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Abstract In this paper a method to rigorously compute several non trivial solutions of the
Gray-Scott reaction-diffusion system defined on a 2-dimensional bounded domain is pre-
sented. It is proved existence, within rigorous bounds, of non uniform patterns significantly
far from being a perturbation of the homogenous states. As a result, a non local diagram of
families that bifurcate from the homogenous states is depicted, also showing coexistence of
multiple solutions at the same parameter values. Combining analytical estimates and rigor-
ous computations, the solutions are sought as fixed points of a operator in a suitable Banach
space. To address the curse of dimensionality, a variation of the existing technique is pre-
sented, necessary to enable successful computations in reasonable time.

Keywords Rigorous numerics · 2-Dimensional Gray-Scott reaction diffusion equation ·
Contraction mapping theorem · Pattern dynamics

Mathematics Subject Classification 35K57 · 65G20 · 65G40

1 Introduction

Formation and self-organisation of patterns are fascinating phenomena that occur in several
natural systems, as for instance in semiconductors, ferroelectric and magnetic materials, in
combustion systems, in biological processes and chemical reactions. See [30] for a survey.

Since the seminal work of Turing [28], who first proposed a reaction-diffusion system
to account for morphogenesis, systems of reaction-diffusion equations are widely consid-
ered to describe and analyse the formation and the dynamics of patterns. A prototype is
the Gray-Scott system, a model for the interaction of a pair of reactions involving cubic
autocatalysis [12]. It consists in the following reaction-diffusion system

{
Ut = d1�U − UV 2 + F(1 − U), x ∈ Ω

Vt = d2�V + UV 2 − (F + κ)V x ∈ Ω
(1)

B R. Castelli
r.castelli@vu.nl

1 Dept. of Mathematics, VU University Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam,
The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s10440-017-0101-x&domain=pdf
http://orcid.org/0000-0002-6805-3956
mailto:r.castelli@vu.nl


28 R. Castelli

where U and V are the concentrations of chemical reactants U and V , d1, d2 are the diffusion
coefficients, F is the feed rate and (F + κ) the removal rate of V .

Experiments and numerical investigation reported by Pearson [24] and in [16, 25] re-
veal a rich and complex structure in the solutions for the Gray-Scott equation, including
self-replicating patterns, oscillating patterns, spots annihilation, irregular patterns, spatio-
temporal chaos. Since then, the behaviour and the dynamics of the patterns in the Gray-
Scott system has been extensively studied through experimental observations, numerical
techniques and analytic approach.

In two dimensional domains, particular solutions like single spot solutions, ring-like soli-
tons and stripe patterns have been found and analysed in [15, 19, 20, 31]. Also, an hybrid
analytic-numerical approach is adopted in [6] to detect multi-spot quasi equilibrium patterns.

In this paper analytical theory and rigorous numerics are combined in a computer assisted
technique, that allows to successfully treat non-local problems while preserving the math-
ematical rigorousness. We prove existence, together with precise bounds, of several non
homogenous stationary patterns, arranged on continuous branches, for the 2-dimensional
Gray-Scott system defined on a bounded domain Ω and with no-flux boundary condition.
Because of the extreme difficulty in studying non linear differential equations by purely
analytical approach, any new methodology that demonstrates qualitative and quantitative
properties of solutions for systems of nonlinear PDEs is a valuable achievement by its own.
Moreover, the results of this work can contribute to the interesting discussion concerning the
genesis of localised patterns and the underlying mechanisms that drive the transition from
one dynamics to another. For instance, they can be useful to understand the self-replicating
pattern dynamics, that is, the itinerary process that moves a localised trigger to a stable sta-
tionary or oscillating pattern by multiple splitting of the pulses. Attempts to answer these
questions are presented in [22, 23]. Looking at the global bifurcation diagram of stationary
solutions, in [22] it has been suggested that a hierarchy structure of saddle-node points is
responsible for the occurrence of self-replicating pattern dynamics. In [23] the relationship
between different bifurcation branches of steady states is considered as a criteria for the on-
set of spatio-temporal chaos. The spatio-temporal chaotic dynamics emerges by unfolding
an itinerant heteroclinic cycle. Also, self-destruction and spots annihilation can be explained
as an orbit starting close to an unstable pattern whose unstable manifold is connected to the
homogenous state. From these considerations, it is evident that the bifurcation diagram of
steady states together with the stability analysis plays a key role in the comprehension of the
mechanism behind the complex pattern dynamics.

In order to introduce the results, let us present more in details the system we are dealing
with. Following [13], the Gray-Scott system is equivalent to the following

⎧⎨
⎩

ut = �u − uv2 + λ(1 − u), x ∈ Ω
γ

d
vt = γ�v + uv2 − v x ∈ Ω

∂u/∂ν = ∂v/∂ν = 0, x ∈ ∂Ω.

(2)

For any choice of λ and γ , problem (2) admits a stable uniform stationary solution (u, v) =
(1,0) called p1 and, for λ ≥ 4, two branches of uniform stationary solutions denoted by
p2(λ) and p3(λ). Local bifurcation analysis predicts the values of γ where families of non-
constant stationary solutions bifurcate from the homogeneous states. We investigate various
bifurcation branches of non-constant solutions emanating from the homogenous states and
the goal is to prove existence of several non constant patterns, providing explicitly the nu-
merical data together with the enclosing bounds.
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Fig. 1 Bifurcation diagrams of rigorously computed non-uniform stationary solutions for the Gray-Scott
system (2) on the domain Ω = [0,1,1] × [0,0.8] and λ = 4.5. The branches of solutions bifurcate from the
homogenous state (a) p2(λ) and (b) p3(λ). The horizontal axis represents the parameter γ and the vertical
axis represents the distance, measure with the squared L2-norm, of the v-component of the solution from the
v-component of the steady state (Color figure online)

Looking at Fig. 1, we prove the following:

Theorem 1 Let λ = 4.5 and Ω = [0,1.1] × [0,0.8] be fixed.

– Any bullet in Fig. 1(a) represents a non-uniform stationary solution for system (2) belong-
ing to branches that bifurcate from the homogenous state p2(λ).

– Any bullet in Fig. 1(b) represents a non-uniform stationary solution for system (2) belong-
ing to branches that bifurcate from the homogenous state p3(λ).
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Clearly, by changing the parameter λ and the size of the rectangular domain Ω , many
non-constant solutions on different branches can be computed and rigorously validated.
Also, most of the families depicted in Fig. 1 can be easily extended.

The computational methods used to prove Theorem 1 has roots in the radii-polynomial
technique, introduced in [8] with the aim at solving nonlinear differential problems. In this
paper a variant of the computational method is presented. It consists in the introduction of
a sharpening parameter that allows to obtain more precise estimates of the nonlinear terms
without enlarging the dimension of the finite dimensional approximation. Indeed, using the
computational technique in the form it has been developed so far, the computational cost
and the time required for the enclosure of a single solution stated in Theorem 1 would be so
large as to be practically unfeasible.

The paper is organised as follows. In Sect. 2 we discuss the stationary solutions for
system (2) and, for fix λ, we find the bifurcation values γk for branches of non uniform solu-
tions. Section 3 concerns the radii polynomial technique. First we present the computational
method in the general form together with the notion of radii polynomials. Then, in Sect. 3.2
some fundamental formulas for the analytic estimates of the convolution sums are recalled.
In Sect. 4 we adapt the computational method to the Gray-Scott system. We rephrase the
differential system into an equivalent fix point problem and we introduce the Banach space
within which we look for the solutions. Then we write the radii polynomials as they would
be without the modifications. In Sect. 4.3 we explain in more details the reason why the radii
polynomials technique, so far presented, fails in proving the existence of the solutions we
are interested in. In Sect. 4.4 the sharpening parameter is introduced and the new scheme
to bound the nonlinear terms is discussed. Finally, in Sect. 5 we are concerned with the
computational results.

