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Abstract In this paper we investigate the gap functions and regularized gap functions for
a class of variational–hemivariational inequalities of elliptic type. First, based on regular-
ized gap functions introduced by Yamashita and Fukushima, we establish some regularized
gap functions for the variational–hemivariational inequalities. Then, the global error bounds
for such inequalities in terms of regularized gap functions are derived by using the prop-
erties of the Clarke generalized gradient. Finally, an application to a stationary nonsmooth
semipermeability problem is given to illustrate our main results.
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1 Introduction

In the study of various complementarity and equilibrium problems occurring in operation
research, economics, mechanics, mathematical programming, etc., we often naturally meet
the variational inequality problem of the form:

find u∗ ∈ K such that
〈
Au∗, v − u∗〉

X
≥ 0 for all v ∈ K. (1.1)

Here K is a nonempty closed convex subset of a normed space X representing constraints,
A : X → X∗ is a given operator, and 〈·, ·〉X denotes the duality pairing between X and its
dual X∗. Among several approaches available in the literature, it is well known that the
variational inequality (1.1) can be solved by transforming it into an equivalent optimization
problem for the so-called merit function π(·;α) : X → R∪ {+∞} defined by

π(u;α) = sup
{〈Au,u − w〉X − α‖u − w‖2

X | w ∈ K
}

for u ∈ K,

where α is a nonnegative parameter. If X is finite dimensional, this function was first in-
troduced by Auslender in [4] for α = 0, and by Fukushima in [12] for α > 0. The function
π(·;0) is usually called the gap function, and the function π(·;α) for α > 0 is called the
regularized gap function.

It is known, see [4, 19], that for all α > 0, the function π(·;α) is nonnegative on K , and
π(u∗;α) = 0 whenever u∗ satisfies the variational inequality (1.1). An advantage of this ap-
proach is that the resulting optimization problem can be solved by descent algorithms which
enjoys a global convergence property. However, it turns out that even for finite dimensional
space X, the gap function fails to be differentiable in general, and it may not be finite val-
ued. In contrast, the regularized gap function for α > 0 is nicer since it is finite valued and
is differentiable whenever A is differentiable, see [12] for details.

The gap functions are today very useful to investigate existence conditions, solution
methods and stability conditions for optimization-related problems in order to simplify the
computational aspects. Based on the idea of Fukushima [12] the regularized function of the
Moreau-Yosida type has been developed by Yamashita and Fukushima in [49]. They also
proposed the so-called error bounds for variational inequalities via the regularized gap func-
tions. The notion of error bounds is known as an upper estimate of the distance between an
arbitrary feasible point and the solution set of a certain problem. Such error estimates have
played a vital role in convergence analysis of iterative algorithms for solving variational
inequalities. In recent years, there have been many studies on gap functions for different
models on different topics such as iterative algorithms [23], the Painlevé-Kuratowski con-
vergence [2], stability of solutions [3, 20–22] and error bounds [6, 13, 24–26]. We also refer
the reader to [1, 5, 7, 11, 14, 27–29] and the references therein for a more detailed discussion
of interesting topic.

On the other hand, the theory of variational–hemivariational inequalities is known as a
generalization of variational inequalities and hemivariational inequalities to the case involv-
ing both the convex and the nonconvex potentials, and based on the notion of the Clarke
generalized gradient for locally Lipschitz functions. Interest in the study of variational-
hemivariational inequalities was originally motivated by various problems in mechanics,
see e.g., [45, 46]. The theory of variational–hemivariational inequalities has been exten-
sively studied by many authors in different directions, and it has found various applications
in mechanics, engineering, especially in optimization and nonsmooth analysis. Recent ex-
istence results for variational–hemivariational inequalities can be found, in e.g., [16, 31,
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33–41, 43, 47, 48], the stability in the sense of convergence and the well-posedness, in e.g.,
[18, 30, 32, 50–53], and the computational issues have been addressed in, e.g., [15, 17].

To the best of our knowledge, up to now, there has not been any study on the gap func-
tions and global error bounds for the variational–hemivariational inequalities. Our goal is
to fill in this gap and provide new results in this area. The novelties of the paper are as
follows. First, we introduce the gap functions and regularized gap functions for a class of
variational–hemivariational inequalities. Also, we treat the gap functions for the Minty ver-
sion of these inequalities. Next, we study the Moreau-Yosida regularized gap functions, in-
troduced by Yamashita and Fukushima in [49], and provide two new global error bounds for
variational–hemivariational inequalities via the regularized and the Moreau-Yosida regular-
ized gap functions. Finally, we illustrate the abstract results by an application to a nonsmooth
semipermeability obstacle problem described by an elliptic variational–hemivariational in-
equality for which we deliver global error bounds.

The article is arranged as follows. In Sect. 2, we recall basic definitions and results which
are needed in the sequel and revisit the constrained variational–hemivariational inequality of
elliptic type. In Sect. 3, we study some regularized gap functions of Yamashita-Fukushima
type, and establish global error bounds for the variational–hemivariational inequalities. An
application to a semipermeability problem for stationary heat problem is given in Sect. 4 to
illustrate our main theoretical findings.

2 Preliminaries

In this section we recall the notation and some preliminary material which will be needed in
the sequel. For more details, we refer to [8–10, 42].

Let (X,‖ · ‖X) be a real Banach space with the dual X∗, and we denote by 〈·, ·〉X the
duality pairing between X∗ and X. We begin with the following definitions.

