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Abstract We classify graph C∗-algebras, namely, Cuntz-Krieger algebras associated to the
Bass-Hashimoto edge incidence operator of a finite graph, up to strict isomorphism. This is
done by a purely graph theoretical calculation of the K-theory of the C∗-algebras and the
method also provides an independent proof of the classification up to Morita equivalence and
stable equivalence of such algebras, without using the boundary operator algebra. A direct
relation is given between the K1-group of the algebra and the cycle space of the graph.
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1 Introduction

The purpose of this paper is to give a very simple proof of the classification of graph
C∗-algebras, which makes no use of operator algebra techniques but only uses combina-
torial and homotopical properties of graphs. Theorem 1 in this paper is well known in the
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operator algebra literature, but we provide a very simple and purely graph-theoretical proof.
We then use this proof as the basis to obtain Theorem 2, which completes the classification
by identifying the image of the unit in K-theory. We can sometimes reverse our methods
and deduce graph theoretical results from known operator algebraic calculations (cf. 2.12).

To set up notation: let Q denote a finite (multi-)graph with m (geometrical) edges. Note
that Q might have loops, multiple edges and sinks. Consider the (oriented) graph Q+, whose
vertices equal those of Q, and whose edges consist of all edges of Q with both possible
orientations. We denote the two edges of Q+ corresponding to an edge e of Q by e and ē. Let
o and t denote the origin, respectively, terminal vertex of an oriented edge e of Q+. Let EQ+
denote the set of edges of the oriented graph Q+, and let ZEQ+

denote the free Z-module
spanned by these edges. On this space, we consider the linear operator T : ZEQ+ → ZEQ+

defined on the basis elements e ∈ EQ+ by

T (e) :=
( ∑

t (e)=o(e′)
e′

)
− ē,

the sum extending over all edges e′ ∈ EQ+ satisfying the condition given under the summa-
tion sign. We will consider the operator T as a linear map of Z-modules, and not just of the
corresponding Q- or R-vector spaces; especially when we write ker(1 − T ) or im(1 − T ),
we mean these as submodules of ZEQ+

.
This operator is represented by a 2m × 2m-matrix A, whose entries are in {0,1}. The

operator T was considered by Hashimoto [13] and Bass [2] in connection with their study
of the Ihara zeta function of a graph (see also: Stark and Terras [21]).

Let OQ denote the Cuntz-Krieger algebra [11] associated to the matrix A. This is the
universal C∗-algebra generated by 2m partial isometries {Si}2m

i=1 with orthogonal range pro-
jections, subject to the relations S∗

i Si = ∑
AijSjS

∗
j .

We want to classify Cuntz-Krieger algebras that arise in such a way, up to strict isomor-
phism (denoted ∼= in this paper). Although it seems at first that quite a few algebras are
possible, we will see that this turns out not to be the case.

First consider the weaker equivalence relation on such algebras given by (strong) Morita
equivalence (denoted ∼) and stable isomorphism (also denoted ∼ in this paper, since the
notions are equivalent in our setting). Then Kumjian and Pask [14] have proven that OQ

is Morita equivalent to a boundary operator algebra. More specifically, let T denote the
universal covering tree of Q. Then Q = T /� for � a free group of rank g = the first Betti
number of Q, and OQ ∼ C∗(∂T ) � �, where the right hand side algebra, which we call a
boundary operator algebra, only depends on g. As a matter of fact, since a result of Rørdam
[20] implies that K0 is a full invariant for the stable isomorphism class of Cuntz-Krieger
algebras and stable isomorphism and Morita equivalence are the same for such algebras,
this result can be used to compute the K-theory of OQ by calculating it for one example
graph Q, and this is done by Robertson in [18] in an operator algebraic way.