2 Some Analytical Preliminaries: Bifurcation Values

Stationary patterns of (2) consist in solutions of the elliptic problem

⎧⎨
⎩

�u − uv2 + λ(1 − u) = 0, x ∈ Ω

γ�v + uv2 − v = 0 x ∈ Ω

∂u/∂ν = ∂v/∂ν = 0, x ∈ ∂Ω.

(3)

Throughout this paper we denote by hk the eigenvalues of

{−�u = hu x ∈ Ω

∂u/∂ν = 0, x ∈ ∂Ω
(4)

and by φk the associated eigenfunctions. We restrict our analysis to the case of rectangular
domain, Ω = [0,L1]×[0,L2]. Denoting x = (z, y) ∈ Ω , the eigenvalues and eigenfunctions
are explicitly given as

hk = π2

(
(k(1))2

L2
1

+ (k(2))2

L2
2

)
, φk(z, y) = cos

(
k(1) π

L1
z

)
cos

(
k(2) π

L2
y

)
(5)

for any k = (k(1), k(2)) ∈ N
2.

For any value of λ and γ , system (3) admits the uniform state (u, v) = (1,0), denoted
by p1. At λ = 4 a bifurcation occurs and two branches of uniform solutions are created. The
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set of uniform solutions is the following:

p1 = (1,0), λ < 4

p1 = (1,0), p2(λ) =
(

λ + √
λ2 − 4λ

2λ
,
λ − √

λ2 − 4λ

2

)
,

p3(λ) =
(

λ − √
λ2 − 4λ

2λ
,
λ + √

λ2 − 4λ

2

)
λ ≥ 4.

Remark 1 Note that for any uniform solution (u∗, v∗), except p1, it holds u∗v∗ = 1.

For each λ > 4 we now detect the values of γ where families of not uniform solutions
bifurcate from the homogenous state. Denote by (u∗, v∗) any of the constant stationary so-
lutions p2(λ), p3(λ). For any k ∈N

2 \ {(0,0)}, define

uk(ε) = u∗ + εaφk + o(ε), vk(ε) = v∗ + εbφk + o(ε)

a2 + b2 = 1

a perturbation of the steady state in the direction of the eigenfunction φk . Following the
standard bifurcation theory, a bifurcation occurs at value γk if for any ε small enough it
exists a solution for (3) of the form (uk(ε), vk(ε);γ (ε)), being γ (ε) = γk + εγ ′ + o(ε).

Inserting (uk(ε), vk(ε)) and γ (ε) into the elliptic problem (3) and using the fact that
(u∗, v∗) is a solution for any γ , we obtain the following

ε
(
a�φk − 2u∗v∗bφk − v2

∗aφk − λaφk

) + o(ε) = 0

ε
(
γkb�φk + 2u∗v∗bφk + v2

∗aφk − bφk

) + o(ε) = 0.

Neglecting the infinitesimal terms, for Remark 1, it remains to solve the system

−ahk − 2u∗v∗b − v2
∗a − λa = 0

−γkbhk + 2u∗v∗b + v2
∗a − b = 0

whose solution is given by

a2 + b2 = 1, a = − 2b

hk + v2∗ + λ
(6)

and

γk = 1

hk

(
λ + hk − v2∗
hk + v2∗ + λ

)
. (7)

We summarise the result in the next lemma.

Lemma 1 For any k ∈ N
2 \ {(0,0)}, a branch of non-constant stationary solutions for (2)

bifurcates from the uniform solution (u∗, v∗) at value γk given in (7). The proper perturba-
tion to be applied to the steady state (u∗, v∗) is (aφk, bφk) where a, b solve (6).
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3 The Computational Method

The method here presented is one of the so called verification methods [27]. Suppose we
are looking for solutions of f (x) = 0 where f is defined in some Banach space (X,‖ · ‖X).
The goal of a verification methods is to prove the existence of a genuine solution x∗ of
f (x) = 0 in the neighbourhood of a numerical approximate solution x̄, providing explicit
and rigorous bounds for ‖x∗ − x̄‖X . In this paper we adopt the radii polynomial technique
that relies on the Banach fixed point theorem. In the last ten years the radii polynomial
technique has been exploited to study a variety of problems in areas ranging from, but not
restricted to, ODEs, PDEs, delay differential equations and dynamical systems. See for in-
stance [1, 3–5, 8, 10, 17] and reference therein. In [29] the radii polynomial technique has
been applied to the 1-dimensional Gray-Scott system to establish the existence of symmetric
homoclinic orbits to the steady state p1 = (1,0). More recently, in [1] bifurcation branches
of solutions for a system of one dimensional reaction diffusion equations have been rigor-
ously validated using a similar technique.

Of course there are many other methods for computer assisted and rigorous computa-
tional study of differential equations, based for instance on topological arguments like the
Conley index theory, covering relations with cone conditions, the Shauder fixed point theo-
rem. We refer to [2, 7, 14, 21, 33] and the references therein for a more detailed discussion
of topological tools applied to rigorous computations.

Before presenting the technique, let us fix some notation. Boldface is used to denote
multi-indices as k = (k(1), . . . , k(d)) ∈ Z

d . When applied to multi-indices, the absolute value
| · | acts component-wise, |k| := (|k(1)|, . . . , |k(d)|). Inequality in between multi-indices is
intended component-wise, that is for k,n ∈ Z

d , k < n means k(j) < n(j) for all j = 1, . . . , d .
The same for ≥,≤,>. In the following we will introduce the multi-indices m, M and M

all in N
d , respectively called finite dimensional parameter, FFT dimension parameter and

computational parameter, satisfying m ≤ M ≤ M . Associated to them, we define the set
of indices Fm, FM , FM as Fm := {k ∈ Z

d : |k| < m} and similarly for the others. Note
that the difference FM \ Fm = {k ∈ Z

d | ∃j : m(j) ≤ |k(j)| < M(j)} contains all the indices
having at least one (at not necessarily all) component k(j) satisfying m(j) ≤ |k(j)| < M(j).
The same remark applies to FM \ FM and FM \ Fm. Given a sequence x = {xk}k∈Zd , we
denote xFm = {xk}k∈Fm and xIm = {xk}k /∈Fm .

3.1 Overview of the Radii Polynomial Method

We describe the technique in the context of solving the PDE

L(u) + cpup = 0 (8)

defined on a bounded domain Ω ⊂ R
d , subjected to prescribed boundary conditions. Here

L : D(L) ⊂ H → H is a linear operator densely defined on a Hilbert space H and p is the
degree of nonlinearity, cp ∈R.

The first step of the method consists in writing an equivalent problem

f (x) = 0

defined on a suitable Banach space, so that the zeros of f (x) correspond univocally to
solutions of (8). Assume that the Hilbert space H admits an orthogonal basis formed by the
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eigenfunctions of L(u), say {φk}k with eigenvalues {hk}k and assume that the domain of L

is given by

D(L) =
{
u =

∑
k∈Zd

xkφk

∣∣∣ ∑
k∈Zd

hkxkφk < ∞
}
.

By expanding (8) on the basis {φk}k , it follows that the solutions of (8) correspond to the
zeros of f (x), x = {xk}k , given by

f = {fk}k∈Zd

fk(x) = hkxk + cp〈up,φk〉H .

If the eigenfunctions basis {φk}k is of the form of a Fourier basis, as it will be in our case, the
inner product 〈up,φk〉H is equal to convolution products of the Fourier coefficients {xk}k ,
that is

fk(x) = hkxk + cp

∑
k1+···+kp=k

kj ∈Zd

xk1 . . . xkp , k ∈ Z
d .

For a vector s = (s(1), . . . , s(d)) ∈ N
d , let the weight ωs

k be defined as

ωs
k :=

d∏
i=1

ws(i)

k(i) , ws
k =

{
1, k = 0
|k|s , k �= 0.

Define the s-norm of a sequence x = {xk}k as ‖x‖s := supk∈Zd {ωs
k|xk|} and introduce the

Banach space

Xs := {
x : ‖x‖s < ∞}

.