Definition 2.1 ((d)) A function h : X →R := R∪ {+∞} is said to be

(a) proper, if h �≡ +∞.
(b) convex, if h(tu + (1 − t)v) ≤ th(u) + (1 − t)h(v) for all u, v ∈ X and t ∈ [0,1].
(c) lower semicontinuous (l.s.c.) at u ∈ X, if for any sequence {un} ⊂ X such that un → u,

it holds h(u) ≤ lim infh(un).
(d) upper semicontinuous (u.s.c.) at u ∈ X, if for any sequence {un} ⊂ X such that un → u,

it holds lim suph(un) ≤ h(u).
(e) l.s.c (resp. u.s.c.) on X, if h is l.s.c (resp. u.s.c.) at every u ∈ X.

Definition 2.2 Let f : X → R be a proper, convex and l.s.c. function. The convex sub-
differential ∂cf : X ⇒ X∗ of f is defined by

∂cf (u) = {
u∗ ∈ X∗ | 〈u∗, v − u

〉
X

≤ f (v) − f (u) for all v ∈ X
}

for all u ∈ X.

An element u∗ ∈ ∂cf (u) is called a subgradient of f at u ∈ X.

Definition 2.3 A function h : X → R is said to be locally Lipschitz, if for every u ∈ X,
there exist a neighbourhood U of u and a constant Lu > 0 such that

|h(w1) − h(w2)| ≤ Lu‖w1 − w2‖X for all w1,w2 ∈ U.
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Given a locally Lipschitz function h : X → R, we denote by h0(u;v) the Clarke generalized
directional derivative of h at the point u ∈ X in the direction v ∈ X defined by

h0(u;v) := lim sup
w→u, t→0+

h(w + tv) − h(w)

t
.

The generalized gradient of h at u ∈ X, denoted by ∂h(u), is a subset of X∗ given by

∂h(u) = {
u∗ ∈ X∗ | h0(u;v) ≥ 〈

u∗, v
〉
X

for all v ∈ X
}
.

The generalized directional derivative and generalized gradient of a locally Lipschitz
function enjoy many nice properties and rich calculus. Below we collect some basic and
useful results, see, e.g., [42, Proposition 3.23].

Lemma 2.1 Let X be a real Banach space and h : X → R be a locally Lipschitz function.
Then the following assertions hold.

(a) For each u ∈ X, the function X � v �→ h0(u;v) ∈ R is finite, positively homogeneous
and subadditive, and satisfies |h0(u;v)| ≤ Lu‖v‖X for all v ∈ X, where Lu > 0 is the
Lipschitz constant of h near u.

(b) The function X × X � (u, v) �→ h0(u;v) ∈ R is upper semicontinuous.
(c) For every u, v ∈ X, it holds h0(u;v) = max { 〈ξ, v〉X | ξ ∈ ∂h(u) }.

Recall that a single-valued operator A : X → X∗ is said to be pseudomonotone, if A is
a bounded operator and for every sequence {xn} ⊆ X converging weakly to x ∈ X such that
lim sup〈Axn, xn − x〉 ≤ 0, we have 〈Ax,x − y〉 ≤ lim inf〈Axn, xn − y〉 for all y ∈ X.

Let X be a reflexive Banach space and K be a nonempty subset of X. Given an operator
A : K → X∗, functions ϕ : K × K → R and J : X → R, and f ∈ X∗, we are concerned
with the study of the following constrained variational–hemivariational inequality.

Problem 2.1 Find u ∈ K such that

〈Au − f, v − u〉X + ϕ(u, v) − ϕ(u,u) + J 0(u;v − u) ≥ 0

for all v ∈ K .

We now impose the following hypotheses on the data of Problem 2.1.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : X → X∗ is such that

(a) A is pseudomonotone.

(b) A is strongly monotone, i.e., there exists mA > 0 such that

〈Av1 − Av2, v1 − v2〉X ≥ mA‖v1 − v2‖2
X

for all v1, v2 ∈ X.

(2.1)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ : K × K → R is such that

(a) for each u ∈ K , ϕ(u, ·) : K →R is convex and lower semicontinuous.

(b) there exists αϕ > 0 such that

ϕ(u1, v2) − ϕ(u1, v1) + ϕ(u2, v1) − ϕ(u2, v2) ≤ αϕ‖u1 − u2‖X‖v1 − v2‖X

for all u1, u2, v1, v2 ∈ K.

(2.2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

J : X → R is a locally Lipschitz function such that

(a) ‖∂J (v)‖X∗ ≤ c0 + c1‖v‖X for all v ∈ X with some c0, c1 ≥ 0.

(b) there exists mJ ≥ 0 such that

J 0(v1;v2 − v1) + J 0(v2;v1 − v2) ≤ mJ ‖v1 − v2‖2
X

for all v1, v2 ∈ K.

(2.3)

K is nonempty, closed and convex subset of X, and f ∈ X∗. (2.4)

Remark 2.1 Note that in some recent works, such as [43, 47, 50], the authors have supposed
that A : X → X∗ and J : X → R enjoy hypotheses (2.1) and (2.3). They also required the
following additional condition

{
there exist αA > 0, βA, γA ∈R and u0 ∈ K such that

〈Av,v − u0〉X ≥ αA‖v‖2
X + βA‖v‖X + γA

(2.5)

where αA > mJ . However, this assumptions is redundant. Indeed, given u0 ∈ K , from hypo-
theses (2.1), we obtain

〈Av,v − u0〉X ≥ mA‖v‖2
X − ‖Au0‖X∗‖v‖X − ‖Au0‖X∗‖u0‖X for all v ∈ X. (2.6)

It is obvious that the above estimate guarantees the condition (2.5).

