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Abstract
We revisit the construction of wavelets on the interval with various degrees of polynomial
exactness, and explain how existing schemes for orthogonal- and Spline wavelets can be
extended to compactly supported delay-normalized wavelets. The contribution differs sub-
stantially from previous ones in how results are stated and deduced: linear algebra notation
is exploited more heavily, and the use of sums and complicated index notation is reduced.
This extended use of linear algebra eases translation to software, and a general open source
implementation, which uses the deductions in this paper as a reference, has been developed.
Key features of this implementation is its flexibility w.r.t. the length of the input, as well as
its generality regarding the wavelet transform.

Keywords Wavelets · Wavelets on the interval · Boundary wavelets · Polynomial exactness

Mathematics Subject Classification (2010) 42C40 · 65T60

1 Introduction

Wavelets on the interval are well studied, with several existing constructions addressing
various degrees of polynomial exactness at the primal and dual sides. Developments in this
respect can be traced back to [7, 17] (see also [1, 15]). The most common construction of or-
thogonal wavelets on the interval is possibly [9], while the first constructions of biorthogonal
spline wavelets on the interval stem from [11]. More recent constructions of such wavelets
(see for instance [5, 6, 19]) aim at improving the condition of the bases.

Software utilizing the mentioned constructions for wavelets on the interval is limited,
however. Most software involving wavelet transforms typically abandon polynomial exact-
ness in favour of simpler extension strategies at the boundaries, such as periodic or sym-
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metric extensions [24].1 To the authors knowledge, there does not exist openly available
software embracing the constructions mentioned above.2

This paper is an attempt to establish the fundaments for software supporting recent con-
structions of wavelets on the interval, and is closely tied to an open source implementation.3

In the process some of the constructions will be revisited, and their proofs will be rewritten
(in terms of linear algebra and notation, see Sect. 1.1) so that they differ substantially from
that found in existing literature, and so that translation to software is straightforward. When
rewriting the proofs it will be seen that they also apply for more general compactly sup-
ported wavelets, not only to the orthogonal- or Spline cases mostly found in the literature:
For most cases of delay-normalized wavelets (see Sect. 2), they also apply, as well as the
well-known method of stable completion [4]. It will also be explained how the more recent
construction in [19] can be put into this context of delay-normalized wavelets.

The reader will note that the presented deductions follow the same line as those in [11]
(with substantial changes to the notation). As the bases therein suffer in terms of condition-
ing, this choice deserves some comments. The improved conditioning in recent construc-
tions forces a primal multiresolution analysis (including the boundary functions, and their
number) to be fixed. However, this puts constraints on the dimensions of the input to the cor-
responding Discrete Wavelet Transform: As an example, an m-level DWT on the interval as
defined in [9] is possible only if the input length is divisible with 2m. [11] offers flexibility
in this respect, however, so that it is adaptable to the input length and the number of levels.
In essence this flexibility lies in absorbing some of the internal scaling functions in the con-
structed boundary functions, which also partially explains the resulting bad conditions. In
summary, one either would like to transform a vector over a given number of levels

1. with no constraints on the length, for which the strategy from [11] can be applied (al-
though bad conditioning may result),

2. with a highly constrained length, that meets the requirement in more recent contributions
such as [19].

If one accepts the constraint mentioned in 2., the software implementation can easily support
the construction in [19] as well.

A comment is also in order as to why one also should address wavelets on the interval
outside the biorthogonal spline case. By far spline wavelets are the most common in the
literature due to their favourable properties, and the large machinery available for them. In
practice, however, there may be specific requirements on the wavelet transform in question,
thereby excluding spline wavelets. The deductions given here then can be useful in such
cases.

As a final note, the reader should be aware that the purpose of this paper is to serve
as reference deductions for an implementation. As such the paper does not construct new
wavelets, it does not address recent successful applications of wavelets to the numerical so-
lutions of PDE’s, and multiwavelets are not addressed. The software implementation hope-
fully can serve as a playground for researchers experimenting with wavelets, and for others
to extend.

1One reason may be that polynomial exactness on the interval only may reduce spikes in wavelet coefficients
near the boundaries. Therefore, little is obtained in terms of compression, one of the main applications of
wavelets.
2There do, however, exist a few implementations which support a limited set of wavelets (such as certain
orthogonal Daubechies wavelets), with coefficients precomputed from [9], see also [3, 13, 14]. The code for
computing these coefficients are, however, not available.
3This is located at https://github.com/oyvindry/wl.

https://github.com/oyvindry/wl
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1.1 Notation

The paper follows notation in [21, 22], which introduce the reader to signal processing and
wavelets in a linear algebra friendly way, and in a style very different from that common for
wavelets. The books also use a similar software implementation, and actually build it from
scratch. The interval notation [a, b] = {a, a + 1, . . . , b} will be used to denote all integers
between the two integers a and b. If b < a, [a, b] = ∅. Similarly, [a, b) denotes the set
{a, a + 1, . . . , b − 1}. Furthermore, for k ∈ Z, one defines in the obvious way

k[a, b] = {ka, k(a + 1), . . . , kb} k + [a, b] = {k + a, k + a + 1, . . . , k + b}.
These can also be combined, i.e., for k1, k2 ∈ Z, one has

k1 + k2[a, b] = {k1 + k2a, k1 + k2(a + 1), . . . k1 + k2b}.
This notation will be used to refer to segments of matrices and vectors. It should be clear
from the context whether a range of integers, or an actual interval on the real line, is meant.
This notation will eliminate much of the extensive indexing in wavelet literature. In par-
ticular it will simplify referring to segments of the DWT/IDWT matrices, as will often be
needed. In the literature a DWT/IDWT is often expressed in terms of the filter coefficients,
since these represent all entries in those matrices. This brings one away from simple matrix-
vector expressions, and our deductions will therefore avoid this.

Wavelet bases for L2(R) contain an infinite number of basis functions at each resolution,
whereas wavelet bases on the interval have finitely many. It will therefore be convenient to
mix notation for finite and infinite matrices, and allowing finite matrices and vectors to have
any given legal range of row- and column indices. In particular, in an expression on the form

⎛
⎜⎝

φb
0,0
...

φb
0,N−1

⎞
⎟⎠= CT

⎛
⎜⎝

φ0,−R+1|[0,∞)

...

φ0,N−1|[0,∞)

⎞
⎟⎠ ,

it will be assumed that the column vector on the left hand side has row indices [0,N − 1],
and that the column vector on the right hand side has row indices [−R + 1,N − 1]. The
matrix C can be any infinite matrix, but when written as above it will be assumed that the
range of column- and row indices in C are [0,N −1]×[−R+1,N −1], i.e., that the indices
match. Since any range of row- and column-indices may be legal, entries with index 0 or
(0,0) will occasionally be underlined (as in filter notation in signal processing), to make
positions clear. The MATLAB notation that a simple colon denotes all elements along an
axis, will also be followed.

1.2 Organization of the Paper

The paper is organized as follows. In Sect. 2 the general setup for wavelets is introduced,
and in Sect. 3 the setup is specialized to the interval. In Sects. 4 and 5 the scaling functions
and the corresponding mother wavelets are constructed. While those sections were adapted
to the left end of the interval, Sect. 6 explains how delay-normalizedness ensures that the
construction at the right end can be obtained from a simple mirroring operation of the left
end. In Sect. 7 the result in [19] are put into the context of this contribution, and some notes
on the software implementation can be found in Sect. 8. A more detailed explanation of this
implementation can be found in the technical report [2].
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2 Setup for Wavelets on the Entire Real Line

Let φ and ψ be the scaling function and the mother wavelet of a compactly supported
wavelet. Assume also that φ is exact of order N (meaning that all polynomials of degree
less than N can be written as linear combinations of the translates {φ(t − n)}n). Similarly
let φ̃, ψ̃ , and Ñ be the corresponding quantities for the dual wavelet. The resolution space
V0 is the space spanned by the translates φ0,n(t) = φ(t −n), while the detail space W0 is the
space spanned by ψ0,n(t) = ψ(t − n). For m > 0, the resolution- and detail spaces Vm and
Wm are the spaces spanned by the dilated functions

φm,n(t) = 2m/2φ0,n(2
mt) ψm,n(t) = 2m/2ψ0,n(2

mt), (1)

respectively. Similar definitions apply for φ̃ and ψ̃ . One also writes

φm = {φm,n}∞
n=−∞ ψm = {ψm,n}∞

n=−∞,

so that Vm = span(φm) and Wm = span(ψm). When φ gives rise to a multiresolution analysis
the Vm are nested (i.e., Vm ⊂ Vm+1), and Vm = Vm−1 ⊕ Wm−1, so that

Cm = {φm−1,n,ψm−1,n}∞
n=−∞ (2)

(i.e., where the dilated scaling functions and mother wavelets are listed in alternating order)
is also a basis for Vm. This alternating order of the basis functions is non-standard in wavelet
literature, where all φm−1,n-functions usually precede the ψm−1,n. This reordering has the
advantage that the index n into the basis Cm represents time, and that change of coordinate
matrices involving those bases will be banded.