The space Xs is the space of sequences algebraically decaying, with decay rate s, and it is the
space where we look for solutions of f (x) = 0. This choice is motivated by the fact that any
solution u of the PDE (8) is expected to be smooth and the sequence of Fourier coefficients
of a smooth function decays exponentially fast to zero. Therefore, it is reasonable to look
for the solution {xk}k in the space of sequences that decay at least as fast as { 1

ωs
k
}k∈Zd , s ≥ 2.

Denote by B(x, r) := {y ∈ Xs : ‖y − x‖s ≤ r} the ball in Xs of radius r centred at x.
The proof of the existence of solutions for f (x) = 0 relays on a contraction mapping

argument applied to an operator T , defined below, whose fixed points are in one to one
correspondence with the zeros of f . The operator T depends on the Frechet derivative of f

evaluated at a numerical approximate solutions x̄.
For a choice of m = (m(1), . . . ,m(d)) ∈N

d , denote by f (m) the finite-dimensional system
f (m) := {f (m)

k }k∈Fm where, for any k ∈ Fm

f
(m)

k :C(2m1−1)...(2md−1) →C

f
(m)

k (xFm) = hkxk + cp

∑
k1+···+kp=k

kj ∈Fm

xk1 . . . xkp .

Let x̄Fm be a numerical solution for f (m)(x) = 0 and denote by x̄ the embedding of x̄Fm

into Xs , i.e. x̄ = (x̄Fm ,0Im). Let Df (m) be the Jacobian matrix of f (m)(x) at x̄Fm and compute
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J−1
m a non singular approximate inverse of Df (m). Then, define J−1 the operator that maps

x = {xk}k to

[
J−1(x)

]
k
:=

{ [J−1
m (xFm)]k, k ∈ Fm,

h−1
k xk, k /∈ Fm,

J−1
m ≈ [

Df (m)
]−1

. (9)

By construction, J−1 is an approximate inverse of Df (x̄). Note that for the tail part, that is
for k /∈ Fm, the operator J−1 does not rely on numerical computations, rather it is defined
taking into account the linear contribution of fk only. The fixed point operator is defined as
T : Xs → Xs

T (x) := x − J−1f (x).

Clearly, since J−1 is injective, fixed points of T correspond to zeros of f (x).
The goal of the technique is to detect a ball B(x̄, r) ⊂ Xs within which T is a contraction.

That is done through the notion of the radii polynomials, a finite set of inequalities in the
variable r , the verification of which implies that T is a contraction on some ball B(x̄, r).
They are defined as combination of the following bounds.

Let {Yk}k and {Zk(r)}k be two sequences such that, for any k ∈ Z
d ,

∣∣[T (x̄) − x̄
]
k

∣∣ ≤ Yk, sup
b,c∈B(r)

∣∣[DT (x̄ + b)c
]
k

∣∣ ≤ Zk(r). (10)

Furthermore, for a choice of a computational parameter M = (M(1), . . . ,M(d)), assume that
Yk = 0 for any k /∈ FM and it exists Z̃M(r) such that

Zk(r) ≤ r

ωs
k

Z̃M(r), ∀k /∈ FM . (11)

Definition 1 Define the finite radii polynomials {pk(r)}k∈FM
by

pk(r) := Yk + Zk(r) − r

ωs
k

and the tail radii polynomial by

p̃M(r) := Z̃M(r) − 1.

Lemma 2 If there exists r > 0 so that pk(r) < 0 for all k ∈ FM and p̃M(r) < 0, then there
is an unique x ∈ B(x̄, r) such that f (x) = 0.

Proof The result follows as an application of the Banach fixed point theorem on the opera-
tor T . See for instance [8, 32]. �

Before discussing some analytical estimates used in the construction of the bounds Yk

and Zk let us close this section with a remark.

Remark 2

– The method requires that the eigenvalues and eigenfunctions of the linear operator L(u)

are explicitly known. That is the reason why we consider only rectangular domain Ω with
Neumann boundary conditions. However, only few and trivial modifications are required
if periodic boundary conditions are posed.
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– The fact that the polynomial nonlinearity is transformed into convolution sums is a pe-
culiarity of the exponential function basis. When a different complete function basis is
chosen the polynomial up may be translated in something similar to the convolution sum,
as in the case of the Chebyshev function basis (that are nothing more that Fourier series in
disguise [18]), or in something completely different as in the case of Hermite functions.

3.2 Analytical Estimates of the Convolution Sums

One of the fundamental steps of the technique is the definition of the bounds Y and Z

satisfying the inequalities (10) and (11). In the construction of these bounds it is required
the computation of several convolution sums of the form

∑
k1+k2+k3=k

kj ∈FM

ak1bk2ck3 , (12)

and sharp estimates for convolutions series

∑
k1+k2+k3=k

kj ∈Zd

ak1bk2ck3 . (13)

A deep and systematic analysis of the latter series is done in [9], where analytical estimates
have been proved for any convolutions terms.

The former one (12) is a finite sum and the Fast Fourier Transform (FFT) can be used
to faster the computation. Nevertheless, the computational time dramatically increases as
far as M , and in particular the dimension d , increase. Moreover, aiming at a rigorous en-
closure, these operations must be performed in interval arithmetics regime, hence requiring
an even larger computational resources. For instance, if d = 3 and M = 200, the rigorous
computation of (12) involves computing the FFT of sequences of size 109, that is a serious
computational task.

These complications and in particular the curse of dimensionality have been addressed
in [11]. In that work the authors improved the analytical estimates of [9] and introduced the
FFT parameter M with the aim of reducing the computational cost required to enclose the
solution of the finite sum (12). For convenience, we report the results that will be used in
the sequel of this paper. The detailed construction of the various parameters is given in the
Appendix.

The first estimate concerns the upper bound of the convolution series (13) when the
indices are free to move in the full set Zd .

Lemma 3 Let α
(n)

k be defined as in (33). Then, for any k ∈ Z
d ,

∑
k1+···+kn=k

kj ∈Zd

1

ωs
k1

. . .ωs
kn

≤ α
(n)

k

ωs
k

.

Proof See Lemma 2.1 in [9]. �

Now, we consider the case when some of the indices are restricted to take value outside
a certain set. Suppose M = (M

(1)
, . . . ,M

(d)
) has be defined so that M

(j) ≥ 6 and M ≥ M .
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The notation {k1, . . . ,k�+1} �⊂ FM means that at least one of the kj is not in FM . Such a set
corresponds to the complement of {k1, . . . ,k�+1 : kj ∈ FM}.

Lemma 4 Let ε
(n)

k be defined as in (35). For any k ∈ FM and � = 0, . . . , n − 1

∑
k1+···+kn=k

{k1,...,k�+1}�⊂FM

ω−s
k1

. . .ω−s
kn

≤ (� + 1)ε
(n)

k .

Proof See Lemma 2.2 in [9]. �

4 The Radii Polynomials for the Enclosure of Stationary Solutions of the
Gray-Scott System

In this section we apply the technique, presented in Sect. 3.1, to the problem of enclosing non
constant solutions of the Gray-Scott system (3). In Sect. 4.3 we perform an a priori analysis
of the resulting polynomials and we realise that the presence of M , although important, is
not sufficient to assure successful computation of the solutions for the Gray-Scott equation
in the parameter range we are interested in. Hence, in Sect. 4.4 the new approach for the
definition of the Z bound is presented.

4.1 Algebraic Formulation in Banach Space

For the reader’s convenience, let us rewrite system (3)
⎧⎨
⎩

�u − uv2 + λ(1 − u) = 0, x ∈ Ω

γ�v + uv2 − v = 0 x ∈ Ω

∂u/∂ν = ∂v/∂ν = 0, x ∈ ∂Ω.