We have the following existence and uniqueness result for Problem 2.1.

Theorem 2.1 Assume that (2.1)–(2.4) hold. If, in addition, the following smallness condi-
tion is satisfied

αϕ + mJ < mA, (2.7)

then Problem 2.1 has a unique solution. Moreover, u solves Problem 2.1 if and only if it
solves the following Minty variational–hemivariational inequality: find u ∈ K such that

〈Av − f, v − u〉X + ϕ(u, v) − ϕ(u,u) + J 0(v;v − u) ≥ 0 (2.8)

for all v ∈ K .

Proof The existence and uniqueness of solution to Problem 2.1 is a direct consequence of
[47, Theorem 1].
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Let u ∈ K be the unique solution to Problem 2.1. First, we note that the hypothesis
(2.3)(b) is equivalent to the following relaxed monotonicity condition of the generalized
gradient

〈
∂J (v) − ∂J (u), v − u

〉
X

≥ −mJ ‖v − u‖2
X (2.9)

for all v, u ∈ X. Next, the smallness condition (2.7) together with (2.9) and the strong mono-
tonicity of A implies

〈Av − Au,v − u〉X + 〈ξv − ξu, v − u〉X ≥ (mA − mJ )‖v − u‖2
X

for all ξv ∈ ∂J (v), ξu ∈ ∂J (u), and all u, v ∈ K . Let v ∈ K be arbitrary. Combining the
above inequality, Lemma 2.1(c) and the definition of generalized gradient entails

〈Av − f, v − u〉X + ϕ(u, v) − ϕ(u,u) + J 0(v;v − u)

≥ 〈Av − f + ξv, v − u〉X + ϕ(u, v) − ϕ(u,u)

≥ 〈Au − f + ξu, v − u〉X + ϕ(u, v) − ϕ(u,u) + (mA − mJ )‖v − u‖2
X

≥ 〈Au − f + ξu, v − u〉X + ϕ(u, v) − ϕ(u,u)

= 〈Au − f, v − u〉X + ϕ(u, v) − ϕ(u,u) + J 0(u;v − u) ≥ 0

for all ξv ∈ ∂J (v), where ξu ∈ ∂J (u) is such that

J 0(u;v − u) = 〈ξu, v − u〉X.

Since v ∈ K is arbitrary, therefore, u ∈ K solves the problem (2.8) too.
Conversely, let u ∈ K be a solution to the problem (2.8). For any v ∈ K and t ∈ (0,1),

we denote vt := tv + (1 − t)u ∈ K . Inserting vt into (2.8), we find

0 ≤ t〈Avt − f, v − u〉X + ϕ(u, vt ) − ϕ(u,u) + J 0(vt ;vt − u)

≤ t〈Avt − f, v − u〉X + tϕ(u, v) − tϕ(u,u) + tJ 0(vt ;v − u),

where we have used the convexity of v �→ ϕ(u, v) and the positive homogeneity of v �→
J 0(u;v). Hence,

〈Avt − f, v − u〉X + ϕ(u, v) − ϕ(u,u) + J 0(vt ;v − u) ≥ 0. (2.10)

Note that A is pseudomonotone, so, it is demicontinuous, see e.g. [42, Theorem 3.69]. Pass-
ing to the upper limit as t → 0+ in (2.10), it gives

〈Au − f, v − u〉X + ϕ(u, v) − ϕ(u,u) + J 0(u;v − u)

≥ lim sup
t→0+

〈Avt − f, v − u〉X + ϕ(u, v) − ϕ(u,u) + lim sup
t→0+

J 0(vt ;v − u)

≥ lim sup
t→0+

(〈Avt − f, v − u〉X + ϕ(u, v) − ϕ(u,u) + J 0(vt ;v − u)
) ≥ 0,

where we have applied Lemma 2.1(b). Recall that v ∈ K is arbitrary, so, we conclude that
u ∈ K is a solution to Problem 2.1 as well. This completes the proof. �
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3 Main Results

In this section, we are devoted to explore some global error estimates for variational–
hemivariational inequality in Problem 2.1, by introducing concepts of a gap function, a
regularized gap function, and the Moreau-Yosida regularized gap function associated to
Problem 2.1.

Invoking the idea of Yamashita-Fukushima in [49], we now introduce the definitions of
a gap function and a regularized gap function for Problem 2.1.

Definition 3.1 A real-valued function π : K → R is said to be a gap function for Problem
2.1, if it satisfies the following properties:

(a) π(u) ≥ 0 for all u ∈ K .
(b) u∗ ∈ K is such that π(u∗) = 0 if and only if u∗ is a solution to Problem 2.1.

Consider the functions Θf , Θ
f
∗ : K → R defined by

Θf (u) = sup
v∈K

(〈Au − f,u − v〉X + ϕ(u,u) − ϕ(u, v) − J 0(u;v − u)
)
, (3.1)

Θf
∗ (u) = sup

v∈K

(〈Av − f,u − v〉X + ϕ(u,u) − ϕ(u, v) − J 0(v;v − u)
)

(3.2)

for all u ∈ K , respectively.
The following proposition shows that functions Θf and Θ

f
∗ are gap functions for Prob-

lem 2.1.

Proposition 3.1 Suppose the assumptions of Theorem 2.1. Then, the functions Θf and Θ
f
∗

defined by (3.1) and (3.2) are two gap functions for Problem 2.1.

Proof In what follows, we prove that Θf is a gap function for Problem 2.1. In an analogous
way, it is not difficult to show that the function Θ

f
∗ is also a gap function for Problem 2.1.

