ≤ β . Choose a0 ∈ (0, a) such that
βa0 ≤ ε/2 and set

ν := min
0≤s≤a−a0

k(s) > 0.

Since

‖w‖L1 =
∫ a

0
w(s)ds ≤ 1

ν

∫ a−a0

0
k(s)w(s)ds +

∫ a

a−a0

w(s)ds,

it follows that

‖w‖L1 ≤ 1

ν
Kw + βa0 ≤ 1

ν
Kw + ε

2
,

and the claim follows with γ := (νε)/2. �
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