Note that Rørdam has also proven that K0(OQ) together with the position of the unit in
K0(OQ) is a full invariant for the strict isomorphism type of OQ. We do not see how one can
follow the position of the unit through the proof of Kumjian and Pask. Our aim in this paper
is twofold. First, we want to recompute the K-theory of Q directly in a graph theoretical
way, thus avoiding the boundary operator algebra. Our proof will involve relating the Smith
Normal Form reduction of 1 − A to contraction of non-loops in the graph. The proof of our
second result will rely heavily on this technique. Although knowing K0 for a Cuntz-Krieger
algebra allows one to compute K1, we also exhibit a direct relation between K1 and graph
homology. The result is
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Theorem 1 Let Q denote a finite graph with first Betti number g ≥ 1. Then

K0(OQ) ∼= Zg ⊕ Z/(g − 1)Z.

Furthermore, for g ≥ 2, K1(OQ) is naturally isomorphic to Z1, the space of cycles on Q,
so K1(OQ) ∼= Zg . As a matter of fact, K1(OQ) is isomorphic to ker(1 − T ), and we have an
isomorphism

ϕ : Z1 → ker(1 − T ),[∑
e
]

	→
∑

e −
∑

ē.

Hence for g ≥ 2, the Morita equivalence and stable equivalence type of OQ only depends
on g. On the other hand, if g = 1, then ker(1−T ) is spanned by ϕ([c]) for c a representative
for a fundamental cycle, and c + ∑

l, where the sum is over all edges l outside c that point
away from c.

The result can now be used, conversely, to compute the K-theory of boundary operator
algebras. One can also deduce some results about the operator T from this theorem. In
particular, 1 − T has kernel K1(OQ), Z|EQ+|/ im(1 − T ) ∼= K0(OQ), and one recovers the
computation of the rank of 1 − T from [2] for both g ≥ 2 and g = 1.

Secondly, we want to study the strict isomorphism class of OQ for a general graph Q.
This problem doesn’t seem to have been dealt with in the literature. By Rørdam’s classifica-
tion results, it is known to depend upon the position of the unit in K0. Again from the bound-
ary operator algebra point of view, Robertson showed in [18] that the unit of C∗(∂T ) � � is
of exact order g − 1. This is analogous to Connes’s calculation in [5], Corollary 6.7, that the
class of the identity 1 in K0(A) has order g −1, where A = C(P1(R))��, with � a torsion-
free cocompact lattice in PGL(2,R), and g the genus of the Riemann surface uniformized
by �.

Here, we use purely graph theoretical considerations to calculate the exact position of the
unit in K0(OQ) for a general graph Q. Let us denote by (a, b) the greatest common divisor
of two integers a and b.

Theorem 2 Let Q denote a graph with first Betti number g ≥ 2. Then the image of the unit
of OQ in K0(OQ) ∼= Zg ⊕ Z/(g − 1)Z has (finite) order

g − 1

(g − 1, |V Q|) ,

where |V Q| is the number of vertices of Q. In particular, the class of the unit in K0 is annihi-
lated by the Euler characteristic g −1 of Q. Furthermore, every possible strict isomorphism
type of an operator algebra with K0-group of the given type occurs as graph C∗-algebra for
a stable graph; strict isomorphism is not a homotopy invariant for graphs; and OQ is only
strictly isomorphic to a boundary operator algebra of genus g if the number of vertices in
Q is coprime to the Euler characteristic g − 1 of Q.

We hope that the purely combinatorial considerations leading to these theorems will help
in understanding the higher dimensional analogues of these results (for group actions on
buildings) as considered by Robertson in [17, 18]. For some further results, see Vdov-
ina [23].
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Since these Cuntz-Krieger algebras are related to topological Markov chains [11], the
results can also be read in dynamical terms as saying something about the Bowen-Franks
invariants [3] of certain subshifts.

Our results arose from trying to answer the following question in algebraic geometry:
one can associate a spectral triple to a Mumford curve X (cf. [7]), in which the operator
algebra is the boundary operator algebra for the Schottky group. In this construction, one
can replace that algebra by the graph C∗-algebra OQ for Q the stable reduction of X. Does
this new algebra capture more geometrical information about X? See Remark 2.18 below
for some more details. Also, strict isomorphism is important when a C∗-algebra is extended
to a spectral triple (Connes [6], compare [22]).

We only consider finite graphs. It might be interesting to extend the methods to row-finite
or locally finite graph C∗-algebras.