We will verify two conditions of Definition 3.1.
(a) In fact, it is obvious that Θf (u) ≥ 0 for all u ∈ K . This property holds since for all

u ∈ K , we have

Θf (u) ≥ 〈Au − f,u − u〉X + ϕ(u,u) − ϕ(u,u) − J 0(u;u − u) = −J 0(u;0) = 0.

(b) Suppose that u∗ ∈ K is such that Θf (u∗) = 0, i.e.,

sup
v∈K

(〈
Au∗ − f,u∗ − v

〉
X

+ ϕ
(
u∗, u∗) − ϕ

(
u∗, v

) − J 0
(
u∗;v − u∗)) = 0. (3.3)

This together with the fact

〈
Au∗ − f,u∗ − u∗〉 + ϕ

(
u∗, u∗) − ϕ

(
u∗, u∗) + J 0

(
u∗;u∗ − u∗) = 0

implies that (3.3) is equivalent to

〈
Au∗ − f, v − u∗〉

X
+ ϕ

(
u∗, v

) − ϕ
(
u∗, u∗) + J 0

(
u∗;v − u∗) ≥ 0

for all v ∈ K . Therefore, we conclude that u∗ is a solution to Problem 2.1 if and only if
Θf (u∗) = 0. �
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Let γ > 0 be a fixed parameter. We consider the following functions Θf,γ , Θf,γ
∗ : K →R

defined by

Θf,γ (u) = sup
v∈K

(
〈Au − f,u − v〉X + ϕ(u,u) − ϕ(u, v) − J 0(u;v − u) − 1

2γ
‖u − v‖2

X

)
,

(3.4)

Θf,γ
∗ (u) = sup

v∈K

(
〈Av − f,u − v〉X + ϕ(u,u) − ϕ(u, v) − J 0(v;v − u) − 1

2γ
‖u − v‖2

X

)

(3.5)

for all u ∈ K , respectively. In what follows, the functions Θf,γ and Θ
f,γ
∗ are called to be

regularized gap functions for Problem 2.1.
We now assert that Θf,γ and Θ

f,γ
∗ are two gap functions of Problem 2.1.

Theorem 3.1 Suppose the hypotheses of Theorem 2.1. Then, for any γ > 0, the functions
Θf,γ and Θ

f,γ
∗ are gap functions for Problem 2.1.

Proof We prove that Θf,γ is a gap function for Problem 2.1. Employing the analogous
approach, it is not difficult to show that Θ

f,γ
∗ is also a gap function for Problem 2.1. We will

check two conditions of Definition 3.1.
(a) For each γ > 0 fixed, it is trivial that for each u ∈ K it holds Θf,γ (u) ≥ 0. This is due

to u ∈ K and

Θf,γ (u) ≥ 〈Au − f,u − u〉X + ϕ(u,u) − ϕ(u,u) − J 0(u;u − u) − 1

2γ
‖u − u‖2

X

= −J 0(u;0) = 0.

(b) Assume that u∗ ∈ K is such that Θf,γ (u∗) = 0, namely,

sup
v∈K

(〈
Au∗ − f,u∗ − v

〉
X

+ ϕ
(
u∗, u∗) − ϕ

(
u∗, v

) − J 0
(
u∗;v − u∗) − 1

2γ

∥∥u∗ − v
∥∥2

X

)
= 0.

This means

〈
Au∗ − f, v − u∗〉

X
+ ϕ

(
u∗, v

) − ϕ
(
u∗, u∗) + J 0

(
u∗;v − u∗) ≥ − 1

2γ

∥∥u∗ − v
∥∥2

X

for all v ∈ K . For any w ∈ K and t ∈ (0,1), we insert v = vt := (1 − t)u∗ + tw ∈ K into the
above inequality to obtain

t
〈
Au∗ − f,w − u∗〉

X
+ tϕ

(
u∗,w

) − tϕ
(
u∗, u∗) + tJ 0

(
u∗;w − u∗)

≥ 〈
Au∗ − f, vt − u∗〉

X
+ ϕ

(
u∗, vt

) − ϕ
(
u∗, u∗) + J 0

(
u∗;vt − u∗)

≥ − 1

2γ
‖u∗ − vt‖2

X = − t2

2γ
‖u∗ − w‖2

X,

where we have used the convexity of v �→ ϕ(u, v) and positive homogeneity of v �→
J 0(u;v). Hence, we have

〈
Au∗ − f,w − u∗〉

X
+ ϕ

(
u∗,w

) − ϕ
(
u∗, u∗) + J 0

(
u∗;w − u∗) ≥ − t

2γ

∥∥u∗ − w
∥∥2

X
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for all w ∈ K . Letting t → 0+ for the above inequality, it gives

〈
Au∗ − f,w − u∗〉

X
+ ϕ

(
u∗,w

) − ϕ
(
u∗, u∗) + J 0

(
u∗;w − u∗) ≥ 0

for all w ∈ K . Hence, u∗ is also a solution to Problem 2.1.
Conversely, suppose that u∗ ∈ K is a solution of Problem 2.1, that is,

〈
Au∗ − f, v − u∗〉

X
+ ϕ

(
u∗, v

) − ϕ
(
u∗, u∗) + J 0

(
u∗;v − u∗) ≥ 0

for all v ∈ K . This implies

sup
v∈K

(〈
Au∗ − f,u∗ − v

〉
X

+ ϕ
(
u∗, u∗) − ϕ

(
u∗, v

) − J 0
(
u∗;v − u∗) − 1

2γ
‖u∗ − v‖2

X

)
≤ 0.