We consider the domain Ω = [0,L1] × [0,L2], (z, y) ∈ Ω , and look for solutions of (3) in
the form

u(z, y) = u(0,0) +
∑
k∈Z2∗

ukφk, v(z, y) = v(0,0) +
∑
k∈Z2∗

vkφk (14)

where Z
2∗ := Z

2 \ {(0,0)}, φk(z, y) is given in (5) and

uk, vk ∈R, u|k| = uk, v|k| = vk (15)

Note that:

(i) The sequence {φk}k∈N2 is a complete basis for {u ∈ L2(Ω)} ∩ {∂νu = 0, (z, y) ∈ ∂Ω}.
Therefore in the expansion of the function u and v (14) it would be enough to consider
k ∈ N

2. However, the equivalent choice k ∈ Z
2 together with the symmetry conditions

(15) allows to easily expand the product uv2.
(ii) The boundary conditions in (3) are automatically satisfied by any u, v given in (14).

Again from (5), we remind that

hk = π2

(
(k(1))2

L2
1

+ (k(2))2

L2
2

)
.
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Since

�φk = −hkφk and 〈uv2, φk〉L2 =
∑

k1+k2+k3=k

uk1vk2vk3 ,

to solve system (3) it corresponds to solve the infinite dimensional algebraic system

g(x) = 0, g(x) = {
gk(x)

}
k∈Z2

where

g(0,0)(x) :=
{

λ(1 − u(0,0)) − ∑
k1+k2+k3=(0,0) uk1vk2vk3

−v(0,0) + ∑
k1+k2+k3=(0,0) uk1vk2vk3

gk(x) :=
{−(hk + λ)uk − ∑

k1+k2+k3=k uk1vk2vk3

−(γ hk + 1)vk + ∑
k1+k2+k3=k uk1vk2vk3 .

In each gk we replace the second line with the sum of the first and the second and we obtain
the equivalent system

g(0,0)(x) :=
{

λ(1 − u(0,0)) − ∑
k1+k2+k3=(0,0) uk1vk2vk3

−v(0,0) + λ(1 − u(0,0))

gk(x) :=
{

−(hk + λ)uk − ∑
k1+k2+k3=k uk1vk2vk3

−(γ hk + 1)vk − (hk + λ)uk.

(16)

From the second equation it follows

v(0,0) = λ(1 − u(0,0)), vk = − hk + λ

γhk + 1
uk

thus, plugging vk into the first equation, we end up with a system of equations in the vari-
ables {uk}k only. However, to easy the notation, we continue to use the variable vk , having
in mind that any vk is function of uk . Let us define

qk := − hk + λ

γhk + 1
, q := {qk}k∈Z2

and, given a sequence x = {xk}k , we adopt the notation qx for the sequence qx = {qkxk}k .
In particular v = qu. Also, introduce

q̂ := 1

γ
. (17)

Remark 3 The values of the parameters λ and γ of interest in this work are such that λγ < 1.
In this situation it holds |qk| ≤ q̂ for any k ∈ Z

2.

The system we need to solve is

f (u) = {
fk(u)

}
k∈Z2 = 0
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where

f(0,0)(u) := λ(1 − u(0,0)) −
∑

k1+k2+k3=(0,0)

uk1vk2vk3 = 0

fk(u) := −(hk + λ)uk −
∑

k1+k2+k3=k

uk1vk2vk3 = 0, ∀k ∈ Z
2
∗

(18)

in the unknown u = {uk}k∈Z2 . We look for solutions in the Banach space

Xs = {
u : ‖u‖s < ∞}

s ≥ 2, where the s-norm is the same as in Sect. 3.1. Introduce

μk = −(hk + λ), (19)

to denote the coefficients of the linear terms in fk .

4.2 Construction of the Polynomial Bounds

To avoid unnecessary verbosity, most of the technicalities are skipped, rather we report the
explicit definition of the bounds Y and Z. For more details we refer to [11].

Choose the finite dimensional parameter m, the computational parameter M so that M ≥
3(m − 1) − 1 and the FFT dimension parameter M so that m ≤ M < M .

Suppose that a numerical solution ūFm is computed so that f (m)(ūFm) ≈ 0. Denote by ū

the embedding of ūFm into X, i.e. ū = (ūFm ,0Im), and define v̄ = qū. Compute the finite
dimensional matrix J−1

m and the infinite dimensional operator J−1 as in (9). For this, it is
convenient to report the Jacobian matrix Df (u). Having in mind that the vk is function
of uk , it holds

∂f(0,0)

∂u(0,0)

= −λ −
∑

k1+k2=(0,0)

vk1vk2 + 2λ
∑

k1+k2=(0,0)

uk1vk2

∂f(0,0)

∂uj

= −
∑

k1+k2=j

vk1vk2 − 2qj

∑
k1+k2=j

uk1vk2

∂fk

∂u(0,0)

= −
∑

k1+k2=k

vk1vk2 + 2λ
∑

k1+k2=k

uk1vk2

∂fk

∂uj

= μkδk−j −
∑

k1+k2=k−j

vk1vk2 − 2qj

∑
k1+k2=k−j

uk1vk2 .

The construction of Yk readily follows from the definition (10):

Yk :=
⎧⎨
⎩

[|J−1
m f (m)(ūFm)|]k, if k ∈ Fm

|μ−1
k fk(ū)|, if k ∈ FM \ Fm

0, if k /∈ FM

The last line is due to the choice of M , for which (ū ∗ v̄ ∗ v̄)k = 0 for any k /∈ FM .



Rigorous Computation of Non-uniform Patterns. . . 39

The polynomial Zk(r) is defined as

Zk(r) =
{

Z
(0)

k r + (|J−1
m |Z(1)

Fm
)kr + (|J−1

m |Z(2)
Fm

)kr
2 + (|J−1

m |Z(3)
Fm

)kr
3, for k ∈ Fm

|μ−1
k |(Z(1)

k r + Z
(2)

k r2 + Z
(3)

k r3), for k /∈ Fm.

For each k ∈ Fm the bound Z
(0)

k is defined as

Z
(0)

k := [∣∣I − J−1
m Df (m)(ūFm)

∣∣ω−s
Fm

]
k
, ∀k ∈ Fm

and it is rigorously computed, since only a finite number of computations are involved.
Combining rigorous computation and the analytical estimates, all the other bounds can

be defined as:

Z
(1)

k :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k1+k2+k3=k
|k1 |,|k2 |∈Fm,

|k3 |∈F
M

\Fm

|v̄k1 ||v̄k2 |ω−s
k3

+ 2
∑

k1+k2+k3=k
|k1 |,|k2 |∈Fm,

|k3 |∈F
M

\Fm

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+ ‖v̄‖2
sε

(3)

k + 2q̂‖ū‖s‖v̄‖sε
(3)

k , k ∈ Fm∑
k1+k2+k3=k

|k1|,|k2|∈Fm,|k3|∈FM

|v̄k1 ||v̄k2 |ω−s
k3

+ 2
∑

k1+k2+k3=k
|k1|,|k2|∈Fm,|k3|∈FM

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+ ‖v̄‖2
sε

(3)

k + 2q̂‖ū‖s‖v̄‖sε
(3)

k , k ∈ FM \ Fm

‖v̄‖2
s

α
(3)
k
ωs

k
+ 2q̂‖ū‖s‖v̄‖s

α
(3)
k
ωs

k
, k /∈ FM

(20)