2 Stable Isomorphism Type

2.1 (Set-up) Let Q denote a graph (possibly with loops, multiple edges, and sinks) with m

(geometrical) edges and of first Betti number (“cyclomatic number”) g, viz., g equals the
number of independent loops, which equals the number of edges outside a spanning tree. We
will mostly be considering the case where g ≥ 2, but we will comment upon what happens
for g = 1 at the appropriate place. In this section, we will prove Theorem 1 from Sect. 1.

2.2 (The operator T ) We make a new (oriented) graph Q+, whose vertices equal those of
Q, and whose edges consist of all edges of Q with both possible orientations. We denote
the two edges of Q+ corresponding to an edge e of Q by e and ē. Let o(e) and t (e) denote
the origin, respectively, terminal vertex of an oriented edge e of Q+. Let EQ+ denote the
set of edges of the oriented graph Q+, and let ZEQ+

denote the free Z-module spanned by
these edges. On this space, we consider the linear operator T : ZEQ+ → ZEQ+

defined on
the basis elements e ∈ EQ+ by

T (e) :=
( ∑

t (e)=o(e′)
e′

)
− ē,

the sum extending over all edges e′ ∈ EQ+ satisfying the condition given under the summa-
tion sign. We will consider the operator T as a linear map of Z-modules, and not just of the
corresponding Q- or R-vector spaces; especially when we write ker(1 − T ) or im(1 − T ),
we mean these as submodules of ZEQ+

.
This operator is represented by a 2m × 2m-matrix A, whose entries are in {0,1}. The

operator T was considered by Hashimoto [13] and Bass [2] in connection with their study
of the Ihara zeta function of a graph (see also: Stark and Terras [21]). Although not strictly
necessary for the main argument of this paper, we will comment upon this relation in 2.12
below.

2.3 (The Cuntz-Krieger algebra) Let OQ denote the Cuntz-Krieger algebra associated to the
matrix A. This is the universal C∗-algebra generated by 2m partial isometries {Si}2m

i=1 with
orthogonal range projections, subject to the relations

S∗
i Si =

∑
AijSjS

∗
j .
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We want to classify Cuntz-Krieger algebras that arise in such a way. Although it seems at
first that quite a few algebras are possible, we will see that this turns out not to be the case.

First some preliminary observations. Since the reduction graph has cyclomatic number
g ≥ 2, it has a vertex of valency ≥ 2, so A is not a permutation matrix (actually, the only ex-
ception would be a graph consisting of a single vertex and a single loop, which corresponds
to a Tate elliptic curve). The matrix A is also irreducible, i.e., all entries of Am for m suffi-
ciently large are positive. This is clear from the interpretation of Am

x,y as the number of paths
of length m between the end point of x and the origin of y, since Q is a finite and connected
graph. Therefore, OQ is a simple algebra [11, Theorem 2.14]. By a result of Rørdam [20],
two different such algebras for graphs Q and Q′ are stably isomorphic (i.e., isomorphic after
tensoring with compact operators) if and only if K0(OQ) ∼= K0(OQ′). Furthermore, they are
isomorphic if and only if there is a group isomorphism between the K0-groups that maps the
class of the unit of OQ to that of OQ′ . The image of the unit in the abstract group K0(OQ)

up to abstract group automorphisms is called “the position of the unit” in the literature.

2.4 Remark The notions of stable isomorphism and (strong) Morita equivalence are equiv-
alent for algebras of the form OQ, since they are separable, see Brown-Green-Rieffel [4].

2.5 (K-theory computations) We hence start by computing the K-theory of OQ. Theo-
rem 5.3 in [11] says that K0(OQ) = Zn/(1 − At)Zn, where n is the dimension of the ma-
trix A. Equivalently, in terms of the operator T , K0(OQ) = ZEQ+

/ im(1 − T ). Note that it
is irrelevant whether one works with At or A in this formula. We now claim the following:

2.6 Proposition If Q is a graph with cyclomatic number g ≥ 1, then

K0(OQ) ∼= Zg ⊕ Z/(g − 1)Z;
in particular, the stable isomorphism type of OQ only depends on g if g ≥ 2.

