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Abstract In this paper we prove existence of global strong-weak two-dimensional solutions
to the Navier-Stokes and heat equations coupled by the external force dependent on temper-
ature and the heat dissipation, respectively. The existence is proved in a bounded domain
with the Navier boundary conditions for velocity and the Dirichlet boundary condition for
temperature. Next, we prove existence of 3d global strong solutions via stability.

Keywords Incompressible heat-conducting fluid · Stability of two-dimensional solution ·
Navier boundary conditions

1 Introduction

We consider a complete thermodynamical model of unsteady flows of incompressible ho-
mogeneous Newtonian fluids in a fixed bounded three-dimensional cylinder. The model
comprises evolutionary equations for the velocity, pressure and temperature fields. We re-
strict our considerations to temperature independent material coefficients, that is, the vis-
cosity and heat conductivity coefficients. We assume that the external force depends on
temperature in a very special way (see Theorem 1). The heat equation contains the dissipa-
tive heating term which follows from the general theory of incompressible heat-conducting
Navier-Stokes motions. We assume that the fluid is Newtonian, the internal energy is pro-
portional to the temperature and the heat flux is proportional to the temperature gradient.
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3 Institute of Mathematics and Cryptology, Cybernetics Faculty, Military University of Technology,
Kaliskiego 2, 00-908 Warsaw, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10440-017-0116-3&domain=pdf
mailto:wz@impan.gov.pl
mailto:emzad@mini.pw.edu.pl
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Let D = Ω × (−a, a) be a bounded cylinder, where Ω ⊂ R
2 be an open domain, L = 2a

is the length of the cylinder which is parallel to the x3-axis. The three-dimensional problem
under the consideration is as follows

vt + v · ∇v − ν rot2 v + ∇p = α(θ)f in D+ = D ×R+,

divv = 0 in D+,

θt + v · ∇θ −κ�θ = ν|D(v)|2 in D+,

v · n̄ = 0 on S+ = S ×R+,

n̄ × rotv = 0 on S+,

θ = θ∗ on S+,

v|t=0 = v(0), θ |t=0 = θ(0) in D,

(1)

where S = ∂D, v = (v1(x, t), v2(x, t), v3(x, t)) ∈ R
3 is the velocity of the fluid, x =

(x1, x2, x3) are given Cartesian coordinates, p = p(x, t) ∈ R is the pressure, θ = θ(x, t) ∈
R+ is the temperature of the fluid, f = (f1(x, t), f2(x, t), f3(x, t)) ∈ R

3 is the external force
field. The Cartesian coordinates x are such that x3-axis is parallel to the cylinder and it is
located inside it. By the dot we denote the scalar product in R

3.
By D(v) = {vi,xj

+ vj,xj
}i,j=1,2,3 = ∇v + ∇vT we denote the dilatation tensor, rot2 =

rot rot = −� which holds on any divergence free vector. Moreover, ν > 0 is the constant
viscosity coefficient, κ > 0 is also the constant heat conductivity coefficient and θ∗ > 0 is a
constant. Moreover, n̄ is the unit outward normal vector to S. The boundary S is split into
two parts, i.e. S = S1 ∪ S2, where S1 is parallel to the x3-axis and S2 is perpendicular to it.
Additionally, S2 = S2(−a) ∪ S2(a), where S2(b) meets x3-axis at x3 = b.

The function α = α(θ) from the r.h.s. of (1.1)1 will be determined later. The term α(θ)f

generates the motion by heating and mechanically by the external force f . Similarly, the
term ν|D(v)|2 from the r.h.s. of (1.1)3 heats the fluid by the viscous dissipation.

The aim of this paper is to prove the existence and uniqueness of a two-dimensional
solution to problem (1), the global existence of sufficiently small three-dimensional pertur-
bations of the 2d-solution and the existence of a global solution to problem (1) close to the
two-dimensional solution assuming that the differences of external forces and initial data
are sufficiently small in appropriate norms.

The important assumption is such that the external force f does not decay in time. This
implies that the solution does not vanish as time tends to infinity. Then, via stability and
periodicity, the existence of stationary 2d and 3d solutions can be proved.

The stability of a two-dimensional solution to the Navier-Stokes system with a nonde-
caying in time external force has been examined in [21] and [23]. In [21] the system supple-
mented by the periodic boundary conditions is considered, while the paper [23] is devoted
to the system in a cylinder with the Navier boundary conditions.

Problem (1) is much more difficult than the problem considered in [19], where the r.h.s.
of (1)3 is assumed to be zero. Then in [19] it is proved that there exists a global solution
under the assumption that v,x3(0), θ,x3(0), f,x3 are sufficiently small in L2-norms. Hence the
obtained solution also has the same property. This means that the solution in [19] is close to
the two-dimensional solution. However, in [19], contrary to this paper, it is not possible to
control a behavior of solutions as time tends to infinity.

In paper [22] we proved the existence of a strong global solution to (1)1,2,3,6,7 with the slip
boundary conditions for velocity which are close for all time to a two-dimensional solution.
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The above mentioned result is obtained under much stronger assumptions about α than these
supposed in this paper. More precisely, we assumed in [22] that |α(θ)| + |α′(θ)| ≤ α∗ for
θ ≥ θ∗ > 0, where α∗ > 0 is a constant.

By a two-dimensional solution to problem (1) we mean functions w = (w1(x1, x2, t),

w2(x1, x2, t),0) ∈R
2, q = q(x1, x2, t) ∈ R and ϑ = ϑ(x1, x2, t) ∈ R+ which satisfy

wt + w · ∇w + ν ˜rot rot(2) w + ∇q = α(ϑ)h in Ω+ ≡ Ω ×R+,

divw = 0 in Ω+,

ϑt + w · ∇ϑ −κ�ϑ = ν|D(w)|2 in Ω+,

w · n̄ = 0 on S0+ = S0 ×R+,

rot(2) w = 0 on S0+,

ϑ = θ∗ on S0+,

w|t=0 = w(0), ϑ |t=0 = ϑ(0) in Ω,

(2)

where S0 is the boundary of Ω , S1 = S0 × (−a, a), rot(2) w = w2,x1 − w1,x2 , ˜rotϕ =
(ϕ,x2 ,−ϕ,x1) and h = (h1(x1, x2, t), h2(x1, x2, t),0) ∈ R

2.
The direct calculation gives

rot2 w = ˜rot rot(2) w.

Therefore the main operators in (1)1 and (2)1 are compatible. Moreover, it is shown in [23]
that

n̄ × rotw|S0 = τ̄ rot(2) w|S0

and

n̄ × rotw|S2 = 0,

where n̄ = (n1, n2,0), τ̄ = (n2,−n1,0).
To show the stability of two-dimensional solutions of (2) we introduce the quantities

u = v − w, η = p − q, χ = θ − ϑ, g = f − h

which are solutions to the problem

ut + u · ∇u + ν rot2 u + ∇η = −w · ∇u − u · ∇w + [
α(θ) − α(ϑ)

]
f + α(ϑ)g in D+,

divu = 0 in D+,

χt + u · ∇χ −κ�χ = −w · ∇χ − u · ∇ϑ + ν
∣
∣D(u)

∣
∣2 + 2νD(u) :D(w) in D+,

u · n̄ = 0 on S+,

n̄ × rotu = 0 on S+,

χ = 0 on S+,

u|t=0 = v(0) − w(0) ≡ u(0), χ |t=0 = θ(0) − ϑ(0) ≡ χ(0) in Ω.