The latter combined with the fact Θf,γ (u) ≥ 0 for all u ∈ K reveals that Θf,γ (u∗) = 0. This
completes the proof. �

Further, we will show that the regularized gap functions Θf,γ and Θ
f,γ
∗ are both lower

semicontinuous.

Lemma 3.1 Assume that the hypotheses of Theorem 2.1 are satisfied. If, in addition, ϕ : K ×
K → R is continuous, then, for each γ > 0, the functions Θf,γ and Θ

f,γ
∗ are both lower

semicontinuous.

Proof We will prove that Θf,γ is lower semicontinuous for each γ > 0. It is not difficult to
apply a similar argument to verify that Θ

f,γ
∗ has the same property.

Consider the function Θ̂f,γ : K × K →R defined by

Θ̂f,γ (u, v) = 〈Au − f,u − v〉X + ϕ(u,u) − ϕ(u, v) − J 0(u;v − u) − 1

2γ
‖u − v‖2

X.

Recall that the operator A : X → X∗ is demicontinuous being pseudomonotone. This means
that the function u �→ 〈Au,u〉X is continuous. The latter together with the lower semiconti-
nuity of (u, v) �→ −J 0(u;v), and the continuity of (u, v) �→ ϕ(u, v) and u �→ ‖u‖X guaran-
tees that u �→ Θ̂f,γ (u, v) is lower semicontinuous for all v ∈ K .

Next, we observe that

Θf,γ (u) = sup
v∈K

Θ̂f,γ (u, v) for all u ∈ K.

Let {un} ⊂ K be such that un → u as n → ∞. Then, we have

lim inf
n→∞ Θf,γ (un) = lim inf

n→∞ sup
v∈K

Θ̂f,γ (un, v)

≥ lim inf
n→∞ Θ̂f,γ (un,w) ≥ Θ̂f,γ (u,w)

for all w ∈ K . Passing to supremum with w ∈ K for the above inequality, it gives

lim inf
n→∞ Θf,γ (un) ≥ sup

w∈K

Θ̂f,γ (u,w) = Θf,γ (u),

so, the function Θf,γ is lower semicontinuous. This completes the proof. �
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Let γ , ζ > 0 be two parameters. Moreover, let us consider the following functions
ΠΘf,γ,ζ , Π

Θ
f,γ,ζ∗ : K →R defined by

ΠΘf,γ,ζ (u) = inf
w∈K

{
Θf,γ (w) + ζ‖u − w‖2

X

}
, (3.6)

Π
Θ

f,γ,ζ∗ (u) = inf
w∈K

{
Θf,γ

∗ (w) + ζ‖u − w‖2
X

}
(3.7)

for all u ∈ K , respectively. In the sequel, we call the functions ΠΘf,γ,ζ and Π
Θ

f,γ,ζ∗ to be the
Moreau-Yosida regularized gap functions for Problem 2.1. Subsequently, we will verify that
these functions are two gap functions for Problem 2.1.

Theorem 3.2 Assume that the hypotheses of Lemma 3.1 are satisfied. Then, for all γ , ζ > 0,
the functions ΠΘf,γ,ζ and Π

Θ
f,γ,ζ∗ are two gap functions for Problem 2.1.

Proof We will show that ΠΘf,γ,ζ is a gap function for Problem 2.1. In an analogous way, it
is possible to demonstrate that Π

Θ
f,γ,ζ∗ is also a gap function for Problem 2.1.

(a) For any γ , ζ > 0 fixed, recall that Θf,γ is a gap function for Problem 2.1, hence
Θf,γ (u) ≥ 0 for all u ∈ K . In consequence, ΠΘf,γ,ζ (u) ≥ 0 for all u ∈ K .

(b) Suppose that u∗ ∈ K is a solution to Problem 2.1. Theorem 3.1 indicates that
Θf,γ (u∗) = 0. Moreover, the inequality

ΠΘf,γ,ζ

(
u∗) = inf

w∈K

{
Θf,γ (w) + ζ

∥∥u∗ − w
∥∥2

X

} ≤ Θf,γ
(
u∗) + ζ

∥∥u∗ − u∗∥∥2

X
= 0

and the fact ΠΘf,γ,ζ (u∗) ≥ 0 imply that ΠΘf,γ,ζ (u∗) = 0.
Conversely, let u∗ ∈ K be such that ΠΘf,γ,ζ (u∗) = 0, i.e.,

inf
w∈K

{
Θf,γ (w) + ζ

∥∥u∗ − w
∥∥2

X

} = 0.

Therefore, there exists a minimizing sequence {wn} in K such that

0 ≤ Θf,γ (wn) + ζ
∥∥u∗ − wn

∥∥2

X
<

1

n
. (3.8)

It is obvious that Θf,γ (wn) → 0 and ‖u∗ − wn‖X → 0, as n → ∞. This implies wn → u∗,
as n → +∞. Invoking Lemma 3.1 and nonnegativity of Θf,γ results in the inequality

0 ≤ Θf,γ
(
u∗) ≤ lim inf

n→+∞ Θf,γ (wn) = 0,

thus is, Θf,γ (u∗) = 0. Because Θf,γ is a gap function, therefore, u∗ is a solution to Prob-
lem 2.1. The proof is complete. �

We now provide an example to illustrate the results of Theorems 3.1 and 3.2.