On the dual side one similarly defines φ̃m, ψ̃m, Ṽm, W̃m, and C̃m. The Gramm matrix of
two bases B = {bi}i and C = {cj }j , denoted (〈B,C〉), is the matrix with entries 〈bi , cj 〉. If
(〈B,C〉) = I one also says that B and C are biorthogonal. A wavelet is called biorthogonal
if the corresponding bases are biorthogonal, i.e., (〈φm, φ̃m〉) = (〈Cm, C̃m〉) = I . Some of the
most used biorthogonal wavelets were established in [8]. Some of the most used orthonor-
mal wavelets, for which φ = φ̃, ψ = ψ̃ , and (〈φm,φm〉) = (〈Cm,Cm〉) = I (i.e., both φm and
Cm are orthonormal bases for Vm) were established in [12]. Denoting by supp(f ) the support
interval of the function f , a convention therein is that

supp(φ) = supp(ψ) = [−N + 1,N ]. (3)

The change of coordinates from φm to Cm is called the (one-level) Discrete Wavelet Trans-
form, or DWT, and denoted H (i.e., H = PCm←φm

). Its inverse is the IDWT, denoted by G

(i.e., G = Pφm←Cm ), and can be written as

G = (
. . . [φm−1,0]φm

[ψm−1,0]φm
[φm−1,1]φm

[ψm−1,1]φm
. . .

)
. (4)

Since the bases here are doubly infinite, the component with index zero is emphasized by
underlining it, i.e., the coordinate vector of f (t) = c−1φ0,−1 + c0φ0,0 + c1φ0,1 in φ0 will
be written as [f ]φ0 = (c−1, c0, c1). Coefficients which are zero were not listed here, as is
common in signal processing filter notation.

H and G can be expressed in terms of filters as follows [21, 22, Chap. 3]:

1. The even-indexed rows of H coincide with those of a (low-pass) filter matrix, de-
noted H0.
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2. The odd-indexed rows of H coincide with those of a (high-pass) filter matrix, denotes H1.
3. The even-indexed columns of G coincide with those of a (low-pass) filter matrix, de-

noted G0.
4. The odd-indexed columns of G coincide with those of a (high-pass) filter matrix, de-

noted G1.

Thus, H can be alternatively defined as the unique matrix compatible with filters H0 and
H1, and G as the unique matrix compatible with filters G0 and G1. It is known (Exercise
5.10 in [21, 22]) that if the filters of a wavelet are finite impulse response (FIR), then there
exist an integer d and α ∈R so that

(H1)n = (−1)nα−1(G0)n−2d (G1)n = (−1)nα(H0)n+2d . (5)

Since the alternating sign corresponds to a shift in frequency by π , this says that, up to
multiplication with a scalar,

1. H1 is the high-pass filter corresponding to the low-pass filter G0,
2. G1 is the high-pass filter corresponding to the low-pass filter H0.

When d = 0 in (5), (φ,ψ) is said to be delay-normalized [24]. Clearly there is no loss in
generality in assuming this, as changing d simply reorders the mother wavelet basis func-
tions with a shift. Delay-normalized wavelets will be assumed in the following, as this will
simplify some proofs. Wavelets with symmetric filters are clearly delay-normalized.

The dual wavelet transforms, denoted by H̃ and G̃, are the matrices compatible with
the filters, H̃0 = GT

0 and H̃1 = GT
1 , and G̃0 = HT

0 and G̃1 = HT
1 . Let [L,R] = supp(φ),

and [L̃, R̃] = supp(φ̃) denote the left and right supports of φ and φ̃. Defining the sup-
port of a filter as the smallest interval containing the nonzero filter indices, one has that
supp(G0) = supp(φ) = [L,R], and supp(G̃0) = supp(φ̃) = [L̃, R̃]. When the wavelet is
delay-normalized one has that

supp(G1) = supp(H0) = supp(G̃0
T
) = [−R̃,−L̃]

supp(G̃1) = supp(HT
1 ) = supp(GT

0 ) = [−R,−L].
These formulas tell us which scaling functions at scale 1 contribute in ψ and ψ̃ , a fact
which will be useful. It is straightforward to find the supports of the mother wavelets from
the supports of the filters (see for instance Exercise 5.16 in [21, 22]). In particular, a delay-
normalized wavelet can be recognized in terms of the supports by the requirement

supp(ψ) = [(L − R̃ + 1)/2, (R − L̃ + 1)/2]. (6)

Clearly (φ0,n,ψ), as well as (φ̃0,n, ψ̃), are also delay-normalized for any n, as translating φ

and φ̃ with the same n gives scaling functions for a new biorthogonal wavelet.
For an orthonormal wavelet the filters and the dual filters equal, and H is orthogonal.

From the deductions above one sees that supp(G0) = supp(GT
1 ), in order for an orthonormal

wavelet to be delay-normalized. It is straightforward to check that assumption (3) implies
that (6) holds, so that this support assumption guarantees a delay-normalizedness.

3 Setup for Wavelets on the Interval

When restricting to an interval of the form [0,M], the wavelet bases φm, ψm, and the func-
tions φm,n, ψm,n, will be replaced with new bases φb

m, ψb
m, and modified functions φb

m,n,
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ψb
m,n. Here b is short for boundary, and only those functions supported near the boundaries

are modified (called left- and right edge functions). Initial candidates for the left edge scal-
ing functions will first be defined. It will then be seen how changes of coordinates can be
applied to make those functions orthonormal/biorthogonal. The right edge functions will be
obtained by repeating the left edge analysis, following a mirroring operation. The following
definition is a generalization of that in [9].

Definition 1 (Initial left edge functions) Let {ck}N−1
k=0 and {c̃k}Ñ−1

k=0 be bases for the poly-
nomials of degree at most N − 1 and Ñ − 1, respectively, and let K ≥ max(−L,N),
K̃ ≥ max(−L̃, Ñ) be integers so that N −K = Ñ −K̃ . The initial left edge scaling functions
are defined on [0,∞) by

φb
0,k(t) =

{∑K−1
n=−R+1 ck(n)φ0,n(t) for 0 ≤ k < N

φ0,k+K−N(t) for N ≤ k
(7)

φ̃b
0,k(t) =

{∑K̃−1
n=−R̃+1

c̃k(n)φ̃0,n(t) for 0 ≤ k < Ñ

φ̃0,k+K̃−Ñ (t) for Ñ ≤ k,
(8)

and the sets φb
0 = {φb

0,k}k≥0 and φ̃
b

0 = {φ̃b
0,k}k≥0. V b

0 and Ṽ b
0 will denote the spaces spanned

by φb
0 and φ̃

b

0, respectively.

Some comments are in order.

– The first part of these functions are replacements of the {φ0,k}K−1
k=K−N . Moreover,

span
({φb

0,k}k≥0

)
is independent of the choice of {ck}N−1

k=0 , and will contain all polyno-
mials of degree < N on (0,∞). This follows since

∑∞
n=−∞ ck(n)φ0,n is a polynomial on

(−∞,∞), and its restriction to (0,∞) can be written as

φb
0,k +

∑
n≥K

ck(n)φ0,n = φb
0,k +

∑
n≥N

ck(n + K − N)φb
0,n ∈ span

({φb
0,k}k≥0

)
.

– The second part of these functions are translates of the scaling function, all supported
on [0,∞) since K ≥ −L, K̃ ≥ −L̃. They are called internal functions. The index shift
K − N = K̃ − Ñ is present for technical reasons: In order to compute an m-level DWT
on the interval, we will see that K must be chosen accordingly. The {φ0,k}K−N−1

k=0 in φ0

have no counterpart in φb
0. This is reflected in the IDWT matrix in that rows are shifted

K − N entries downwards. However, K − N basis functions will be added later, so that
the net effect is that there is no shift.

– N − K = Ñ − K̃ secures the same alignment of the shifted basis functions in φb
0 and φ̃

b

0,
as in φ0 and φ̃0. One has flexibility in choosing K and K̃ .

– {φb
0,n}n≥N can be expressed in terms of {φb

1,n}n≥N , so that the internal functions inherit
a refinability relation. This follows since φb

0,N = φ0,K can be expressed in terms of
{φ1,n}n≥2K+L = {φb

1,n}n≥N+K+L, and since K + L ≥ 0.
– φb

m,n are defined from φb
0,n using (1) for m > 0. Bases φb

m and spaces V b
m are defined

similarly.
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Let C be the matrix with entries Cn,k = ck(n) for (n, k) ∈ [−R + 1,K) × [0,N), and C̃ the
matrix with entries C̃k,n = c̃k(n) for (n, k) ∈ [−R̃ + 1, K̃) × [0, Ñ). Definition 1 says that

⎛
⎜⎝

φb
0,0
...