2.7 Remark As follows from [20, 4.3], any abelian group can be the K-group of a Cuntz-
Krieger algebra associated to the vertex adjacency matrix of a graph. In light of this, the
above result might come as a surprise.

Proof The proof has two parts. We use the following notation: for two square matrices M,N

of size n × n, we write M ∼ N if there exist matrices X,Y ∈ GLn(Z) such that XMY = N .
We also write 1n for the indentity matrix of size n × n.

2.6.1 We start by proving this for the case where Q has only one vertex, so m = g, see Fig. 1.
The matrix A − 1 is of the form A − 1 = (

B B

B B

)
, where B is a g × g matrix with zeros

along the diagonal and 1 everywhere else.
Obviously, A − 1 ∼ (

B 0
0 0

)
. By subtracting the first column from all other in B , and then

adding all rows to the last, then adding all columns to the first, we find B ∼ diag(g −
1,1, . . . ,1). It follows that

im(1 − A) ∼= im(diag(1, . . . ,1, g − 1,0, . . . ,0︸ ︷︷ ︸
g

)) = Z2m−g−1 ⊕ (g − 1)Z,

and the result follows.

2.6.2 We now consider what happens to the operator when we contract an edge.
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Fig. 1 The genus g graph with
one vertex

Fig. 2 Contracting the edge γ

Claim If Q′ is the graph obtained from contracting a single non-loop edge in Q, and A′ and
A are the matrices of the respective T -operators on these graphs, then A − 1 ∼ ( 12 0

0 A′−1

)
.

Suppose that γ is the edge that is contracted. Suppose γ and γ̄ correspond to the first
and second row of A − 1 respectively. Perform the following elementary row operations on
A − 1: add the first row to every row corresponding to an edge e whose terminal point is the
origin of γ ; and add the second row to every row corresponding to an edge e whose terminal
point is the origin of γ̄ .

Observe the following facts about the resulting matrix:

(1) Since γ is not a loop, the left upper corner is −12.
(2) The cofactor of the first two rows is equal to A′ − 1; because of the transformation that

we did, see Fig. 2: the outgoing (dashed) edges of γ become added to the outgoing
edges of e.

(3) All entries in the first two columns from the third row on are zero; because in the original
matrix, there was a 1 at location (e, γ ) exactly if e flows into γ , but then our operation
has added the −1 from location (γ, γ ) to it — and similarly for the second row of (e, γ̄ ).

Now any possible non-zero entries in the first two rows from the third column on can be
removed by adding the first or second column to the corresponding column, and this will
not affect any other entry. In the end, we find a matrix as in the Claim above.

Given a general graph Q, we contract all non-loops one after the other. By the claim, we
are left with a matrix of the form 1 − A ∼ ( −12m−g 0

0 A′−1

)
, where A′ corresponds to a graph

with only loops, i.e. with one vertex. But then 2.6.1 can be applied to A′ − 1, and we find in
the end that

1 − A ∼ diag(g − 1,1, . . . ,1,0, . . . ,0︸ ︷︷ ︸
g

).

As we remarked above, the algebra OQ is simple for g ≥ 2, so K0 classifies it up to stable
isomorphism. This finishes the proof of Proposition 2.6.

2.8 (K1 and graph homology) Since K1 of a Cuntz-Krieger algebra is isomorphic to the
torsion free part of K0 (see [20]), the same proof shows that K1(OQ) ∼= ker(1 − T ) ∼= Zg
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Fig. 3 A basic equation

for g ≥ 2; and that K1(OQ) ∼= ker(1 − T ) ∼= Z2 for g = 1. We now make a digression to
interpret this result in terms of graph homology.

Let Z1 = H1(Q,Z) denote the space of (integral) cycles on Q, i.e., the kernel of the
boundary map ZEQ → ZV Q. We observe that one can decompose the space ZEQ+

as fol-
lows:

ZEQ+ = ZSQ ⊕ Z1,

where SQ = EQ+ − {γ̄1, . . . , γ̄g} for a collection of edges γi outside a fixed spanning tree
(so SQ consists of the edges of a spanning tree with both orientations, and one oriented edge
for each geometrical edge outside that spanning tree).