(3)
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To formulate main results of the paper we introduce the following notation:

Ā1(T ) = sup
k∈N0

(k+1)T∫

kT

∥
∥h(t)

∥
∥2

L2(Ω)
dt + sup

k∈N0

(k+1)T∫

kT

∥
∥h(t)

∥
∥2r

L∞(Ω)
dt,

Ā2 = ∥∥rotw(0)
∥∥2

L2(Ω)
+ ∥∥ϑ(0)

∥∥2

L2(Ω)
,

where T > 0, k ∈ N0 = N∪ {0}.
The norms introduced above as well as norms occurring in formulations of the main

results are defined in Sect. 2.

Theorem 1 Assume that S0 ∈ C2, 0 < σ < 1
2 , T > 0, h ∈ L2(kT , (k + 1)T ;L2(Ω)) ∩

L2r (kT , (k + 1)T ;L∞(Ω)) for all k ∈ N0, where r = 1
1−2σ

and Ā1(T ) < ∞. Moreover,
assume that w(0) ∈ H 1(Ω), divw(0) = 0, w(0) · n̄|S0 = 0, ϑ(0) ∈ L2(Ω), ϑ(0) ≥ θ∗ for
some constant θ∗ > 0, α ∈ C([θ∗,+∞)) and |α(ϑ)| ≤ a1 + a2ϑ

σ for ϑ ≥ θ∗, where a1 ≥ 0,
a2 > 0 are constants. Then there exists a unique solution

(w,ϑ, q) ∈ H 2,1
(
Ω × (

kT , (k + 1)T
)) × C

([
kT , (k + 1)T

];L2(Ω)
)

∩ L2

(
kT , (k + 1)T ;H 1(Ω)

) × L2

(
kT , (k + 1)T ;H 1(Ω)

)
, k ∈N0,

to problem (2) with
∫

Ω
qdx = 0 for a.a. t > 0. Moreover,

‖w‖2
H 2,1(Ω×(kT ,(k+1)T ))

+ ‖ϑ‖2
C([kT ,(k+1)T ];L2(Ω)) + ‖ϑ‖2

L2(kT ,(k+1)T ;H 1(Ω))

+ ‖q‖2
L2(kT ,(k+1)T ;H 1(Ω))

≤ c(Ā1, Ā2), (4)

where c(Ā1, Ā2) does not depend on k.

Theorem 1 is proved in Sect. 3. The proof of Theorem 1 is based on the Faedo-Galerkin
approximations combined with a step by step method. Since we need in the proof H 2-
estimate for the velocity and H 1-estimate for the temperature, we assume that |α(ϑ)| ≤ a1 +
a2ϑ

σ for ϑ ≥ θ∗, where 0 < σ < 1
2 , a1, a2 > 0. This restriction is generated by the dissipative

heating term appearing in the r.h.s. of (1)3. In the case of the lack of the dissipative term,
the Lp-estimate for the temperature follows immediately, so the above restriction on α is
not necessary. To obtain estimate (4) we show that the data in time intervals [kT , (k + 1)T ],
k ∈N0 do not increase with k.

Our next result is the theorem about the stability of the two-dimensional solution obtained
in Theorem 1 in the set of three-dimensional solutions.

Let a > 0 be given. Then we define

M =
{
(h,f ) ∈ (

L2,loc

(
R+;L2(Ω)

) ∩ L2r,loc

(
R+;L∞(Ω)

)) × L2,loc

(
R+;L∞(D)

) :

∃T > 0 such that T > a
(
Ā1(T ) + Ā2 + sup

k∈N0

‖f ‖L2(kT ,(k+1)T ;L∞(D)

)}
,

where a = 4c̃2 c̃0
c̃1

, c̃0 > 0 is the constant from (43) and c̃1, c̃2 > 0 are the constants from
inequality (48).
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Theorem 2 Let S0 ∈ C2, 0 < σ < 1
2 , h ∈ L2,loc(R+;L2(Ω)) ∩ L2r,loc(R+;L∞(Ω)), where

r = 1
1−2σ

and let Ā1(T ) < ∞ for every T > 0. Suppose that the assumptions of Theo-
rem 1 concerning w(0), ϑ(0) and α are satisfied. Let g ∈ C(R+;L∞(D)), u(0) ∈ H 1(D),
divu(0) = 0, u(0) · n̄|S = 0, χ(0) ∈ L2(D), θ(0) ≥ θ∗, α ∈ C1([θ∗,+∞)), |α′(θ)| ≤ a3 for
θ ≥ θ∗, where a3 > 0 is a constant. Assume that (h,f ) ∈ M. Moreover, suppose that

∥∥rotu(0)
∥∥2

L2(D)
+ ∥∥χ(0)

∥∥2

L2(DE)
≤ γ (5)

and
∥
∥g(t)

∥
∥2

L∞(D)
≤ δγ for all t ∈ R+. (6)

There exists T > 0 such that if δ, γ > 0 are sufficiently small and if (u,χ,η) ∈ H 2,1(D ×
(kT , (k + 1)T )) × L2(kT , (k + 1)T ;H 1(D)) × L2(kT , (k + 1)T ;H 1(D)) with χt ∈
L2(kT , (k + 1)T ;H−1(D)) k ∈ N0, is a solution to problem (3) then

∥∥rotu(t)
∥∥2

L2(D)
+ ∥∥χ(t)

∥∥2

L2(D)
≤ c̄γ for all t ∈ [

kT , (k + 1)T
]
, k ∈N0 (7)

and

‖u‖2
H 2,1(D×(kT ,(k+1)T ))

+ ‖χ‖2
L2(kT ,(k+1)T ;H 1(D))

+ ‖χt‖2
L2(kT ,(k+1)T ;H−1(D))

+ ‖∇η‖2
L2(kT ,(k+1)T ;L2(D)) ≤ c̄γ

for all k ∈N0, (8)

where c̄ = c̄(T ) does not depend on k and (w,ϑ, q) is the two-dimensional solution to
problem (1), which exists in virtue of Theorem 1.

To prove Theorem 2 we derive a nonlinear differential inequality (see the proof of
Lemma 9) and then apply a contradiction argument.

Theorems 1 and 2 imply the following global existence result.

Theorem 3 Let S0 ∈ C2, 0 < σ < 1
2 , h ∈ L2,loc(R+;L2(Ω)) ∩ L2r,loc(R+;L∞(Ω)), where

r = 1
1−2σ

and let Ā1(T ) < ∞ for every T > 0. Assume that the assumptions of The-
orem 1 concerning w(0), ϑ(0) and α are satisfied. Let v(0) ∈ H 1(D), divv(0) = 0,
v(0) · n̄|S = 0, θ(0) ∈ L2(D), θ(0) ≥ θ∗, α ∈ C1([θ∗,+∞)), |α′(θ)| ≤ a3 for θ ≥ θ∗, where
a3 > 0 is a constant. Moreover, assume that f ∈ M, g ∈ C(R+;L∞(0)), and let condi-
tions (5)–(6) be satisfied. There exists T > 0 such that if δ and γ are sufficiently small then
there exists a unique global solution (v, θ,p) ∈ H 2,1(D × (kT , (k + 1)T )) × C([kT , (k +
1)T ];L2(D)) ∩ L2(kT , (k + 1)T ;H 1(D)) × L2(kT , (k + 1)T ;H 1(D)), k ∈ N0 of problem
(1) with

∫
Ω

pdx = 0.

In view of Theorem 1 we prove Theorem 2 by using estimates (7)–(8) derived for the
Faedo-Galerkin approximations.