φb
0,N−1

⎞
⎟⎠= CT

⎛
⎜⎝

φ0,−R+1|[0,∞)

...

φ0,K−1|[0,∞)

⎞
⎟⎠ and

⎛
⎜⎜⎝

φ̃b
0,0
...

φ̃b
0,Ñ−1

⎞
⎟⎟⎠= C̃T

⎛
⎜⎝

φ̃0,−R̃+1|[0,∞)

...

φ̃0,K̃−1|[0,∞)

⎞
⎟⎠ . (9)

C clearly has linearly independent columns, and thus full rank N . Any N rows of C give
a nonsingular matrix, since any polynomial of degree N − 1 is uniquely identified from N

distinct points.

Lemma 1 The {φb
0,k}N−1

k=0 are

1. linearly independent on [0,∞), and linearly independent from the {φb
0,k}k≥N ,

2. orthogonal to the {φ̃b
0,k}k≥Ñ ,

3. orthogonal to the {ψ̃0,k}k supported on [0,∞).

Proof If {φb
0,k}N−1

k=0 are linearly dependent on [0,∞) there must exist a non-zero linear com-

bination so that
∑N−1

k=0 αkφ
b
0,k(t) = 0 for all t ∈ [0,∞). Letting α be the column vector with

entries αi , and using (9) one gets

αT

⎛
⎜⎝

φb
0,0
...

φb
0,N−1

⎞
⎟⎠= αT CT

⎛
⎜⎝

φ0,−R+1|[0,∞)

...

φ0,K−1|[0,∞)

⎞
⎟⎠= (Cα)T

⎛
⎜⎝

φ0,−R+1|[0,∞)

...

φ0,K−1|[0,∞)

⎞
⎟⎠ .

Now, since {φ0,n|[0,∞)}K−1
n=−R+1 are linearly independent on [0,∞), it is clear that Cα = 0.

But since C has linearly independent columns it follows that α = 0, so that the {φb
0,k}N−1

k=0

are linearly dependent as well. 1. now follows from the obvious fact that {φb
0,k}N−1

k=0 and
{φ0,k}k≥K = {φb

0,k}k≥N are linearly independent on [0,∞). 2. and 3. follow also easily, since

{φ̃b
0,k}k≥Ñ are supported on [0,∞). �

It is known that the modified edge functions satisfy a refinement relation (This fact will
be reproved in our setting in the following), so that the new spaces V b

m also give rise to a mul-
tiresolution analysis. One can thus define change of coordinate matrices Hb and Gb as be-
fore, replacing the counterparts on the entire real line. If the first N scaling functions/mother
wavelets need modification, (4) translates to

Gb =
(
[φb

0,0]φb
1

[ψb
0,0]φb

1
· · · [φb

0,N−1]φb
1

[ψb
0,N−1]φb

1
[φb

0,N ]φb
1

[ψb
0,N ]φb

1
· · ·

)
,

with all but the last two listed functions being modified versions. Since the unmodified
functions inherit known refinability relations, the two columns listed last above are known.
For the first columns one will write

(
[φb

0,0]φb
1

[ψb
0,0]φb

1
· · · [φb

0,N−1]φb
1

[ψb
0,N−1]φb

1

)
=
(

X

Z

)
,
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with X representing the contribution of the modified functions, Z that of the internal func-
tions, i.e.

⎛
⎜⎜⎜⎜⎜⎝

φb
0,0

ψb
0,0
...

φb
0,N−1

ψb
0,N−1

⎞
⎟⎟⎟⎟⎟⎠

= XT

⎛
⎜⎝

φb
1,0
...

φb
1,N−1

⎞
⎟⎠+ ZT

(
φb

1,N

...

)
. (10)

Denoting the even- and odd-indexed columns in X and Z, by Xe , Ze and Xo, Zo (through-
out the paper the letters e and o will indicate even and odd indices), respectively, (10) is
equivalent to

⎛
⎜⎝

φb
0,0
...

φb
0,N−1

⎞
⎟⎠= (Xe)

T

⎛
⎜⎝

φb
1,0
...

φb
1,N−1

⎞
⎟⎠+ (Ze)

T

(
φb

1,N

...

)
(11)

⎛
⎜⎝

ψb
0,0
...

ψb
0,N−1

⎞
⎟⎠= (Xo)

T

⎛
⎜⎝

φb
1,0
...

φb
1,N−1

⎞
⎟⎠+ (Zo)

T

(
φb

1,N

...

)
. (12)

Since the left edge functions span the same space, regardless of the choice of polynomials,
it makes sense to consider changes of coordinates between different candidates for edge
functions. One can apply several such coordinate changes, in order to obtain functions φb

0,n

with desired properties. The following result concerns how Xe , Ze , and C are updated by
such coordinate changes (note that Lemma 1 guarantees the uniqueness of Xe and Ze in a
factorization of the form (11)).

Lemma 2 Assume that a change of coordinates is applied to the left edge functions. Let
{φb,1

0,k }N−1
k=0 and {φb,2

0,k }N−1
k=0 be bases, P = P{φb,1

0,k
}←{φb,2

0,k
} the change of coordinate matrix from

the second to the first basis. If (14) holds for {φb,1
0,k }N−1

k=0 , then (14) also holds for {φb,2
0,k }N−1

k=0 ,

and the change of coordinates from {φb,1
0,k }N−1

k=0 to {φb,2
0,k }N−1

k=0 transforms Xe , Ze , and C ac-
cording to

Xe → P −1XeP Ze → ZeP C → CP. (13)

Proof One has that

⎛
⎜⎝

φ
b,2
0,0
...

φ
b,2
0,N−1

⎞
⎟⎠= P T

⎛
⎜⎝

φ
b,1
0,0
...

φ
b,1
0,N−1

⎞
⎟⎠= P T

⎛
⎜⎝XT

e

⎛
⎜⎝

φ
b,1
1,0
...

φ
b,1
1,N−1

⎞
⎟⎠+ ZT

e

⎛
⎜⎝

φb
1,N

...

φb
1,K+R+N−2

⎞
⎟⎠

⎞
⎟⎠

= P T

⎛
⎜⎝XT

e (P −1)T

⎛
⎜⎝

φ
b,2
1,0
...

φ
b,2
1,N−1

⎞
⎟⎠+ ZT

e

⎛
⎜⎝

φ1,K

...

φ1,2K+R−2

⎞
⎟⎠

⎞
⎟⎠



On the Unification of Schemes and Software for Wavelets on the Interval Page 9 of 25 7

= (P −1XeP )T

⎛
⎜⎝

φ
b,2
1,0
...

φ
b,2
1,N−1

⎞
⎟⎠+ (ZeP )T

⎛
⎜⎝

φb
1,N

...

φb
1,K+R+N−2

⎞
⎟⎠ .

One also has that

⎛
⎜⎝

φ
b,2
0,0
...

φ
b,2
0,N−1

⎞
⎟⎠= P T

⎛
⎜⎝

φ
b,1
0,0
...

φ
b,1
0,N−1

⎞
⎟⎠= P T CT

⎛
⎜⎝

φ0,−R+1|[0,∞)

...

φ0,K−1|[0,∞)

⎞
⎟⎠

= (CP )T

⎛
⎜⎝

φ0,−R+1|[0,∞)

...

φ0,K−1|[0,∞)

⎞
⎟⎠ .

(13) follows. �

4 Finding the Left Edge Scaling Functions

First the refinement relations satisfied by the modified edge functions is established.

Lemma 3 For each choice of polynomial basis {ck}N−1
k=0 one has that

⎛
⎜⎝

φb
0,0
...

φb
0,N−1

⎞
⎟⎠= (Xe)

T

⎛
⎜⎝

φb
1,0
...

φb
1,N−1

⎞
⎟⎠+ (Ze)

T

⎛
⎜⎝

φb
1,N

...

φb
1,K+R+N−2

⎞
⎟⎠ , (14)

with

Xe = C†GIXC Ze = GIZC, (15)

where

– Xe has indices from [0,N) × [0,N),
– Ze has indices from [N,K + R + N − 2] × [0,N),
– IX = [−R + 1,K) × 2[−R + 1,K),
– IZ = [K,2K + R − 2] × 2[−R + 1,K),

and where C† is the generalized inverse of C. Xe is nonsingular.

Here it is assumed that C† has row indices equal to the column indices of C, and vice
versa.

Proof The first part of this proof corresponds to Lemma 3.1 in [11]. Since V b
0 contains all

polynomials of degree less than N , C can be chosen so that

φb
0,k(t) +

∑
n≥K

ck(n)φ0,n(t) = tk
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on [0,∞). Inserting 2t for t and multiplying with
√

2 one also has

φb
1,k(t) +

∑
n≥K

ck(n)φ1,n(t) = √
2(2t)k.

Comparing these and using matrix notation one sees that
⎛
⎜⎝

φb
0,0
...