As was observed by Jakub Byszewski, there is a natural injective group homomorphism
ϕ : Z1 ↪→ ker(1 − T ) given as follows: if a cycle [c] is represented as

∑
e∈I e, we define

ϕ([c]) =
∑
e∈I

e −
∑
e∈I

ē. (1)

This does not depend upon the choice of a representative for the cycle c. Let us check that,
indeed, (T − 1)ϕ([c]) = 0. Fix e ∈ I , and suppose e′ ∈ I is the (unique) edge in I such that
t (e) = o(e′). Observe the basic equation T (e) − e′ = T (ē′) − ē, that is illustrated in Fig. 3.

We can therefore calculate

(T − 1)ϕ([c]) = (T − 1)
(∑

e −
∑

ē
)

=
∑

T (e) −
∑

e −
∑

T (ē) +
∑

ē

=
∑

T (ē′) −
∑

ē +
∑

e′ −
∑

T (ē) −
∑

e +
∑

ē

= 0.

The map ϕ is injective: choose a basis for the space of loops that doesn’t contain any edges in
sinks, then if e ∈ I , ē /∈ I , so the independence of e and ē in the image implies injectiveness.

Below is the promissed geometrical interpretation of the kernel of T :

2.9 Lemma For g ≥ 2, the kernel of 1 − T is isomorphic to the cycle space Z1 via the
isomorphism ϕ defined in (1):

K1(OQ) = ker(1 − T ) = Z1
∼= Zg.

Proof From 2.6, we know that the kernel of 1 − T has the same rank (= g) as Z1. Alterna-
tively, this follows independently from computations with the graph zeta function as in 2.12
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below. Since ϕ is also injective, the image is of the form
⊕g

i=1 aiZ for some ai ∈ Z>0. We
should prove that ai = 1 for all i.

An end of Q is a connected contractible subgraph of Q that shares exactly one vertex
with its complement in Q.

Given any edge not belonging to an end, choose a loop γ in which e occurs with multi-
plicity one, and in which ē doesn’t occur. Then e occurs in ϕ(γ ) with multiplicity one.

Now suppose e belongs to an end. Since ϕ is bijective after tensoring with Q, for any∑
aee ∈ ker(1 − T ) we can find a, b ∈ Z and a loop γ such that a(

∑
aee) = bϕ(γ ) =

b(
∑

e−∑
ē). Since e is in an end, it is not in the support of this last sum, so it cannot occur

in
∑

aee either.
The conclusion is that edges in ends don’t occur in ker(1 − T ), and any other edge

occurs with multiplicity one in some element of im(ϕ). This would not be the case if some
ai > 1.

2.10 Remark For graphs without ends, this result is also found in [19], where it is applied to
prove the following: let T denote the universal covering of Q and � its fundamental group.
The group of �-invariant integral valued measures on clopen sets of the boundary ∂T is
isomorphic to Z1.

2.11 Remark The map ϕ gives a natural isomorphism Z1 → ker(1 − T ). On the other hand,
Cuntz has constructed a natural isomorphism ker(1 − T ) → K1(OQ) (cf. [20, p. 33] and
[10, 3.1]). It would be interesting to give a direct formula for the map Z1 → K1(OQ) that
relates graph homology and operator K1. From the proof of 3.1 in Cuntz [10], it is not hard
to obtain an explicit form of the map Z1 → K1(ŌQ), where ŌQ denotes the stabilization
of OQ.

2.12 (Relation to the Ihara graph zeta function) We can (independently of the above) com-
pute the rank of the operator 1 − T acting on the vector space QEQ+

. For that, we use the
relation between the characteristic polynomial of T and the Ihara zeta function of the graph.
Theorem 4.3 from [2] (applied to the trivial representation) implies that

det(1 − uT ) = ζ−1
Q (s) = (1 − u2)g−1 det(�(u))

for � the graph Laplace operator. Since g ≥ 2, the universal covering tree of Q is not a
linear tree, and loc. cit., Theorem 5.10.b(i) says that �(u) = (1 −u)D+(u) with D+(1) 
= 0,
so

ord
u=1

det(1 − T u) = g.