Z
(2)

k :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3
∑

k1+k2+k3=k
|k1 |∈Fm,

|k2 |,|k3 |∈F
M

|v̄k1 ||qk2 |ω−s
k2

ω−s
k3

+ ∑
k1+k2+k3=k
|k1 |∈Fm,|k2 |,

|k3 |∈F
M

|ūk1 ||qk2 |ω−s
k2

|qk3 |ω−s
k3

+ 6‖v̄‖s q̂ε
(3)

k + 2q̂2‖ū‖sε
(3)

k , k ∈ FM

3‖v̄‖s q̂
α

(3)
k
ωs

k
+ ‖ū‖s q̂

2 α
(3)
k
ωs

k
, k /∈ FM

and

Z
(3)

k :=

⎧⎪⎨
⎪⎩

3
∑

k1+k2+k3=k
|kj |∈FM

|qk1 |ω−s
k1

|qk2 |ω−s
k2

ω−s
k3

+ 9q̂2ε
(3)

k , k ∈ FM

3q̂2 α
(3)
k
ωs

k
, k /∈ FM

Define

μ̃M := π2 min

{
(M(1))2

L2
1

,
(M(2))2

L2
2

}
+ λ

so that μ̃M ≤ |μk| for any k /∈ FM .
The tail coefficient (11) is given by

Z̃M = 1

μ̃M

(
Z̃

(1)
M + Z̃

(2)
M r + Z̃

(3)
M r2

)

with Z̃
(j)

M ≥ Z
(j)

k ωs
k for any k /∈ FM . It is enough to define

Z̃
(1)
M := (‖v̄‖2

s + 2q̂‖ū‖s‖v̄‖s

)
α̃

(3)
M , Z̃

(2)
M := (

3‖v̄‖s q̂ + ‖ū‖s q̂
2
)
α̃

(3)
M ,

Z̃
(3)
M := 3q̂2α̃

(3)
M

(21)

with α̃
(3)
M given in (34).
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4.3 A Priori Analysis of the Radii Polynomials

According to Lemma 2, the existence of a stationary solution for the Gray-Scott equation is
assured if the radii polynomials are all negative for some positive value of r . A careful anal-
ysis of the coefficients of the polynomials clarifies under which conditions the computation
will be successful and feasible.

For k ∈ FM the polynomial pk(r) is of the form pk(r) = a0 + a1r + a2r
2 + a3r

3. The
constant term a0 is always positive and it is related to the accuracy of the numerical solution.
It can be lowered if a better approximate solution is produced, for instance by increasing the
finite dimensional projection m.

Also a2 and a3 are positive and they are related to the rate of expansion of the operator
T due to superlinear terms in the function f (x). A necessary condition for the polynomial
pk(r) to be negative somewhere is that a1 is negative. Looking to the case k ∈ FM \ Fm, the
coefficient a1 is of the form a1 = 1

|μk |Z
(1)

k − 1
ωs

k
. Since Z

(1)

k decays like Cω−s
k (because of

the properties of the convolutions), it is enough that |μk| is increasing to ensure, for m large
enough, that a1 is negative. The coefficients μk s are related to the eigenvalues of the linear
operator in the PDE. In particular, high order linear operators yield larger μk and enhance
the contractivity of T , that translates into a smaller value for a1 and a possible choice of
smaller m. Besides that preliminary theoretical argument, a crucial issue is the feasibility
of the computation. Indeed, it is necessary to choose the various parameters m, M and M

relatively small, so to abet practical computation. In particular, since the convolution product
is the most costly computation, and it appears several times in (20), it is fundamental to keep
M as small as possible.

Let us now inspect how the growth rate of μk influences the choice of M in the context
of the PDE under investigation. Looking at the polynomial pk(r) with k ∈ FM \ FM , we
realise that

a1 =
((‖v̄‖2

s + 2q̂‖ū‖s‖v̄‖s

) α
(3)

k

|μk| − 1

)
1

ωs
k

must be negative. The parameter M must be chosen large enough so that μk remains rea-
sonable larger than α

(3)

k for any k /∈ FM . Again, as a general statement, a larger growth for
μk allows a smaller choice of M . For two-dimensional PDE problems the coefficient α

(3)

k

rapidly grows to large values, hence the parameter M needs to be selected quite large. Our
situation is even worst due to the presence of q̂ = γ −1 that multiply the effect of α

(3)

k . To
have a quantitative idea, consider the family of solutions labelled with (0,3) in Fig. 1(a).
It bifurcates at the value γ ≈ 0.0087. Taking into account all the constant factors and the
s-norm of ū and v̄ (s = (2,2)) it is necessary to choose M = (M1,M2) with both M1, M2

larger than 250. To perform cubic convolutions of sequences with around (500)2 terms is
extremely computationally expensive. We underline that it is the combination of the high
dimensionality of the problem and the presence of a small constant γ in front of the linear
term that makes the computation of the radii polynomials not affordable. Indeed the method
was successfully applied in [9] to prove equilibria for the 2D and 3D Cahn-Hilliard equa-
tion with constant factor in the range γ ≈ [0.05,0.1] and γ ≈ [0.3,1] respectively. Rather,
in [11] it is proven existence of solutions for the Allen-Cahn equation with much smaller
factor γ ≈ 0.001 but only for the one dimensional case.

In conclusion, we are not claiming that the technique fails in proving the solutions we
are interested in, but that, just for one tentative enclosure, one needs to perform a number of
computations so large that can not be addressed by a standard computer in reasonable time.
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Therefore, to the goal of proving Theorem 1, the method so far described is not feasible. To
overcome these hurdles, in the next section we introduce some modifications.

4.4 New Definition of the Bound Z
(j)
k and Z̃M

The following procedure aims at sharpening those terms in Z
(1)

k , Z(2)

k and Z̃M that involve q̂ .

At first, we are concerned with the factors q̂‖ū‖s‖v̄‖sε
(3)

k , q̂‖ū‖s‖v̄‖s
α

(3)
k
ωs

k
appearing in Z

(1)

k .

Although it was not said explicitly, the role of these terms is to provide a bound for the series

∑
k1+k2+k3=k

|k1|,|k2|∈Fm,|k3|/∈FM

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

, k ∈ FM , (22)

and ∑
k1+k2+k3=k

|k1|,|k2|∈Fm,k3∈Z2

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

, k /∈ FM . (23)

The first is obtained applying Lemma 4 and the uniform estimates |ūk| ≤ ‖ū‖sω
−s
k , |v̄k| ≤

‖v̄‖sω
−s
k and |qk3 | ≤ q̂ . Similarly, the second bound has been defined applying Lemma 3.

Rather than uniformly estimate each coefficient |ūk|, |v̄k| as done above, we can separate
in the series (22) the significative contributions from the smaller one. Indeed, it could be the
case that few of the ūk’s and v̄k’s are large, while the others are extremely small. Such a be-
haviour is expectable, for instance, when the aimed solution belongs to a branch bifurcating
from the constant state. Typically, in this situation, only one mode is dominating.

For a given ε, let us define

Fm(ū, ε) := {
k : |k| ∈ Fm, |ūk|ωs

k > ε
}
, Fm(v̄, ε) := {

k : |k| ∈ Fm, |v̄k|ωs
k > ε

}
. (24)

We refer to ε as the sharpening parameter and we assume that ε < min{‖ū‖s,‖v̄‖s} so that
both Fm(ū, ε), Fm(v̄, ε) are not empty. They are clearly finite, being subsets of Fm.

The series (22) is decomposed into

∑
k1+k2+k3=k
|k1 |,|k2 |∈Fm

|k3 |/∈F
M

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

=
∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |/∈F
M

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+
∑

k1+k2+k3=k
|k1 |∈Fm\Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |/∈F
M

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+
∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm\Fm(v̄,ε)

|k3 |/∈F
M

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+
∑

k1+k2+k3=k
|k1 |∈Fm\Fm(ū,ε)

|k2 |∈Fm\Fm(v̄,ε)

|k3 |/∈F
M

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

. (25)

The effect of the sharpening parameter is twofold. First, it allows to isolate the main con-
tribution of the series, given by the first sum on the right hand side of (25) that will be
rigorously computed. All the others sums are uniformly bounded by means of the bound
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ε
(3)

k , see Lemma 4. We note that anytime the index |k1| ranges outside Fm(ū, ε) (resp. |k2|
ranges outside Fm(v̄, ε)) it holds |ūk1 | ≤ εω−s

k1
(resp. |v̄k2 | ≤ εω−s

k2
). The last estimate is a

much sharper than |ūk| ≤ ‖ū‖sω
−s
k previously adopted.