φb
0,N−1

⎞
⎟⎠+ CT

(
φ0,K

...

)
= D

⎛
⎜⎝

⎛
⎜⎝

φb
1,0
...

φb
1,N−1

⎞
⎟⎠+ CT

(
φ1,K

...

)⎞
⎟⎠ , (16)

where D is N × N and diagonal with {2−k−1/2}N−1
k=0 on the diagonal. Since

– φ0,K ∈ Span({φ1,n}n ≥ K) (alternatively, φb
0,N ∈ Span({φb

1,n}n≥N)),
– supp(φb

0,N−1) ends to the right at R + K − 1,
– supp(φ1,2K+R−2) = supp(φb

1,K+R+N−2) also ends to the right at R + K − 1,

replacing {φ1,k}k≥K with {φb
1,k}k≥N gives (14) for this choice of φb

0,k , with Xe and Ze having
the stated indices. Since clearly Xe = D, it must be nonsingular. Since (14) holds and Xe

is nonsingular for this initial basis, Lemma 2 says that this will be the case for any other
polynomial basis as well.

Now, (9) can be written
⎛
⎜⎝

φb
0,0
...

φb
0,N−1

⎞
⎟⎠= CT

⎛
⎜⎝

φ0,−R+1|[0,∞)

...

φ0,K−1|[0,∞)

⎞
⎟⎠

= CT (G[−R+1,2K+R−2],2[−R+1,K))
T

⎛
⎜⎝

φ1,−R+1|[0,∞)

...

φ1,2K+R−2|[0,∞)

⎞
⎟⎠

= CT (GIX)T

⎛
⎜⎝

φ1,−R+1|[0,∞)

...

φ1,K−1|[0,∞)

⎞
⎟⎠+ CT (GIZ )T

⎛
⎜⎝

φ1,K

...

φ1,2K+R−2

⎞
⎟⎠

= (GIXC)T

⎛
⎜⎝

φ1,−R+1|[0,∞)

...

φ1,K−1|[0,∞)

⎞
⎟⎠+ (GIZC)T

⎛
⎜⎝

φb
1,N

...

φb
1,K+N+R−2

⎞
⎟⎠ , (17)

where the matrix product with GT was split into two parts on the third line. Noticing that (14)
can also be rewritten as

⎛
⎜⎝

φb
0,0
...

φb
0,N−1

⎞
⎟⎠= (Xe)

T CT

⎛
⎜⎝

φ1,−R+1
...

φ1,K−1

⎞
⎟⎠+ (Ze)

T

⎛
⎜⎝

φb
1,N

...

φb
1,K+N+R−2

⎞
⎟⎠

Comparing with (17) and using the linear independence of {{φ1,n}n≥−R+1} on [0,∞), one
sees that

GIXC = CXe GIZC = Ze.



On the Unification of Schemes and Software for Wavelets on the Interval Page 11 of 25 7

Multiplying with C† to the left in the first equation gives the first equation in (15). �

Some remarks on the initial choice of polynomials can be found in the technical re-
port [2].

4.1 Change of Coordinates for Staggered Supports

We will now try to make a change of coordinates so that the new bases satisfy

supp(φ0,k+K−N) ∩ [0,∞) = supp(φb
0,k). (18)

One says that the supports are staggered. For n ≥ N (18) follows by definition. For all
n < N , staggeredness is seen to be equivalent to the lower N × N -block of C being
upper triangular. The subspace of span

({φb
0,k}N−1

k=0

)
consisting of functions on the form∑K−1

n=−R+1 c(n)φ0,n with c so that c(K −N +k) = · · · = c(K −1) = 0, clearly has dimension
k. If the φb

0,k have staggered supports, φb
0,k will lie in this k-dimensional subspace, so that

standard orthogonalization procedures give us a unique (up to signs) orthonormal basis of
functions with staggered supports. Staggered supports can thus be used to single out unique
boundary functions (as partially noted in [9]).

More generally we will say that {fi}i have staggered supports if i < j , supp(fi) = [0,A],
and supp(fj ) = [0,B] implies that A < B . This more general definition also comprises the
setting in [19], and also possible supports for the mother wavelets. A coordinate change
transforming the fi to functions with staggered support can clearly be interpreted in terms
of bringing a matrix to echelon form.

To obtain bases with staggered supports, Lemma 2 says that one needs to find a change
of coordinates P so that the lower N × N -block of CP is upper triangular. Clearly this can
be achieved by means of a QR-factorization, or an LU factorization. The technical report [2]
contains further details.

4.2 Change of Coordinates for Orthogonalization

In the following we will assume that N = Ñ (the deductions are a bit more complicated
when N �= Ñ , see Sect. 13 in the technical report [2] for further details). Since

– {φb
0,k}k≥N and {φ̃b

0,k}k≥N are biorthogonal,

– {φb
0,k}N−1

k=0 and {φ̃b
0,k}k≥Ñ are mutually orthogonal,

– {φb
0,k}k≥N and {φ̃b

0,k}Ñ−1
k=0 are mutually orthogonal,

in order to obtain biorthogonal bases for V b
m and Ṽ b

m, it is enough to find coordinate changes

ensuring biorthogonality of {φb
0,k}N−1

k=0 and {φ̃b
0,k}Ñ−1

k=0 .4 One of the two sets may here contain
internal scaling functions. We will see that a coordinate change can be made so that it does

not affect these. With Y =
(〈

{φb,1
0,k }N−1

k=0 , { ˜φb,1
0,k}Ñ−1

k=0

〉)
the Gramm matrix of the initial bases,

one sees that, when N = Ñ (which will be assumed for simplicity in the following),

〈φb,1
0,k ,

˜φb,1
0,l〉 =

∑
1≤r,s<N

(Xe)r,k(X̃e)s,l〈φb,1
0,r ,

˜φb,1
0,s〉 +

∑
r≥0

(Ze)r,k(Z̃e)r,l ,

4We do not go into details on when the Gramm matrix of these bases is invertible, but see [11, 20] for proofs
for those considered in the literature



7 Page 12 of 25 V. Antun, Ø. Ryan

where it was used that 〈φb,1
0,r , φ̃

b,1
0,s 〉 = 〈φb,1

1,r , φ̃
b,1
1,s 〉. This gives

Y = (Xe)
T Y X̃e + (Ze)

T Z̃e. (19)

Solving AV BT = F is equivalent to solving the linear system (A ⊗ B)vec(V ) = vec(F )

[16], where ⊗ is the (left) Kronecker product, and where vec(X) is the vector where the rows
of X have been stacked horizontally and then transposed to a column vector. Equation (19)
can therefore be written as

(I − (Xe)
T ⊗ (X̃e)

T )vec(Y ) = vec((Ze)
T Z̃e) (20)

(see also Theorem 3.2 in [18]. This paper also elaborates on the general computation of
Gramm matrices), where I is the N2 × N2 identity matrix.5

Denote bases by

B = {φb,1
0,k }N−1

k=0 C = {φb,2
0,k }N−1

k=0

B̃ = { ˜φb,1
0,k}Ñ−1

k=0 C̃ = { ˜φb,2
0,k}Ñ−1

k=0 ,

and let P = PB←C and P̃ = PB̃←C̃ be the corresponding coordinate changes (i.e., from the
old to the new bases). It is straightforward to show that

(〈C, C̃〉) = P T (〈B, B̃〉)P̃ . (21)

Since one wants bases C and C̃ so that (〈C, C̃〉) = I , and since upper triangular coordinate
changes preserve staggered supports, one seeks upper triangular matrices P and P̃ so that
P T (〈B, B̃〉)P̃ = I , i.e., so that

Y = (P T )−1P̃ −1.

Now, if Y = LU is an L1U-factorization 6 of Y ,7 one can choose our upper triangular
coordinate changes as P = (L−1)T and P̃ = U−1. In the orthogonal case where B = B̃ and
C = C̃, Y is positive semidefinite, and thus has a unique Cholesky factorization Y = LLT ,
so that one can choose P = P̃ = (L−1)T as our coordinate change.8

In the following it will always be assumed that φb
0 and φ̃

b

0 are biorthogonal, both with
staggered supports.