There is a wide literature concerning equations describing motions of incompressible
heat conducting fluids. Papers [6, 8, 10, 16, 19] are concerned with solvability results for
the Boussinesq equations, that is, for equations (1)1,2,3, where ν|D(v)|2 disappears. Kagei in
[10] and Morimoto in [16] proved the existence of weak solutions to the three-dimensional
Boussinesq equations with temperature – independent viscosity, while in [8] the weak solv-
ability of the three-dimensional problem with temperature – dependent viscosity has been
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examined. Diaz and Galiano [6] showed existence of weak solutions to the following initial-
boundary value problem

vt + v · ∇v − div
(
ν(θ)D(v)

) = F(θ), divv = 0

θt + v · ∇θ − �ϕ(θ) = 0

v|S = 0, ϕ(θ)|S = ϕD,

under some restrictions on the functions ν(θ), ϕ(θ), F(θ).
The question of the uniqueness of a solution to the two-dimensional Boussinesq equa-

tions with the Dirichlet boundary conditions and with temperature dependent viscosity has
been studied in [9].

The recent papers concerning the Boussinesq system are [2] and [15]. In [2] Brandolese
and Schonbek examine a large time behavior of both weak and strong solutions to the three-
dimensional system. Liu and Li [15] study the stability question for the Cauchy problem to
equations of type (1), where the r.h.s. of (1)3 vanishes and the r.h.s. of (1)1 equals θ ē3, ē3 =
(0,0,1). They consider two solutions (v1, θ1) and (v2, θ2), where ‖θ1(0)‖L1 and ‖θ2(0)‖L2 +
‖v2(0)‖

B
1/2
2,1

are sufficiently small. The following stability is shown: v1 −v2, θ1 −θ2 are small

if initially they are small. Since the Cauchy problem is considered, the technique of used
function spaces is in the spirit of the French School. In contrast to our result solutions in
[14] converge to zero as time tends to infinity.

Papers of Kagei [11, 12] are devoted to the two-dimensional system (1)1,2,3 where the left-
hand side of equation (1)3 contains also the term −e2 · v, e2 = (0,1). Considering both the
periodic and Dirichlet boundary conditions the author discusses the existence, uniqueness
and large time behavior questions in dependence on assumptions about the right-hand side
of (1)1 and initial data. Kagei [11] touched the very difficult 2d Bérnard convection problem.
For a strongly nonhomogeneous boundary condition for the temperature the motion becomes
very chaotic, so the concept of the strange attractor appears. The author relaxes the boundary
condition on the temperature assuming that it is more homogeneous. Then he is able to
derive many qualitative properties for the obtained weak solutions.

The Navier-Stokes system with temperature dependent viscosity coupled with the equa-
tion of conservation of internal energy has been studied in [3, 5, 7, 17].

Buliček, Feireisl, Málek [3] and Buliček, Kaplicky, Málek [4] proved the existence of
suitable weak solutions to the Navier-Stokes-Fourier system in [3] and to the Stokes-Fourier
in [4]. Moreover, Feireisl and Málek [7] studied the existence of weak solutions to the
Navier-Stokes-Fourier system with temperature dependent viscosity. Naumann [17] proved
the existence of weak solutions to system (1)1–(1)3 with the Dirichlet boundary conditions
and with temperature-dependent viscosity and heat conductivity coefficients. Moreover, it
is assumed that the r.h.s. of (1)1 disappears. Consighlieri, Rodrigues, Shilkin [5] consider
problem similar to (1)1–(1)3 with temperature-dependent viscosity in 2d-torus, that is, with
periodic boundary conditions. The existence of weak solutions is proved. Moreover, the
viscosity coefficient ν = ν(θ) satisfies ν1, ν2, ν1 ≤ ν(θ) ≤ ν2, where ν1, ν2 are two posi-
tive constants. Kagei, Ružička, Thäter [13] proved the existence, uniqueness and stability
of the motionless state for system of type (1), where v · ∇v and v · ∇θ disappear. But in
(1)3 additionally appears the term θv · f . They proved the existence of an unique solu-
tion in the class: v ∈ C([0, T ];D(P�)), θ ∈ C([0, T ];H 2(Ω) ∩ H 1

0 (Ω)), where P is the
Helmholtz projection. Shilkin in [18] studies the classical solvability of the coupled system
of two nonlinear parabolic equations with temperature-dependent viscosity which models
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a Poiseuille-type flow of an incompressible viscous fluid. He shows the existence of solu-
tions to equations simpler than (1) because the terms v · ∇v and v · ∇θ disappear. More-
over, it is supposed that α(θ) = 1. The considered system is complemented by the Dirichlet
conditions for the velocity and temperature. The problem is considered in a bounded do-
main.

The paper consists of four sections. In Sect. 2 notation and some auxiliary results are
introduced. In Sect. 3 the two-dimensional problem is considered. Some useful a priori
estimates are derived and Theorem 1 is proved. Section 4 contains the proofs of Theorems 2
and 3.

2 Notation and Auxiliary Results

Let N0 = N ∪ {0} and let Ω ⊂ R
n be an open set. By Lp(Ω), p ∈ [1,∞] we denote the

Lebesque space of integrable functions and by Wm
p (Ω), m ∈ N0, p ∈ [1,∞] the Sobolev

space. In the special case of p = 2 we use the notation: Hm(Ω) = Wm
2 (Ω).

Let I ⊂ R be an open interval. Then H 2,1(Ω × I ) denotes the space of functions with
the finite norm

‖u‖H 2,1(Ω×I ) =
(

‖ut‖2
L2(Ω×I ) +

∑

0≤|α|≤2

‖Dα
x u‖2

L2(Ω×I )

)1/2

,

where Dα
x = ∂

α1
x1 . . . ∂αn

xn
, |α| = α1 + · · · + αn, αi ∈N0, i = 1, . . . , n.

Let X be a Banach space. By Lp(I ;X) we denote the space of all measurable functions
u : I → X with the finite norm

‖u‖Lp(I ;X) =
(∫

I

‖u(t)‖p

Xdt

)1/p

if 1 < p < ∞

and

‖u‖L∞(I ;X) = esssupt∈I

∥∥u(t)
∥∥

X
.

By C(Ī ;X) we denote the space of all continuous functions u : Ī → X with the finite norm

‖u‖C(Ī ;X) = sup
t∈I

∥
∥u(t)

∥
∥

X
.

Let u = u(x1, . . . , xn) be a scalar-valued function defined on Ω ⊂ R
n, n = 2,3. Then by ∇u

or ux we denote the gradient of u. For u : Ω → R
n, n = 2,3, by ∇u or ux we denote the

matrix [uixj
]i,j=1,...,n. Moreover, then |ux | =

√∑n

ij=1 |uixj
|2.

We need the following lemma.

Lemma 1 Let θ(0)∈L2(D) and assume that θ(0)≥ θ∗ for some θ∗ >0. Moreover, assume
that functions v, θ such that ∇v ∈ L 20

7
(D× (kT , (k+1)T )), k ∈N0, θ ∈ L 10

3
(D× (kT , (k+

1)T )), k ∈N0 satisfy (1). Then

θ ≥ θ∗ a.e. in D × (
kT , (k + 1)T

)
, k ∈N0. (9)
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Proof Multiply (1)3 by (θ − θ∗)− = min{θ − θ∗,0}. Then

d

dt

∫

D

(θ − θ∗)2
−dx + 2κ

∫

D

∣
∣∇(θ − θ∗)−

∣
∣2

dx = 2ν

∫

D

∣
∣D(v)

∣
∣2

(θ − θ∗)−dx ≤ 0

for all t ∈ (
kT , (k + 1)T

)
, k ∈N0.

Integrating the above equality with respect to time yields
∫

D

(θ − θ∗)2
−dx + 2κ

∫

D×(kT ,(k+1)T )

∣
∣∇(θ − θ∗)−

∣
∣2

dxdt

= 2ν

∫

D×(kT ,(k+1)T )

∣∣D(v)
∣∣2

(θ − θ∗)−dxdt +
∫

D

(
θ(kT ) − θ∗

)2

−dx, k ∈N0.

The l.h.s. of the above equality implies that θ − θ∗ ∈ L10/3(D × (kT , (k + 1)T )). Then, by
the Hölder inequality, the first integral on the r.h.s. is bounded if D(v) ∈ L20/7(D× (kT , (k+
1)T )).