Explicitly, we obtain

∑
k1+k2+k3=k
|k1 |,|k2 |∈Fm

|k3 |/∈F
M

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

≤
∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |/∈F
M

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+ q̂ε
(‖v̄‖s + ‖ū‖s + ε

)
ε

(3)

k .

For the series (23) the same strategy and Lemma 3 lead to

∑
k1+k2+k3=k

|k1|,|k2|∈Fm,k3∈Z2

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

≤
∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |∈Z2

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+ q̂ε
(‖v̄‖s + ‖ū‖s + ε

)α
(3)

k

ωs
k

.

The advantage of this approach is to enfeeble the effect of γ −1 hidden in q̂ . On the other
side we have to calculate one more sum at any stage, requiring further computational time.
However, if the mass of ū is concentrated in few Fourier coefficients, such a computation is
pretty fast. Inserting these newly defined bounds, we redefine Z

(1)

k by replacing in (20)

2q̂‖ū‖s‖v̄‖sε
(3)

k with 2
∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |/∈F
M

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+ 2q̂ε
(‖v̄‖s + ‖ū‖s + ε

)
ε

(3)

k

2q̂‖ū‖s‖v̄‖s

α
(3)

k

ωs
k

with 2
∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |∈Z2

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+ 2q̂ε
(‖v̄‖s + ‖ū‖s + ε

)α
(3)

k

ωs
k

.

Concerning the bound Z
(2)

k , we aim at replacing the terms 6‖v̄‖s q̂ε
(3)

k , 3q̂‖v̄‖s
α

(3)
k
ωs

k
, and

similarly the terms 2‖ū‖s q̂
2ε

(3)

k , ‖ū‖s q̂
2 α

(3)
k
ωs

k
. The former are defined so that

2‖v̄‖s q̂ε
(3)

k ≥
∑

k1+k2+k3=k
|k1 |∈Fm,

{|k2 |,|k3 |}�⊂F
M

|v̄k1 |ω−s
k2

|qk3 |ω−s
k3

∀k ∈ FM

q̂‖v̄‖s

α
(3)

k

ωs
k

≥
∑

k1+k2+k3=k
|k1 |∈Fm,

|k2 |,|k3 |∈Z2

|v̄k1 |ω−s
k2

|qk3 |ω−s
k3

∀k /∈ FM .

(26)
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Arguing as before, i.e. collecting the largest contributions in the series, and using the bound
qk ≤ q̂ and Lemma 4, we write

∑
k1+k2+k3=k

|k1 |∈Fm,

{|k2 |,|k3 |}�⊂F
M

|v̄k1 |ω−s
k2

|qk3 |ω−s
k3

≤ q̂
∑

|k1|∈Fm(v̄,ε)

|v̄k1 |
∑

k2+k3=k−k1{|k2|,|k3|}�⊂FM

ω−s
k2

ω−s
k3

+ εq̂
∑

k1+k2+k3=k
{|k2|,|k3|}�⊂FM

ω−s
k1

ω−s
k2

ω−s
k3

≤ 2q̂
∑

|k1|∈Fm(v̄,ε)

|v̄k1 |ε(2)

k−k1
+ 2εq̂ε

(3)

k . (27)

Similarly, the same procedure provides bounds for the second of (26) and for the terms

2‖ū‖s q̂
2ε

(3)

k , ‖ū‖s q̂
2 α

(3)
k
ωs

k
. We omit the details. Collecting all the terms, we reformulate

Z
(2)

k :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
∑

k1+k2+k3=k
|k1|∈Fm,|k2|,|k3|∈FM

|v̄k1 |ω−s
k2

|qk3 |ω−s
k3

+ ∑
k1+k2+k3=k

|k1|∈Fm,|k2|,|k3|∈FM

|ūk1 ||qk2 |ω−s
k2

|qk3 |ω−s
k3

+ 6q̂(
∑

|k1|∈Fm(v̄,ε) |v̄k1 |ε(2)

k−k1
+ εε

(3)

k )

+ 2q̂2(
∑

|k1|∈Fm(ū,ε) |ūk1 |ε(2)

k−k1
+ εε

(3)

k ) k ∈ FM

3q̂(
∑

|k1|∈Fm(v̄,ε) |v̄k1 |
α

(2)
k−k1

ωs
k−k1

+ ε
α

(3)
k
ωs

k
)

+ q̂2(
∑

|k1|∈Fm(ū,ε) |ūk1 |
α

(2)
k−k1

ωs
k−k1

+ ε
α

(3)
k
ωs

k
) k /∈ FM

Since the sequence Z
(3)

k does not involve ūk , v̄k , we keep the same Z
(3)

k bounds as reported
before.

It remains to define the tail bound Z̃M . By definition, we have to find a constant Z̃
(1)
M so

that

Z̃
(1)
M ≥ sup

k /∈FM

ωs
kZ

(1)

k .

For k /∈ FM , Z
(1)

k is now given by

Z
(1)

k = 2
∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |∈Z2

|ūk1 ||v̄k2 ||qk3 |ω−s
k3

+ ‖v̄‖2
s

α
(3)

k

ωs
k

+ 2q̂ε
(‖v̄‖s + ‖ū‖s + ε

)α
(3)

k

ωs
k

. (28)

According to [9] the last two terms in (28) can be easily bounded in terms of α̃
(3)
M given in

(34). The first one is less than 2q̂Sk where

Sk :=
∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |∈Z2

|ūk1 ||v̄k2 |ω−s
k3

.
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Having in mind that k = (k(1), k(2)), k1 = (k
(1)

1 , k
(2)

1 ),k2 = (k
(1)

2 , k
(2)

2 ), M = (M(1),M(2)),
s = (s(1), s(2)), let us introduce the following quantities.

Definition 2 For a choice of s, ε and M , define

M̂ := min
{
M(1),M(2)

}
k̂ := max

{
k

(1)

1 , k
(2)

1 , k
(1)

2 , k
(2)

2 : |k1| ∈ Fm(ū, ε), |k2| ∈ Fm(v̄, ε)
}

χ(1)(M, ε) := max

{
ωs(1)

k(1)

ωs(1)

k(1)−k
(1)
1 −k

(1)
2

: ∣∣k(1)
∣∣ < M(1), |k1| ∈ Fm(ū, ε), |k2| ∈ Fm(v̄, ε)

}

χ(2)(M, ε) := max

{
ωs(2)

k(2)

ωs(2)

k(2)−k
(2)
1 −k

(2)
2

: ∣∣k(2)
∣∣ < M(2), |k1| ∈ Fm(ū, ε), |k2| ∈ Fm(v̄, ε)

}
.

The next lemma provides an uniform bound for ωs
kSk for any k /∈ FM .

Lemma 5 Let k̂, M̂ , χ(1)(M, ε), χ(2)(M, ε) be as in Definition 2. Then

sup
k /∈FM

ωs
kSk ≤ max

{∣∣∣∣1 − 2k̂

M̂

∣∣∣∣
−s(1)−s(2)

,

∣∣∣∣1 − 2k̂

M̂

∣∣∣∣
−s(2)

χ (1)(M, ε),

∣∣∣∣1 − 2k̂

M̂

∣∣∣∣
−s(1)

χ (2)(M, ε)

}

×
∑

|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |. (29)

Proof See the Appendix. �

Denoting by η the right hand side of (29) we can define

Z̃
(1)
M := 2q̂η + (‖v̄‖2

s + 2q̂ε
(‖v̄‖s + ‖ū‖s + ε

))
α̃

(3)
M .

For Z̃
(2)
M and Z̃

(3)
M we adopt the same bounds as in (21). Hence the tail bound Z̃M is now

given by

Z̃M := 1

μ̃M

(
2q̂η + α̃

(3)
M

(‖v̄‖2
s + 2

(
q̂ε‖v̄‖s + q̂ε‖ū‖s + q̂ε2

))

+ α̃
(3)
M

(
3‖v̄‖s q̂ + ‖ū‖s q̂

2
)
r + 3α̃

(3)
M q̂2r2

)
.