5Xe has eigenvalues {2−k−1/2}N−1
k=0 . It follows that ρ(Xe) < 1, so that I − (Xe)

T ⊗ (X̃e)
T is nonsingular,

so that Y is unique.
6L1U means that L is lower triangular with ones on the diagonal, U is upper triangular. Similarly LU1 means
that U is upper triangular with ones on the diagonal.
7It is a major issue whether Y is nonsingular in the general case. Some special cases are handled in [11,
18, 20]. For Y to have a unique L1U-factorization one also needs the principal leading submatrices to be
nonsingular. The software implementation handles these issues only numerically. Other factorizations such
as a LU1 or LDU could also be chosen.
8It has been noted in the literature that Y can be badly conditioned. [10] proposes to use a Singular Value
Decomposition of Y to address this problem. [10] does not assume staggered supports.
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5 Stable Completion and the Left Edge Mother Wavelets

The method of stable completion finds additional mother wavelets at the boundaries, thereby
modifying the bases ψm to bases ψb

m. Only those mother wavelets supported near the bound-
aries are changed. Defining Cb

m similarly as Cm in Equation (2) (i.e., replacing ψm with
ψb

m), it is again required that both φb
m and Cb

m are bases for V b
m (just as φm and Cm are for

Vm). As initial candidates for the functions in ψ0 and ψ̃0 we define ψb
0,k = ψ0,k+K−N and

ψ̃b
0,k = ψ̃0,k+K̃−Ñ . This aligns φb

0,n and ψb
0,n in the same way as φ0,n and ψ0,n. First the ψb-

and ψ̃b-functions that satisfy old refinement relations will be characterized.

Lemma 4 The following hold.

1. If N0 is chosen so that 2N0 ≥ 2N − K − 1 + R̃, then {ψb
0,n}n≥N0 can be expressed in

terms of {φb
1,k}k≥N .

2. If Ñ0 is chosen so that 2Ñ0 ≥ 2Ñ − K̃ − 1 + R, then {ψ̃b
0,n}n≥Ñ0

can be expressed in

terms of {φ̃b
1,k}k≥Ñ .

Proof Since supp(G1) = [−R̃,−L̃] when the wavelet is delay-normalized, only
{φ1,k}k≥−R̃+1 contribute in ψ . ψb

0,N0
= ψ0,N0+K−N can therefore be expressed in terms of

{φ1,k}k≥2(N0+K−N)−R̃+1 = {φb
1,k}k≥2N0+K−N+1−R̃ .

2N0 + K − N + 1 − R̃ ≥ N thus implies that ψb
0,N0

can be expressed in terms of {φb
1,k}k≥N ,

and 1. follows. 2. follows in the same way. �

In the following it will be assumed that N0 and Ñ0 satisfy the properties in Lemma 4,
and we will set N ′

0 = max(N0, Ñ0). The set {ψb
0,k}k≥N ′

0
= {ψ0,k}k≥N ′

0+K−N accounts for all

but the first N ′
0 + K − N mother wavelets {ψ0,k}k≥0 in V b

1 , and similarly on the dual side.
Define

A = {{φb
0,n}n≥0, {ψb

0,n}n≥N ′
0
} Ã = {{φ̃b

0,n}n≥0, {ψ̃b
0,n}n≥N ′

0
},

and write A = span(A), Ã = span(Ã). The previous lemma states that A ⊂ V b
1 , and Ã ⊂

Ṽ b
1 and A and Ã, are clearly biorthogonal by construction. Denote by A⊥ the orthogonal

complement of A in Ṽ b
1 .

If g ∈ A, g̃ will denote the vector in Ã with the same index, and vice versa. We define,
for f ∈ A and f̃ ∈ Ã,

P (f ) =
∑
g∈A

〈f, g̃〉g P̃ (f̃ ) =
∑

g̃∈Ã
〈f̃ , g〉g̃.

Note that

– P equals the identity on A, and equals zero on Ã⊥.
– I − P equals the identity on Ã⊥, and equals zero on A.
– The spaces A and Ã⊥ are linearly independent: If v ∈ V b

1 lies in both these spaces it must
be on the form v = ∑

g∈A αgg, and must for all h̃ ∈ Ã satisfy 〈∑g∈A αig, h̃〉 = αh = 0,
where biorthogonality was used.
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– V b
1 = A ⊕ Ã⊥, and v = P (v) + (v − P (v)) is the unique decomposition of v ∈ V b

1 in
A ⊕ Ã⊥. P is thus a generalization of orthogonal projection, for which A = Ã.

Lemma 5 Assume that N0 ≥ R and Ñ0 ≥ R̃, and that they satisfy the properties in Lemma 4.

Assume also that the supports of φb
1 and φ̃

b

1 are staggered. Then the following hold.

1. Let

S = [0,K − N + R) ∪ (
K − N + R − 1 + 2[1,N0 − R])

Then |S| = N0 +K −N and
{
{(I − P )φb

1,k}k∈S, {ψb
0,n}N ′

0−1
n=N0

,A
}

is a linearly independent
set.

2. Let

S̃ = [0, K̃ − Ñ + R̃) ∪ (
K̃ − Ñ + R̃ − 1 + 2[1, Ñ0 − R̃])

Then |S̃| = Ñ0 + K̃ − Ñ and
{
{(I − P̃ )φ̃b

1,k}k∈S̃ , {ψ̃b
0,n}N ′

0−1

n=Ñ0
, Ã

}
is a linearly indepen-

dent set.

Remark 1 The requirements N0 ≥ R, Ñ0 ≥ R̃) are a bit difficult to grasp. If these are not
fulfilled, the set [0,K − N + R) will not be contained in S (the way this set is defined), and
this will imply that one can’t find enough functions (using the strategy of the proof) to find
a new basis for V b . Since one would like N0 and Ñ0 to be as small as possible (to inherit as
many of the old refinement relations as possible), the implementation computes these as

N0 = max

(⌈
2N − K − 1 + R̃

2

⌉
,R

)
Ñ0 = max

(⌈
2Ñ − K̃ − 1 + R

2

⌉
, R̃

)
. (22)

Proof Only the first statement is considered, since the second statement follows from the
same line of arguments.

It is easily checked that |S| = N0 + K − N , and that the last and largest entry of S is

K − N + R − 1 + 2(N0 + K − N − (K − N + R)) = 2N0 + K − N − R − 1

Due to staggered supports and Lemma 3, the highest index among boundary basis functions
at resolutions 1 which contribute in φb

0,0 is

K + R + N − 2 − 2(N − 1) = K − N + R.

Also, the highest index among boundary basis functions at resolutions 1 which contribute
in φb

0,k is K − N + R + 2k. It follows that the coordinate matrix of {φb
0,k}k≥0 and {φb

1,k}k∈S

relative to φb
1 has different highest contributing indices. In particular, any finite set of these

columns must be linearly independent, a fact which will be used in the final part of the proof.

Since clearly {ψb
0,k}N ′

0−1
n=N0

⊂ Ã⊥, also {{(I − P )φb
1,k}k∈S, {ψb

0,k}N ′
0−1

n=N0
} ⊂ Ã⊥, so that linear

independence of Span{{(I −P )φb
1,k}k∈S, {ψb

0,k}N ′
0−1

n=N0
} and A is immediate. It remains to show

that {{(I − P )φb
1,k}k∈S, {ψb

0,k}N ′
0−1

n=N0
} are linearly independent. Assume that

∑
k∈S

αk(I − P )φb
1,k −

N ′
0−1∑

n=N0

γnψ
b
0,n = 0,
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where α is a vector indexed over S, γ a vector indexed over [N0,N
′
0). But then

∑
k∈S

αkφ
b
1,k −

N ′
0−1∑

n=N0

γnψ
b
0,n =

∑
k∈S

αkPφb
1,k +

∑
k∈S

αk(I − P )φb
1,k −

N ′
0−1∑

n=N0

γnψ
b
0,n

=
∑
k∈S

αkPφb
1,k ∈ A.

This means that

∑
k∈S

αkφ
b
1,k =

∑
n≥0

βnφ
b
0,n +

∑
n≥N ′

0

γnψ
b
0,n +

N ′
0−1∑

n=N0

γnψ
b
0,n =

∑
n≥0

βnφ
b
0,n +

∑
n≥N0

γnψ
b
0,n, (23)

for some vector β , and where γ was expanded to a vector with indices from [N0,∞). View-
ing φb

0,n as functions on [L − R + 1,∞) (see Equation (7)), and similarly for φb
1,k , we can

ensure that (23) holds also on (−∞,∞), by adding a finite linear combination of functions
φ1,k , k ≤ −R (i.e., scaling functions supported on (−∞,0) on the left hand side:

∑
k≤−R

rkφ1,k +
∑
k∈S

αkφ
b
1,k =

∑
n≥0

βnφ
b
0,n +

∑
n≥N ′

0

γnψ
b
0,n +

N ′
0−1∑

n=N0

γnψ
b
0,n

=
∑
n≥0

βnφ
b
0,n +

∑
n≥N0

γnψ
b
0,n. (24)

Taking inner products with φ̃b
0,n one sees that βn = 0 for n sufficiently large. Taking inner

products over (−∞,∞) with {ψ̃0,n}n≥N0+K−N on both sides (these may not be supported on
[0,∞)), one has that 〈φb

1,k, ψ̃0,N0+K−N 〉(−∞,∞) = 0 for k in S and for k ≤ −R since

1. the largest entry of S is 2N0 + K − N − R − 1, so that the largest φ1,k contributing on
the left hand side is φ1,2(N0+K−N)−R−1,

2. only {φ̃1,k}k≥2(N0+K−N)−R+1 contribute in ψ̃0,N0+K−N (see the proof of Lemma 4),
3. φ1 and φ̃1 are biorthogonal.