Example 3.1 Let X = R, K = [ 1
2 , 3

2 ], f = 1 and A : R → R, ϕ : K × K → R and J : R →
R be the functions defined by

A(u) = 5u, ϕ(u, v) = uv2 + 1

2
, and J (u) =

{
u2 if u > 0

2u if u ≤ 0.
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It is obvious that J is a locally Lipschitz function and

J 0(u;d) =

⎧
⎪⎨

⎪⎩

2ud if u > 0

max{0,2d} if u = 0

2d if u < 0

for all u, d ∈ X. Besides, it is not difficult to verify that all assumptions of Theorem 2.1 are
valid with mA = 5, mJ = 2 and αϕ = 3

2 . Using Theorem 2.1, we deduce that the following
inequality has a unique solution u = 1

2 : find u ∈ K such that

(5u − 1)(v − u) + uv2 + 1

2
− u3 + 1

2
+ 2u(v − u)

= 1

2
(v − u)

(
u2 + uv + 14u − 2

) ≥ 0 (3.9)

for all v ∈ K . Next, let γ = 1. For the problem (3.9), we consider the regularized function
Θf,γ defined in (3.4). A simple calculation gives

Θf,γ (u) = sup
v∈K

(
〈Au − f,u − v〉X + ϕ(u,u) − ϕ(u, v) − J 0(u;v − u) − 1

2γ
‖u − v‖2

X

)

= sup
v∈[ 1

2 , 3
2 ]

(
1

2
(u − v)

(
u2 + uv + 14u − 2

) − 1

2
(u − v)2

)

= max
v∈[ 1

2 , 3
2 ]

(
1

2
(u − v)

(
u2 + 13u − 2 + (u + 1)v

))

= 1

2

(
u − 1

2

)(
2u2 + 27u − 3

)
.

Observe that Θf,γ (u) ≥ 0 for all u ∈ K , and Θf,γ (u) = 0 if and only if u = 1
2 . This means

that Θf,γ is a gap function for the problem (3.9).
Let γ = 1 and ζ = 1

2 . The Moreau-Yosida regularized gap function for the problem (3.9)
can be calculated as follows

ΠΘf,γ,ζ (u) = inf
w∈K

{
Θf,γ (w) + ζ‖u − w‖2

X

}

= inf
w∈[ 1

2 , 3
2 ]

{
1

4

(
w − 1

2

)(
2w2 + 27w − 3

) + 1

2
(u − w)2

}

= min
w∈[ 1

2 , 3
2 ]

{
w3

2
+ 7w2 −

(
u + 33

8

)
w + u2

2
+ 3

8

}

= 1

4

(
u − 1

2

)2

.

This implies that ΠΘf,γ,ζ (u) ≥ 0 for all u ∈ K , and ΠΘf,γ,ζ (u) = 0 if and only if u = 1
2 .

Therefore, ΠΘf,γ,ζ is also a gap function for the problem (3.9).
Analogously, it also can proved that the regularized gap function Θ

f,γ
∗ and the Moreau-

Yosida regularized gap function Π
Θ

f,γ,ζ∗ are two gap functions for the problem (3.9).
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We conclude this section with two global error bounds for Problem 2.1 associated with
the regularized gap function Θf,γ and the Moreau-Yosida regularized gap function ΠΘf,γ,ζ ,
respectively. These global error estimates measure the distance between any admissible
point and the unique solution to Problem 2.1.

Theorem 3.3 Let u∗ ∈ K be the unique solution to Problem 2.1 and γ > 0 be such that
mA −αϕ −mJ > 1

2γ
. Assume that the hypotheses of Theorem 2.1 hold. Then, for each u ∈ K ,

we have

‖u − u∗‖X ≤
√

Θf,γ (u)

mA − αϕ − mJ − 1
2γ

. (3.10)

Proof Let u∗ ∈ K be the unique solution to Problem 2.1, i.e.,
〈
Au∗ − f, v − u∗〉

X
+ ϕ

(
u∗, v

) − ϕ
(
u∗, u∗) + J 0

(
u∗;v − u∗) ≥ 0

for all v ∈ K . For any u ∈ K fixed, we insert v = u into the above inequality to obtain
〈
Au∗ − f,u − u∗〉

X
+ ϕ

(
u∗, u

) − ϕ
(
u∗, u∗) + J 0

(
u∗;u − u∗) ≥ 0. (3.11)

By virtue of the definition of Θf,γ , one has

Θf,γ (u) ≥ 〈
Au−f,u−u∗〉

X
+ϕ(u,u)−ϕ

(
u,u∗)−J 0

(
u;u∗ −u

)− 1

2γ

∥∥u−u∗∥∥2

X
. (3.12)

It follows from the monotonicity of A, hypotheses (2.2)(b) and (2.3)(b) that

〈
Au − f,u − u∗〉

X
+ ϕ(u,u) − ϕ

(
u,u∗) − J 0

(
u;u∗ − u

) − 1

2γ

∥∥u − u∗∥∥2

X

≥ 〈
Au∗ − f,u − u∗〉

X
+ ϕ

(
u∗, u

) − ϕ
(
u∗, u∗) + J 0

(
u∗;u − u∗)

+
(

mA − mJ − αϕ − 1

2γ

)∥∥u − u∗∥∥2

X

≥
(

mA − mJ − αϕ − 1

2γ

)∥∥u − u∗∥∥2

X
,

where the last inequality is obtained by using (3.11). Combining the last two inequality, we
have

Θf,γ (u) ≥
(

mA − αϕ − mJ − 1

2γ

)∥∥u − u∗∥∥2

X
.