5 Results

In this section we report the results obtained by applying the radii polynomial technique,
in the form discussed in the previous section, for the enclosure of non constant solutions
for system (3). All the rigorous computations and the visualisation have been performed in
Matlab with the interval arithmetic package Intlab [26].

We remind that the domain Ω is given as the rectangular Ω = [0,L1] × [0,L2]. The
various computational parameters have been chosen homogeneous, that is

m = (m,m), M = (M,M), M = (M,M), s = (s, s).
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In any computation the decay rate s is fixed equal to s = (2,2). We do not investigate the
performance of the enclosure as s varies. At this regard, an interesting analysis has been
performed in [1].

For convenience, let us recall the homogenous states

p2(λ) =
(

λ + √
λ2 − 4λ

2λ
,
λ − √

λ2 − 4λ

2

)
p3(λ) =

(
λ − √

λ2 − 4λ

2λ
,
λ + √

λ2 − 4λ

2

)
.

First we discuss how to compute the numerical solutions, then we report some details about
the rigorous enclosure.

5.1 Computing the Numerical Solution

For a choice of the domain sizes L1, L2 and of the parameter λ we numerically compute sev-
eral patterns lying on the same family bifurcating from one of the homogenous state p2(λ),
p3(λ). Each solutions is intended in Fourier space, that is, we numerically find a zero of a fi-
nite m-dimensional projection of system (16) in the unknowns X = {γ, {uk}k∈Fm , {vk}k∈Fm}.

According to the analysis performed in Sect. 2, for a choice of k we set that value γ = γk

and we perturb the homogenous state in the direction of the eigenfunction φk . This perturbed
state, together with γk , is now considered as initial data for a Newton iteration scheme. Once
a first non homogenous state is computed, we adopt a numerical continuation scheme to
compute other solutions on the same branch. We slightly move γ in the direction of the
branch, we perturb the previous computed state along the tangent direction and we look for
a new solution in the unknowns {uk}k∈Fm . There are different parameters one can play with
that influence the outcome of the process. For example the length of the increment of γ , the
size m of the finite dimensional projection and also the accuracy requested for the numerical
solution. In our computations we assume that the numerical solution x̄ is achieved when
the sup-norm of f (m)(x̄) is less than 10−10. The parameter m = (m,m) ranges in between
12 ≤ m ≤ 23 and different �γ -step are considered.

5.2 Rigorous Enclosure Results

5.2.1 Example 1. Global Bifurcation Diagrams for λ = 4.5, Ω = [0,1.1] × [0,0.8]

Here we discuss the results stated in Theorem 1 and depicted in Fig. 1. A magnification
of Fig. 1(a) is given in Fig. 2. Any bullet in the figures represents a validated non-constant
pattern. The graphs depict γ against the squared L2 norm of the v − v0, where v0 denotes
the v component of the homogenous state. The different families are labelled according
to the bifurcation point, that is the (k(1), k(2))-branch is the one that bifurcates from the
homogenous state at value γ(k(1),k(2)).

Table 1 reports the parameters m, M , M and the sharpening coefficient ε used in the
computation of the solutions marked in Fig. 2 together with the enclosure radius. Since
s = (2,2), the value of r provides also a bound for the C2 distance of the exact solution
from the numerical approximation.

From the data in the Table 1, we realise that larger finite dimensional parameter and
larger computational parameter are required when γ decreases and the size of k increases.
The role of γ is already discussed in Sect. 4.3. Although the introduction of the sharpening
coefficient ε enables to weaken the aftereffect of γ , a dependence between the parameters
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Fig. 2 Magnification of part of the bifurcation diagram in Fig. 1(a). The labels 1, . . . ,7 mark the solutions
analysed in Table 1 (Color figure online)

Table 1 Values of the
parameters used in the
computation of the solutions
labelled in Fig. 2. The last
column is the radius of the ball in
Xs , s = (2,2) around the
numerical solution within which
the genuine solution is
guaranteed to exists

# k γ m M M ε r

1 (0,2) 0.0148 12 33 71 10−3 2.2416 ·10−10

2 (1,2) 0.0113 16 42 104 10−3 1.1021 ·10−9

3 (0,3) 0.0066 18 54 135 10−3 5.6078 ·10−9

4 (3,1) 0.0089 20 50 160 10−3 5.1783 ·10−8

5 (2,3) 0.0051 22 78 250 10−3 9.6940 ·10−9

6 (3,3) 0.0046 21 87 240 10−3 2.0126 ·10−8

7 (3,1) 0.0106 16 30 92 10−3 5.7580 ·10−11

is still present and a smaller γ requires a larger M and M . On the other side, k denotes
the Fourier coefficient of u and v that has been initially perturbed at the bifurcation point.
Due to the nonlinear effects, such a perturbation is spread on the neighbourhood coefficients.
Hence a larger k requires larger m and M to take into account a large number of contributing
coefficients. Also, further the solution is from the bifurcation point, more important is the
effect of the nonlinearity.

A similar analysis, here skipped, can be performed for the enclosure of the patterns bi-
furcating from the homogenous state p3(λ) and reported in Fig. 1(b). In Fig. 3 some of such
patterns are plotted.

5.2.2 Example 2. Effect of the Sharpening Parameter

We now investigate the role of the newly introduced sharpening parameter ε. Remember
that the small is ε the higher is its effect, in the sense that the sets Fm(ū, ε),Fm(v̄, ε) given
in (24) are larger. Consider the solution in correspondence to γ = 0.0108 on the (1,2) bi-
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Fig. 3 Plot of the v-component of solutions for the Gray-Scott equation in 2D. Each solution belongs to a
different branch of families depicted in Fig. 1(b), where Ω = [0,1.1] × [0,0.8], λ = 4.5. For each figure we
report the value of γ and the label k of the branch. (a) γ = 0.0226,k = (1,0), (b) γ = 0.0122, k = (0,2),
(c) γ = 0.0215, k = (1,1), (d) γ = 0.0061, k = (0,3), (e) γ = 0.0052, k = (2,3), (f) γ = 0.0080, k = (3,1),
(g) γ = 0.0096, k = (1,2), (h) γ = 0.0043, k = (3,3) (Color figure online)

furcating branch in Fig. 1(b). In Fig. 4 both the components u and v of the pattern are
depicted. For different choices of ε, in Table 2 we list the computational parameters M and
M needed to obtain a successful validation of the numerical solution. The finite dimen-
sional projection parameter is m = 13. We see that for large ε extremely large values for the
computational parameters are requested. The last row in the table concerns a value close to
the largest possible choice of ε, according to the condition ε ≤ min{‖ū‖s,‖v̄‖s}. Therefore,
if the sharpening parameter is not considered at all, that is, if we follow the approach of
[11], even larger computational parameters must be selected and a rigorous enclosure of the
solution would be practically impossible.