Since also 〈φb
0,n, ψ̃

b
0,k〉(−∞,∞) = 0 for all k, it follows that γn = 0 for n ≥ N0. That also αk =

βn = 0 for k ∈ S, and for smaller n, follows since, as noted above, from the fact that any finite
set of columns in the coordinate matrix of

{{φb
1,k}k∈S, {φb

0,n}n≥0

}
relative to φb

1 are linearly

independent. It follows that
{
{(I − P )φb

1,k}k∈S, {ψb
0,n}N ′

0−1
n=N0

,A
}

is a linearly independent set.

�

In the next section this analysis will be repeated at the right edge, and it will follow from
a simple dimension count that the two mentioned linearly independent sets are in fact bases
for V b

1 and Ṽ b
1 . If S = {k1, . . . , k|S]}, one therefore defines for N − K ≤ n < N0,

ψb
0,n = (I − P )φb

1,kn
ψ̃b

0,n = (I − P̃ )φ̃b
1,kn

.

We point out that when N − K < 0 this gives negative index sets. In particular the matrix
Gb takes the form

Gb =
( [ψb

0,N−K ]φb
1

· · · [ψb
0,−1]φb

1
[φb

0,0]φb
1

[ψb
0,0]φb

1
[φb

0,1]φb
1

[ψb
0,1]φb

1
· · ·) (25)
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Lemma 6 The coordinate matrix of the {{(I − P )φb
1,k}k∈S relative to φb

1 is

I:,S − Gb
:,2[0,T ](G̃

b
S,2[0,T ])

T ,

where T is the largest integer so that 2T ≤ 2N0 − R − L̃ − 1, i.e.,

T = N0 +
⌊

−R + L̃ + 1

2

⌋
(26)

Proof In the proof above it was shown that 〈φb
1,k, ψ̃

b
0,n〉 = 0 for k ∈ S and n ≥ N ′

0, so that

P (φb
1,k) =

∑
n≥0

〈φb
1,k, φ̃

b
0,n〉φb

0,n.

Now, the φ̃b
0,n can be expressed in terms of {φ̃b

1,r}r≥2n+K̃−Ñ+L̃, and since the largest index
in S is 2N0 + K − N − R − 1, one can have contribution in the sum above only when n

satisfies

2N0 + K − N − R − 1 ≥ 2n + K̃ − Ñ + L̃.

Since N − K = Ñ − K̃ , this occurs when 2n ≤ 2N0 − R − L̃ − 1. This gives the expression
for T . One obtains

P (φb
1,k) =

T∑
n=0

〈φb
1,k, φ̃

b
0,n〉φb

0,n = (
φb

0,0 · · · φb
0,T

)
(G̃b

k,2[0,T ])
T

= (
φb

1,0 φb
1,1 · · ·)Gb

:,2[0,T ](G̃
b
k,2[0,T ])

T .

It follows that

(I − P )φb
1,k = φb

1,k − (
φb

1,0 φb
1,1 · · ·)Gb

:,2[0,T ](G̃
b
k,2[0,T ])

T .

This gives the individual columns in the coordinate matrix of the {{(I − P )φb
1,k}k∈S relative

to φb
1, so that this matrix is I:,S − Gb

:,2[0,T ](G̃
b
S,2[0,T ])

T . �

Remark 2 A T̃ also needs to be computed for the dual wavelet (i.e., T̃ = Ñ0 +
⌊
− R̃+L+1

2

⌋
).

Remark 3 The previous lemma does not provide any row limits. To deduce such limits,
note first that φb

0,T can be expressed in terms of {φb
1,k}2T +K−N+R

k=0 . Note also that, since by

definition 2T ≥ 2N0 − R − L̃ − 2, it follows that

2N0 + K − N − R − 1 ≤ 2T + R + L̃ + 2 + K − N − R − 1 = 2T + 1 + L̃ + K − N.

Since L̃+ 1 ≤ R, this is ≤ 2T +R +K −N . Since the largest entry in S is 2N0 +K −N −
R − 1, and after dropping rows that are zero, this proves that the coordinate matrix of the
{{(I − P )φb

1,k}k∈S can also be written relative to {φb
1,0, . . . , φ

b
1,2T +K−N+R}, and as

I[0,2T +K−N+R],S − Gb
[0,2T +K−N+R],2[0,T ](G̃

b
S,2[0,T ])

T .
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One now redefines {ψb
0,k}N0−1

k=N−K as the functions {(I − P )φb
1,k}k∈S , and set ψb

0 =
{ψb

0,k}k≥N−K , and

Cb
1 = {{ψb

0,k}−1
k=N−K,φb

0,0,ψ
b
0,0, φ

b
0,1,ψ

b
0,1, . . .},

with the 1-level DWT the change of coordinates from φb
1 to Cb

1 . Set now

(
Xo

Zo

)
= I:,S − Gb

:,2[0,T ](G̃
b
S,2[0,T ])

T , (27)

i.e.,

⎛
⎜⎝

ψb
0,N−K

...

ψb
0,N0−1

⎞
⎟⎠= (Xo)

T

⎛
⎜⎝

φb
1,0
...

φb
1,N−1

⎞
⎟⎠+ (Zo)

T

(
φb

1,N

...

)
. (28)

The column indices of Xo and Zo are in [N − K,N0 − 1]. As for the scaling functions, we
address how coordinate changes affect Xo and Zo.

Lemma 7 Assume that a change of coordinates is applied to the left edge mother wavelets
without altering the left edge scaling functions, and let {ψb,1

0,k }N0−1
k=N−K and {ψb,2

0,k }N0−1
k=N−K be

bases, and P = P{ψb,1
0,k

}←{ψb,2
0,k

} the change of coordinate matrix from the second to the first

basis. The change of coordinates from {ψb,1
0,k }N0−1

k=N−K to {ψb,2
0,k }N0−1

k=N−K transforms Xo and Zo

according to

(
Xo

Zo

)
→

(
Xo

Zo

)
P. (29)

Proof One gets as above

⎛
⎜⎝

ψ
b,2
0,N−K

...

ψ
b,2
0,N0−1

⎞
⎟⎠= P T

⎛
⎜⎝

ψ
b,1
0,N−K

...

ψ
b,1
0,N0−1

⎞
⎟⎠= P T

⎛
⎜⎝XT

o

⎛
⎜⎝

φb
1,0
...

φb
1,N−1

⎞
⎟⎠+ ZT

o

(
φ1,N

...

)⎞
⎟⎠

= (XoP )T

⎛
⎜⎝

φb
1,0
...

φb
1,N−1

⎞
⎟⎠+ (ZoP )T

(
φ1,N

...

)
.

(29) follows. �

(29) is applied twice. First the supports of {ψb
0,k}N−1

k=0 is made staggered by finding a

coordinate change which brings

(
Xo

Zo

)
to echelon form. Secondly the mother wavelets at

the left edge are bi-orthogonalized, preserving their staggeredness. One now needs the (N0 +
K − N) × (Ñ0 + K − N) Gramm matrix

Y =
(〈

{ψb
0,k}N0−1

k=N−K, {ψ̃b
0,k}Ñ0−1

k=N−K

〉)
.
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Similarly to Equation (19) it follows that Y = (Xo)
T X̃o + (Zo)

T Z̃o (there is no Y on the
right hand side here, however, since there are no ψ -functions on the right hand side). With
Y found, one proceeds as in the end of Sect. 4 to find the required changes of coordinates.

6 The Right Edge

Up to now K and K̃ have denoted the number of scaling functions at resolution 1 needed
to synthesize {φb

0,k}N−1
k=0 and {φ̃b

0,k}Ñ−1
k=0 . In analyzing the right edge, the flexibility in these

numbers needs to be exploited, in order to obtain a Discrete Wavelet Transform on the
interval for the input length in question. K and K̃ will now be assigned different values at
the left and right edge, and KL and K̃L will be written for the left edge values, KR and K̃R

for the right edge values. Since the value N0 depended on K as well, its notation is changed
to N0,L and N0,R .

All functions will be assumed to be defined on [0,M]. The operation m(f ) = f (M − t)

“mirrors” functions on [0,M] so that the left and right edges are swapped. To reuse the
left edge analysis, right edge functions will be found so that their mirrors are on the form
that has been considered, i.e., delay-normalized, possibly with the same supports. If this is
the case, the right edge analysis simply boils down to repeating the left edge analysis with
reversed filter coefficients. The following result addresses this.

Theorem 1 Assume that (φ,ψ) is delay-normalized. Then

1. (m(φ0,n),m(ψ0,M−1)) is delay-normalized for any n.
2. m(ψ0,M−1)) has the same support as ψ if and only if L + R = L̃ + R̃ (i.e., supp(φ) and

supp(φ̃) have the same midpoints).
3. m(φ0,n) has the same support as φ if and only if n = M − (L + R).