Hence
∫

D

(θ − θ∗)2
−dx ≤

∫

D

(
θ(kT ) − θ∗

)2

−dx = 0,

so (θ − θ∗)− = 0 a.e. in D × (kT , (k + 1)T ), which implies (9). �

Consider the problem

w2x1 − w1x2 = b in Ω,

w1x1 + w2x2 = 0 in Ω,

w · n̄ = 0 on S0,

(10)

where Ω ⊂ R
2 is an open domain, S0 is the boundary of Ω .

Lemma 2 (See [23]) Let S0 ∈ Cs+1, b ∈ Hs(Ω), s ∈ N0. Then there exists a solution w ∈
Hs+1(Ω) to problem (10) and

‖w‖Hs+1(Ω) ≤ c‖b‖Hs(Ω).

Now, consider the elliptic overdetermined problem

rotu = b in D,

divu = 0 in D,

u · n̄ = 0 on S,

(11)

where D ⊂ R
3 is a cylinder.

Lemma 3 (See [20, 23]) Let S1 ∈ Ci+1, b ∈ Hi(D), i = 1,2, divb = 0. Then there exists a
solution u ∈ Hi+1(D) to problem (11) and

‖u‖Hi+1(D) ≤ c‖b‖Hi(D), i = 0,1, H 0(D) = L2(D).
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In Sect. 3 (see Lemma 5) we need the following lemma.

Lemma 4 Let w be a sufficiently regular function satisfying

divw = 0 in Ω,

rot(2) w = 0 on S0.
(12)

Then ∫

Ω

w · ∇w · ˜rot rotw(2)dx = 0.

Proof Since rot(2) w = w2x1 − w1x2 and ˜rotφ = (φx2 ,−φx1), we have
∫

Ω

w · ∇w · ˜rot rotw(2)dx

=
∫

Ω

[
w · ∇w1

(
rot(2) w

)
x2

− w · ∇w2

(
rot(2) w

)
x1

]
dx

=
∫

Ω

[(
w · ∇w1 rot(2) w

)
x2

− (
w · ∇w2 rot(2) w

)
x1

]
dx

−
∫

Ω

[
(w · ∇w1)x2 rot(2) w − (w · ∇w2)x1 rot(2) w

]
dx

= −
∫

S0

(w · ∇w2n1 − w · ∇w1n2) rot(2) wdS0

−
∫

Ω

(w · ∇w1x2 − w · ∇w2x1) rot(2) wdx

−
∫

Ω

(w1x2w1x1 + w2x2w1x2 − w1x1w2x1 − w2x1w2x2) rot(2) wdx

≡ I1 + I2 + I3.

By condition (12)2 we get that I1 = 0. Next, by (12)1

I2 =
∫

Ω

w · ∇ rot(2) w rot(2) wdx = 1

2

∫

Ω

w · ∇(
rot(2) w

)2
dx

= 1

2

∫

S0

w · n̄(
rot(2) w

)2
dS0 = 0.

Finally,

I3 = −
∫

Ω

divw
(
rot(2) w

)2
dx = 0.

This concludes the proof. �
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3 Existence of a Solution to Two-Dimensional Problem

First, we derive a priori estimates for a two-dimensional solution to problem (2). Introduce
the function ϑ̄ = ϑ − θ∗. Then system (2) takes the form

wt − w · ∇w + ν ˜rot rot(2) w + ∇q = α(ϑ̄ + θ∗)h in Ω+,

divw = 0 in Ω+,

ϑ̄t + w · ∇ϑ̄ −κ�ϑ̄ = ν
∣∣D(w)

∣∣2
in Ω+,

w · n̄ = 0 on S0+,

rot(2) w = 0 on S0+,

ϑ̄ = 0 on S0+,

w|t=0 = w(0), ϑ̄ |t=0 = ϑ̄(0) in Ω,

(13)

where ϑ̄(0) = ϑ(0) − θ∗. Assume that

ϑ(0) ≥ θ∗. (14)

Then ϑ ≥ θ∗ a.e. in Ω+ (see Lemma 1). Suppose also that

α ∈ C
([θ∗,+∞)

)

and
∣∣α(ϑ)

∣∣ ≤ a1 + a2ϑ
σ for ϑ ≥ θ∗, (15)

where a1 ≥ 0, a2 > 0, 0 < σ < 1
2 are constants.

Introduce the notation

X(t) = ‖ rotw‖2
L2(Ω) + ‖ϑ̄‖L2(Ω),

Y (t) = ‖ rotw‖2
H 1(Ω)

+ ‖ϑ̄‖L2(Ω).

Lemma 5 Let S0 ∈ C2 and T > 0 be fixed. Assume that conditions (14)–(15) are satisfied
and let w(0) ∈ H 1(Ω), divw(0) = 0, w(0) · n̄|S0 = 0, ϑ(0) ∈ L2(Ω). Moreover, let

A1 = sup
k∈N0

(k+1)T∫

kT

∥
∥h(t)

∥
∥2

L2(Ω)
dt + sup

k∈N0

(k+1)T∫

kT

∥
∥h(t)

∥
∥2r

L4(Ω)
dt < ∞,

where r = 1
1−2σ

. Assume that (w, ϑ̄, q) is a sufficiently regular solution to problem (13).
Then

X(kT ) ≤ c̄2A1

1 − e−c̄1T
+ X(0) ≡ A2, (16)

where c̄1, c̄2 > 0 are constants from inequality (21). Furthermore,
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X(t) +
t∫

kT

Y
(
t ′
)
dt ′ ≤ c(A1 + A2), (17)

where t ∈ (kT , (k + 1)T ], k ∈N0, c > 0 is a constant.

Proof Multiplying equation (13)1 by ˜rot rot(2) w = −�w, integrating over Ω and using
Lemma 2 yields

1

2

d

dt
‖ rotw‖2

L2(Ω) + ν‖ rotw‖2
H 1(Ω)

= −
∫

Ω

α(ϑ̄ + θ∗)h�wdx.

Using (15) we have

d

dt
‖ rotw‖2

L2(Ω) + 2ν‖ rotw‖2
H 1(Ω)

≤ c
(‖h‖L4(Ω)‖ϑ̄‖σ

L4σ (Ω)‖�w‖L2(Ω) + ‖h‖L2(Ω)‖�w‖L2(Ω)

)
,

where ‖ϑ̄‖L4ϑ (Ω) = (
∫

Ω
ϑ̄4σ dx)

1
4σ for 0 < σ < 1

2 .
By the imbedding theorem, Young inequality and Lemma 3 we get

d

dt
‖ rotw‖2

L2(Ω) + 2ν‖ rotw‖2
H 1(Ω)

≤ ε‖ rotw‖2
H 1(Ω)

+ c(ε)
(‖h‖2

L4(Ω)‖ϑ̄‖2σ
L4σ (Ω) + ‖h‖2

L2(Ω)

)
.