6 Conclusion

In this paper a new development of the radii polynomial technique is proposed with the aim
of rigorously computing non-uniform patterns for the two dimensional Gray-Scott system.
It is demonstrated that the new approach succeeds in enclosing several complex patterns,
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Fig. 4 Plot of the u (left) and v (right) component of the pattern discussed in Example 2. The solution
belongs to the family (1,2) reported in Fig. 1(b) at γ = 0.0108 (Color figure online)

Table 2 The values of the
computational parameters M and
M necessary for the validation of
a numerical solution are reported,
for different values of the
sharpening parameter ε

ε M M

0.001 59 110

0.01 80 120

0.05 100 150

0.1 130 200

0.3 190 330

solutions that could not be proved following the previous approach present in the literature.
We plan to develop further the technique and to investigate in different directions. For in-
stance, the three dimensional case may be considered. We propose to combine the method
with the theory introduced in [1] to compute parameter dependent smooth branches of so-
lutions. Then a systematic analysis of the bifurcation branches of non-uniform patterns may
be performed, to prove whether some branches undergo secondary bifurcations or reconnect
to the uniform solution. Also, a more challenging project is to rigorously prove existence of
heteroclinic connections and homoclinic cycles.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

A.1 Definition of the α’s and ε’s Constants

Suppose s ≥ 2, M ≥ 6. For k ≥ 3 let be defined

γk := 2

[
k

k − 1

]s

+
[

4 ln(k − 2)

k
+ π2 − 6

3

][
2

k
+ 1

2

]s−2

.
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Then, for all k ∈ Z, define α
(2)
k = α

(2)
k (s,M) as

α
(2)
k :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + 2
∑M

k1=1
1

ω2s
k1

+ 2
M(2s−1)(2s−1)

, for k = 0
∑M

k1=1
2ωs

k

ωs
k1

ωs
k+k1

+ 2ωs
k

(k+M+1)sM(s−1)(s−1)

+ 2 + ∑k−1
k1=1

ωs
k

ωs
k1

ωs
k−k1

, for 1 ≤ k ≤ M − 1

2 + 2
∑M

k1=1
1

ωs
k1

+ 2
Ms−1(s−1)

+ γM, for k ≥ M.

(30)

and

α
(2)
k := α

(2)
|k| , for k < 0.

Also

α̃
(2)
M := max

{
α

(2)
k (s,M) |k = 0, . . . ,M

}
.

By recursion, for n ≥ 3, define α
(n)
k = α

(n)
k (s,M) as

α
(n)
k :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(n−1)

0 + 2
∑M−1

k1=1

α
(n−1)
k1
ω2s

k1

+ 2α
(n−1)
M

(M−1)2s−1(2s−1)
k = 0

∑M−k

k1=1

α
(n−1)
k1+k

ωs
k

ωs
k1

ωs
k+k1

+ α
(n−1)
M

ωs
k

(M+1)s (M−k)s−1(s−1)
+ ∑k−1

k1=1

α
(n−1)
k1

ωs
k

ωs
k1

ωs
k−k1

+ ∑M

k1=1

α
(n−1)
k1

ωs
k

ωs
k1

ωs
k+k1

+ α
(n−1)
M

ωs
k

(M+k+1)sMs−1(s−1)
+ α

(n−1)
k + α

(n−1)

0 1 ≤ k ≤ M − 1

α
(n−1)
M

∑M

k1=1
1

ωs
k1

+ 2α
(n−1)
M

Ms−1(s−1)
+ Σ∗ + ∑M

k1=1

α
(n−1)
k1
ωs

k1
+ α

(n−1)
M + α

(n−1)

0 k ≥ M

(31)

α
(n)
k := α

(n)
|k| , for k < 0,

where

Σ∗ := min
{
Σa,Σb

}

Σa :=
M−1∑
k1=1

α
(n−1)
k1

Ms

ωs
k1

(M − k1)s
+ α

(n−1)
M

(
γM −

M−1∑
k1=1

1

ωs
k1

)
, Σb := α̃

(n−1)
M γM.

Define

α̃
(n)
M = α̃

(n)
M (s,M) := max

{
α

(n)
k (s,M) : k = 0, . . . ,M

}
.

For n ≥ 2, s ≥ 2, M ≥ M ≥ 6, define

ε
(n)
k (s,M,M) :=

M−k∑
k1=M

α
(n−1)
k+k1

ωs
k1

ωs
k+k1

+
M+k∑
k1=M

α
(n−1)
k1−k

ω2
k1

ωs
k1−k

+ α
(n−1)
M

(s − 1)(M + 1)s

[
1

(M − k)s−1
+ 1

(M + k)s−1

]
(32)

where α
(1)
k = 1, and for k < 0

ε
(n)
k (s,M,M) := ε

(n)
|k| (s,M,M).
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For the multidimensional case, suppose that s = (s(1), . . . , s(d)) with s(i) ≥ 2, M =
(M

(1)
, . . . ,M

(d)
), M = (M(1), . . . ,M(d)) with 6 ≤ M

(i) ≤ M(i) have been fixed. Then, for
k = (k(1), . . . , k(d)) ∈ Z

d , let be defined

α
(n)

k := α
(n)

k(1)

(
s(1),M(1)

)
. . . α

(n)

k(d)

(
s(d),M(d)

)
(33)

α̃
(n)
M := max

j0=1,...,d

{
α

(n)

M(j0)

(
sj0 ,M

(j0)
) ∏

j=1
j �=j0

α̃
(n)

M(j)

(
sj ,M

(j)
)}

(34)

and

ε
(n)

k = ε
(n)

k (s,M,M) := α
(n)

k

ωs
k

max
j=1...,d

{
ωs(j)

k(j)

α
(n)

k(j) (s
(j),M(j))

ε
(n)

k(j)

(
s(j),M(j)

)}
. (35)

A.2 Proof of Lemma 5

Lemma Let ε be fixed and k̂, M̂ , χ(1)(M, ε), χ(2)(M, ε) be as in Definition 2. Then

sup
k /∈FM

ωs
kSk ≤ max

{∣∣∣∣1 − 2k̂

M̂

∣∣∣∣
−s(1)−s(2)

,

∣∣∣∣1 − 2k̂

M̂

∣∣∣∣
−s(2)

χ (1)(M, ε),

∣∣∣∣1 − 2k̂

M̂

∣∣∣∣
−s(1)

χ (2)(M, ε)

}

×
∑

|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |. (36)

Proof It holds

sup
k /∈FM

ωs
kSk = sup

{
sup

|k(1)|≥M(1),|k(2)|≥M(2)

ωs
kSk, sup

|k(1)|≥M(1),|k(2)|<M(2)

ωs
kSk,

sup
|k(1)|<M(1),|k(2)|≥M(2)

ωs
kSk

}
.

If both |k(1)| ≥ M(1), |k(2)| ≥ M(2),

ωs
kSk = ∣∣k(1)

∣∣s(1) ∣∣k(2)
∣∣s(2) ∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |∈Z2

|ūk1 ||v̄k2 |ω−s
k3

=
∑

|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |
|k(1)|s(1) |k(2)|s(2)

|k(1) − k
(1)

1 − k
(1)

2 |s(1) |k(2) − k
(2)

1 − k
(2)

2 |s(2)

=
∑

|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |
1

|1 − k
(1)
1 +k

(1)
2

k(1) |s(1) |1 − k
(2)
1 +k

(2)
2

k(2) |s(2)

≤ 1

|1 − 2k̂

M̂
|s(1)+s(2)

∑
|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |.
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Hence

sup
|k(1)|≥M(1),|k(2)|≥M(2)

ωs
kSk ≤ 1

|1 − 2k̂

M̂
|s(1)+s(2)

∑
|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |.

If |k(1)| < M(1) and |k(2)| ≥ M(2) we have

ωs
kSk = ωs(1)

k(1) |k(2)|s(2)
∑

k1+k2+k3=k
|k1 |∈Fm(ū,ε)

|k2 |∈Fm(v̄,ε)

|k3 |∈Z2

|ūk1 ||v̄k2 |ω−s
k3

=
∑

|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |
ωs(1)

k(1) |k(2)|s(2)

ωs(1)

k(1)−k
(1)
1 −k

(1)
2

|k(2) − k
(2)

1 − k
(2)

2 |s(2)

=
∑

|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |
ωs(1)

k(1)

ωs(1)

k(1)−k
(1)
1 −k

(1)
2

|1 − k
(2)
1 +k

(2)
2

k(2) |s(2)

≤ 1

|1 − 2k̂

M̂
|s(2)

χ (1)(M, ε)
∑

|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |.

Similarly, in case |k(1)| ≥ M(1) and |k(2)| < M(2)

ωs
kSk ≤ 1

|1 − 2k̂

M̂
|s(1)

χ (2)(M, ε)
∑

|k1|∈Fm(ū,ε)
|k2|∈Fm(v̄,ε)

|ūk1 ||v̄k2 |.
�
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