Now x ∈ ker(1 − T ) if and only if x belongs to the eigenspace of T for the eigenvalue
+1, and we have just seen that this space is g-dimensional. Therefore, the rank of 1 − T is
2m − g. From Z1 ↪→ ker(1 − T ), and this result, one finds back Lemma 2.9.

If g = 1, the universal covering of the graph is a linear tree with a cyclic action of Z.
This corresponds to Tate’s uniformization of an elliptic curve with totally split multiplica-
tive reduction. Then [2, 5.11.10] implies that 1 − T has rank 2m − 2, which is compatible
with 2.6.

We can now reverse the logic and use the above (independent) calculation of the Smith
Normal Form and kernel of 1−T to deduce facts about the Bass-Hashimoto T -operator and
the graph zeta function:
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Fig. 4 Generators for ker(1 − T )

are ϕ(c) and c + ∑4
i=1 li

2.13 Corollary The multiplicity of the eigenvalue +1 for the operator T , which equals the
pole order at +1 of the Ihara zeta function of Q, is g if g ≥ 2 and 2 if g = 1. The value +1
is a simple zero of the graph Laplacian �(u) if g ≥ 2 and a double zero if g = 1.

The following is also very easy to see:

2.14 Proposition Suppose that Q has Betti number g = 1. Let c denote a (fundamental)
cycle in Q. Then two independent elements of ker(1 − T ) are given by ϕ([c]) and c + ∑

l,
where the sum is over all edges l outside c that point away from c, see Fig. 4 for an example.

2.15 Remark As noticed in the introduction, we can revert the logic of this section to apply
operator algebra K-theory to graph theory as follows: given a graph Q of cyclomatic number
g ≥ 2, write Q = �\T , where T is the universal covering tree of Q and � is a free group on
g generators. Then Kumjian and Pask [14] have shown that OQ

∼= C(	�) � � in the sense
of strong Morita equivalence. By the Brown-Green-Rieffel result from 2.4, we find that the
stable isomorphism class of OQ only depends on g.

In [18], Robertson showed that C(	�) � � is strictly isomorphic to the Cuntz-Krieger
algebra associated to the stable graph in Fig. 1. We can therefore compute K0(OQ) for
any chosen Q, and doing this for the “flower” implies that K0(OQ) is as expected. This,
in its turn, implies the results about the image and rank of 1 − T , independently of graph
theoretical considerations.

2.16 Remark The proof in [18] includes the calculation of the K-theory of the Cuntz-Krieger
algebra for Fig. 1, but directly “on the boundary”, whereas our proof takes place on the re-
duction graph. This can be seen as another manifestation of a “holography principle”, by
which information on the boundary can be equivalently expressed on the tree itself, cf. [15].
It would be very interesting to extend this kind of calculation to higher dimensional build-
ings, cf. [8, 17].

2.17 (Analogue for Riemann surfaces) The analogue of this result in the classical theory of
global uniformization of Riemann surfaces is as follows. Let A = C(P1(R)) � �, with � a
torsion-free cocompact lattice in PGL(2,R), and g the genus of the Riemann surface uni-
formized by �. Then Anantharaman-Delaroche [1] proved that the K-theory of A is given
by K0(A) = Z2g+1 ⊕ Z/(2g − 2)Z. The proof is topological (via a Thom isomorphism),
and although it follows that A is isomorphic to a Cuntz-Krieger algebra, there is no appar-
ent direct link between the matrix of that algebra and some combinatorial structure on the
Riemann surface, as is the case for the non-Archimedean theory.
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2.18 (Analogue for Mumford curves) Let k be a non-Archimedean complete discretely
valued field of mixed characteristic with absolute value | · |. A projective curve X over k is
called a Mumford curve if it is uniformized over K by a Schottky group. This means that
there exists a free subgroup � in PGL(2,K) of rank g, acting on P1

K with limit set 	� such
that X satisfies Xan ∼= �\(P1,an

K − 	�) as rigid analytic spaces. Mumford [16] has shown
that these conditions are equivalent to the existence of a stable model of X over the ring of
integers Ok of k whose special fiber consists only of rational components with double points
over the residue field.