Assuming that ε is sufficiently small we obtain

d

dt
‖ rotw‖2

L2(Ω) + c1‖ rotw‖2
H 1(Ω)

≤ c2

(‖h‖2
L4(Ω)‖ϑ̄‖2σ

L2(Ω) + ‖h‖2
L2(Ω)

)
. (18)

Now, multiplying (13)3 by ϑ̄ gives

1

2

d

dt
‖ϑ̄‖2

L2(Ω) +κ

∫

Ω

|∇ϑ̄ |2dx = ν

∫

Ω

∣∣D(w)
∣∣2

ϑ̄dx ≤ c‖w‖2
H 2(Ω)

‖ϑ̄‖L2(Ω). (19)

Using the Poincaré inequality and Lemma 2 we obtain

d

dt
‖ϑ̄‖L2(Ω) + c3‖ϑ̄‖L2(Ω) ≤ c‖w‖2

H 2(Ω)
≤ c4‖ rotw‖2

H 1(Ω)
. (20)

Multiplying (18) by a constant c5 > 0 so large that c1c5
2 > c4 and adding (18) and (20) we

get

d

dt

(‖ rotw‖2
L2(Ω) + ‖ϑ̄‖L2(Ω)

) + c
(‖ rotw‖2

H 1(Ω)
+ ‖ϑ̄‖L2(Ω)

)

≤ c
(‖h‖2

L4(Ω)‖ϑ̄‖2σ
L2(Ω) + ‖h‖2

L2(Ω)

)

≤ ε‖ϑ̄‖L2(Ω) + c(ε)
(‖h‖2r

L4(Ω) + ‖h‖2
L2(Ω)

)
,
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where we used that 2σ < 1 and applied the Young inequality with r ′ = 1
2σ

> 1, r = r ′
r ′−1 =

1
1−2σ

. Choosing ε sufficiently small we have

d

dt

(‖ rotw‖2
L2(Ω) + ‖ϑ̄‖L2(Ω)

) + c̄1

(‖ rotw‖2
H 1(Ω)

+ ‖ϑ̄‖L2(Ω)

)

≤ c̄2
(‖h‖2r

L4(Ω) + ‖h‖2
L2(Ω)

)
.

Hence

d

dt
X + c̄1X ≤ c̄2

(‖h‖2r
L4(Ω) + ‖h‖2

L2(Ω)

)
, (21)

so

d

dt

(
ec̄1tX

) ≤ c̄2e
c̄1t

(‖h‖2r
L4(Ω) + ‖h‖2

L2(Ω)

)
.

Therefore,

X(t) ≤ c̄2

t∫

kT

(∥∥h
(
t ′
)∥∥2r

L4(Ω)
+ ∥∥h

(
t ′
)∥∥2

L2(Ω)

)
dt ′ + e−c̄1(t−kT )X(kT ) (22)

for t ∈ (kT , (k + 1)T ], k ∈N0. Inserting t = (k + 1)T to (22) implies

X
(
(k + 1)T

) ≤ c̄1

(k+1)T∫

kT

(∥∥h
(
t ′
)∥∥2r

L4(Ω)
+ ∥∥h

(
t ′
)∥∥2

L2(Ω)

)
dt ′ + e−c̄1T X(kT ).

Therefore, by iteration inequality (16) follows. Moreover, integrating (21) over (kT , t) and
using (16), we get (17). �

Lemma 6 Let the assumptions of Lemma 5 hold. Then

sup
kT ≤t≤(k+1)T

∥
∥w(t)

∥
∥2

H 1(Ω)
≤ c(A1 + A2) for k ∈N0 (23)

and

‖w‖2
L2(kT ,t;H 2(Ω))

+‖ϑ̄‖2
L2(kT ,t;H 1(Ω))

≤ c(A1 +A2) for t ∈ (
kT , (k +1)T

]
, k ∈N0, (24)

where c > 0 does not depend on k.

Proof Estimate ‖w‖2
H 1(Ω)

≤ c‖ rotw‖2
L2(Ω) (see Lemma 2) and (17) imply (23). Next, by

the estimate

‖w‖2
H 2(Ω)

≤ c‖ rotw‖2
H 1(Ω)

we get

‖w‖2
L2(kT ,t;H 2(Ω))

≤ c(A1 + A2). (25)

Now, integrating (19) over (kT , t), t ∈ (kT , (k + 1)T ], k ∈ N0 and using (17) and (25) we
obtain
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‖ϑ̄‖2
L2(kT ,t;H 1(Ω))

≤ c(A1 + A2).

This ends the proof. �

Lemma 7 Let the assumptions of Lemma 5 be satisfied. Let (w, ϑ̄, q) be a sufficiently reg-
ular solution to problem (13). Then

‖wt‖2
L2(Ω×(kT ,(k+1)T )) + ‖ϑt‖2

L2(kT ,(k+1)T ;H−1(Ω))
+ ‖∇q‖2

L2(Ω×(kT ,(k+1)T )) ≤ c
(
A2

1,A
2
2

)
,

where c does not depend on k.

Proof Multiply (13)1 by wt and integrate over Ω and with respect to time from kT to
(k + 1)T . We get

‖wt‖2
L2(Ω×(kT ,(k+1)T )) +

∫

Ω

∣∣rot(2) w
(
(k + 1)T

)∣∣2
dx

≤ c

( (k+1)T∫

kT

∫

Ω

∣
∣α(ϑ̄ + θ∗)hwt

∣
∣dxdt +

(k+1)T∫

kT

∫

Ω

|w · ∇w · wt |dxdt

+
∫

Ω

∣
∣rot(2) w(kT )

∣
∣2

dx

)
≤ ε‖wt‖2

L2(Ω×(kT ,(k+1)T ))

+ c

( (k+1)T∫

kT

‖h‖L4(Ω)‖ϑ̄‖σ
L2(Ω)‖wt‖L2(Ω)dt +

(k+1)T∫

kT

‖h‖L2(Ω)‖wt‖L2(Ω)dt

)

+ c(ε)

( (k+1)T∫

kT

∫

Ω

|w|2|wx |2dxdt +
∫

Ω

∣∣rot(2) w(kT )
∣∣2

dx

)
. (26)

Using in (26) the estimate

(k+1)T∫

kT

‖h‖L4(Ω)‖ϑ̄‖σ
L2(Ω)‖wt‖L2(Ω)dt

≤ ε‖wt‖2
L2(Ω×(kT ,(k+1)T )) + c(ε) sup

kT ≤t≤(k+1)T

‖ϑ̄‖2σ
L2(Ω)

(k+1)T∫

kT

‖h‖2
L4(Ω)dt,

next applying Lemmas 5–6 and assuming that ε is sufficiently small we obtain

‖wt‖2
L2(Ω×(kT ,(k+1)T )) ≤ c(A1,A2).

Next, (13)1 yields

‖∇q‖2
L2(Ω×(kT ,(k+1)T ))

≤ c
(‖wt‖2

L2(Ω×(kT ,(k+1)T )) + ‖w‖2
L2(kT ,(k+1)T ;H 2(Ω))
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+ ‖w‖2
C([kT ,(k+1)T ];H 1(Ω))

· ‖w‖2
L2(kT ,(k+1)T ;H 2(Ω))

+ ‖h‖2
L2(kT ,(k+1)T ;L2(Ω))

+ ‖ϑ̄‖2σ
L∞([kT ,(k+1)T ];L2(Ω))‖h‖2

L2(kT ,(k+1)T ;L4(Ω))

)

≤ c(A1,A2).

Finally, equation (13)3 and Lemmas 5–6 imply

‖ϑ̄t‖2
L2(kT ,(k+1)T ;H−1(Ω))

≤ c
(‖ϑ̄‖2

L2(kT ,(k+1)T ;H 1(Ω))
+

(k+1)T∫

kT

‖w‖2
L4(Ω)‖ϑ̄x‖2

L4(Ω)dt

+
(k+1)T∫

kT

‖wx‖2
L4(Ω)‖wx‖2

L2(Ω)dt
)

≤ c
[‖ϑ̄‖2

L2(kT ,(k+1)T ;H 1(Ω))
+ ‖w‖2

C([kT ,(k+1)T ];H 1(Ω))

(‖ϑ̄‖2
L2(kT ,(k+1)T ;H 1(Ω))

+ ‖w‖2
L2(kT ,(k+1)T ;H 2(Ω))

)]

≤ c(A1,A2).

This ends the proof. �

Now, our goal is to prove the existence of a strong-weak solution to problem (13). Denote

V = the closure of
{
v ∈ C∞(Ω̄) : divv = 0, v · n̄ = 0 on S0

}
in H 1(Ω).