Hence, the desired inequality (3.10) is valid. �

Theorem 3.4 Let u∗ ∈ K be the unique solution to Problem 2.1 and γ > 0 be such that
mA −αϕ −mJ > 1

2γ
. Assume that the hypotheses of Theorem 2.1 hold. Then, for each u ∈ K

and all ζ > 0, we have

∥∥u − u∗∥∥
X

≤
√

2ΠΘf,γ,ζ (u)

min{mA − αϕ − mJ − 1
2γ

, ζ } . (3.13)

Proof Let u∗ ∈ K be the unique solution of Problem 2.1. By the definition of the function
ΠΘf,γ,ζ , it follows

ΠΘf,γ,ζ (u) = inf
w∈K

{
Θf,γ (w) + ζ‖u − w‖2

X

}
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≥ inf
w∈K

{(
mA − αϕ − mJ − 1

2γ

)
‖u∗ − w‖2

X + ζ‖u − w‖2
X

}

≥ min

{
mA − αϕ − mJ − 1

2γ
, ζ

}
inf
w∈K

{‖u∗ − w‖2
X + ‖u − w‖2

X

}

≥ 1

2
min

{
mA − αϕ − mJ − 1

2γ
, ζ

}∥∥u − u∗∥∥2

X

for all u ∈ K . Hence

∥∥u − u∗∥∥
X

≤
√

2ΠΘf,γ,ζ (u)

min{mA − αϕ − mJ − 1
2γ

, ζ }
for all u ∈ K , which completes the proof of the theorem. �

Finally, we will illustrate the results of Theorems 3.3 and 3.4 by the following example.

Example 3.2 Under the framework of Example 3.1, for the regularized gap function Θf,γ

and the Moreau-Yosida regularized gap function ΠΘf,γ,ζ , it is easy to compute the global
error bounds for the problem (3.9):

√
Θf,γ (u)

mA − αϕ − mJ − 1
2γ

=
√

1

4

(
u − 1

2

)(
2u2 + 27u − 3

)

≥
√

42

4

(
u − 1

2

)2

≥
∣∣∣∣u − 1

2

∣∣∣∣

and
√

2ΠΘf,γ,ζ (u)

min{mA − αϕ − mJ − 1
2γ

, ζ } =
√

(u − 1
2 )2

min{1, 1
2 } ≥

∣∣∣∣u − 1

2

∣∣∣∣.

4 Application to an Elliptic Boundary Value Problem

In the section we shall investigate a boundary value problem with the generalized gradient
and an obstacle effect which illustrates the applicability of the abstract results.

Let Ω be a bounded domain in R
d (d = 2, 3) with Lipschitz continuous boundary Γ .

The boundary is divided into two mutually disjoint measurable parts Γ1 and Γ2 such that
meas(Γ1) > 0. Consider the following elliptic mixed boundary value problem with con-
straints.

Problem 4.1 Find a function u : Ω →R such that

− diva(x,∇u) + ∂g(x, u) � f (x) in Ω, (4.1)

u(x) ≤ Φ(x) in Ω, (4.2)

u = 0 on Γ1, (4.3)

− ∂u

∂νa

∈ k(u) ∂ch(x, u) on Γ2. (4.4)
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Here ∂g and ∂ch denote the generalized gradient and the convex subdifferential of the
functions g : Ω ×R →R and h : Γ2 ×R →R respectively with respect to their second vari-
ables, while the conormal derivative ∂u

∂νa
= (a(x,∇u),ν)Rd represents the heat flux through

the part Γ2, where ν stands for the outward unit normal on Γ .
The mathematical model (4.1)–(4.4) is motivated by the study of semipermeability phe-

nomena which may appear in the interior and on the boundary of the body Ω , and are
met, for instance, in electrostatics, magnetostatics or stationary heat transfer (the behavior
of natural and artificial semipermeable membranes of finite thickness, temperature control
problems, etc.), see [44–46, 50] and the references therein. The function u represents the
electric potential, magnetic potential or temperature, respectively, the function a = a(x,∇u)

is the dielectric coefficient, magnetic permeability or thermal conductivity, and f = f (x)

is a given source term. The material which occupies Ω is non-isotropic and heterogeneous,
and thus a effectively depends on x. Condition (4.2) represents an additional unilateral con-
straint for the solution. Since the function g(x, ·) is supposed to be locally Lipschitz for
a.e. x ∈ Ω , but not necessary convex, the multivalued relation (4.1) is nonmonotone in gen-
eral. Combining it with (4.2)–(4.4) leads to a variational formulation which is a constrained
variational–hemivariational inequality. Note that in general there is no function h̃ such that
∂h̃ = k ∂ch. This means that if g ≡ 0, then the weak form of Problem 4.1, stated in Prob-
lem 4.2 below, reduces to quasi-variational inequality.

We need the following standard functional space. Let X be defined by

X = {
v ∈ H 1(Ω) | v = 0 on Γ1

}
.

Since meas(Γ1) > 0, the space X is endowed with the inner product and corresponding norm
given by

〈u,v〉X =
∫

Ω

(∇u(x),∇v(x)
)
Rd dx and ‖v‖X :=

(∫

Ω

‖∇v(x)‖2
Rd dx

) 1
2

for all u, v ∈ X. Also, we denote by γ0 : X → L2(Γ ) the trace operator. On the other hand,
we consider the admissible set K defined by

K := {
v ∈ X | v(x) ≤ Φ(x) for a.e. x ∈ Ω

}
.

In order to provide the result on the unique solvability of Problem 4.1, we need the
following hypotheses on the data.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a : Ω ×R
d → R

d is such that

(a) a(·,z) is measurable on Ω for all z ∈R
d

with a(x,0) = 0 for a.e. x ∈ Ω.

(b) a(x, ·) is continuous on R
d for a.e. x ∈ Ω.