Some comments are in order.
1. The case L + R = L̃ + R̃ = 0 includes wavelets with symmetric filters, while the case

L + R = L̃ + R̃ = 1 includes orthogonal wavelets with the support assumption (3).
2. Recall that (φ0,n,ψ) is delay-normalized for any n, as long as (φ,ψ) is. This means

that, when L + R = L̃ + R̃, one can always assume that the common value is 0 or 1 (by
changing the scaling function at the start). Moreover, the result says that

– when L + R = 0, (m(φ0,M),m(ψ0,M−1))) is delay-normalized, with the same supports as
(φ,ψ).

– when L + R = 1, (m(φ0,M−1),m(ψ0,M−1))) is delay-normalized, with the same supports
as (φ,ψ).

In both cases the new pairs of delay-normalized functions are adjacent basis functions, the
only difference being that their internal order differs (something an implementation must
take into account). In summary, when L+R = L̃+ R̃ one can always assume equal supports
at the left and right edge, and that the mirroring process preserves the ordering of the basis
functions.

3. It is straightforward to prove that m(φm,2mM−(L+R)) has the same support as φm,0, in the
same way one proves the third statement. If L+R = L̃+ R̃ and (φ,ψ) is delay-normalized,
it also follows that m(ψm,2mM−1) has the same support as ψm,0. In other words, when con-
structing a multiresolution analysis it is desirable to consider the sets {φm,n}2mM−(L+R)

n=0 and
{ψm,n}2mM−1

n=0 , since a mirroring operation on each of these simply produce new functions
with the same supports.
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4. When L+R �= L̃+R̃ = 0 the right edge analysis is still possible, but the supports at the
right edge will be different from those at the left edge. Also, the relative ordering at the right
edge needs to be handled differently for the wavelet and the dual wavelet, making things
more complicated. The software implementation therefore handles only the case L + R =
L̃ + R̃, and this will be assumed in the following.

Note that, assuming that L+R = 0 or 1, from the two filters G0 and G1 one can compute
everything (L, R, L̃, and R̃, as well as H0 and H1, N and Ñ ). In particular there is no need to
specify the positions of the filter coefficients, since these can also be inferred. The software
implementation takes advantage of this fact.

Proof of Theorem 1 One has that

supp(m(φ0,M)) = [−R,−L] supp(m(φ̃0,M)) = [−R̃,−L̃].

In order for m(ψ0,n) to ensure delay-normalized mirrors, Equation (6) says that
supp(m(ψ0,n) must equal [(−R + L̃ + 1)/2, (−L + R̃ + 1)/2]. Also, m(ψ0,n) has support
M −n+[(L̃−R − 1)/2, (R̃ −L− 1)/2]. Comparing one obtains that 1/2 = M −n− 1/2,
so that n = M − 1. This proves the first claim.

Equal supports for supp(m(ψ0,M−1) and ψ requires that (using Equation (6) again)

[(L − R̃ + 1)/2, (R − L̃ + 1)/2] = [(−R + L̃ + 1)/2, (−L + R̃ + 1)/2],

i.e., L+R = L̃+R̃. Equal supports for φ and m(φ0,n) requires that [L,R] = M−n−[R,L],
so that n = M − (L + R). �

The sets φb
m and ψb

m are now redefined as follows:

1. φb
m: Take {φm,n}2mM−(L+R)

n=0 , remove the first KL functions and replace them with N modi-
fied functions, remove the last KR functions and replace them with N modified functions.

2. ψb
m: Take {ψm,n}2mM−1

n=0 , remove the first N0,L functions and replace them with KL −
N + N0,L modified functions, remove the last N0,R functions and replace them with
KR − N + N0,R modified functions.

Both these are linearly independent (simply repeat the arguments from Sect. 5 by also in-
cluding modified functions at the right edge), and one can define V b

m = Span(φb
m), Wb

m =
Span(ψb

m) (and their duals, and one still has biorthogonality) as before. A simple count
gives that

dim(V b
m) = 2N + 2mM − L − R − KR − KL + 1 dim(Wb

m) = 2mM. (30)

It is easily checked that dim(V b
m) + dim(Wb

m) = dim(V b
m+1), and since V b

m ∪ Wb
m ⊆ V b

m+1, it
follows that Cb

m and φb
m are alternative bases for V b

m (redefining Cb
m in the obvious way), so

that one can define the DWT/IDWT as before. The following result provides a requirement
on KL + KR in order for an m-level DWT to be computable.

Theorem 2 Let dim(x) be the number of components in x. An m-level DWT and an m-level
dual DWT of x are possible only if

dim(x) + L + R − 2N + KL + KR − 1 is divisible by 2m. (31)
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Remark 4 The value of M is not needed in the computations, and is eliminated in favour of
dim(x). The proof of this theorem makes it clear that M must be chosen as

M = 2−m(dim(x) + L + R − 2N + KL + KR − 1) (32)

in order for x to be the coordinates in a wavelet basis on [0,M]. In addition to Equation (31),
we need also take into account that KL and KR must satisfy the requirements of Definition 1.

Proof of Theorem 2 Since x are coordinates in φb
m, (30) says that

dim(x) = 2N + 2mM − L − R − KR − KL + 1,

so that an m-level DWT is possible if and only if dim(x) + L + R − 2N + KL + KR − 1
is divisible by 2m. Equation (32) follows by reorganizing this. By combining (30) for k = 1
and k = m and eliminating M , one also deduces

dim(φb
1) = 21−mdim(x) + (1 − 21−m)(2N − L − R − KL − KR + 1), (33)

which we also will have use for. Since KL − N = K̃L − Ñ , and L + R = L̃ + R̃, the same
requirement is needed for a dual m-level DWT as well. �

The condition from Theorem 2 is not sufficient for an m-level DWT to be computable,
however: It may be that the smallest resolution spaces do not have room for all the boundary
functions needed in the construction. Details on this can be found in [2].

In summary, the software first finds (for a given m and dim(x)) KL + KR from Equa-
tion (31), and then chooses KL and KR so that they are as equal as possible.

Of particular interest are the cases where no shift in the basis functions is needed, i.e.,
when we can set KL = KR = N . Important cases are

1. dim(x) = M2m + 1 when L + R = L̃ + R̃ = 0 (for instance wavelets with symmetric
filters),

2. dim(x) = M2m when L + R = L̃ + R̃ = 1 (for instance orthonormal wavelets).

7 Biorthogonal Spline Wavelets on the Interval as Defined in [19]

[19] gives a more refined construction of Biorthogonal Spline wavelets on the interval where
the primal boundary functions are fixed, and directly defined from the Schoenberg-Spline
basis with equidistant knots on the interval [23]. All internal primal scaling functions are
included, thereby changing the multiresolution minimally. This differs from the previous
part of the paper, where the leftmost internal functions may be absorbed in the constructed
boundary functions, leading to more changes to the multiresolution at the boundaries (in
terms of boundary functions with wilder oscillations). This is particularly the case when
K and K̃ are increased to adapt the multiresolution to a given input length. The strategy
in [19], however, puts requirements on the input length (since the number of primal boundary
functions is fixed). To get around this, a combination with that of the previous part of the
paper is needed.

Let us explain how one can extend the results from [19] to the general delay-normalized
case, including how to make stable completions. One clearly needs s = min(R − L − 1,N)

boundary adapted functions at the primal side, and s̃ = min(R̃−L̃−1, Ñ) boundary adapted
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functions at the dual side. With d := L + s − L̃ − s̃ ≥ 0, this modifies equations (7) and (8)
in Definition 1 to

φb
0,k(t) =

{∑−L−1
n=−R+1 ck(n)φ0,n(t) for 0 ≤ k < s

φ0,k−L−s(t) for k ≥ s
(34)

φ̃b
0,k(t) =

{∑−L̃−1
n=−R̃+1

c̃k(n)φ̃0,n(t) for d ≤ k < d + s̃

φ̃0,k−L−s(t) for k ≥ d + s̃,
(35)

so that we need to construct d functions {φ̃b}d−1
k=0 on the dual side (it is easily checked that

d = N − 2 in the case of Spline wavelets, agreeing with the construction in [19]). These are
defined recursively as

⎛
⎜⎜⎝

φ̃b
0,0
...

φ̃b
0,d−1

⎞
⎟⎟⎠= (G̃b

:,2[0,d))
T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ̃b
1,0
...

φ̃b
1,d−1

φ̃b
1,d

...

φ̃b
1,d+s̃−1

φ̃b
1,d+s̃

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is simply a restatement of Equation (4.3) in [19] with all values of k there combined:
G̃b

:,2[0,d) represents the refinement relations for the functions {φ̃b}d−1
k=0 we seek to construct

(these refinement relations were previously denoted by X̃e and Z̃e). We will assume that the
nonzero indices in column n of G̃b

e come at indices [n+1, x+2n] (i.e., we assume staggered
supports, and that the φb

0,n can be defined in terms of φb
0,n+1, . . . , φ

b
0,d−1, i.e., iteratively in

terms of previously constructed functions). This is again all compatible with [19], with the
additional complication of finding a number x so that unique refinement relations can be
found. The next result is the delay-normalized generalization of Theorem 4.13 in [19], and
explains how to find the columns in G̃b iteratively, and the value for x.