Definition 1 Let T > 0 be given. We call a function (w, ϑ̄) a weak solution to problem (13)
if w ∈ L∞(kT , (k + 1)T ;L2(Ω)) ∩ L2(kT , (k + 1)T ;V ), ϑ̄ ∈ L∞(kT , (k + 1)T ;L2(Ω)) ∩
L2(kT , (k +1)T ;H 1

0 (Ω)), wt ∈ L2(kT , (k +1)T ;V ∗), ϑ̄t ∈ L2(kT , (k +1)T ;H−1(Ω)) for
all k ∈N0 and

d

dt

∫

Ω

w · φdx + ν

∫

Ω

rot(2) w · rot(2) φdx +
∫

Ω

w · ∇w · φdx

=
∫

Ω

α(ϑ̄ + θ∗)h · φdx for every φ ∈ V,

in the sense of distributions on (kT , (k + 1)T ),

d

dt

∫

Ω

ϑ̄ψdx +κ

∫

Ω

∇ϑ̄ · ∇ψdx +
∫

Ω

w · ∇ϑ̄ψdx

= ν

∫

Ω

∣
∣D(w)

∣
∣2

ψdx for every ψ ∈ H 1
0 (Ω),

in the sense of distributions on (kT , (k + 1)T ),

w|t=kT = w(kT ),
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ϑ̄ |t=kT = ϑ̄(kT )

for all k ∈N0.

Definition 2 The triple (w,q, ϑ̄) is called a strong-weak solution to problem (13) if (w, ϑ̄)

is a weak solution to (13) and if additionally w ∈ L∞(kT , (k + 1)T ;H 1(Ω)) ∩ L2(kT , (k +
1)T ;H 2(Ω)), ∇q ∈ L2(kT , (k + 1)T ;L2(Ω)) for all k ∈N0.

Now, we can sketch the proof of Theorem 1.

Proof of Theorem 1 We prove the existence of a strong-weak solution to problem (13)
by applying the Faedo-Galerkin approximations. Let {φi}∞

i=1 and {ψi}∞
i=1 be bases in V

and H 1
0 (Ω), respectively. For each m ∈ N, we define an approximate solution wm(t) =∑m

i=1 cim(t)φi , ϑ̄m(t) = ∑m

i=1 dim(t)ψi , which satisfies the following system of ordinary
differential equations

∫

Ω

w′
m(t) · φjdx + ν

∫

Ω

rot(2) wm(t) · rot(2) φjdx +
∫

Ω

wm(t) · ∇wm(t) · φjdx

=
∫

Ω

α
(
ϑ̄m(t) + θ∗

)
h(t) · φjdx

for j = 1, . . . ,m, t ∈ [
kT , (k + 1)T

]
, k ∈N0, (27)

∫

Ω

ϑ̄ ′
m(t)ψjdx +κ

∫

Ω

∇ϑ̄m(t) · ∇ψjdx +
∫

Ω

wm(t) · ∇ϑ̄m(t)ψjdx

= ν

∫

Ω

|D(
wm(t)

)|2ψjdx for j = 1, . . . ,m, t ∈ [
kT , (k + 1)T

]
, k ∈N0, (28)

wm|t=kT = wkT m,

ϑ̄m|t=kT = ϑ̄kT m,

where wkT m ∈ span{φ1, . . . , φm}, wkT m → w(kT ) strongly in V as m → ∞, ϑ̄kT m ∈
span{ψ1, . . . ,ψm}, ϑ̄kT m → ϑ̄(kT ) strongly in L2(Ω).

We choose a special basis {φj }∞
j=1 which consists of the eigenfunctions of the Stokes

system with Navier’s boundary conditions, that is, φj and some pj satisfy

−ν�φj + ∇pj = λjφj in Ω,

divφj = 0 in Ω,

φj · n̄ = 0 on S0,

rotφj × n̄ = 0 on S0,

(29)

where λj → ∞ as j → ∞. In what follows we will use the weak formulation of (29), that
is,

ν

∫

Ω

rotφj · rotvdx = λj

∫

Ω

φj · vdx ∀v ∈ V, j = 1,2, . . . (30)
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Now, we multiply the both sides of (27) by λj and use (30) to the first and second term on
the left-hand side of (27). We also use the equality

∫
Ω

rotwm(t) · rot(2) φjdx = ∫
Ω

rotwm(t) ·
rotφjdx. To the other two terms in (27) we apply (30) and the identity

∫

Ω

rotφj · rotvdx = −
∫

Ω

v · rot2 φjdx ∀v ∈ V.

Next, multiplying the resulting system of equations by cjm and summing for j = 1, . . . ,m

we get

1

2

d

dt
‖ rotwm‖2

L2(Ω) + ν‖ rotwm‖2
H 1(Ω)

= −
∫

Ω

α(ϑ̄m + θ∗)h rot2 wmdx,

where we used that by Lemma 4

∫

Ω

wm(t) · ∇wm(t) · rot2 wm(t)dx = 0.

Similarly, multiplying (28) by djm(t) and summing for j = 1, . . . ,m we obtain

1

2

d

dt

∥
∥ϑ̄m

∥
∥2

L2(Ω)
+κ

∫

Ω

∣
∣∇ϑ̄m

∣
∣2

dx = ν

∫

Ω

∣
∣D(wm)

∣
∣2

ϑ̄mdx.

Then repeating the considerations from the proofs of Lemmas 5–7 we derive the following
estimate

‖wm‖L∞(kT ,(k+1)T ;V ) + ‖wm‖L2(kT ,(k+1)T ;H 2(Ω))

+ ‖ϑ̄m‖L∞(kT ,(k+1)T ;L2(Ω)) + ‖ϑ̄m‖L2(kT ,(k+1)T ;H 1
0 (Ω))

+ ‖wmt‖L2(kT ,(k+1)T ;L2(Ω)) + ‖ϑ̄mt‖L2(kT ,(k+1)T ;H−1(Ω))

≤ c(A1,A2), (31)

where c(A1,A2) does not depend on k. By (31) and the Aubin-Lions lemma (see [14],
Theorem 5.1) there exist subsequences of wm and ϑ̄m still denoted by wm and ϑ̄m such that

wm → w weakly in L2
(
kT , (k + 1)T ;H 2(Ω)

)

and ∗ -weakly in L∞
(
kT , (k + 1)T ;V )

,

wmt → wt weakly in L2

(
kT , (k + 1)T ;L2(Ω)

)
,

wm → w strongly in L2

(
kT , (k + 1)T ;H 1(Ω)

)
,

ϑ̄m → ϑ̄ weakly in L2

(
kT , (k + 1)T ;H 1

0 (Ω)
)

and ∗ -weakly in L∞
(
kT , (k + 1)T ;L2(Ω)

)
,

ϑ̄mt → ϑ̄t weakly in L2

(
kT , (k + 1)T ;H−1(Ω)

)
,

ϑ̄m → ϑ̄ strongly in L2
(
kT , (k + 1)T ;L2(Ω)

)
.
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The above convergences enable passing to the limit in (27)–(28) in the standard way (after
multiplying (27)–(28) by appropriate functions of t and integrating them in [kT , (k + 1)T ]).
In particular passing to the limit in the term on the r.h.s. of (27) is possible thanks to the
strong convergence of ϑ̄m in L2(kT , (k + 1)T ;L2(Ω)), which yields that for a subsequence
of ϑ̄m we have

ϑ̄m → ϑ̄ a.e. in Ω × (
kT , (k + 1)T

)
.

Therefore,

α(ϑ̄m + θ∗) → α(ϑ̄ + θ∗) a.e. in Ω × (
kT , (k + 1)T

)
.