Suppose the ground field k is large enough so that the group � acts on the Bruhat-Tits
tree of PGL(2, k) without inversions. This is always possible by a finite extension of k if
necessary. Let T� denote the subtree of the Bruhat-Tits tree spanned by geodesics connect-
ing fixed points of hyperbolic elements in �. Then QX := T�/� is a finite graph that is
intersection dual to the stable reduction of the curve X. In particular, the cyclomatic number
of QX equal the rank of �, which equals the genus g of X (cf. [16, Theorem 3.3]). Note that
QX is allowed to have loops and multiple edges.

As is observed in [12, p. 124], any graph Q can occur as the stable reduction graph of a
Mumford curve, as soon as Q is finite, connected, and every vertex which is not connected
to itself is the origin of at least three edges. We call such a graph a stable graph.

In [7], a spectral triple was associated to X in which the operator algebra is the boundary
operator algebra of �. For this algebra, the Mumford curve plays the rôle of the Riemann
surface in the results of 2.17. The current work is inspired by the question whether finer
invariants of X are detected by replacing this algebra with OQ for Q = QX the stable re-
duction of X. For some results for Schottky uniformization of Riemann surfaces, see [9].

3 Strict Isomorphism Type

3.1 The (not only stable) isomorphism type of OQ is determined by the image of the unit
of that algebra in its K0-group. Suppose that Q and Q′ are two stable graphs with the same
cyclomatic number g ≥ 2. To ease notation, add a prime to any symbol pertaining to Q′.
Since we have already shown that O := OQ and O′ := OQ′ are stably isomorphic, to prove
that they are actually isomorphic, by Rørdam [20] it suffices to decide whether or not there
exists an isomorphism of abelian groups K0(O) ∼= K0(O′) that maps the class of the unit 1 of
O to that of the unit 1′ of O′. We can now recast this in terms of linear algebra as follows: in
our setting, an isomorphism of K0-groups is given by an automorphism of Zg ⊕Z/(g−1)Z.
Now Cuntz’s isomorphism ϕ : K0(O) → Zn/(1 − At)Zn is explicitly given by

ϕ([1]) = ϕ
([∑

eie
∗
i

])
=

∑
ϕ([eie

∗
i ]) = (1, . . . ,1).

Hence it suffices to check whether there is an isomorphism Zn/(1 − At) ∼= Zn′
/(1 − (A′)t )

that fixes the class of 1 = (1, . . . ,1).
We now look at two examples to show that the isomorphism type can indeed vary.

3.2 Example For a flower as in Fig. 1, any preimage of 1 by 1 − T has g − 1 in the denom-
inator; this is easily seen, since the matrix B from 2.6.1 is invertible. Hence the image of 1
in K0(OQ) is an element of exact order g − 1.

3.3 Example For a graph consisting of two vertices that are connected by g + 1 edges, the

matrix of 1 − T is a block matrix of the form
( −1g+1 B

B −1g+1

)
. It is easy to check that 1 is the
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image of (
−1,

2

g − 1
, . . . ,

2

g − 1︸ ︷︷ ︸
g

,
g + 1

g − 1
,0, . . . ,0︸ ︷︷ ︸

g

)
.

In particular, if g is odd, (g − 1)/2 · 1 ∈ im(1 − T ), so the order of 1 in K0(OQ) divides
(g −1)/2. One can check that if g is odd, 1 has order exactly equal to (g −1)/2 in K0(OQ),
whereas if g is even, the order is exactly equal to g − 1.

3.4 Remark Connes showed in [5, Corollary 6.7], that in the setting of Riemann surfaces,
and sticking to the notations of Remark 2.17, the class of the identity 1 in K0(A) has order
2g − 2, the Euler characteristic of the Riemann surface. This fits with the results of [1] cited
in 2.17, in the sense that the class of 1 generates the subgroup Z/(2g − 2)Z of K0(A).