Theorem 3 Define t = n + ⌊
x+s+1

2

⌋
, and assume that z is a solution to the linear system

⎛
⎜⎜⎝
〈⎛
⎜⎝

φb
0,0
...

φb
0,t−1

⎞
⎟⎠ ,

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,x+2n

⎞
⎟⎟⎠
〉⎞⎟⎟⎠z = en.

Define column n of G̃b
e so that (G̃b

e)[n+1,x+2n],n = z, and zero elsewhere, and define

φ̃b
0,n = ((G̃b

e)[n+1,x+2n],n)T

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,x+2n

⎞
⎟⎟⎠
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Then 〈φb
0,k, φ̃

b
0,n〉 = δk,n for all k. Moreover, the linear system is square if x = s + 1 (in

which case t = n + s + 1).

The value of x here is again compatible with the statements for the Spline case in [19].
We do not prove that the coefficient matrix of the above system is invertible. As commented
in [19], numerical experiments show this to be true for the most common values of N an Ñ

in the Spline case, but a general proof for this was not given.

Proof If k ≥ s (i.e., φb
0,k is internal), only the {φ1,t }t≥2k−2s−L contribute in φb

0,k = φ0,k−L−s .

If n < d (i.e., φ̃b
0,n is one of the functions we seek to construct), only the

{φ̃b
1,t }x+2n

t=n+1 = {φ̃b
1,t }d−1

t=n+1 ∪ {φ̃b
1,t }d≤t≤x+2n

contribute in φ̃b
0,n. In {φ̃b

1,t }d≤t≤x+2n only the {φ̃1,t }t≤x+2n−L−s contribute. Thus, if 2k −
2s − L > x + 2n − L − s (i.e., 2k > 2n + x + s), we have that

〈φb
0,k, φ̃

b
0,n〉 =

〈
φb

0,k, ((G̃
b
e)[n+1,d−1],n)T

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,d−1

⎞
⎟⎟⎠
〉

.

In particular, 〈φb
0,k, φ̃

b
0,d−1〉 = 0 when 2k > 2d − 2 + x + s.

Assume now that 〈φb
0,k, φ̃

b
0,n′ 〉 = 0 for n′ = n+ 1, . . . , d − 1, k > x. Using the above, for

2k > 2n + x + s (i.e., k ≥ n + ⌊
x+s+1

2

⌋=: t ),

〈φb
0,k, φ̃

b
0,n〉 =

〈
φb

0,k, ((G̃
b
e)[n+1,d−1],n)T

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,d−1

⎞
⎟⎟⎠
〉

=
〈
((Gb

e)2k−L−s+[L,R],k)T

⎛
⎜⎝

φb
1,2k−s

...

φb
1,2k−s−L+R

⎞
⎟⎠ , ((G̃b

e)[n+1,d−1],n)T

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,d−1

⎞
⎟⎟⎠
〉

,

which is zero by assumption (since 2k − s > 2n + x ≥ x). Note that t = x + n if and only if

x + n = n +
⌊

x + s + 1

2

⌋
,

which is seen to hold if x = s + 1 (this agrees with x = N in the spline case). We have that

〈⎛
⎜⎝

φb
0,0
...

φb
0,t−1

⎞
⎟⎠ , φ̃b

0,n

〉
=
〈⎛
⎜⎝

φb
0,0
...

φb
0,t−1

⎞
⎟⎠ , ((G̃b

e)[n+1,x+2n],n)T

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,x+2n

⎞
⎟⎟⎠
〉

=

⎛
⎜⎜⎝
〈⎛
⎜⎝

φb
0,0
...

φb
0,t−1

⎞
⎟⎠ ,

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,x+2n

⎞
⎟⎟⎠
〉⎞⎟⎟⎠ (G̃b

e)[n+1,x+2n],n,
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and we have biorthogonality if this equals en (since orthogonality with {φb
0,r}r≥t was shown

to hold above). This implies that (G̃b
e)[n+1,x+2n],n (and thus the entire column n of G̃b

e ) can
be found by solving the stated linear system. �

To obtain the stated coefficient matrix one can compute

⎛
⎜⎜⎝
〈⎛
⎜⎝

φb
0,0
...

φb
0,n+s

⎞
⎟⎠ ,

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,s+1+2n

⎞
⎟⎟⎠
〉⎞⎟⎟⎠

= ((Ge)
b
:,[0,n+s])

T

⎛
⎜⎜⎝
〈(

φb
1,0
...

)
,

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,s+1+2n

⎞
⎟⎟⎠
〉⎞⎟⎟⎠

= ((Gb
e):,[0,s+n])T

⎛
⎜⎜⎝
〈(

φb
1,0
...

)
,

⎛
⎜⎜⎝

φ̃b
1,n+1
...

φ̃b
1,d−1

⎞
⎟⎟⎠
〉

〈(
φb

1,0
...

)
,

⎛
⎜⎜⎝

φ̃b
1,d

...

φ̃b
1,d+s̃−1

⎞
⎟⎟⎠
〉〈(

φb
1,0
...

)
,

⎛
⎜⎜⎝

φ̃b
1,d+s̃

...

φ̃b
s+1+2n

⎞
⎟⎟⎠
〉⎞⎟⎟⎠

= ((Ge)
b
:,[0,s+n])

T

((
0n+1,d−n−1

Id−n−1

) (
Y

C̃[−L+1,−L̃),:

) (
0d+s̃,L̃−L+2n+2

IL̃−L+2n+2

))
,

where we set Y =
〈⎛
⎜⎝

φb
0,0
...

φb
0,s−1

⎞
⎟⎠ ,

⎛
⎜⎜⎝

φ̃b
0,d

...

φ̃b
0,d+s̃−1

⎞
⎟⎟⎠
〉

(this can be found as in Sect. 4.2, with fur-

ther details again in Sect. 13 in the technical report [2]), and where C̃ was defined from (35)
as in Sect. 3. It is now clear that

〈⎛
⎜⎝

φb
0,0
...

φb
0,d+s̃−1

⎞
⎟⎠ ,

⎛
⎜⎜⎝

φ̃b
0,0
...

φ̃b
0,d+s̃−1

⎞
⎟⎟⎠
〉

=
(

Id Y

0s̃,d C̃[−L+1,−L̃),:

)
.

Since this is upper triangular, one can proceed as in [19] to biorthogonalize while preserving
staggered supports.

It is not too hard to adapt the arguments from Sect. 5 to obtain stable completions also
here. Simply note that the quantity K − N needs to be replaced by −L − s (compare Defi-
nition 1 and Equation (35)). This modifies the definition of the sets S and S̃ as well. The set
S̃ is “punctured” with d values due to the addition of the {φ̃b

0,k}d−1
k=0 .

Currently the software implementation does not support a delay-normalized generaliza-
tion of the results in [19]. There are two reasons for this. First of all, keeping the primal
boundary functions fixed is not compatible with adaptability to the input length, one of the
main features of the software implementation (and there is no consensus on how to combine
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the strategy from [19] with absorption of inner functions in the boundary functions). Sec-
ondly, one would need some canonical boundary functions at the primal side in the general
delay-normalized case, similarly to those one has from the Schoenberg Spline basis in the
Spline case. Generally it is not clear what such canonical boundary functions should be.9

8 Notes on the Implementation

This contribution spares the reader for many tedious calculations needed for the software
implementation. Necessary details can be found in the technical report [2], and can be sum-
marized as follows.

– What are the smallest input sizes so that a DWT/IDWT is possible (i.e., so that the left
and right boundary functions do not interact)?

– Adoption of a lifting-based approach to the interval.
– Preconditioning (this was addressed in [9] for the orthogonal case, but [2] addresses this

more generally).
– One has freedom in how to scale the modified boundary functions. [2] computes Gramm

matrices as described in [18], in order to find the norms of the modified functions, and
uses these to scale them accordingly.

– Computation of the Gramm matrices when N �= Ñ .

[2] also explains the interface, and provides some code examples on how to use it. The code
repository itself can be found at https://github.com/oyvindry/wl.

9 Conclusion

A unified scheme for wavelets on the interval was established, which extends known cases
(such as orthonormal- and Spline-) of wavelets, with various degrees of polynomial ex-
actness. We also considered the method of stable completion within the new scheme, and
offered some new perspectives on how to establish such completions. We made a big point
of using simplified notation in the construction, and building heavily on linear algebra con-
cepts. As a consequence, the way towards a software implementation was shortened, and
interested readers are encouraged to experiment further with the software implementation
accompanying the paper.
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