Moreover,

(k+1)T∫

kT

∫

Ω

∣
∣α(ϑ̄m + θ∗)

∣
∣2

dxdt ≤ c
(
1 + ‖ϑ̄m‖2σ

L2(kT ,(k+1)T ;L2(Ω))

) ≤ c.

Hence (see [14], Lemma 1.3)

α(ϑ̄m + θ∗) → α(ϑ̄ + θ∗) weakly in L2

(
Ω × (

kT , (k + 1)T
))

.

The last convergence suffices to pass to the limit in the r.h.s. of (27). This way we obtain that
(w,q, ϑ̄) is the strong-weak solution to problem (13). This ends the proof of Theorem 1. �

4 Stability of Two-Dimensional Solution

To prove the stability of the two-dimensional solution which exists in virtue of Theorem 1
we need some a priori estimates of solutions to problem (3). Assume that

θ(0) ≥ θ∗, (32)

where θ∗ > 0 is the constant from assumption (14) and
∣∣α′(θ)

∣∣ ≤ a3 for θ ≥ θ∗, (33)

where a3 > 0 is a constant. First, we formulate the lemma

Lemma 8 Let (32)–(33) and the assumptions of Theorem 1 be satisfied. Assume that f ∈
L2,loc(R+;L∞(D)). Moreover, assume that (w,ϑ, q) is the two-dimensional solutions of
problem (1) which exists in view of Theorem 1. Let (u,χ,η) be a sufficiently regular solution
to problem (3). Then

d

dt

(‖ rotu‖2
L2(D) + ‖χ‖2

L2(D)

) + c
(‖ rot2 u‖2

L2(D) + ‖χ‖2
H 1(D)

)

≤ c
[‖ rotu‖6

L2(D) + ‖w‖2
W1

3 (D)

(‖ rotu‖2
L2(D) + ‖χ‖2

L2(D)

)

+ ‖ϑ̄x‖2
L2(D)‖u‖2

L3(D) + ‖ rotu‖4
L2(D)‖χ‖2

L2(D) + ‖ rotu‖2
L2(D)‖wx‖2

L3(D)

+ ‖χ‖2
L2(D)‖f ‖2

L∞(D) + ‖g‖2
L∞(D) + ‖g‖2

L∞(D)‖ϑ̄‖2σ
L2(D)

]
(34)

for t > 0.
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Proof Multiplying equation (3)1 by rot2u and integrating over D gives

1

2

d

dt
‖ rotu‖2

L2(D) + ν‖ rot2 u‖2
L2(D)

≤ −
∫

D

u · ∇u · rot2 udx −
∫

D

w · ∇u · rot2 udx −
∫

D

u · ∇w · rot2 udx

+
∫

D

α′(ζ )χf rot2 udx +
∫

D

α(ϑ)g rot2 udx, (35)

where ζ = βθ + (1 − β)ϑ , β ∈ (0,1). Consider

−
∫

D

u · ∇u · rot2 udx =
∫

D

rot(u · ∇u) rotudx

=
∫

D

u · ∇ rotu · rotudx +
∫

D

rotu · ∇u · rotu ≡ I,

where the summation convention over repeated indices is applied. By the boundary condi-
tions

∫

D

u · ∇ rotu · rotudx = 0,

so

|I | ≤ c‖ux‖3
L3(D).

Therefore, the Hölder and Young inequalities applied in (35) yield

d

dt
‖ rotu‖2

L2(D) + ν‖ rot2 u‖2
L2(D)

≤ c
(‖ux‖3

L3(D) + ‖w · ∇u‖2
L2(D) + ‖u · ∇w‖2

L2(D)

+ ‖χ‖2
L2(D)‖f ‖2

L∞(D) + ‖g‖2
L∞(D) + ‖g‖2

L∞(D)‖ϑ̄‖2σ
L2(D)

)
. (36)

Consider the terms on the right-hand side of (36). First, using the interpolation inequality
(see [1])

‖ux‖L3(D) ≤ c‖ux‖1/2
H 1(D)

‖ux‖1/2
L2(D)

together with the estimates

‖ux‖L2(D) ≤ c‖u‖H 1(D) ≤ c‖ rotu‖L2(D) (37)

and

‖ux‖H 1(D) ≤ c‖ rotu‖H 1(D) ≤ c‖ rot2 u‖L2(D) (38)

(see Lemma 3) we have

‖ux‖3
L3(D) ≤ ε‖ rot2 u‖2

L2(D) + c(ε)‖ rotu‖6
L2(D),
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where the Young inequality has been also used. Next,

‖w · ∇u‖2
L2(D) ≤ c‖w‖2

L∞(D)‖∇u‖2
L2(D) ≤ c‖w‖2

W1
3 (D)

‖∇u‖2
L2(D),

where we used that w only depends on x1, x2. Finally, the third term on the right-hand side
of (36) is bounded by

c‖u‖2
L6(D)‖∇w‖2

L3(D) ≤ c‖u‖2
H 1(D)

‖∇w‖2
L3(D).

Hence inequality (36) yields

d

dt
‖ rotu‖2

L2(D) + c‖ rot2 u‖2
L2(D)

≤ c
(‖ rotu‖6

L2(D) + ‖w‖2
W1

3 (D)
‖u‖2

H 1(D)

+ ‖χ‖2
L2(D)‖f ‖2

L∞(D) + ‖g‖2
L∞(D) + ‖g‖2

L∞(D)‖ϑ̄‖2σ
L2(D)

)
. (39)

Now, multiply (3)3 by χ and integrate the result over D. We get

1

2

d

dt
‖χ‖2

L2(D) +κ‖∇χ‖2
L2(D)

= −
∫

D

w · ∇χχdx −
∫

D

u · ∇ϑ̄χdx + ν

∫

D

∣∣D(u)
∣∣2

χdx + 2ν

∫

D

D(u) :D(w)χdx.

(40)

The first term on the right-hand side of (40) is bounded by

ε‖∇χ‖2
L2(D) + c(ε)‖w‖2

L∞(D)‖χ‖2
L2(D) ≤ ε‖∇χ‖2

L2(D) + c(ε)‖w‖2
W1

3 (D)
‖χ‖2

L2(D).

The second term is estimated by

ε‖χ‖2
L6(D) + c(ε)‖∇ϑ̄‖2

L2(D)‖u‖2
L3(D).

We estimate the third term as follows
∫

D

∣∣D(u)
∣∣2

χdx ≤ ‖ux‖H 1(D)‖ux‖L2(D)‖χ‖L3(D)

≤ ε‖ux‖2
H 1(D)

+ c(ε)‖ux‖2
L2(D)‖χ‖2

L3(D)

≤ ε‖ux‖2
H 1(D)

+ c(ε)‖ux‖2
L2(D)‖χ‖H 1(D)‖χ‖L2(D)

≤ ε
(‖ux‖2

H 1(D)
+ ‖χx‖2

L2(D)

) + c(ε)‖ux‖4
L2(D)‖χ‖2

L2(D),

where the interpolation inequality

‖χ‖L3(D) ≤ c‖χ‖1/2
H 1(D)

‖χ‖1/2
L2(D)

has been used (see [1]). Finally,
∫

D

D(u) :D(w)χdx ≤ ε‖χ‖2
L6(D) + c(ε)‖ux‖2

L2(D)‖wx‖2
L3(D).
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Using the above estimates in (36) we obtain

d

dt
‖χ‖2

L2(D) + c‖∇χ‖2
L2(D) ≤ ε

(‖ux‖2
H 1(D)

+ ‖χx‖2
L2(D) + ‖χ‖2

L6(D)

)

+ c(ε)
(‖w‖2

W1
3 (D)

‖χ‖2
L2(D) + ‖∇ϑ̄‖2

L2(D)‖u‖2
L3(D)

+ ‖ux‖4
L2(D)‖χ‖2

L2(D) + ‖ux‖2
L2(D)‖wx‖2

L3(D)

)
. (41)

Inequalities (37)–(39) and (41) imply (34). �

Introduce the notation

X(t) = ∥∥rotu(t)
∥∥2

L2(D)
+ ∥∥χ(t)

∥∥2

L2(D)
,

A(t) = ∥
∥w(t)

∥
∥2

W1
3 (D)

+ ∥
∥ϑx(t)

∥
∥2

L2(D)
+ ∥

∥f (t)
∥
∥2

L∞(D)
,

G(t) = ∥
∥g(t)

∥
∥2

L∞(D)
.