(c) ‖a(x,z)‖Rd ≤ ma(1 + ‖z‖Rd ) for all z ∈R
d , a.e. x ∈ Ω with ma > 0.

(d)
(
a(x,z1) − a(x,z2)

) · (z1 − z2) ≥ αa‖z1 − z2‖2
Rd

for all z1,z2 ∈ R
d and a.e. x ∈ Ω with αa > 0.

(4.5)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g : Ω ×R→R is such that

(a) g(·, r) is measurable on Ω for all r ∈R and there

exists ẽ ∈ L2(Ω) such that g
(·, ẽ(·)) ∈ L1(Ω).

(b) g(x, ·) is locally Lipschitz on R for a.e. x ∈ Ω.

(c) there exist c̄0, c̄1 ≥ 0 such that

|∂g(x, r)| ≤ c̄0 + c̄1|r| for all r ∈R and a.e. x ∈ Ω.

(d) there exists αg ≥ 0 such that

g0(x, r1; r2 − r1) + g0(x, r2; r1 − r2) ≤ αg|r1 − r2|2
for all r1, r2 ∈R and a.e. x ∈ Ω.

(4.6)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h : Γ2 ×R→R is such that

(a) h(·, r) is measurable on Γ2 for all r ∈R.

(b) h(x, ·) is convex on R for a.e. x ∈ Ω.

(c) there exists Lh > 0 such that

|h(x, r1) − h(x, r2)| ≤ Lh|r1 − r2|
for all r1, r2 ∈R and a.e. x ∈ Γ2.

(4.7)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k : Γ2 ×R→ R is such that

(a) k(·, r) is measurable on Γ2 for all r ∈R.

(b) there exists Lk > 0 such that

|k(x, r1) − k(x, r2)| ≤ Lk|r1 − r2|
for all r1, r2 ∈R and a.e. x ∈ Γ2.

(c) k(x,0) = 0 for a.e. x ∈ Ω.

(4.8)

Φ ∈ X and f ∈ L2(Ω). (4.9)

Moreover, using the standard technique based on the Green formula, see [42, 48, 50], we
obtain the following variational formulation of Problem 4.1.

Problem 4.2 Find u ∈ K such that
∫

Ω

(
a(x,∇u),∇(v − u)

)
Rd dx +

∫

Γ2

(
k(u)h(x, v) − k(u)h(x, u)

)
dΓ

+
∫

Ω

g0(x, u;v − u)dx ≥
∫

Ω

f (v − u)dx for all v ∈ K.

Theorem 4.1 Assume the hypotheses (4.5)–(4.9). If, in addition, the inequality holds

αa − αg − LhLk‖γ0‖2 > 0, (4.10)

then Problem 4.2 has a unique solution u∗ ∈ K .
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Proof Consider the operator A : X → X∗ and the functions ϕ : K ×K → R and J : X →R

defined by

〈Au,v〉X =
∫

Ω

(
a(x,∇u),∇v

)
Rd dx,

ϕ(u, v) =
∫

Γ2

k(u)h(v) dΓ,

J (v) =
∫

Ω

g(x, v) dx

for all u, v ∈ X. It is easy to prove that all conditions of Theorem 2.1 are satisfied with
mA = αa , mJ = αg , c0 = c̄0, c1 = c̄1 and αϕ = LhLk‖γ0‖2. Using Theorem 2.1 and the fact

J 0(u;v) ≤
∫

Ω

g0(u;v)dx for all u,v ∈ X,

we can conclude that Problem 4.2 admits a solution. Moreover, the smallness condition
(4.10) guarantees that Problem 4.2 is uniquely solvable. �

Next, for any parameter γ > 0, we introduce the function Θ̃f,γ : K → R defined by

Θ̃f,γ (u) = supv∈K

(∫
Ω

a(x,∇u) · ∇(u − v)dx + ∫
Γ2

(
k(u)h(x, u) − k(u)h(x, v)

)
dΓ

− ∫
Ω

f (u − v)dx − ∫
Ω

g0(x, u;v − u)dx − 1
2γ

‖u − v‖2
X

)
. (4.11)

From Theorems 3.1–3.4 and 4.1, we directly obtain the following error estimates.

Theorem 4.2 Let u∗ ∈ K be the unique solution to Problem 4.2. Under the hypotheses of
Theorem 4.1, we have

(i) for each γ > 0 and f ∈ L2(Ω), Θ̃f,γ : K → R is a regularized gap function for Prob-
lem 4.2.

(ii) if γ > 0 is such that

αa − αg − LhLk‖γ0‖2 >
1

2γ
,

then, for each u ∈ K , it holds

∥∥u − u∗∥∥
X

≤
√√√√ Θ̃f,γ (u)

αa − αp − LhLk‖γ0‖2 − 1
2γ

.

Theorem 4.3 Let u∗ ∈ K be the unique solution to Problem 4.2. Under the hypotheses of
Theorem 4.1, we have

(i) for any γ , ζ > 0, the function Π̃Θ̃f,γ,ζ : K → R defined by

Π̃Θ̃f,γ,ζ (u) = inf
w∈K

{
Θ̃f,γ (w) + ζ‖u − w‖2

X

}

is the Moreau-Yosida regularized gap function for Problem 4.2.
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(ii) for any ζ > 0, if γ > 0 is such that

αa − αg − LhLk‖γ0‖2 >
1

2γ
,

then, for each u ∈ K the following bounds holds

∥∥u − u∗∥∥
X

≤
√√√√ 2 Π̃Θ̃f,γ,ζ (u)

min{αa − αg − LhLk‖γ0‖2 − 1
2γ

, ζ } .
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