3.5 (Proof of Theorem 2) Let λ denote the minimal positive integer such that the equation

(1 − A) · x = λ1

has a solution in an integral vector x ∈ Z2m; then, if it exists, λ is the exact order of 1 in
K0(OQ). We know from 2.6.2 that there exist X,Y ∈ GL2m(Z) such that

X(1 − A)Y = diag(1, . . . ,1, g − 1,0, . . . ,0︸ ︷︷ ︸
g

),

where X (resp. Y ) is given by the row (resp. column) operations performed in the course of
proving 2.6. In particular, if (1 − A) · x = λ1, then

diag(1, . . . ,1, g − 1,0, . . . ,0︸ ︷︷ ︸
g

) · y = λX · 1 (2)

has an integral solution y ∈ Z2m. The equations corresponding to the first 2m−g−1 rows of
(2) obviously have a solution in integers for any integral λ. The only question that remains
is whether the remaining g + 1 equations have an integral solution.

We calculate these equations by finding the entries of X · 1 by performing the row op-
erations specified by X on 1. At the start, 1 has entry 1 at every place. The general Smith
Normal Form reduction process in 2.6 starts in 2.6.2. The row operations that where per-
formed in 2.6.2 correspond to the contraction of all non-loop edges, so that in the end, only
one vertex remains. This operation can be seen as collapsing all vertices to a given one, i.e.,
to reach the final form of the matrix, we have to collapse |V Q| − 1 vertices. To each of the
contractions of an edge corresponds adding that row to any ingoing edge of the source of
that edge. Hence each of the edges (then loops) that remain after the complete contraction
process in 2.6.2 has |V Q| − 1 rows added to it. The result of this operation on 1 is that it
has been transformed into

1 � (. . . , |V Q|, . . . , |V Q|︸ ︷︷ ︸
2g

).

Then the row operations in reducing the matrix from 2.6.1 correspond to subtracting
from the last g rows the corresponding of the first g rows, and then adding all rows to the
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Fig. 5 The stable graph Qg with
2g − 2 vertices

(2m − g)-th one. After the reduction in 2.6.1, one finally arrives at

1 � X · 1 = (. . . , g · |V Q|,0, . . . ,0︸ ︷︷ ︸
g

).

The last g equations in (2) therefore also admit a solution. Now the final equation to consider
is that on the (g + 1)-to-last row:

? ∃z ∈ Z: (g − 1)z = λ · g · |V Q|,
and one sees that the minimal integral λ for which a solution exists is

λ = g − 1

(g − 1, |V Q|) .

This proves the first part of the theorem, and proves in particular that g − 1 annihilates the
image of 1, that hence has finite order.

There is an automorphism of the group Zg ⊕ Z/(g − 1)Z that carries an element of
Z/(g − 1)Z to another exactly if these elements have the same order in Z/(g − 1)Z.

To see that any isomorphism type occurs for a stable graph Q of genus g ≥ 2, we will
show that one can realise any number of vertices m with 1 ≤ m ≤ g − 1 for such a stable
graph. We will show that one can find a stable graph Qg of genus g with 2g − 2 vertices.
Collapsing these vertices one after the other keeps the graph stable of the same genus, de-
creasing the number of vertices by one every time. The graph Qg is as in Fig. 5. It has 2g−2
vertices. The two terminal vertices have a loop attached to it, and then consecutive vertices
are connected alternatingly by a simple edge and by two edges. The genus of Qg is easily
seen to be g, and Qg is stable.

Since for fixed g, all contractions of Qg are homotopic but the isomorphism type of the
corresponding operator algebra varies, strict isomorphism is not a homotopy invariant.

Since the boundary operator algebra of genus g is strictly isomorphic to OQ with Q a
“flower” as in Fig. 1 (see Robertson [18]) and in K0 of the latter algebra, 1 has order g − 1,
it follows that only algebras OQ for graphs with

g − 1

(g − 1, |V Q|) = g − 1,

i.e., graphs for which (g − 1, |V Q|) = 1, are strictly isomorphic to boundary operator alge-
bras. This finishes the proof of Theorem 2.

3.6 Remark Note that by Euler’s formula,

ord 1 = g − 1

(g − 1, |V Q|) = g − 1

(g − 1, |EQ|) .
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