(42)

By Lemma 6

t∫

kT

A
(
t ′
)
dt ′ ≤ c̃0

(
A1 + A2 + sup

k∈N0

(k+1)T∫

kT

‖f ‖2
L∞(D)dt

)
≡ A3(T )

for all t ∈ (
kT , (k + 1)T

]
, k ∈N0, (43)

where c̃0 > 0 does not depend on k.

Lemma 9 Let the assumptions of Lemma 8 hold. Assume that

c̃1T

4
> c̃2A3(T ), (44)

where c̃1, c̃2 > 0 are the constants from (48). Let γ and δ be so small that

c̃2Mγ 2 + δ ≤ c̃1

2
, (45)

where M > 0 is the constant from (49). Moreover, let T be so large and δ be so small that

e− c̃1
4 T + MT δ ≤ 1. (46)

If X(0) ≤ γ and G(t) ≤ δγ for all t ∈ R+, then X(t) ≤ c̃γ for all t ∈ R+, where c̃ = c̃(T )

does not depend on k.

Proof By Lemma 5

sup
t∈[kT ,(k+1)T ]

‖ϑ̄‖2σ
L2(D) ≤ c(A1 + A2) for all k ∈N0, (47)

where c > 0 does not depend on k. Now, by (42) and estimate (47), inequality (34) can be
written in the form

dX

dt
+ c̃1X ≤ c̃2

(
X3 + AX + G

)
for t ∈ (

kT , (k + 1)T
]
, k ∈N0. (48)
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Hence

dZ

dt
+ c̃1Z ≤ c̃2

(
e2c̃2

∫ t
kT A(t ′)dt ′Z3 + e−c̃2

∫ t
kT A(t ′)dt ′G

)

for t ∈ (
kT , (k + 1)T

]
, k ∈N0,

where

Z(t) = e−c̃2
∫ t
kT A(t ′)dt ′X(t).

Inequality (43) implies

e2c̃2
∫ t
kT A(t ′)dt ′ ≤ M2 for all t ∈ (

kT , (k + 1)T
]
, k ∈N0,

where M > 0 is some constant which does not depend on k. Therefore

dZ

dt
+ c̃1Z ≤ c̃2

(
M2Z3 + G

)
for all t ∈ (

kT , (k + 1)T
]
, k ∈ N0. (49)

Assume that

X(kT ) ≤ γ for some k ∈N0. (50)

We will show that

X
(
(k + 1)T

) ≤ γ. (51)

Inequality (50) implies that

Z(kT ) ≤ γ.

We will prove that Z(t) ≤ γ for all t ∈ [kT , (k + 1)T ]. Let t∗ = inf{t : Z(t) > γ }. Then

dZ

dt

(
t∗

) + c̃1γ ≤ c̃2

(
M2γ 3 + δγ

)
.

By assumption (45) we have

dZ

dt

(
t∗

)
< 0,

so Z(t) ≤ γ for all t ∈ [kT , (k + 1)T ]. This implies that

X(t) ≤ γM for all t ∈ (
kT , (k + 1)T

]
. (52)

Using (52) in (48) we get

dX

dt
+ c̃1X ≤ c̃2

(
γ 2M2X + AX + G

)
for all t ∈ (

kT , (k + 1)T
]

and (45) yields

dX

dt
+ c̃1

2
X ≤ c̃2(AX + G) for all t ∈ (

kT , (k + 1)T
]
.

Hence

d

dt

(
e

c̃1
2 t−c̃2

∫ t
kT A(t ′)dt ′X

) ≤ e
c̃1
2 t−c̃2

∫ t
kT A(t ′)dt ′G.
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After integrating the above inequality with respect to t from t = kT to t ∈ (kT , (k + 1)T ]
we obtain

X(t) ≤ e− c̃1
2 (t−kT )+c̃2

∫ t
kT A(t ′)dt ′X(kT ) + e− c̃1

2 t+c̃2
∫ t
kT A(t ′)dt ′

t∫

kT

e
c̃1
2 t ′−c̃2

∫ t ′
kT A(t ′′)dt ′′G

(
t ′
)
dt ′

for t ∈ (
kT , (k + 1)T

]
. (53)

For t = (k + 1)T we have

X
(
(k + 1)T

) ≤ e− c̃1
2 T +c̃2

∫ (k+1)T
kT

A(t)dtX(kT ) + ec̃2
∫ (k+1)T
kT

A(t ′)dt ′
(k+1)T∫

kT

G
(
t ′
)
dt ′.

Now, assumption (44) and estimate (43) imply

c̃1T

4
> c̃2

t∫

kT

A
(
t ′
)
dt ′ for t ∈ (

kT , (k + 1)T
]
.

Hence

X
(
(k + 1)T

) ≤ e− c̃1T

4 X(kT ) + M

(k+1)T∫

kT

G(t)dt.

Now, (50), (46) and the assumption G(t) ≤ δγ for all t ∈ R+ yield (51). Therefore, we
showed that X(kT ) ≤ γ for all k ∈ N0. Next, by (53) we get

X(t) ≤ Mγ + M

(k+1)T∫

kT

G
(
t ′
)
dt ′ ≤ Mγ(1 + δT ) ≡ c̃γ

for all t ∈ (
kT , (k + 1)T

]
, k ∈N0.

This ends the proof. �

Lemma 10 Let the assumptions of Lemma 9 be satisfied. Moreover, assume that

sup
k∈N0

(k+1)T∫

kT

∥∥f (t)
∥∥2

L∞(D)
dt < ∞.

Then the following estimate holds

‖u‖2
H 2,1(D×(kT ,(k+1)T ))

+ ‖χ‖2
L2(kT ,(k+1)T ;H 1(D))

+ ‖χt‖2
L2(kT ,(k+1)T ;H−1(D))

+ ‖∇q‖2
L2(kT ,(k+1)T ;L2(D)) ≤ c(T )γ

Proof Integrating (34) with respect to time from kT to t ∈ [kT ; (k + 1)T ] and using esti-
mates (37)–(38) yields

‖u‖2
L2(kT ,t;H 2(D))

+ ‖χ‖2
L2(kT ,t;H 1(D))

≤ c(T )γ (54)
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for t ∈ [kT , (k + 1)T ], k ∈N0. Now, estimate (8) implies the estimates

‖ut‖2
L2(kT ,(k+1)T ;L2(D)) ≤ c(T )γ,

‖∇η‖2
L2(kT ,(k+1)T ;L2(D)) ≤ c(T )γ

and

‖χt‖2
L2(kT ,(k+1)T ;H−1(D))

≤ c(T )γ for all k ∈N0.

This completes the proof. �

The proofs of Theorems 2 and 3 The assertion of Theorem 2 is the immediate consequence
of Lemmas 8–10. The assertion of Theorem 3 follows by using estimates of Lemmas 9–10
and the Faedo-Galerkin method. �
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3. Buliček, M., Feireisl, E., Málek, J.: A Navier-Stokes-Fourier system for incompressible fluids with tem-
perature dependent material coefficients. Nonlinear Anal., Real World Appl. 10, 992–1015 (2009)
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